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Topics

Part 1 - Introduction to Vulkan

Device and Queues

Memory Management and Resources

Render Passes, Descriptors, Pipelines

Surface and Swapchain

Command Buffers and Multi threading

Synchronization

Part 2 - Advanced Features

Frame Graph

Mesh Shaders

Ray Tracing

We break down each part into two 40’ sessions, so that we have time for questions in 
between. Before moving to the next section, could we get a show of hands if you are 
already familiar with Vulkan or DX12? How many are still using OpenGL? Anyone on 
MacOS?
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It is useful to have an overview of the different objects that are used in Vulkan. There 
is a much finer granularity compared to older rendering APIs (both OpenGL and 
DirectX11 and prior versions), and we will gradually explain each of them. First there 
is the Instance, that is normally associated with the application: there can be only 
one. Then we have the physical devices, the GPUs, and Vulkan gives the flexibility to 
choose which GPU and how to use it. We can use multiple GPUs for different 
purposes. For each GPU, we create a ‘logical’ device, that will handle all the 
remaining Vulkan objects: command buffers, resources, swapchain and such. We are 
using colors to denote different areas of Vulkan objects: yellow is the Instance, green 
is Physical Device, red is for the logical Device, violet is for resources. In the next 
slide we will see the remaining objects.



Vulkan objects overview 2

Descriptor 
Set Layout

Pipeline 
Layout Pipeline

Framebuffer
RenderPass

Shader 
Module

Image View
Query Pool Query

Pipeline 
Cache

Time 
Query

Occlusion 
Query

The rest of the objects are here: the Pipeline is the most important one, as it 
describes almost totally the data used by the GPU to draw/execute shaders. Pipeline 
includes the ShaderModule, used to describe which shaders to be used, a 
PipelineLayout, used to specify which resources are used and a RenderPass, used 
to describe which textures are used to render to when performing graphics work. 
Parallel to these objects there are the query objects, used to read informations from 
the GPU back to the CPU, like execution times (for profiling purposes), occlusion 
queries and statistics queries. Let’s start going deeper into each object.



Device and Queues

VkInstance VkResult vkCreateInstance( ... )

struct VkInstanceCreateInfo {

    VkInstanceCreateFlags       flags;

    const VkApplicationInfo*    pApplicationInfo;

    uint32_t                    enabledLayerCount;

    const char* const*          ppEnabledLayerNames;

    uint32_t                    enabledExtensionCount;

    const char* const*          ppEnabledExtensionNames;

}

In OpenGL we always had to create a context before performing any operations. 
Similarly in Vulkan we have to create a VkInstance: here we tell the driver which 
Vulkan version we want to use. This is also where we specify which instance layers 
and extensions we want to enable. If you want to render to screen, for instance, we 
need to add the surface and swapchain extensions at this point.



Device and Queues

VkInstance VkResult vkCreateInstance( ... )

struct VkInstanceCreateInfo {

    VkInstanceCreateFlags       flags;

    const VkApplicationInfo*    pApplicationInfo;

    uint32_t                    enabledLayerCount;

    const char* const*          ppEnabledLayerNames;

    uint32_t                    enabledExtensionCount;

    const char* const*          ppEnabledExtensionNames;

}

VK_LAYER_KHRONOS_validation

This is also where we request to enable validation layers. With OpenGL you had to 
query for an error after each operation, which was tedious and error prone - and at 
times error messages were not very useful and only made sense after consulting the 
spec. They later added the option to register a callback that would trigger when an 
error was encountered. We can do the same in Vulkan, but if an error occurs the 
validation layer will always print an error to the console, so we are always notified 
even if we don’t manually register a callback. The error messages are also a lot more 
descriptive. The validation layer is essential during development and we strongly 
recommend you always enable it.



Device and Queues

There is also another option to control which layers are enabled at runtime. The 
Vulkan SDK ships with a Vulkan configurator that makes the process easier and 
allows you to add or remove layers without modifying your code. We’ll get into a few 
the other validation layers later.



Device and Queues

VkInstance VkResult vkEnumeratePhysicalDevices( ... )

struct VkPhysicalDeviceProperties {

    uint32_t                            apiVersion;

    uint32_t                            driverVersion;

    uint32_t                            vendorID;

    uint32_t                            deviceID;

    VkPhysicalDeviceType                deviceType;

    char                                deviceName[];

    uint8_t                             pipelineCacheUUID[];

    VkPhysicalDeviceLimits              limits;

    VkPhysicalDeviceSparseProperties    sparseProperties;

}

Your system might expose more than one device, i.e. one integrated GPU and one 
discrete GPU or you could have multiple discrete GPUs installed. We need to query 
our system to discover which devices are available so that we can choose which one 
we want to use. This gives you a lot of flexibility and allows to pick the preferred 
device (i.e. your discrete GPU). There are APIs to query which extensions and 
functionality each device exposes.



Device and Queues

VkInstance VkResult vkGetPhysicalDeviceQueueFamilyProperties( ... )

enum VkQueueFlagBits {

    VK_QUEUE_GRAPHICS_BIT = 0x00000001,

    VK_QUEUE_COMPUTE_BIT = 0x00000002,

    VK_QUEUE_TRANSFER_BIT = 0x00000004,

    VK_QUEUE_SPARSE_BINDING_BIT = 0x00000008,

    VK_QUEUE_PROTECTED_BIT = 0x00000010,

    VK_QUEUE_VIDEO_DECODE_BIT_KHR = 0x00000020

}

Next, we have to determine which queues a physical device exposes. These are the 
objects that we are going to use to submit work to the GPU. Devices expose different 
queue types and for each type a device might expose multiple queues. Unfortunately 
it’s not clear what are the advantages of using more than queue per type, other than 
maybe not having to synchronize access to the queue. We’ll talk more about this in 
the section on synchronization.



Device and Queues

VkInstance
VkResult vkCreateDevice( ... )

struct VkDeviceCreateInfo {

    VkDeviceCreateFlags                flags;

    uint32_t                           queueCreateInfoCount;

    const VkDeviceQueueCreateInfo*     pQueueCreateInfos;

    uint32_t                           enabledLayerCount;

    const char* const*                 ppEnabledLayerNames;

    uint32_t                           enabledExtensionCount;

    const char* const*                 ppEnabledExtensionNames;

    const VkPhysicalDeviceFeatures*    pEnabledFeatures;

}VkDevice

Some of you might ask why do we need to know about physical devices. There are a 
couple of reasons: this allows you to leverage all the available devices on your 
system: you could for instance offload some work to the integrated GPU and then 
pass the result to your discrete device. The other use case is to treat multiple GPUs 
a single logical device. As you can see, we can also enable layers and extensions per 
device. We need this because different devices might support different extensions 
and we can control which ones get enabled per device. Always remember to query 
for support before using an extension. The validation layer will remind you if you 
forget :)



Device Memory

Memory

https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator

enum VkMemoryPropertyFlagBits {

    VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT = 0x00000001,

    VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT = 0x00000002,

    VK_MEMORY_PROPERTY_HOST_COHERENT_BIT = 0x00000004,

    VK_MEMORY_PROPERTY_HOST_CACHED_BIT = 0x00000008,

    VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT = 0x00000010,

  // Provided by VK_VERSION_1_1

    VK_MEMORY_PROPERTY_PROTECTED_BIT = 0x00000020,

  // Provided by VK_AMD_device_coherent_memory

    VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD = 0x00000040,

  // Provided by VK_AMD_device_coherent_memory

    VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD = 0x00000080,

  // Provided by VK_NV_external_memory_rdma

    VK_MEMORY_PROPERTY_RDMA_CAPABLE_BIT_NV = 0x00000100,

}

Host Memory

PCIE Bus

In OpenGL memory was managed for you by the driver. Vulkan allows developers to 
have much finer control over when memory is allocated an how it’s used. We don’t 
recommend writing your own memory allocator unless that’s something you would 
like to experiment with. We suggest you use the Vulkan Memory Allocator, which is 
the de-facto standard for managing memory for Vukan applications. We still provide 
an overview of the details so that you know what happens under the hood. We 
describe how memory works for a system with a discrete GPU. Things are a bit 
different for mobile and integrated GPUs, which share the same physical memory.
Host memory is basically your RAM, while device memory is the memory available 
on your GPU. Device memory is usually not accessible directly. We need to create 
resources in host-coherent memory and then copy it to a resource backed by device 
local memory. On modern systems you can enable ReBAR (Resizable BAR), which 
allows you to copy data directly into GPU memory, thus saving the cost of a copy.



Device Memory

Memory

https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator

Host Memory

PCIE Bus

VmaAllocatorCreateInfo allocatorInfo = {};

allocatorInfo.physicalDevice = vulkan_physical_device;

allocatorInfo.device = vulkan_device;

allocatorInfo.instance = vulkan_instance;

vmaCreateAllocator( &allocatorInfo, &vma_allocator );

...

vmaDestroyAllocator( vma_allocator );

Under the hood, VMA creates multiple memory pools that it sub-allocates from. 
Allocating memory on the GPU can be a slow operation and If you were to implement 
this naively your application would perform poorly. Like with a CPU memory pool, this 
also allows you to reuse memory that has been freed. VMA also also implements 
some useful features like resource tracking so that it can warn you if some resources 
haven’t been freed when the application terminates.

Here we show how to initialize the VMA allocator. At this point we have already 
created all the Vulkan objects we need. Before the application terminates we need to 
destroy the allocator. This follows the Vulkan paradigm nicely.



Resources

VmaAllocation vma_allocation;

VkImage image;

vmaCreateImage(vma_allocator, pCreateInfo, pMemoryInfo, 
&image, &vma_allocation, nullptr);

VkImage image;

vkCreateImage(device, pCreateInfo, nullptr, &image);

VkPhysicalDeviceMemoryProperties memoryProperties;

vkGetPhysicalDeviceMemoryProperties(physicalDevice, 
&memoryProperties);

VkMemoryRequirements memoryRequirements;

vkGetImageMemoryRequirements(device, image, 
&memoryRequirements);

findProperties(&memoryProperties, 
memoryTypeBitsRequirement, requiredProperties);

VkDeviceMemory memory;

vkAllocateMemory(device, pAllocateInfo, nullptr, 
&memory);

vkBindImageMemory(device, image, memory, memoryOffset);

VMA simplifies greatly the code we have to write to create resources (image and 
buffers). On the left we show all the steps we would have to perform manually to 
create a resource - thankfully all of this is handled by VMA for us and all we have to 
do is use the code on the right. 



Resources

enum VkImageType {

VK_IMAGE_TYPE_1D = 0,

VK_IMAGE_TYPE_2D = 1,

VK_IMAGE_TYPE_3D = 2,

}

enum VkSampleCountFlagBits {

VK_SAMPLE_COUNT_1_BIT = 0x00000001,

VK_SAMPLE_COUNT_2_BIT = 0x00000002,

VK_SAMPLE_COUNT_4_BIT = 0x00000004,

       ...

}

enum VkImageTiling {

VK_IMAGE_TILING_OPTIMAL = 0,

VK_IMAGE_TILING_LINEAR = 1,

}

struct VkImageCreateInfo {

    VkImageCreateFlags       flags;

    VkImageType              imageType;

    VkFormat                 format;

    VkExtent3D               extent;

    uint32_t                 mipLevels;

    uint32_t                 arrayLayers;

    VkSampleCountFlagBits    samples;

    VkImageTiling            tiling;

    VkImageUsageFlags        usage;

    VkSharingMode            sharingMode;

    uint32_t                 queueFamilyIndexCount;

    const uint32_t*          pQueueFamilyIndices;

    VkImageLayout            initialLayout;

}

We still have to define the properties of our image. This structure is quite large, but 
really it’s quite simple. We have highlighted the fields that you will likely need most of 
the the time.

- imageType defines the dimensions of your image
- format is self-explanatory, although we need to make sure the combination of 

flags is valid for this format. We’ll explain in a moment
- extent is the size of your image. It has 3 dimensions because you can define 

3D images as well as 2D and 1D image
- mipLevels is the number of mipmaps we want to create for this resource
- arrayLayers is the number of entries, for instance, for an image array
- samples determines how many samples we want in our image
- tiling is quite important: it determines how the image is stored in device 

memory. Optimal is the one you want. To upload a texture to the GPU we 
recommend copying the data to a host visible buffer and then use 
vkCmdCopyBufferToImage to upload it to the GPU. It also possible to create a 
linear image and copy it to an optimal image.



Resources

enum VkImageUsageFlagBits {

VK_IMAGE_USAGE_TRANSFER_SRC_BIT = 0x00000001,

VK_IMAGE_USAGE_TRANSFER_DST_BIT = 0x00000002,

VK_IMAGE_USAGE_SAMPLED_BIT = 0x00000004,

VK_IMAGE_USAGE_STORAGE_BIT = 0x00000008,

VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT = 0x00000010,

VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT = 
0x00000020,

VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT = 
0x00000040,

VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT = 0x00000080,

      ...

}

struct VkImageCreateInfo {

    VkImageCreateFlags       flags;

    VkImageType              imageType;

    VkFormat                 format;

    VkExtent3D               extent;

    uint32_t                 mipLevels;

    uint32_t                 arrayLayers;

    VkSampleCountFlagBits    samples;

    VkImageTiling            tiling;

    VkImageUsageFlags        usage;

    VkSharingMode            sharingMode;

    uint32_t                 queueFamilyIndexCount;

    const uint32_t*          pQueueFamilyIndices;

    VkImageLayout            initialLayout;

}

Usage tells the driver how we plan to use this image, for instance whether we just 
want to use it as a texture or if we are also going to render into it (color attachment). 
It’s important to get this right as some drivers can optimize how the image is stored in 
the GPU. Validation layers are really helpful in this case as they will warn you if you 
are trying to use a resource in a way that wasn’t specified at creation time.

You have to check that your combination of usage and tiling flags is valid for the 
given format. The spec has some mandatory formats, but the best approach is to 
always check for support.



Resources

enum VkImageLayout {

VK_IMAGE_LAYOUT_UNDEFINED = 0,

VK_IMAGE_LAYOUT_GENERAL = 1,

VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL = 2,

VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL = 
3,

VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL = 4,

VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL = 5,

VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL = 6,

VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL = 7,

      ...

}

struct VkImageCreateInfo {

    VkImageCreateFlags       flags;

    VkImageType              imageType;

    VkFormat                 format;

    VkExtent3D               extent;

    uint32_t                 mipLevels;

    uint32_t                 arrayLayers;

    VkSampleCountFlagBits    samples;

    VkImageTiling            tiling;

    VkImageUsageFlags        usage;

    VkSharingMode            sharingMode;

    uint32_t                 queueFamilyIndexCount;

    const uint32_t*          pQueueFamilyIndices;

    VkImageLayout            initialLayout;

}

Finally, image layout defines the initial state of this resource. We are going to go into 
more details about image layout transitions in the synchronization section.

We are going to mention image layouts a few times during this presentation as they 
are an important aspect when using Vulkan.

Images can be used in many ways: we can render into them, we can read from them 
as sampled textures, we can copy them, we can write and read to them in compute 
shaders and a few other use cases.

Each of these use cases require the image to be in the correct layout. When going 
from writing to reading an image, for instance, the driver has to instruct the GPU to 
flush its caches so that the final image data is in main memory and can be read 
correctly in the next stage.

We are going to cover how to perform this transition in the section on 
synchronization.



Resources

struct VkImageViewCreateInfo {

VkImageViewCreateFlags flags;

VkImage                image;

VkImageViewType        viewType;

VkFormat               format;

VkComponentMapping     components;

VkImageSubresourceRange subresourceRange;

}

vkCreateImageView(device, pCreateInfo, nullptr, 
pView);

Once you have created an image, you need also to create an image view. This is 
needed, for instance, when using a resource in a shader. The view determines how 
we want to access the underlying resource. You might want to access only a sub-
region of the image, or you might want to access it with a different format (as long as 
it’s compatible with the underlying image format), you can also change the channel 
order or you can limit the number of mips that are used.

And with this we conclude the section on resources. Buffers work pretty much in the 
same way, although they are a lot simpler, as we don’t have to worry about format 
and layout. We still need to be careful about the usage flags though.



Pipelines
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Before proceeding to describe how to create and use pipelines, we provide a brief 
overview of how the underlying HW is organized. This will help to understand why the 
Vulkan API is structured the way it is.

1. The input assembler is responsible for reading indices and feeding the 
corresponding vertices to the next stage

2. Vertex, Geometry and Tessellation shaders process vertices to provide the 
final position in normalized device coordinates (NDC). Geometry and 
Tessellation shaders can also amplify the original geometry to create new 
primitives

3. The primitive assembly takes individual vertices and combines them into 
geometry primitives (triangles strips, fans, lines, etc.)

4. These primitives are then fed to the rasterizer, which will determine which 
fragments these primitives covers

5. The fragments that are covered by the primitive are then processed by the 
fragment shader

6. Finally the output merger is responsible for storing the final color value to the 
bound render targets. It’s also responsible for blending (if blending is 
enabled), writing depth, etc.



VkRenderPass renderPass;

vkCreateRenderPass(device, pCreateInfo, nullptr, 
&renderPass);

Render Pass

struct VkRenderPassCreateInfo {

    VkRenderPassCreateFlags           flags;

    uint32_t                          attachmentCount;

    const VkAttachmentDescription*    pAttachments;

    uint32_t                          subpassCount;

    const VkSubpassDescription*       pSubpasses;

    uint32_t                          dependencyCount;

    const VkSubpassDependency*        pDependencies;

}

Vulkan requires we provide a fair bit of information up front. This is needed to avoid 
state changes during rendering, which can be quite expensive. Compared to 
OpenGL, this is a lot more rigid, although we’ll see later that some state can still be 
changed at runtime. The API is organized this way to keep the driver as thin as 
possible. This also pushes you to organize the order in which your programs are 
used for maximum performance. One of the first objects that we need is called a 
render pass. A render pass simply describes the render target(s) we are going to 
render into.

As you can see here, we need to provide the number of attachments (render targets) 
and also sub-passes. Sub-passes are rarely used outside of mobile and we are not 
going to cover them here.



VkRenderPass renderPass;

vkCreateRenderPass(device, pCreateInfo, nullptr, 
&renderPass);

Render Pass

struct VkAttachmentDescription {

    VkAttachmentDescriptionFlags    flags;

    VkFormat                        format;

    VkSampleCountFlagBits           samples;

    VkAttachmentLoadOp              loadOp;

    VkAttachmentStoreOp             storeOp;

    VkAttachmentLoadOp              stencilLoadOp;

    VkAttachmentStoreOp             stencilStoreOp;

    VkImageLayout                   initialLayout;

    VkImageLayout                   finalLayout;

}

The attachment description has a few fields, but we have seen most of them when 
we described how to create an image. We need to pay particular attention to the 
attachment store and load op fields. These determine what happens to the contents 
of the image at the beginning and at the end of the render pass.



VkRenderPass renderPass;

vkCreateRenderPass(device, pCreateInfo, nullptr, 
&renderPass);

Render Pass

struct VkAttachmentDescription {

    VkAttachmentDescriptionFlags    flags;

    VkFormat                        format;

    VkSampleCountFlagBits           samples;

    VkAttachmentLoadOp              loadOp;

    VkAttachmentStoreOp             storeOp;

    VkAttachmentLoadOp              stencilLoadOp;

    VkAttachmentStoreOp             stencilStoreOp;

    VkImageLayout                   initialLayout;

    VkImageLayout                   finalLayout;

}

Begin Render 
Pass 0 Clear Clear Clear

End Render 
Pass 0

Store Store Store

Begin Render 
Pass 1

Load

End Render 
Pass 1

Store

Suppose we are doing a GBuffer pass. At the beginning of the render pass, we 
probably want to clear the image to a default color, so we are going to use the 
VK_ATTACHMENT_LOAD_OP_CLEAR op. At the end of the render pass we want to 
store our image data so that it can be used, for example, during our lighting pass. In 
that case we use VK_ATTACHMENT_STORE_OP_STORE op.

In the next render pass we want to add other elements to our image (i.e. transparent 
objects). In this case we want to load the existing content of the image using the 
VK_ATTACHMENT_LOAD_OP_LOAD op. We still want to store the results at the 
end of this render pass, so we use the same op as before.

If you know you are going to touch all the fragments of an image, you could use the 
VK_ATTACHMENT_LOAD_OP_DONT_CARE op at the beginning of the first render 
pass. Depending on the HW you are running on, a CLEAR might perform better.

It’s important to get these operations right as otherwise you will get the wrong results.



VkRenderPass renderPass;

vkCreateRenderPass(device, pCreateInfo, nullptr, 
&renderPass);

Render Pass

struct VkAttachmentDescription {

    VkAttachmentDescriptionFlags    flags;

    VkFormat                        format;

    VkSampleCountFlagBits           samples;

    VkAttachmentLoadOp              loadOp;

    VkAttachmentStoreOp             storeOp;

    VkAttachmentLoadOp              stencilLoadOp;

    VkAttachmentStoreOp             stencilStoreOp;

    VkImageLayout                   initialLayout;

    VkImageLayout                   finalLayout;

}

Begin Render 
Pass 0

COLOR_ATTACHMENT_OPTIMAL

End Render 
Pass 0

Compute

GENERAL

GENERAL

Next are the initial and final layout. These define the layout of the attachment at the 
beginning of the render pass and at the end.

The programmer is responsible to make sure the attachment is in the correct initial 
layout - the validation layers will kindly let you know if you got it wrong :)

On the other hand, you want to set the final layout so that the image is ready for the 
next rendering step. This way you can avoid having to transition the image manually.



VkRenderPass renderPass;

vkCreateRenderPass(device, pCreateInfo, nullptr, 
&renderPass);

Render Pass

struct VkSubpassDescription {

    VkSubpassDescriptionFlags       flags;

    VkPipelineBindPoint             pipelineBindPoint;

    uint32_t                        inputAttachmentCount;

    const VkAttachmentReference*    pInputAttachments;

    uint32_t                        colorAttachmentCount;

    const VkAttachmentReference*    pColorAttachments;

    const VkAttachmentReference*    pResolveAttachments;

    const VkAttachmentReference*    pDepthStencilAttachment;

    uint32_t                        preserveAttachmentCount;

    const uint32_t*                 pPreserveAttachments;

}

struct VkAttachmentReference {

    uint32_t         attachment;

    VkImageLayout    layout;

}

Even if we are not using subpasses, we still need to specify at least one subpass. 
The fields in bold are the ones you will care about most of the time. We need to 
populate the array with the index of the attachment from pAttachments in the 
VkRenderPassCreateInfo structure. The layout is the same as the initial layout.

This concludes the render pass creation. We covered traditional render passes as 
they are still used in many renderers. If you are starting a new project, we 
recommend using the dynamic rendering extension instead. With dynamic rendering 
you don’t have to worry about creating a render pass object and framebuffer.

The next element we need is the pipeline layout.



VkPipelineLayout pipelineLayout;

vkCreatePipelineLayout(device, pCreateInfo, nullptr, 
&pipelineLayout);

Pipeline Layout

struct VkPipelineLayoutCreateInfo {

    VkPipelineLayoutCreateFlags     flags;

    uint32_t                        setLayoutCount;

    const VkDescriptorSetLayout*    pSetLayouts;

    uint32_t                        pushConstantRangeCount;

    const VkPushConstantRange*      pPushConstantRanges;

}

A pipeline layout describes which resources are going to be used at render time. As 
with the render pass, this is just a description, no actual resources are bound at this 
point. Resource binding will happen during rendering and we’ll cover it later.

As you can see here, we can use more than one set. The API allows for multiple sets 
to, once again, reduce the number of state changes. This is a rough guideline on how 
to use sets:

- 0: frame data
- 1: material data
- 2: per-object data



layout ( binding = 0, set = 0 ) uniform LocalConstants {

mat4    view_projection;

vec4    eye;

};

layout ( binding = 1, set = 0 ) uniform Mesh {

mat4    model;

mat4    model_inverse;

};

layout ( binding = 2, set = 0 ) uniform sampler2D texture;

VkDescriptorSetLayout setLayout;

vkCreateDescriptorSetLayout(device, pCreateInfo, nullptr, 
&setLayout);

Pipeline Layout

struct VkDescriptorSetLayoutCreateInfo {

    VkDescriptorSetLayoutCreateFlags       flags;

    uint32_t                               bindingCount;

    const VkDescriptorSetLayoutBinding*    pBindings;

}

struct VkDescriptorSetLayoutBinding {

    uint32_t              binding;

    VkDescriptorType      descriptorType;

    uint32_t              descriptorCount;

    VkShaderStageFlags    stageFlags;

    const VkSampler*      pImmutableSamplers;

}

Let’s look at an example to make this more concrete. Here we have 3 bindings (0, 1, 
2). We explicitly define the set, if omitted the resource will default to set 0. The 
highlighted fields are the one we are going to use. Immutable samplers are a useful 
feature if you know you have a fixed set of samplers you are going to use.



layout ( binding = 0, set = 0 ) uniform LocalConstants {

mat4    view_projection;

vec4    eye;

};

layout ( binding = 1, set = 0 ) uniform Mesh {

mat4    model;

mat4    model_inverse;

};

layout ( binding = 2, set = 0 ) uniform sampler2D texture;

VkDescriptorSetLayout setLayout;

vkCreateDescriptorSetLayout(device, pCreateInfo, nullptr, 
&setLayout);

Pipeline Layout

const VkDescriptorSetLayoutBinding bindings[] =
{
    {
    0,                                  // binding
    VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,   // descriptorType
    1,                                  // descriptorCount
    VK_SHADER_STAGE_VERTEX_BIT,       // stageFlags
    NULL                                
    },

    {
    1,                                  // binding
    VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,   // descriptorType
    1,                                 // descriptorCount
    VK_SHADER_STAGE_VERTEX_BIT,       // stageFlags
    NULL                                
    },

    {
    2,                                  // binding
    VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,  // descriptorType
    1,                                  // descriptorCount
    VK_SHADER_STAGE_FRAGMENT_BIT,       // stageFlags
    NULL                                
    }
};

Here we provide an example of how the bindings array is going to be defined for set 
0. If we were using more than one set, we would have a separate bindings array for 
each set.



Shader Module

glslangValidator -V --target-env vulkan1.3 vertex.vert#version 450

layout ( std140, binding = 0 ) uniform LocalConstants {
mat4    view_projection;
vec4    eye;

};

layout ( std140, binding = 1 ) uniform Mesh {
mat4    model;
mat4    model_inverse;

};

layout(location=0) in vec3 position;
layout(location=1) in vec2 texCoord0;

layout (location = 0) out vec2 vTexcoord0;
layout (location = 1) out vec3 vPosition;

void main() {
    vec4 worldPosition = model * vec4(position, 1.0);
    gl_Position = view_projection * worldPosition;
    vPosition = worldPosition.xyz / worldPosition.w;
    vTexcoord0 = texCoord0;
}

We are now ready to create our first program! As you have probably realize by now, 
Vulkan is quite verbose, and creating a pipeline requires a few steps. We are going to 
show how to create a graphics pipeline. Creating a compute pipeline follows a similar 
pattern but it’s a lot simpler as we only have one stage.

Vulkan can use GLSL code directly, however the recommended approach is to pre-
compile shaders to SPIR-V, a binary format that can then be consumed by driver. 
This will save some time at compilation time and it also allows you to parse the SPIR-
V code to automatically generate pipeline layouts and to map buffer structures to 
CPU code (we won’t cover this here, but we’ll provide links in the references).

Here we show a simple vertex shader which we compile to SPIR-V using the 
compiler provided by the Vulkan SDK. This will produce a .spv file that we can then 
use to create a pipeline.



Shader Module

struct VkShaderModuleCreateInfo {

    VkStructureType              sType;

    const void*                  pNext;

    VkShaderModuleCreateFlags    flags;

    size_t                       codeSize;

    const uint32_t*              pCode;

}

VkShaderModule shaderModule;

vkCreateShaderModule(device, pCreateInfo, nullptr, 
&shaderModule);

Now that we have our shader binary, we proceed to create a shader module. We 
simply read the file we created in the previous step and pass it to the API. We have to 
create a module for each active stage in the pipeline (vertex, fragment, etc.)



Compute Pipeline

VkPipeline pipeline;

vkCreateComputePipelines(

device,

pipelineCache,

createInfoCount,

pCreateInfos,

nullptr,

&pipeline)

struct VkComputePipelineCreateInfo {

    VkStructureType                    sType;

    const void*                        pNext;

    VkPipelineCreateFlags              flags;

    VkPipelineShaderStageCreateInfo    stage;

    VkPipelineLayout                   layout;

    VkPipeline                         basePipelineHandle;

    int32_t                            basePipelineIndex;

}

The easiest pipeline to create is the compute one, as it needs less parameters than 
the graphics one. In the next slide we will concentrate on the 
PipelineShaderStageCreateInfo, that is also shared with the graphics pipeline. In the 
case of a compute pipeline only one shader is used, thus only one stage is needed.



Shader Stage

enum VkShaderStageFlagBits {

    VK_SHADER_STAGE_VERTEX_BIT = 0x00000001,

    VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT = 0x00000002,

    VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT = 
0x00000004,

    VK_SHADER_STAGE_GEOMETRY_BIT = 0x00000008,

    VK_SHADER_STAGE_FRAGMENT_BIT = 0x00000010,

    VK_SHADER_STAGE_COMPUTE_BIT = 0x00000020,

    VK_SHADER_STAGE_ALL_GRAPHICS = 0x0000001F,

    VK_SHADER_STAGE_ALL = 0x7FFFFFFF,

    VK_SHADER_STAGE_RAYGEN_BIT_KHR = 0x00000100,

    VK_SHADER_STAGE_ANY_HIT_BIT_KHR = 0x00000200,

    VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR = 0x00000400,

    VK_SHADER_STAGE_MISS_BIT_KHR = 0x00000800,

    VK_SHADER_STAGE_INTERSECTION_BIT_KHR = 0x00001000,

    VK_SHADER_STAGE_CALLABLE_BIT_KHR = 0x00002000,

    VK_SHADER_STAGE_TASK_BIT_EXT = 0x00000040,

    VK_SHADER_STAGE_MESH_BIT_EXT = 0x00000080,

}

struct VkPipelineShaderStageCreateInfo {

    VkStructureType                     sType;

    const void*                         pNext;

    VkPipelineShaderStageCreateFlags    flags;

    VkShaderStageFlagBits               stage;

    VkShaderModule                      module;

    const char*                         pName;

    const VkSpecializationInfo*         pSpecializationInfo;

}

For each shader stage (compute, vertex, fragment, mesh, task…) we need to fill one 
of these structures. We already created the ShaderModule, we then need just the 
ShaderStageFlagBits, specifying which stage is corresponding to this module and 
optionally SpecializationInfo. We show also some of the ShaderStageFlags that can 
be used.

Specialization constants allow you to define a variable in a shader whose value will 
be defined at compile time. It’s a similar mechanism to C++ templates and it 
simplifies creating multiple variants of the same code without having to use pre-
processor macros.



Graphics Pipeline

struct VkGraphicsPipelineCreateInfo {
    VkStructureType                                  sType;
    const void*                                      pNext;
    VkPipelineCreateFlags                            flags;
    uint32_t                                         stageCount;
    const VkPipelineShaderStageCreateInfo*           pStages;
    const VkPipelineVertexInputStateCreateInfo*      pVertexInputState;
    const VkPipelineInputAssemblyStateCreateInfo*    pInputAssemblyState;
    const VkPipelineTessellationStateCreateInfo*     pTessellationState;
    const VkPipelineViewportStateCreateInfo*         pViewportState;
    const VkPipelineRasterizationStateCreateInfo*    pRasterizationState;
    const VkPipelineMultisampleStateCreateInfo*      pMultisampleState;
    const VkPipelineDepthStencilStateCreateInfo*     pDepthStencilState;
    const VkPipelineColorBlendStateCreateInfo*       pColorBlendState;
    const VkPipelineDynamicStateCreateInfo*          pDynamicState;
    VkPipelineLayout                                 layout;
    VkRenderPass                                     renderPass;
    uint32_t                                         subpass;
    VkPipeline                                       basePipelineHandle;
    int32_t                                          basePipelineIndex;
}

VkPipeline pipeline;

vkCreateGraphicsPipelines(

device,

pipelineCache,

createInfoCount,

pCreateInfos,

nullptr,

&pipeline)

For a graphics program we need more informations when creating a pipeline. Now 
that we have our render pass, pipeline layout and shader modules we can (finally!) 
create the actual pipeline. The API allows you to create multiple pipelines at once, but 
we assume only one pipeline in this example. Please don’t run away, we promise it’s 
not as scary as it looks.

We are going to cover each of the highlighted structures individually. We already saw 
the ShaderStageCreateInfo struct. The main difference from the compute pipeline is 
that we need to specify more than one stage for a graphics pipeline.



Vertex Input

struct VkPipelineVertexInputStateCreateInfo {

    VkPipelineVertexInputStateCreateFlags       flags;

    uint32_t                                    vertexBindingDescriptionCount;

    const VkVertexInputBindingDescription*      pVertexBindingDescriptions;

    uint32_t                                    vertexAttributeDescriptionCount;

    const VkVertexInputAttributeDescription*    pVertexAttributeDescriptions;

}

layout(location=0) in vec3 position;
layout(location=1) in vec2 texCoord0;

struct VkVertexInputAttributeDescription {

    uint32_t    location;

    uint32_t    binding;

    VkFormat    format;

    uint32_t    offset;

}

struct VkVertexInputBindingDescription {

    uint32_t             binding;

    uint32_t             stride;

    VkVertexInputRate    inputRate;

}

Input 
Assembler

Vertex
Geometry
Tessellation

Primitive 
Assembly

Rasterizer Fragment Output 
Merger

This struct defines how the vertex data is read into the vertex shader of the pipeline.
VertexInputAttribute is each individual stream of vertex data (position, normals, 
UVs…) with the location (as specified in the shader), binding (specifying which vertex 
buffer is used to read from), format and offset.
VertexInputBinding specify each vertex buffer used and its InputRate, either vertex or 
instance, to use hardware instancing.



Input Assembly

struct VkPipelineInputAssemblyStateCreateInfo {

    VkStructureType                            sType;

    const void*                                pNext;

    VkPipelineInputAssemblyStateCreateFlags    flags;

    VkPrimitiveTopology                        topology;

    VkBool32                                   primitiveRestartEnable;

}

enum VkPrimitiveTopology {

    VK_PRIMITIVE_TOPOLOGY_POINT_LIST = 0,

    VK_PRIMITIVE_TOPOLOGY_LINE_LIST = 1,

    VK_PRIMITIVE_TOPOLOGY_LINE_STRIP = 2,

    VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST = 3,

    VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP = 4,

    VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN = 5,

    VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY = 6,

    VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY = 7,

    VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY = 
8,

    VK_PRIMITIVE_TOPOLOGY_MAX_ENUM = 0x7FFFFFFF

}

Input 
Assembler

Vertex
Geometry
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Primitive 
Assembly

Rasterizer Fragment Output 
Merger

This struct is mainly used to define the topology of the vertex data: point, line list, 
triangle list, triangle strip and more.



Viewport

struct VkPipelineViewportStateCreateInfo {

    VkStructureType                       sType;

    const void*                           pNext;

    VkPipelineViewportStateCreateFlags    flags;

    uint32_t                              viewportCount;

    const VkViewport*                     pViewports;

    uint32_t                              scissorCount;

    const VkRect2D*                       pScissors;

}

struct VkViewport {

    float    x;

    float    y;

    float    width;

    float    height;

    float    minDepth;

    float    maxDepth;

}

This is used to specify the different viewport and scissors that will be used by the 
pipeline. Unless the Multiviewport feature is used, viewports and scissors counts 
should be 1.

While we can specify the viewport as part of the pipeline, this is usually defined as a 
dynamic state that can be changed at runtime - image if you had to recreate all of 
your pipelines when the resolution changes!



Rasterization State

struct VkPipelineRasterizationStateCreateInfo {

    VkPipelineRasterizationStateCreateFlags    flags;

    VkBool32                                   depthClampEnable;

    VkBool32                                   rasterizerDiscardEnable;

    VkPolygonMode                              polygonMode;

    VkCullModeFlags                            cullMode;

    VkFrontFace                                frontFace;

    VkBool32                                   depthBiasEnable;

    float                                      depthBiasConstantFactor;

    float                                      depthBiasClamp;

    float                                      depthBiasSlopeFactor;

    float                                      lineWidth;

}

Input 
Assembler

Vertex
Geometry
Tessellation

Primitive 
Assembly

Rasterizer Fragment Output 
Merger

Rasterization state is used just before the fragment program, and let the user specify 
different things like the PolygonMode (point, fill, line), CullMode as the triangle facing 
direction, FrontFace as the front face used for culling.
There are also DepthBias controls used to manipulate depth values, used especially 
when rendering shadows.



Multisampling

struct VkPipelineMultisampleStateCreateInfo {

    VkStructureType                          sType;

    const void*                              pNext;

    VkPipelineMultisampleStateCreateFlags    flags;

    VkSampleCountFlagBits                    rasterizationSamples;

    VkBool32                                 sampleShadingEnable;

    float                                    minSampleShading;

    const VkSampleMask*                      pSampleMask;

    VkBool32                                 alphaToCoverageEnable;

    VkBool32                                 alphaToOneEnable;

}

The multisample state, as the name implies, is used to control how many samples 
are used during rasterization. The other fields are not needed most of the time.



Depth Stencil State

struct VkPipelineDepthStencilStateCreateInfo {

    VkPipelineDepthStencilStateCreateFlags    flags;

    VkBool32                                  depthTestEnable;

    VkBool32                                  depthWriteEnable;

    VkCompareOp                               depthCompareOp;

    VkBool32                                  depthBoundsTestEnable;

    VkBool32                                  stencilTestEnable;

    VkStencilOpState                          front;

    VkStencilOpState                          back;

    float                                     minDepthBounds;

    float                                     maxDepthBounds;

}

Input 
Assembler
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Rasterizer Fragment Output 
Merger

This structure is used to control depth and stencil test and writing. If you have used a 
depth and/or stencil buffer before, this should all be familiar. The main difference with 
OpenGL is that we need to define these at pipeline creation time.

We have highlighted the Output Merger as the block affected by these settings. 
Depending on the setup of your pipeline and the behaviour of your fragment shader, 
depth writing might happen before the fragment shader runs. This is called early-z 
and it can improve performance if the fragment about to be shaded fails the depth 
test.



Blend State

struct VkPipelineColorBlendAttachmentState {

    VkBool32                 blendEnable;

    VkBlendFactor            srcColorBlendFactor;

    VkBlendFactor            dstColorBlendFactor;

    VkBlendOp                colorBlendOp;

    VkBlendFactor            srcAlphaBlendFactor;

    VkBlendFactor            dstAlphaBlendFactor;

    VkBlendOp                alphaBlendOp;

    VkColorComponentFlags    colorWriteMask;

}

Input 
Assembler
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Rasterizer Fragment Output 
Merger

This struct is used to specify alpha blending if needed. Blend factors and operations 
are used to compose the pipeline rendering into the specified framebuffer. There is 
also separation between color and alpha operations, as well as which color channel 
to write to.



Dynamic State

struct VkPipelineDynamicStateCreateInfo {

    VkStructureType                      sType;

    const void*                          pNext;

    VkPipelineDynamicStateCreateFlags    flags;

    uint32_t                             dynamicStateCount;

    const VkDynamicState*                pDynamicStates;

}

enum VkDynamicState {
    VK_DYNAMIC_STATE_VIEWPORT = 0,
    VK_DYNAMIC_STATE_SCISSOR = 1,
    VK_DYNAMIC_STATE_LINE_WIDTH = 2,
    VK_DYNAMIC_STATE_DEPTH_BIAS = 3,
    VK_DYNAMIC_STATE_BLEND_CONSTANTS = 4,
    VK_DYNAMIC_STATE_DEPTH_BOUNDS = 5,
    VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK = 6,
    VK_DYNAMIC_STATE_STENCIL_WRITE_MASK = 7,
    VK_DYNAMIC_STATE_STENCIL_REFERENCE = 8,
    // many more available from extensions
}

The monolithic structure passed to create the pipeline can lead to a lot of pipelines 
duplication based on just different operations like depth testing, cull mode, or 
viewport/scissor changes.
To overcome this explosion of pipelines, dynamic states can be specified so that 
these can be specified when recording the command buffer using specific 
commands.
At the beginning only few states could be dynamic, like viewport, scissor and stencil 
values, but recently also cull modes, depth and stencil full states, as well as color 
blend, can be specified at runtime.

And with this we can finally create our graphics pipeline. 



Break

Questions?



Surface

struct VkWin32SurfaceCreateInfoKHR {

    VkStructureType                 sType;

    const void*                     pNext;

    VkWin32SurfaceCreateFlagsKHR    flags;

    HINSTANCE                       hinstance;

    HWND                            hwnd;

}

VkSurfaceKHR surface;

VkPipeline pipeline;

vkCreateWin32SurfaceKHR(

instance,

pCreateInfo,

nullptr,

&surface);

Vulkan supports rendering offline, so you don’t need this unless you want to display 
something on screen. For this reason the surface and swapchain features are 
exposed through extensions. Remember to enable them if you need access to these 
features (VK_KHR_surface and VK_KHR_swapchain - make sure you also enable 
the related extension for the platform you are developing on, i.e. 
VK_KHR_win32_surface)

We are using Windows in this example and we are assuming you have already 
created a system window. Other platforms work in a similar fashion. 



Surface

struct VkSurfaceCapabilitiesKHR {

    uint32_t                         minImageCount;

    uint32_t                         maxImageCount;

    VkExtent2D                       currentExtent;

    VkExtent2D                       minImageExtent;

    VkExtent2D                       maxImageExtent;

    uint32_t                         maxImageArrayLayers;

    VkSurfaceTransformFlagsKHR       supportedTransforms;

    VkSurfaceTransformFlagBitsKHR    currentTransform;

    VkCompositeAlphaFlagsKHR         supportedCompositeAlpha;

    VkImageUsageFlags                supportedUsageFlags;

}

VkSurfaceCapabilitiesKHR surfaceCapabilities;

vkGetPhysicalDeviceSurfaceCapabilitiesKHR(

physicalDevice,

surface,

&surfaceCapabilities);

Before we can create the swapchain, we need to query the surface we just created to 
determine its size, how many swapchain images it supports, etc.



Surface

struct VkSurfaceFormatKHR {

    VkFormat           format;

    VkColorSpaceKHR    colorSpace;

}

uint32_t surfaceFormatCount;

VkSurfaceFormatKHR surfaceFormats[];

vkGetPhysicalDeviceSurfaceFormatsKHR(

physicalDevice,

surface,

&surfaceFormatCount,

surfaceFormats);

Next we have to query which formats and color spaces the surface supports. This is 
important to make sure we use a valid format to render into.



Swapchain

struct VkSwapchainCreateInfoKHR {
    VkStructureType                  sType;
    const void*                      pNext;
    VkSwapchainCreateFlagsKHR        flags;
    VkSurfaceKHR                     surface;
    uint32_t                         minImageCount;
    VkFormat                         imageFormat;
    VkColorSpaceKHR                  imageColorSpace;
    VkExtent2D                       imageExtent;
    uint32_t                         imageArrayLayers;
    VkImageUsageFlags                imageUsage;
    VkSharingMode                    imageSharingMode;
    uint32_t                         queueFamilyIndexCount;
    const uint32_t*                  pQueueFamilyIndices;
    VkSurfaceTransformFlagBitsKHR    preTransform;
    VkCompositeAlphaFlagBitsKHR      compositeAlpha;
    VkPresentModeKHR                 presentMode;
    VkBool32                         clipped;
    VkSwapchainKHR                   oldSwapchain;
}

VkSwapchainKHR swapchain;

vkCreateSwapchainKHR(

device,

pCreateInfo,

nullptr,

&swapchain);

Now we have all of the information we need to create a swapchain. We highlighted 
the fields that you are going to use most of the time. We are going to explain 
presentMode next.

When the resolution changes, we need to re-create the swapchain. We can pass the 
current swapchain to the API as the driver might be able to optimize the creation of 
the new swapchain. There’s no need to re-create the surface.

We describe what image count does in the next slide.



Swapchain

enum VkPresentModeKHR {

    VK_PRESENT_MODE_IMMEDIATE_KHR = 0,

    VK_PRESENT_MODE_MAILBOX_KHR = 1,

    VK_PRESENT_MODE_FIFO_KHR = 2,

    VK_PRESENT_MODE_FIFO_RELAXED_KHR = 3,

}

VSync VSync VSync

Immediate 1

Mailbox

234

123

Fifo 124

Present mode controls when swapchain images are displayed on screen relative to 
vsync.

- Immediate basically means vsync off: the application submits images as fast 
as it can. This will produce tearing as the compositor might be in the middle of 
displaying an image when the update update the image to display

- Mailbox instead corresponds to vsync on: each image waits until the next 
vsync before presenting. No tearing can be observed

- Fifo combine aspect of immediate and mailbox: the compositor keeps a 
queue of images to present and when we present a swapchain image, the 
image is added to the queue.
In immediate mode, the queue has size 1. When presenting an image, the 
active image is immediately replaced
In mailbox mode, when presenting an image we add an image at the end of 
the queue. The compositor will work its way through the queue
In fifo mode, the queue has size 2: the current image being present, and the 
next image. If the app renders fast enough, it might be able to update the next 
image to be displayed. In the example above, we skip 3 as it was replaced by 
4 before 3 was presented

Image count controls how many images you can push to the queue before having to 
wait to re-use a previous image. Most applications use 2 or 3, depending on the 
workload and how much latency you can tolerate.



Command Buffers

Wait for last frame to complete

Reset command pool

Being Command Buffer Recording

Begin Render Pass

Record Commands

End Render Pass

End Command Buffer Recording

Submit Command Buffer(s) to Queue

Present Image

Source: https://registry.khronos.org/vulkan/specs/1.2-extensions/html/vkspec.html#commandbuffers-lifecycle

Now that we have created all of the objects we need for rendering is time to issue 
some commands to get the GPU to do some work! The main interface to do this in 
Vulkan is the command buffer.

If you’re coming from OpenGL this might be new: the driver managed this for you.

However the concept is quite simple: we record the operation we want to perform 
(draw, dispatch, etc.) in a buffer and then submit all recorded commands at once. 
Before we dive into details, we provide an overview of a typical render loop:

- We wait for the last frame rendering to complete. This is needed as in Vulkan 
we are responsible for synchronizing access to resources like command 
buffers and queues

- We prepare our command buffer for recording and we begin our render pass 
(if we are rendering into an image)

- We record the rendering commands
- Once we are done we close the render pass and and end the command 

buffer
- We submit the command buffer to the device queue we created earlier
- Finally we present our image

The image on the right illustrates the lifecycle of a command buffer.



Command Buffers

struct VkCommandPoolCreateInfo {

    VkStructureType             sType;

    const void*                 pNext;

    VkCommandPoolCreateFlags    flags;

    uint32_t                    queueFamilyIndex;

}

VkCommandPool commandPool;

vkCreateCommandPool(

device,

pCreateInfo,

nullptr,

&commandPool);

vkResetCommandPool(

      device,

      commandPool,

      flags);

Command buffers are allocated from command pools. As you can see they are really 
simple to create. We recommend creating 2/3 command pools, depending on how 
many frames you are pipelining. You also need a command pool per queue type - 
you can’t submit a command buffer created for a graphics queue to a compute 
queue.

As we mentioned in the previous slide, you need to reset the command pool before 
recording. The API allows you to reset individual command buffers, but all HW 
vendors recommend resetting the whole command pool for performance reasons.



Command Buffers

struct VkCommandBufferAllocateInfo {

    VkStructureType         sType;

    const void*             pNext;

    VkCommandPool           commandPool;

    VkCommandBufferLevel    level;

    uint32_t                commandBufferCount;

}

VkCommandBuffer commandBuffers[];

vkAllocateCommandBuffers(

    device,

    pAllocateInfo,

    commandBuffers);

Allocating a command buffer is also simple. You can allocate multiple command 
buffers from a single pool if you need to. Vulkan distinguishes between primary and 
secondary buffers, but only primary command buffers are used in practice (that we 
know of). In theory secondary command buffers were introduced to make it easier to 
record multiple command buffers in parallel, but they have too many restrictions and 
in most implementations they are too slow. We’ll show how to multi-thread your code 
in a moment.



Command Buffers

struct VkCommandBufferBeginInfo {

    VkStructureType                          sType;

    const void*                              pNext;

    VkCommandBufferUsageFlags                flags;

    const VkCommandBufferInheritanceInfo*    pInheritanceInfo;

}

vkResetCommandPool(

    device,

    commandPool,

    flags);

VkCommandBufferBeginInfo beginInfo;

vkBeginCommandBuffer(

    commandBuffer,

    &beginInfo);

vkEndCommandBuffer(

    commandBuffer);

Here we show the life cycle of the command buffer in code. For begin, we only care 
about the flags field, which is always populated with 
VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT (as we are going to 
reset the pool each frame).



Descriptor sets

struct VkDescriptorPoolCreateInfo {
    VkStructureType                sType;
    const void*                    pNext;
    VkDescriptorPoolCreateFlags    flags;
    uint32_t                       maxSets;
    uint32_t                       poolSizeCount;
    const VkDescriptorPoolSize*    pPoolSizes;
}

struct VkDescriptorPoolSize {
    VkDescriptorType    type;
    uint32_t            descriptorCount;
}

VkDescriptorPool descriptorPool;

vkCreateDescriptorPool(

    device,

    pCreateInfo,

    nullptr,

    &descriptorPool);

Earlier we created a pipeline layout and we mentioned it was only a description of the 
number and type of resources that would be used at render time. Now the time has 
come to define the resources we are going to use when the program executes. 
These resources are defined in descriptor sets.

Like with command buffers, we need to create a descriptor pool to allocate 
descriptors from. When creating a pool we need to estimate how many descriptor 
sets we are going to allocate from it. If you exceed the maximum number of 
descriptor sets, you should either consider creating a new pool at runtime or 
increasing the size of your pool. Both approaches are valid, choose the one the best 
suit your needs.

We also need to determine how many descriptors per type can be allocated from the 
pool. Again, this involves a bit of guessing. As an alternative, you could create one 
pool per pipeline layout, as in that case you know exactly how many resources are 
used. However this possibly leads to the creation of many pools, which in turn might 
increase memory usage. Again, something you need to experiment with based on 
your needs.



Descriptor sets

struct VkDescriptorSetAllocateInfo {
    VkStructureType                 sType;
    const void*                     pNext;
    VkDescriptorPool                descriptorPool;
    uint32_t                        descriptorSetCount;
    const VkDescriptorSetLayout*    pSetLayouts;
}

VkDescriptorSet descriptorSets[];

vkAllocateDescriptorSets(

    device,

    pAllocateInfo,

    descriptorSets);

Now that we have a descriptor pool, we can allocate a descriptor set from it. 
Descriptor sets are expensive to create, our advice it to create them only once and 
then update them as needed. It is possible to reset a descriptor pool (like command 
buffer pools) and re-create all your descriptor sets, but this shouldn’t be done at each 
frame.

When allocating a descriptor set we provide the layout we created earlier.



Descriptor sets

struct VkWriteDescriptorSet {
    VkStructureType                  sType;
    const void*                      pNext;
    VkDescriptorSet                  dstSet;
    uint32_t                         dstBinding;
    uint32_t                         dstArrayElement;
    uint32_t                         descriptorCount;
    VkDescriptorType                 descriptorType;
    const VkDescriptorImageInfo*     pImageInfo;
    const VkDescriptorBufferInfo*    pBufferInfo;
    const VkBufferView*              pTexelBufferView;
}

struct VkDescriptorImageInfo {
    VkSampler        sampler;
    VkImageView      imageView;
    VkImageLayout    imageLayout;
}

struct VkDescriptorBufferInfo {
    VkBuffer        buffer;
    VkDeviceSize    offset;
    VkDeviceSize    range;
}

VkWriteDescriptorSet descriptorWrites[];

vkUpdateDescriptorSets(

    device,

    descriptorWriteCount,

    descriptorWrites,

    descriptorCopyCount,

    pDescriptorCopies);

The next step is to write the data into the descriptor set. This is where we specify the 
resources associated with this descriptor set. If you are re-using descriptors across 
multiple sets, you can copy them rather than write them. This should provide some 
performance improvements - we won’t cover the details here as copies are similar to 
writes.

The information we provide here is similar to the one we provide when creating the 
pipeline layout, except now we also specify which resources are bound for each 
entry.



Descriptor sets

VkDescriptorBufferInfo bufferInfo = { };
bufferInfo.buffer = buffer;
bufferInfo.offset = 0;
bufferInfo.range = VK_WHOLE_SIZE;

VkWriteDescriptorSet write0 = { };
write0.dstSet = descriptorSet;
write0.dstBinding = 0;
write0.dstArrayElement = 0;
write0.descriptorCount = 1;
write0.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
write0.pBufferInfo = &bufferInfo;

VkDescriptorImageInfo imageInfo = { };
imageInfo.sampler = sampler;
imageInfo.imageView = imageView;
imageInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;

VkWriteDescriptorSet write2 = { };
write1.dstSet = descriptorSet;
write1.dstBinding = 2;
write1.dstArrayElement = 0;
write1.descriptorCount = 1;
write1.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE;
write1.pBufferInfo = &imageInfo;

VkWriteDescriptorSet descriptorWrites[] = {

    write0,

    write1,

    write2

};

vkUpdateDescriptorSets(

    device,

    3,

    descriptorWrites,

    0,

    nullptr);

Here’s what it would look like for our example shader. We have omitted the second 
uniform buffer as it’s basically the same as the first one. Now we have all the objects 
we need to submit commands to the GPU.



Descriptor sets

vkCmdBindPipeline(
    commandBuffer,
    VK_PIPELINE_BIND_POINT_GRAPHICS,
    pipeline);

vkCmdBindDescriptorSets(
    commandBuffer,
    VK_PIPELINE_BIND_POINT_GRAPHICS,   
    pipelineLayout, 
    0,
    1,
    &descriptorSet,
    0,      // dynamicOffsetCount
    nullptr // pDynamicOffsets
);

vkCmdDraw(
    commandBuffer,
    vertexCount,
    instanceCount,
    firstVertex,
    firstInstance);

And here’s how all the objects we have created are used to submit work to the GPU 
(assume we are inside a beingCommandBuffer/beginRenderPass section) :

- We have to bind a pipeline, to tell the driver which program is going to be 
used

- We then bind the active descriptor set, to tell the driver which resources are 
bound

- We then invoke the draw or compute command as needed
While a pipeline object contains all the state for our draw, we still need to be careful 
to avoid changing the pipeline (and descriptors) too often. If possible, try to sort your 
draws by pipeline (i.e. material) to reduce state changes as much as possible

We haven’t talked about dynamic offsets. They are useful to reduce descriptor 
changes as they allow us to provide buffer offsets at runtime. With this approach you 
can bind a single buffer and reuse it across draws. We usually use this for per-draw 
data (i.e. model transform, etc.)



Synchronization

Instance Physical 
Device Device

Queue 
Family Queue

Fence/ 
Semaphore

Command 
Pool

Command 
Buffer

Recap:

● Commands are submitted to a Command Buffer
● Command Buffers are submitted to a Queue
● Queues are submitted to a Device

Synchronization is probably the most complex topic in Vulkan. We’ll do our best to 
make all the moving parts as clear as possible, but don’t expect to grasp all of it in a 
single sitting (we certainly didn’t!).

We start with the synchronization at queue level. We have two primitives at this level: 
fences and semaphores.

- Fences are used for CPU<->GPU synchronization
- Semaphores are used for GPU<-> GPU synchronization

Timeline semaphores are the newest synchronization object, and can be used both 
for CPU<->GPU and GPU<->GPU synchronization.

There are two sets of synchronization primitives: between queues and inside a single 
queue.



Synchronization between queues

Fence

● GPU to CPU synchronization
● Can query or wait status on CPU
● Can be used to wait for queue submission 

completion

Semaphore

● GPU to GPU synchronization
● Signalled when all GPU work is done
● Signalled as part of Queue submission

// Wait for previous frame completion

vkWaitForFences(vulkan_device, 1, inFlightFence, VK_TRUE, 
UINT64_MAX);

vkResetFences(vulkan_device, 1, inFlightFence);

// Retrieve next swapchain image index

vkAcquireNextImageKHR(device, swapChain, UINT64_MAX, 
imageAvailableSemaphore, VK_NULL_HANDLE, &imageIndex);

// Submit command buffer to queue

submitInfo.pWaitSemaphores = &imageAvailableSemaphore;

submitInfo.pSignalSemaphores = &renderFinishedSemaphore;

vkQueueSubmit(graphicsQueue, 1, &submitInfo, 
inFlightFence);

// Present

presentInfo.pWaitSemaphores = renderFinishedSemaphore;

vkQueuePresentKHR(presentQueue, &presentInfo);

As synchronization between queues, we mean also queues of different frames.
The simplest example we can give is to have a single queue per frame, and 
coordinate CPU and GPU to submit a frame.

Here we show some typical usages of fences and semaphores to coordinate a full 
frame.
We are creating a chain of execution that uses a fence to signal when the current 
commands submitted have finished. We will wait in the following frame on that on the 
CPU for that.
Then we create a chain between waiting for the next swapchain image to be 
available before executing the commands, using the pWaitSemaphores in 
QueueSubmit struct.
When that is done, it will signal another semaphore that will unlock the actual present 
on the screen.



Synchronization: Single Queue and Command Order

Command 
Buffer 0

Command 
Buffer 2

Command 
Buffer 1Command2

Command3

Command0 Command1
vkQueueSubmit

Command0

Command1

Command3

Command2

It is important to know the command execution order.

Queue submission sends the command buffers to be executed on the GPU. At this 
stage the commands are just linearly executed based on the order of the command 
buffers.
Here we see that if we submit command buffers with the order 0,2,1, the final 
command executed will be command 0,1,3,2.
This is important to remember: only the order of submission of the command buffers 
determines the order between commands.

The Vulkan spec only guarantees order of execution. This doesn’t mean that the work 
of each command will also complete in that order. So, how can we wait for certain 
operations to complete on the GPU before doing more work ?
Enter another important element: barriers!



Synchronization: Pipeline Barriers

Top of the Pipe

Vertex Input

Vertex Shader

Fragment Shader

Compute Shader

Early Test

Late Test

Color Attachment

Bottom of the Pipe

Top of the Pipe

Vertex Input

Vertex Shader

Fragment Shader

Compute Shader

Early Test

Late Test

Color Attachment

Bottom of the Pipe

Barrier

Command0 Command1

A Barrier is an object that ensures an order of execution between commands.
Each command goes through a series of stages that are outlined here: depending on 
the nature of the command (graphics work or compute work) some stages are 
present and other not.
But the important takeaway is that each Command executes some stages of the 
GPU pipeline.

The first type of barriers we see is the Pipeline barrier. Its usage is to enforce the 
waiting of the following Command in the following Command Buffer depending on 
some stages of the GPU pipeline execution.
Sometimes a Pipeline barrier is also called Execution barrier.

Let’s see an example.



Synchronization: Pipeline Barriers

Top of the Pipe

Vertex Input

Vertex Shader

Fragment Shader

Compute Shader

Early Test

Late Test

Color Attachment

Bottom of the Pipe

Top of the Pipe

Vertex Input

Vertex Shader

Fragment Shader

Compute Shader

Early Test

Late Test

Color Attachment

Bottom of the Pipe

Barrier
Command0 Command1

vkCmdDispatch(...);

vkCmdPipelineBarrier(..., 
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
...);

vkCmdDraw(...);

Source Stage = Producer

Destination Stage = Consumer

For example, let’s visualize a use case: we write to a texture in a compute shader, 
and we then read it in a fragment shader.
We have 2 commands that dispatch or draw (commands like vkSetDescriptorSet are 
not execution commands, thus are ignored by the barriers): first we dispatch a 
compute shader that writes to a texture, then we issue a draw that reads that texture.

We add a pipeline barrier and we specify 2 parameters: the first is the source stage, 
the second the destination stage.
To help creating a different mental model of this, the source can be thought as the 
Producer while the destination as the Consumer.
Thus we can say that the second command’s fragment shader (vkCmdDraw) will wait 
until the Compute Shader stage of the previous command has finished all its 
executions to actually start the shaders. NOTE: the vertex shader of the second 
command, not having a dependency, can execute even if they some threads of the 
GPU are still working on the compute shader.



Synchronization: GPU ‘embarrassingly parallel’ detour

● Fake GPU: 4 threads in parallel.
● Compute creates a 2x2 texture
● Full screen triangle: 3 vertices
● Screen is 2x2: 4 fragments

Compute: (0,0)

Compute: (0,1)

Compute: (1,1)

Compute: (1,0)

GPU Thread 0

GPU Thread 1

GPU Thread 3

GPU Thread 2

GPU Thread 0

GPU Thread 1

GPU Thread 3

GPU Thread 2

Fragment 0

Fragment 1

Fragment 3

Fragment 2

Vertex 0

Vertex 1

Vertex 2

Stall! Waiting for Compute!

Wave 0 Wave 1

GPU Thread 0

GPU Thread 1

GPU Thread 3

GPU Thread 2

Wave 3

To help visualize even further the execution, we will have a quick and simplified 
conceptualization of the GPU.
When the GPU executes commands, it will decompose them in smaller tasks that 
can occupy 1 wave. Each wave then executes multiple threads in parallel, 4 in our 
example.
In the previous example, when we execute the compute shader and then ask to 
draw, when we draw there can be some threads that are still executing some 
compute work.
A barrier thus enforces some waiting on the GPU so that all the operations of a 
certain stage are finished.

In this small conceptualization, if we have a GPU with 4 threads (wow!) we can have 
a workload as in the slide. Back to the dispatch followed by the draw, we can arrive at 
executing all the vertex work of the second command without waiting, having the 
GPU running some compute and some vertex work.
If we have threads left unused we need to wait for all the compute work to finish 
before actually starting executing them.

It is much complex than this, but as a mind model can be helpful to visualize what is 
happening here.



Synchronization: Memory Barriers

Memory Barriers

● Handles GPU caches
● Specify source/destination access 

relative to parent pipeline barrier
● For image barriers, perform layout 

changes
● Are always specified as part of a 

pipeline barrier
● Remember: source = producer, 

destination = consumer

Pipeline 
Barrier

// Updated execution + image barrier from previous example
vkCmdDispatch(...);

VkImageMemoryBarrier imageMemoryBarrier = { ...
.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT,
.dstAccessMask = VK_ACCESS_SHADER_READ_BIT,
.oldLayout = VK_IMAGE_LAYOUT_GENERAL,
.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
... };

vkCmdPipelineBarrier(..., 
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
...
1, &imageMemoryBarrier
...);

vkCmdDraw(...);

Image 
Barrier

Buffer 
Barrier

Memory 
Barrier

Back to synchronization objects, after we ensure a certain execution order, we need 
to ensure some memory validation mechanism.
There are three different memory barriers: memory barriers, buffer memory barriers 
and image memory barriers.

Memory barriers are always specified as part of a pipeline barrier as additional 
arguments to the vkCmdPipelineBarrier function.
There are three memory barrier: a ‘global’ one, buffer memory and image memory.
They all have in common the sourceAccessMask and destinationAccessMasks: 
these are telling the GPU how to handle access to that resource before and after the 
barrier



Synchronization: Memory Barriers

Memory Barriers

● Handles GPU caches
● Specify source/destination access 

relative to parent pipeline barrier
● For image barriers, perform layout 

changes
● Are always specified as part of a 

pipeline barrier
● Remember: source = producer, 

destination = consumer

Pipeline 
Barrier

// Updated execution + image barrier from previous example
vkCmdDispatch(...);

VkImageMemoryBarrier imageMemoryBarrier = { ...
.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT,
.dstAccessMask = VK_ACCESS_SHADER_READ_BIT,
.oldLayout = VK_IMAGE_LAYOUT_GENERAL,
.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
... };

vkCmdPipelineBarrier(..., 
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
...
1, &imageMemoryBarrier
...);

vkCmdDraw(...);

Image 
Barrier

Buffer 
Barrier

Memory 
Barrier

In this case, this image memory barrier is telling the GPU that the compute shader 
will write into the specified texture.
NOTE: the compute shader called in vkCmdDispatch is the PRODUCER of the 
resource, writing memory in the compute shader.
After all the threads of that compute executes, GPU can update the cache so that 
subsequent reads have updated data.



Synchronization: Memory Barriers

Memory Barriers

● Handles GPU caches
● Specify source/destination access 

relative to parent pipeline barrier
● For image barriers, perform layout 

changes
● Are always specified as part of a 

pipeline barrier
● Remember: source = producer, 

destination = consumer

Pipeline 
Barrier

// Updated execution + image barrier from previous example
vkCmdDispatch(...);

VkImageMemoryBarrier imageMemoryBarrier = { ...
.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT,
.dstAccessMask = VK_ACCESS_SHADER_READ_BIT,
.oldLayout = VK_IMAGE_LAYOUT_GENERAL,
.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
... };

vkCmdPipelineBarrier(..., 
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
...
1, &imageMemoryBarrier
...);

vkCmdDraw(...);

Image 
Barrier

Buffer 
Barrier

Memory 
Barrier

On the destination side we are telling that the vkCmdDraw’s fragment shader will 
read the texture (VK_ACCESS_SHADER_READ, 
STAGE_FRAGMENT_SHADER_BIT).
One final element that only Image Memory Barriers have is the layout transition, that 
we will see in the next slide.



 Synchronization: Memory Barriers

Memory Barriers

● Handles GPU caches
● Specify source/destination access 

relative to parent pipeline barrier
● For image barriers, perform layout 

changes
● Are always specified as part of a 

pipeline barrier
● Remember: source = producer, 

destination = consumer

Pipeline 
Barrier

// Updated execution + image barrier from previous example
vkCmdDispatch(...);

VkImageMemoryBarrier imageMemoryBarrier = { ...
.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT,
.dstAccessMask = VK_ACCESS_SHADER_READ_BIT,
.oldLayout = VK_IMAGE_LAYOUT_GENERAL,
.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
... };

vkCmdPipelineBarrier(..., 
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
...
1, &imageMemoryBarrier
...);

vkCmdDraw(...);

Image 
Barrier

Buffer 
Barrier

Memory 
Barrier

Layouts are a way of describing how the image will be used. They can be used to 
determine the access mask (and thus the memory access) that will be used when 
issuing a barrier.
In Vulkan an image can contain multiple subresources (like mipmaps), and a layout 
works exactly on one of those subresources.
When reading/writing to an image in a compute shader, the layout used is 
VK_IMAGE_LAYOUT_GENERAL.
When reading the image in a fragment program the layout is 
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL.

Layout transitions ensure that the GPU is aware of the change in use for the 
resource. Depending on the type of access, it might need to flush caches, 
decompress memory, etc. More importantly, it ensures a correct behavior of the 
application. Missing a barrier or using the incorrect layout can cause data corruption. 
Validation layers will help catch some of these issues. There is also a synchronization 
validation layer that can be enabled using the tool we mentioned on page 9. The 
synchronization validation layer will perform a more thorough validation compared to 
the standard validation layer.

This can be complicated and confusing, and still now it is in evolution.
Luckily there are few resources around that covers most examples needed (like 
https://github.com/KhronosGroup/Vulkan-Docs/wiki/Synchronization-Examples-(Lega
cy-synchronization-APIs)
 ).
The new Synchronization2 extensions simplified a little the code (with examples here 
https://github.com/KhronosGroup/Vulkan-Docs/wiki/Synchronization-Examples), but 
the core concepts are the same.

https://github.com/KhronosGroup/Vulkan-Docs/wiki/Synchronization-Examples-(Legacy-synchronization-APIs)
https://github.com/KhronosGroup/Vulkan-Docs/wiki/Synchronization-Examples-(Legacy-synchronization-APIs)
https://github.com/KhronosGroup/Vulkan-Docs/wiki/Synchronization-Examples
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Break

Questions?
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