
Vulkan for graphics research

Tutorial Resources

https://github.com/PacktPublishing/Mastering-Graphics-Programming-with-Vulkan

Presenters

Marco Castorina first got familiar with Vulkan while working as a driver
developer at Samsung. Later he developed a 2D and 3D renderer in
Vulkan from scratch for a leading media-server company. He recently
joined the games graphics performance team at AMD. In his spare
time, he keeps up to date with the latest techniques in real-time
graphics.

Gabriel Sassone is a rendering enthusiast currently working as a
Principal Rendering Engineer at Multiplayer Group. Previously working
for Avalanche Studios, where his first contact with Vulkan happened,
where they developed the Vulkan layer for the proprietary Apex Engine
and its Google Stadia Port. He previously worked at ReadyAtDawn,
Codemasters, FrameStudios, and some non-gaming tech companies.
His spare time is filled with music and rendering, gaming, and outdoor
activities.

Co-authors of “Mastering Graphics Programming with Vulkan”

Topics

Part 1 - Introduction to Vulkan

Device and Queues

Memory Management and Resources

Render Passes, Descriptors, Pipelines

Surface and Swapchain

Command Buffers and Multi threading

Synchronization

Part 2 - Advanced Features

Frame Graph

Mesh Shaders

Ray Tracing

We break down each part into two 40’ sessions, so that we have time for questions in
between. Before moving to the next section, could we get a show of hands if you are
already familiar with Vulkan or DX12? How many are still using OpenGL? Anyone on
MacOS?

Vulkan objects overview

Instance Physical
Device

Device

Queue
Family Queue

Image

Device
Memory

Swapchain

Image View

Buffer Buffer View

Fence/
Semaphore

Command
Pool

Command
Buffer

Sampler

Descriptor
Pool

Descriptor
Set Layout

Descriptor
Set

Continue

It is useful to have an overview of the different objects that are used in Vulkan. There
is a much finer granularity compared to older rendering APIs (both OpenGL and
DirectX11 and prior versions), and we will gradually explain each of them. First there
is the Instance, that is normally associated with the application: there can be only
one. Then we have the physical devices, the GPUs, and Vulkan gives the flexibility to
choose which GPU and how to use it. We can use multiple GPUs for different
purposes. For each GPU, we create a ‘logical’ device, that will handle all the
remaining Vulkan objects: command buffers, resources, swapchain and such. We are
using colors to denote different areas of Vulkan objects: yellow is the Instance, green
is Physical Device, red is for the logical Device, violet is for resources. In the next
slide we will see the remaining objects.

Vulkan objects overview 2

Descriptor
Set Layout

Pipeline
Layout Pipeline

Framebuffer
RenderPass

Shader
Module

Image View
Query Pool Query

Pipeline
Cache

Time
Query

Occlusion
Query

The rest of the objects are here: the Pipeline is the most important one, as it
describes almost totally the data used by the GPU to draw/execute shaders. Pipeline
includes the ShaderModule, used to describe which shaders to be used, a
PipelineLayout, used to specify which resources are used and a RenderPass, used
to describe which textures are used to render to when performing graphics work.
Parallel to these objects there are the query objects, used to read informations from
the GPU back to the CPU, like execution times (for profiling purposes), occlusion
queries and statistics queries. Let’s start going deeper into each object.

Device and Queues

VkInstance VkResult vkCreateInstance(...)

struct VkInstanceCreateInfo {

 VkInstanceCreateFlags flags;

 const VkApplicationInfo* pApplicationInfo;

 uint32_t enabledLayerCount;

 const char* const* ppEnabledLayerNames;

 uint32_t enabledExtensionCount;

 const char* const* ppEnabledExtensionNames;

}

In OpenGL we always had to create a context before performing any operations.
Similarly in Vulkan we have to create a VkInstance: here we tell the driver which
Vulkan version we want to use. This is also where we specify which instance layers
and extensions we want to enable. If you want to render to screen, for instance, we
need to add the surface and swapchain extensions at this point.

Device and Queues

VkInstance VkResult vkCreateInstance(...)

struct VkInstanceCreateInfo {

 VkInstanceCreateFlags flags;

 const VkApplicationInfo* pApplicationInfo;

 uint32_t enabledLayerCount;

 const char* const* ppEnabledLayerNames;

 uint32_t enabledExtensionCount;

 const char* const* ppEnabledExtensionNames;

}

VK_LAYER_KHRONOS_validation

This is also where we request to enable validation layers. With OpenGL you had to
query for an error after each operation, which was tedious and error prone - and at
times error messages were not very useful and only made sense after consulting the
spec. They later added the option to register a callback that would trigger when an
error was encountered. We can do the same in Vulkan, but if an error occurs the
validation layer will always print an error to the console, so we are always notified
even if we don’t manually register a callback. The error messages are also a lot more
descriptive. The validation layer is essential during development and we strongly
recommend you always enable it.

Device and Queues

There is also another option to control which layers are enabled at runtime. The
Vulkan SDK ships with a Vulkan configurator that makes the process easier and
allows you to add or remove layers without modifying your code. We’ll get into a few
the other validation layers later.

Device and Queues

VkInstance VkResult vkEnumeratePhysicalDevices(...)

struct VkPhysicalDeviceProperties {

 uint32_t apiVersion;

 uint32_t driverVersion;

 uint32_t vendorID;

 uint32_t deviceID;

 VkPhysicalDeviceType deviceType;

 char deviceName[];

 uint8_t pipelineCacheUUID[];

 VkPhysicalDeviceLimits limits;

 VkPhysicalDeviceSparseProperties sparseProperties;

}

Your system might expose more than one device, i.e. one integrated GPU and one
discrete GPU or you could have multiple discrete GPUs installed. We need to query
our system to discover which devices are available so that we can choose which one
we want to use. This gives you a lot of flexibility and allows to pick the preferred
device (i.e. your discrete GPU). There are APIs to query which extensions and
functionality each device exposes.

Device and Queues

VkInstance VkResult vkGetPhysicalDeviceQueueFamilyProperties(...)

enum VkQueueFlagBits {

 VK_QUEUE_GRAPHICS_BIT = 0x00000001,

 VK_QUEUE_COMPUTE_BIT = 0x00000002,

 VK_QUEUE_TRANSFER_BIT = 0x00000004,

 VK_QUEUE_SPARSE_BINDING_BIT = 0x00000008,

 VK_QUEUE_PROTECTED_BIT = 0x00000010,

 VK_QUEUE_VIDEO_DECODE_BIT_KHR = 0x00000020

}

Next, we have to determine which queues a physical device exposes. These are the
objects that we are going to use to submit work to the GPU. Devices expose different
queue types and for each type a device might expose multiple queues. Unfortunately
it’s not clear what are the advantages of using more than queue per type, other than
maybe not having to synchronize access to the queue. We’ll talk more about this in
the section on synchronization.

Device and Queues

VkInstance
VkResult vkCreateDevice(...)

struct VkDeviceCreateInfo {

 VkDeviceCreateFlags flags;

 uint32_t queueCreateInfoCount;

 const VkDeviceQueueCreateInfo* pQueueCreateInfos;

 uint32_t enabledLayerCount;

 const char* const* ppEnabledLayerNames;

 uint32_t enabledExtensionCount;

 const char* const* ppEnabledExtensionNames;

 const VkPhysicalDeviceFeatures* pEnabledFeatures;

}VkDevice

Some of you might ask why do we need to know about physical devices. There are a
couple of reasons: this allows you to leverage all the available devices on your
system: you could for instance offload some work to the integrated GPU and then
pass the result to your discrete device. The other use case is to treat multiple GPUs
a single logical device. As you can see, we can also enable layers and extensions per
device. We need this because different devices might support different extensions
and we can control which ones get enabled per device. Always remember to query
for support before using an extension. The validation layer will remind you if you
forget :)

Device Memory

Memory

https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator

enum VkMemoryPropertyFlagBits {

 VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT = 0x00000001,

 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT = 0x00000002,

 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT = 0x00000004,

 VK_MEMORY_PROPERTY_HOST_CACHED_BIT = 0x00000008,

 VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT = 0x00000010,

 // Provided by VK_VERSION_1_1

 VK_MEMORY_PROPERTY_PROTECTED_BIT = 0x00000020,

 // Provided by VK_AMD_device_coherent_memory

 VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD = 0x00000040,

 // Provided by VK_AMD_device_coherent_memory

 VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD = 0x00000080,

 // Provided by VK_NV_external_memory_rdma

 VK_MEMORY_PROPERTY_RDMA_CAPABLE_BIT_NV = 0x00000100,

}

Host Memory

PCIE Bus

In OpenGL memory was managed for you by the driver. Vulkan allows developers to
have much finer control over when memory is allocated an how it’s used. We don’t
recommend writing your own memory allocator unless that’s something you would
like to experiment with. We suggest you use the Vulkan Memory Allocator, which is
the de-facto standard for managing memory for Vukan applications. We still provide
an overview of the details so that you know what happens under the hood. We
describe how memory works for a system with a discrete GPU. Things are a bit
different for mobile and integrated GPUs, which share the same physical memory.
Host memory is basically your RAM, while device memory is the memory available
on your GPU. Device memory is usually not accessible directly. We need to create
resources in host-coherent memory and then copy it to a resource backed by device
local memory. On modern systems you can enable ReBAR (Resizable BAR), which
allows you to copy data directly into GPU memory, thus saving the cost of a copy.

Device Memory

Memory

https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator

Host Memory

PCIE Bus

VmaAllocatorCreateInfo allocatorInfo = {};

allocatorInfo.physicalDevice = vulkan_physical_device;

allocatorInfo.device = vulkan_device;

allocatorInfo.instance = vulkan_instance;

vmaCreateAllocator(&allocatorInfo, &vma_allocator);

...

vmaDestroyAllocator(vma_allocator);

Under the hood, VMA creates multiple memory pools that it sub-allocates from.
Allocating memory on the GPU can be a slow operation and If you were to implement
this naively your application would perform poorly. Like with a CPU memory pool, this
also allows you to reuse memory that has been freed. VMA also also implements
some useful features like resource tracking so that it can warn you if some resources
haven’t been freed when the application terminates.

Here we show how to initialize the VMA allocator. At this point we have already
created all the Vulkan objects we need. Before the application terminates we need to
destroy the allocator. This follows the Vulkan paradigm nicely.

Resources

VmaAllocation vma_allocation;

VkImage image;

vmaCreateImage(vma_allocator, pCreateInfo, pMemoryInfo,
&image, &vma_allocation, nullptr);

VkImage image;

vkCreateImage(device, pCreateInfo, nullptr, &image);

VkPhysicalDeviceMemoryProperties memoryProperties;

vkGetPhysicalDeviceMemoryProperties(physicalDevice,
&memoryProperties);

VkMemoryRequirements memoryRequirements;

vkGetImageMemoryRequirements(device, image,
&memoryRequirements);

findProperties(&memoryProperties,
memoryTypeBitsRequirement, requiredProperties);

VkDeviceMemory memory;

vkAllocateMemory(device, pAllocateInfo, nullptr,
&memory);

vkBindImageMemory(device, image, memory, memoryOffset);

VMA simplifies greatly the code we have to write to create resources (image and
buffers). On the left we show all the steps we would have to perform manually to
create a resource - thankfully all of this is handled by VMA for us and all we have to
do is use the code on the right.

Resources

enum VkImageType {

VK_IMAGE_TYPE_1D = 0,

VK_IMAGE_TYPE_2D = 1,

VK_IMAGE_TYPE_3D = 2,

}

enum VkSampleCountFlagBits {

VK_SAMPLE_COUNT_1_BIT = 0x00000001,

VK_SAMPLE_COUNT_2_BIT = 0x00000002,

VK_SAMPLE_COUNT_4_BIT = 0x00000004,

 ...

}

enum VkImageTiling {

VK_IMAGE_TILING_OPTIMAL = 0,

VK_IMAGE_TILING_LINEAR = 1,

}

struct VkImageCreateInfo {

 VkImageCreateFlags flags;

 VkImageType imageType;

 VkFormat format;

 VkExtent3D extent;

 uint32_t mipLevels;

 uint32_t arrayLayers;

 VkSampleCountFlagBits samples;

 VkImageTiling tiling;

 VkImageUsageFlags usage;

 VkSharingMode sharingMode;

 uint32_t queueFamilyIndexCount;

 const uint32_t* pQueueFamilyIndices;

 VkImageLayout initialLayout;

}

We still have to define the properties of our image. This structure is quite large, but
really it’s quite simple. We have highlighted the fields that you will likely need most of
the the time.

- imageType defines the dimensions of your image
- format is self-explanatory, although we need to make sure the combination of

flags is valid for this format. We’ll explain in a moment
- extent is the size of your image. It has 3 dimensions because you can define

3D images as well as 2D and 1D image
- mipLevels is the number of mipmaps we want to create for this resource
- arrayLayers is the number of entries, for instance, for an image array
- samples determines how many samples we want in our image
- tiling is quite important: it determines how the image is stored in device

memory. Optimal is the one you want. To upload a texture to the GPU we
recommend copying the data to a host visible buffer and then use
vkCmdCopyBufferToImage to upload it to the GPU. It also possible to create a
linear image and copy it to an optimal image.

Resources

enum VkImageUsageFlagBits {

VK_IMAGE_USAGE_TRANSFER_SRC_BIT = 0x00000001,

VK_IMAGE_USAGE_TRANSFER_DST_BIT = 0x00000002,

VK_IMAGE_USAGE_SAMPLED_BIT = 0x00000004,

VK_IMAGE_USAGE_STORAGE_BIT = 0x00000008,

VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT = 0x00000010,

VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT =
0x00000020,

VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT =
0x00000040,

VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT = 0x00000080,

 ...

}

struct VkImageCreateInfo {

 VkImageCreateFlags flags;

 VkImageType imageType;

 VkFormat format;

 VkExtent3D extent;

 uint32_t mipLevels;

 uint32_t arrayLayers;

 VkSampleCountFlagBits samples;

 VkImageTiling tiling;

 VkImageUsageFlags usage;

 VkSharingMode sharingMode;

 uint32_t queueFamilyIndexCount;

 const uint32_t* pQueueFamilyIndices;

 VkImageLayout initialLayout;

}

Usage tells the driver how we plan to use this image, for instance whether we just
want to use it as a texture or if we are also going to render into it (color attachment).
It’s important to get this right as some drivers can optimize how the image is stored in
the GPU. Validation layers are really helpful in this case as they will warn you if you
are trying to use a resource in a way that wasn’t specified at creation time.

You have to check that your combination of usage and tiling flags is valid for the
given format. The spec has some mandatory formats, but the best approach is to
always check for support.

Resources

enum VkImageLayout {

VK_IMAGE_LAYOUT_UNDEFINED = 0,

VK_IMAGE_LAYOUT_GENERAL = 1,

VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL = 2,

VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL =
3,

VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL = 4,

VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL = 5,

VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL = 6,

VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL = 7,

 ...

}

struct VkImageCreateInfo {

 VkImageCreateFlags flags;

 VkImageType imageType;

 VkFormat format;

 VkExtent3D extent;

 uint32_t mipLevels;

 uint32_t arrayLayers;

 VkSampleCountFlagBits samples;

 VkImageTiling tiling;

 VkImageUsageFlags usage;

 VkSharingMode sharingMode;

 uint32_t queueFamilyIndexCount;

 const uint32_t* pQueueFamilyIndices;

 VkImageLayout initialLayout;

}

Finally, image layout defines the initial state of this resource. We are going to go into
more details about image layout transitions in the synchronization section.

We are going to mention image layouts a few times during this presentation as they
are an important aspect when using Vulkan.

Images can be used in many ways: we can render into them, we can read from them
as sampled textures, we can copy them, we can write and read to them in compute
shaders and a few other use cases.

Each of these use cases require the image to be in the correct layout. When going
from writing to reading an image, for instance, the driver has to instruct the GPU to
flush its caches so that the final image data is in main memory and can be read
correctly in the next stage.

We are going to cover how to perform this transition in the section on
synchronization.

Resources

struct VkImageViewCreateInfo {

VkImageViewCreateFlags flags;

VkImage image;

VkImageViewType viewType;

VkFormat format;

VkComponentMapping components;

VkImageSubresourceRange subresourceRange;

}

vkCreateImageView(device, pCreateInfo, nullptr,
pView);

Once you have created an image, you need also to create an image view. This is
needed, for instance, when using a resource in a shader. The view determines how
we want to access the underlying resource. You might want to access only a sub-
region of the image, or you might want to access it with a different format (as long as
it’s compatible with the underlying image format), you can also change the channel
order or you can limit the number of mips that are used.

And with this we conclude the section on resources. Buffers work pretty much in the
same way, although they are a lot simpler, as we don’t have to worry about format
and layout. We still need to be careful about the usage flags though.

Pipelines

Input
Assembler

Vertex
Geometry
Tessellation

Primitive
Assembly Rasterizer Fragment

Output
Merger

Before proceeding to describe how to create and use pipelines, we provide a brief
overview of how the underlying HW is organized. This will help to understand why the
Vulkan API is structured the way it is.

1. The input assembler is responsible for reading indices and feeding the
corresponding vertices to the next stage

2. Vertex, Geometry and Tessellation shaders process vertices to provide the
final position in normalized device coordinates (NDC). Geometry and
Tessellation shaders can also amplify the original geometry to create new
primitives

3. The primitive assembly takes individual vertices and combines them into
geometry primitives (triangles strips, fans, lines, etc.)

4. These primitives are then fed to the rasterizer, which will determine which
fragments these primitives covers

5. The fragments that are covered by the primitive are then processed by the
fragment shader

6. Finally the output merger is responsible for storing the final color value to the
bound render targets. It’s also responsible for blending (if blending is
enabled), writing depth, etc.

VkRenderPass renderPass;

vkCreateRenderPass(device, pCreateInfo, nullptr,
&renderPass);

Render Pass

struct VkRenderPassCreateInfo {

 VkRenderPassCreateFlags flags;

 uint32_t attachmentCount;

 const VkAttachmentDescription* pAttachments;

 uint32_t subpassCount;

 const VkSubpassDescription* pSubpasses;

 uint32_t dependencyCount;

 const VkSubpassDependency* pDependencies;

}

Vulkan requires we provide a fair bit of information up front. This is needed to avoid
state changes during rendering, which can be quite expensive. Compared to
OpenGL, this is a lot more rigid, although we’ll see later that some state can still be
changed at runtime. The API is organized this way to keep the driver as thin as
possible. This also pushes you to organize the order in which your programs are
used for maximum performance. One of the first objects that we need is called a
render pass. A render pass simply describes the render target(s) we are going to
render into.

As you can see here, we need to provide the number of attachments (render targets)
and also sub-passes. Sub-passes are rarely used outside of mobile and we are not
going to cover them here.

VkRenderPass renderPass;

vkCreateRenderPass(device, pCreateInfo, nullptr,
&renderPass);

Render Pass

struct VkAttachmentDescription {

 VkAttachmentDescriptionFlags flags;

 VkFormat format;

 VkSampleCountFlagBits samples;

 VkAttachmentLoadOp loadOp;

 VkAttachmentStoreOp storeOp;

 VkAttachmentLoadOp stencilLoadOp;

 VkAttachmentStoreOp stencilStoreOp;

 VkImageLayout initialLayout;

 VkImageLayout finalLayout;

}

The attachment description has a few fields, but we have seen most of them when
we described how to create an image. We need to pay particular attention to the
attachment store and load op fields. These determine what happens to the contents
of the image at the beginning and at the end of the render pass.

VkRenderPass renderPass;

vkCreateRenderPass(device, pCreateInfo, nullptr,
&renderPass);

Render Pass

struct VkAttachmentDescription {

 VkAttachmentDescriptionFlags flags;

 VkFormat format;

 VkSampleCountFlagBits samples;

 VkAttachmentLoadOp loadOp;

 VkAttachmentStoreOp storeOp;

 VkAttachmentLoadOp stencilLoadOp;

 VkAttachmentStoreOp stencilStoreOp;

 VkImageLayout initialLayout;

 VkImageLayout finalLayout;

}

Begin Render
Pass 0 Clear Clear Clear

End Render
Pass 0

Store Store Store

Begin Render
Pass 1

Load

End Render
Pass 1

Store

Suppose we are doing a GBuffer pass. At the beginning of the render pass, we
probably want to clear the image to a default color, so we are going to use the
VK_ATTACHMENT_LOAD_OP_CLEAR op. At the end of the render pass we want to
store our image data so that it can be used, for example, during our lighting pass. In
that case we use VK_ATTACHMENT_STORE_OP_STORE op.

In the next render pass we want to add other elements to our image (i.e. transparent
objects). In this case we want to load the existing content of the image using the
VK_ATTACHMENT_LOAD_OP_LOAD op. We still want to store the results at the
end of this render pass, so we use the same op as before.

If you know you are going to touch all the fragments of an image, you could use the
VK_ATTACHMENT_LOAD_OP_DONT_CARE op at the beginning of the first render
pass. Depending on the HW you are running on, a CLEAR might perform better.

It’s important to get these operations right as otherwise you will get the wrong results.

VkRenderPass renderPass;

vkCreateRenderPass(device, pCreateInfo, nullptr,
&renderPass);

Render Pass

struct VkAttachmentDescription {

 VkAttachmentDescriptionFlags flags;

 VkFormat format;

 VkSampleCountFlagBits samples;

 VkAttachmentLoadOp loadOp;

 VkAttachmentStoreOp storeOp;

 VkAttachmentLoadOp stencilLoadOp;

 VkAttachmentStoreOp stencilStoreOp;

 VkImageLayout initialLayout;

 VkImageLayout finalLayout;

}

Begin Render
Pass 0

COLOR_ATTACHMENT_OPTIMAL

End Render
Pass 0

Compute

GENERAL

GENERAL

Next are the initial and final layout. These define the layout of the attachment at the
beginning of the render pass and at the end.

The programmer is responsible to make sure the attachment is in the correct initial
layout - the validation layers will kindly let you know if you got it wrong :)

On the other hand, you want to set the final layout so that the image is ready for the
next rendering step. This way you can avoid having to transition the image manually.

VkRenderPass renderPass;

vkCreateRenderPass(device, pCreateInfo, nullptr,
&renderPass);

Render Pass

struct VkSubpassDescription {

 VkSubpassDescriptionFlags flags;

 VkPipelineBindPoint pipelineBindPoint;

 uint32_t inputAttachmentCount;

 const VkAttachmentReference* pInputAttachments;

 uint32_t colorAttachmentCount;

 const VkAttachmentReference* pColorAttachments;

 const VkAttachmentReference* pResolveAttachments;

 const VkAttachmentReference* pDepthStencilAttachment;

 uint32_t preserveAttachmentCount;

 const uint32_t* pPreserveAttachments;

}

struct VkAttachmentReference {

 uint32_t attachment;

 VkImageLayout layout;

}

Even if we are not using subpasses, we still need to specify at least one subpass.
The fields in bold are the ones you will care about most of the time. We need to
populate the array with the index of the attachment from pAttachments in the
VkRenderPassCreateInfo structure. The layout is the same as the initial layout.

This concludes the render pass creation. We covered traditional render passes as
they are still used in many renderers. If you are starting a new project, we
recommend using the dynamic rendering extension instead. With dynamic rendering
you don’t have to worry about creating a render pass object and framebuffer.

The next element we need is the pipeline layout.

VkPipelineLayout pipelineLayout;

vkCreatePipelineLayout(device, pCreateInfo, nullptr,
&pipelineLayout);

Pipeline Layout

struct VkPipelineLayoutCreateInfo {

 VkPipelineLayoutCreateFlags flags;

 uint32_t setLayoutCount;

 const VkDescriptorSetLayout* pSetLayouts;

 uint32_t pushConstantRangeCount;

 const VkPushConstantRange* pPushConstantRanges;

}

A pipeline layout describes which resources are going to be used at render time. As
with the render pass, this is just a description, no actual resources are bound at this
point. Resource binding will happen during rendering and we’ll cover it later.

As you can see here, we can use more than one set. The API allows for multiple sets
to, once again, reduce the number of state changes. This is a rough guideline on how
to use sets:

- 0: frame data
- 1: material data
- 2: per-object data

layout (binding = 0, set = 0) uniform LocalConstants {

mat4 view_projection;

vec4 eye;

};

layout (binding = 1, set = 0) uniform Mesh {

mat4 model;

mat4 model_inverse;

};

layout (binding = 2, set = 0) uniform sampler2D texture;

VkDescriptorSetLayout setLayout;

vkCreateDescriptorSetLayout(device, pCreateInfo, nullptr,
&setLayout);

Pipeline Layout

struct VkDescriptorSetLayoutCreateInfo {

 VkDescriptorSetLayoutCreateFlags flags;

 uint32_t bindingCount;

 const VkDescriptorSetLayoutBinding* pBindings;

}

struct VkDescriptorSetLayoutBinding {

 uint32_t binding;

 VkDescriptorType descriptorType;

 uint32_t descriptorCount;

 VkShaderStageFlags stageFlags;

 const VkSampler* pImmutableSamplers;

}

Let’s look at an example to make this more concrete. Here we have 3 bindings (0, 1,
2). We explicitly define the set, if omitted the resource will default to set 0. The
highlighted fields are the one we are going to use. Immutable samplers are a useful
feature if you know you have a fixed set of samplers you are going to use.

layout (binding = 0, set = 0) uniform LocalConstants {

mat4 view_projection;

vec4 eye;

};

layout (binding = 1, set = 0) uniform Mesh {

mat4 model;

mat4 model_inverse;

};

layout (binding = 2, set = 0) uniform sampler2D texture;

VkDescriptorSetLayout setLayout;

vkCreateDescriptorSetLayout(device, pCreateInfo, nullptr,
&setLayout);

Pipeline Layout

const VkDescriptorSetLayoutBinding bindings[] =
{
 {
 0, // binding
 VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, // descriptorType
 1, // descriptorCount
 VK_SHADER_STAGE_VERTEX_BIT, // stageFlags
 NULL
 },

 {
 1, // binding
 VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, // descriptorType
 1, // descriptorCount
 VK_SHADER_STAGE_VERTEX_BIT, // stageFlags
 NULL
 },

 {
 2, // binding
 VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, // descriptorType
 1, // descriptorCount
 VK_SHADER_STAGE_FRAGMENT_BIT, // stageFlags
 NULL
 }
};

Here we provide an example of how the bindings array is going to be defined for set
0. If we were using more than one set, we would have a separate bindings array for
each set.

Shader Module

glslangValidator -V --target-env vulkan1.3 vertex.vert#version 450

layout (std140, binding = 0) uniform LocalConstants {
mat4 view_projection;
vec4 eye;

};

layout (std140, binding = 1) uniform Mesh {
mat4 model;
mat4 model_inverse;

};

layout(location=0) in vec3 position;
layout(location=1) in vec2 texCoord0;

layout (location = 0) out vec2 vTexcoord0;
layout (location = 1) out vec3 vPosition;

void main() {
 vec4 worldPosition = model * vec4(position, 1.0);
 gl_Position = view_projection * worldPosition;
 vPosition = worldPosition.xyz / worldPosition.w;
 vTexcoord0 = texCoord0;
}

We are now ready to create our first program! As you have probably realize by now,
Vulkan is quite verbose, and creating a pipeline requires a few steps. We are going to
show how to create a graphics pipeline. Creating a compute pipeline follows a similar
pattern but it’s a lot simpler as we only have one stage.

Vulkan can use GLSL code directly, however the recommended approach is to pre-
compile shaders to SPIR-V, a binary format that can then be consumed by driver.
This will save some time at compilation time and it also allows you to parse the SPIR-
V code to automatically generate pipeline layouts and to map buffer structures to
CPU code (we won’t cover this here, but we’ll provide links in the references).

Here we show a simple vertex shader which we compile to SPIR-V using the
compiler provided by the Vulkan SDK. This will produce a .spv file that we can then
use to create a pipeline.

Shader Module

struct VkShaderModuleCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkShaderModuleCreateFlags flags;

 size_t codeSize;

 const uint32_t* pCode;

}

VkShaderModule shaderModule;

vkCreateShaderModule(device, pCreateInfo, nullptr,
&shaderModule);

Now that we have our shader binary, we proceed to create a shader module. We
simply read the file we created in the previous step and pass it to the API. We have to
create a module for each active stage in the pipeline (vertex, fragment, etc.)

Compute Pipeline

VkPipeline pipeline;

vkCreateComputePipelines(

device,

pipelineCache,

createInfoCount,

pCreateInfos,

nullptr,

&pipeline)

struct VkComputePipelineCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineCreateFlags flags;

 VkPipelineShaderStageCreateInfo stage;

 VkPipelineLayout layout;

 VkPipeline basePipelineHandle;

 int32_t basePipelineIndex;

}

The easiest pipeline to create is the compute one, as it needs less parameters than
the graphics one. In the next slide we will concentrate on the
PipelineShaderStageCreateInfo, that is also shared with the graphics pipeline. In the
case of a compute pipeline only one shader is used, thus only one stage is needed.

Shader Stage

enum VkShaderStageFlagBits {

 VK_SHADER_STAGE_VERTEX_BIT = 0x00000001,

 VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT = 0x00000002,

 VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT =
0x00000004,

 VK_SHADER_STAGE_GEOMETRY_BIT = 0x00000008,

 VK_SHADER_STAGE_FRAGMENT_BIT = 0x00000010,

 VK_SHADER_STAGE_COMPUTE_BIT = 0x00000020,

 VK_SHADER_STAGE_ALL_GRAPHICS = 0x0000001F,

 VK_SHADER_STAGE_ALL = 0x7FFFFFFF,

 VK_SHADER_STAGE_RAYGEN_BIT_KHR = 0x00000100,

 VK_SHADER_STAGE_ANY_HIT_BIT_KHR = 0x00000200,

 VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR = 0x00000400,

 VK_SHADER_STAGE_MISS_BIT_KHR = 0x00000800,

 VK_SHADER_STAGE_INTERSECTION_BIT_KHR = 0x00001000,

 VK_SHADER_STAGE_CALLABLE_BIT_KHR = 0x00002000,

 VK_SHADER_STAGE_TASK_BIT_EXT = 0x00000040,

 VK_SHADER_STAGE_MESH_BIT_EXT = 0x00000080,

}

struct VkPipelineShaderStageCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineShaderStageCreateFlags flags;

 VkShaderStageFlagBits stage;

 VkShaderModule module;

 const char* pName;

 const VkSpecializationInfo* pSpecializationInfo;

}

For each shader stage (compute, vertex, fragment, mesh, task…) we need to fill one
of these structures. We already created the ShaderModule, we then need just the
ShaderStageFlagBits, specifying which stage is corresponding to this module and
optionally SpecializationInfo. We show also some of the ShaderStageFlags that can
be used.

Specialization constants allow you to define a variable in a shader whose value will
be defined at compile time. It’s a similar mechanism to C++ templates and it
simplifies creating multiple variants of the same code without having to use pre-
processor macros.

Graphics Pipeline

struct VkGraphicsPipelineCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineCreateFlags flags;
 uint32_t stageCount;
 const VkPipelineShaderStageCreateInfo* pStages;
 const VkPipelineVertexInputStateCreateInfo* pVertexInputState;
 const VkPipelineInputAssemblyStateCreateInfo* pInputAssemblyState;
 const VkPipelineTessellationStateCreateInfo* pTessellationState;
 const VkPipelineViewportStateCreateInfo* pViewportState;
 const VkPipelineRasterizationStateCreateInfo* pRasterizationState;
 const VkPipelineMultisampleStateCreateInfo* pMultisampleState;
 const VkPipelineDepthStencilStateCreateInfo* pDepthStencilState;
 const VkPipelineColorBlendStateCreateInfo* pColorBlendState;
 const VkPipelineDynamicStateCreateInfo* pDynamicState;
 VkPipelineLayout layout;
 VkRenderPass renderPass;
 uint32_t subpass;
 VkPipeline basePipelineHandle;
 int32_t basePipelineIndex;
}

VkPipeline pipeline;

vkCreateGraphicsPipelines(

device,

pipelineCache,

createInfoCount,

pCreateInfos,

nullptr,

&pipeline)

For a graphics program we need more informations when creating a pipeline. Now
that we have our render pass, pipeline layout and shader modules we can (finally!)
create the actual pipeline. The API allows you to create multiple pipelines at once, but
we assume only one pipeline in this example. Please don’t run away, we promise it’s
not as scary as it looks.

We are going to cover each of the highlighted structures individually. We already saw
the ShaderStageCreateInfo struct. The main difference from the compute pipeline is
that we need to specify more than one stage for a graphics pipeline.

Vertex Input

struct VkPipelineVertexInputStateCreateInfo {

 VkPipelineVertexInputStateCreateFlags flags;

 uint32_t vertexBindingDescriptionCount;

 const VkVertexInputBindingDescription* pVertexBindingDescriptions;

 uint32_t vertexAttributeDescriptionCount;

 const VkVertexInputAttributeDescription* pVertexAttributeDescriptions;

}

layout(location=0) in vec3 position;
layout(location=1) in vec2 texCoord0;

struct VkVertexInputAttributeDescription {

 uint32_t location;

 uint32_t binding;

 VkFormat format;

 uint32_t offset;

}

struct VkVertexInputBindingDescription {

 uint32_t binding;

 uint32_t stride;

 VkVertexInputRate inputRate;

}

Input
Assembler

Vertex
Geometry
Tessellation

Primitive
Assembly

Rasterizer Fragment Output
Merger

This struct defines how the vertex data is read into the vertex shader of the pipeline.
VertexInputAttribute is each individual stream of vertex data (position, normals,
UVs…) with the location (as specified in the shader), binding (specifying which vertex
buffer is used to read from), format and offset.
VertexInputBinding specify each vertex buffer used and its InputRate, either vertex or
instance, to use hardware instancing.

Input Assembly

struct VkPipelineInputAssemblyStateCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineInputAssemblyStateCreateFlags flags;

 VkPrimitiveTopology topology;

 VkBool32 primitiveRestartEnable;

}

enum VkPrimitiveTopology {

 VK_PRIMITIVE_TOPOLOGY_POINT_LIST = 0,

 VK_PRIMITIVE_TOPOLOGY_LINE_LIST = 1,

 VK_PRIMITIVE_TOPOLOGY_LINE_STRIP = 2,

 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST = 3,

 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP = 4,

 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN = 5,

 VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY = 6,

 VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY = 7,

 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY =
8,

 VK_PRIMITIVE_TOPOLOGY_MAX_ENUM = 0x7FFFFFFF

}

Input
Assembler

Vertex
Geometry
Tessellation

Primitive
Assembly

Rasterizer Fragment Output
Merger

This struct is mainly used to define the topology of the vertex data: point, line list,
triangle list, triangle strip and more.

Viewport

struct VkPipelineViewportStateCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineViewportStateCreateFlags flags;

 uint32_t viewportCount;

 const VkViewport* pViewports;

 uint32_t scissorCount;

 const VkRect2D* pScissors;

}

struct VkViewport {

 float x;

 float y;

 float width;

 float height;

 float minDepth;

 float maxDepth;

}

This is used to specify the different viewport and scissors that will be used by the
pipeline. Unless the Multiviewport feature is used, viewports and scissors counts
should be 1.

While we can specify the viewport as part of the pipeline, this is usually defined as a
dynamic state that can be changed at runtime - image if you had to recreate all of
your pipelines when the resolution changes!

Rasterization State

struct VkPipelineRasterizationStateCreateInfo {

 VkPipelineRasterizationStateCreateFlags flags;

 VkBool32 depthClampEnable;

 VkBool32 rasterizerDiscardEnable;

 VkPolygonMode polygonMode;

 VkCullModeFlags cullMode;

 VkFrontFace frontFace;

 VkBool32 depthBiasEnable;

 float depthBiasConstantFactor;

 float depthBiasClamp;

 float depthBiasSlopeFactor;

 float lineWidth;

}

Input
Assembler

Vertex
Geometry
Tessellation

Primitive
Assembly

Rasterizer Fragment Output
Merger

Rasterization state is used just before the fragment program, and let the user specify
different things like the PolygonMode (point, fill, line), CullMode as the triangle facing
direction, FrontFace as the front face used for culling.
There are also DepthBias controls used to manipulate depth values, used especially
when rendering shadows.

Multisampling

struct VkPipelineMultisampleStateCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineMultisampleStateCreateFlags flags;

 VkSampleCountFlagBits rasterizationSamples;

 VkBool32 sampleShadingEnable;

 float minSampleShading;

 const VkSampleMask* pSampleMask;

 VkBool32 alphaToCoverageEnable;

 VkBool32 alphaToOneEnable;

}

The multisample state, as the name implies, is used to control how many samples
are used during rasterization. The other fields are not needed most of the time.

Depth Stencil State

struct VkPipelineDepthStencilStateCreateInfo {

 VkPipelineDepthStencilStateCreateFlags flags;

 VkBool32 depthTestEnable;

 VkBool32 depthWriteEnable;

 VkCompareOp depthCompareOp;

 VkBool32 depthBoundsTestEnable;

 VkBool32 stencilTestEnable;

 VkStencilOpState front;

 VkStencilOpState back;

 float minDepthBounds;

 float maxDepthBounds;

}

Input
Assembler

Vertex
Geometry
Tessellation

Primitive
Assembly

Rasterizer Fragment Output
Merger

This structure is used to control depth and stencil test and writing. If you have used a
depth and/or stencil buffer before, this should all be familiar. The main difference with
OpenGL is that we need to define these at pipeline creation time.

We have highlighted the Output Merger as the block affected by these settings.
Depending on the setup of your pipeline and the behaviour of your fragment shader,
depth writing might happen before the fragment shader runs. This is called early-z
and it can improve performance if the fragment about to be shaded fails the depth
test.

Blend State

struct VkPipelineColorBlendAttachmentState {

 VkBool32 blendEnable;

 VkBlendFactor srcColorBlendFactor;

 VkBlendFactor dstColorBlendFactor;

 VkBlendOp colorBlendOp;

 VkBlendFactor srcAlphaBlendFactor;

 VkBlendFactor dstAlphaBlendFactor;

 VkBlendOp alphaBlendOp;

 VkColorComponentFlags colorWriteMask;

}

Input
Assembler

Vertex
Geometry
Tessellation

Primitive
Assembly

Rasterizer Fragment Output
Merger

This struct is used to specify alpha blending if needed. Blend factors and operations
are used to compose the pipeline rendering into the specified framebuffer. There is
also separation between color and alpha operations, as well as which color channel
to write to.

Dynamic State

struct VkPipelineDynamicStateCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineDynamicStateCreateFlags flags;

 uint32_t dynamicStateCount;

 const VkDynamicState* pDynamicStates;

}

enum VkDynamicState {
 VK_DYNAMIC_STATE_VIEWPORT = 0,
 VK_DYNAMIC_STATE_SCISSOR = 1,
 VK_DYNAMIC_STATE_LINE_WIDTH = 2,
 VK_DYNAMIC_STATE_DEPTH_BIAS = 3,
 VK_DYNAMIC_STATE_BLEND_CONSTANTS = 4,
 VK_DYNAMIC_STATE_DEPTH_BOUNDS = 5,
 VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK = 6,
 VK_DYNAMIC_STATE_STENCIL_WRITE_MASK = 7,
 VK_DYNAMIC_STATE_STENCIL_REFERENCE = 8,
 // many more available from extensions
}

The monolithic structure passed to create the pipeline can lead to a lot of pipelines
duplication based on just different operations like depth testing, cull mode, or
viewport/scissor changes.
To overcome this explosion of pipelines, dynamic states can be specified so that
these can be specified when recording the command buffer using specific
commands.
At the beginning only few states could be dynamic, like viewport, scissor and stencil
values, but recently also cull modes, depth and stencil full states, as well as color
blend, can be specified at runtime.

And with this we can finally create our graphics pipeline.

Break

Questions?

Surface

struct VkWin32SurfaceCreateInfoKHR {

 VkStructureType sType;

 const void* pNext;

 VkWin32SurfaceCreateFlagsKHR flags;

 HINSTANCE hinstance;

 HWND hwnd;

}

VkSurfaceKHR surface;

VkPipeline pipeline;

vkCreateWin32SurfaceKHR(

instance,

pCreateInfo,

nullptr,

&surface);

Vulkan supports rendering offline, so you don’t need this unless you want to display
something on screen. For this reason the surface and swapchain features are
exposed through extensions. Remember to enable them if you need access to these
features (VK_KHR_surface and VK_KHR_swapchain - make sure you also enable
the related extension for the platform you are developing on, i.e.
VK_KHR_win32_surface)

We are using Windows in this example and we are assuming you have already
created a system window. Other platforms work in a similar fashion.

Surface

struct VkSurfaceCapabilitiesKHR {

 uint32_t minImageCount;

 uint32_t maxImageCount;

 VkExtent2D currentExtent;

 VkExtent2D minImageExtent;

 VkExtent2D maxImageExtent;

 uint32_t maxImageArrayLayers;

 VkSurfaceTransformFlagsKHR supportedTransforms;

 VkSurfaceTransformFlagBitsKHR currentTransform;

 VkCompositeAlphaFlagsKHR supportedCompositeAlpha;

 VkImageUsageFlags supportedUsageFlags;

}

VkSurfaceCapabilitiesKHR surfaceCapabilities;

vkGetPhysicalDeviceSurfaceCapabilitiesKHR(

physicalDevice,

surface,

&surfaceCapabilities);

Before we can create the swapchain, we need to query the surface we just created to
determine its size, how many swapchain images it supports, etc.

Surface

struct VkSurfaceFormatKHR {

 VkFormat format;

 VkColorSpaceKHR colorSpace;

}

uint32_t surfaceFormatCount;

VkSurfaceFormatKHR surfaceFormats[];

vkGetPhysicalDeviceSurfaceFormatsKHR(

physicalDevice,

surface,

&surfaceFormatCount,

surfaceFormats);

Next we have to query which formats and color spaces the surface supports. This is
important to make sure we use a valid format to render into.

Swapchain

struct VkSwapchainCreateInfoKHR {
 VkStructureType sType;
 const void* pNext;
 VkSwapchainCreateFlagsKHR flags;
 VkSurfaceKHR surface;
 uint32_t minImageCount;
 VkFormat imageFormat;
 VkColorSpaceKHR imageColorSpace;
 VkExtent2D imageExtent;
 uint32_t imageArrayLayers;
 VkImageUsageFlags imageUsage;
 VkSharingMode imageSharingMode;
 uint32_t queueFamilyIndexCount;
 const uint32_t* pQueueFamilyIndices;
 VkSurfaceTransformFlagBitsKHR preTransform;
 VkCompositeAlphaFlagBitsKHR compositeAlpha;
 VkPresentModeKHR presentMode;
 VkBool32 clipped;
 VkSwapchainKHR oldSwapchain;
}

VkSwapchainKHR swapchain;

vkCreateSwapchainKHR(

device,

pCreateInfo,

nullptr,

&swapchain);

Now we have all of the information we need to create a swapchain. We highlighted
the fields that you are going to use most of the time. We are going to explain
presentMode next.

When the resolution changes, we need to re-create the swapchain. We can pass the
current swapchain to the API as the driver might be able to optimize the creation of
the new swapchain. There’s no need to re-create the surface.

We describe what image count does in the next slide.

Swapchain

enum VkPresentModeKHR {

 VK_PRESENT_MODE_IMMEDIATE_KHR = 0,

 VK_PRESENT_MODE_MAILBOX_KHR = 1,

 VK_PRESENT_MODE_FIFO_KHR = 2,

 VK_PRESENT_MODE_FIFO_RELAXED_KHR = 3,

}

VSync VSync VSync

Immediate 1

Mailbox

234

123

Fifo 124

Present mode controls when swapchain images are displayed on screen relative to
vsync.

- Immediate basically means vsync off: the application submits images as fast
as it can. This will produce tearing as the compositor might be in the middle of
displaying an image when the update update the image to display

- Mailbox instead corresponds to vsync on: each image waits until the next
vsync before presenting. No tearing can be observed

- Fifo combine aspect of immediate and mailbox: the compositor keeps a
queue of images to present and when we present a swapchain image, the
image is added to the queue.
In immediate mode, the queue has size 1. When presenting an image, the
active image is immediately replaced
In mailbox mode, when presenting an image we add an image at the end of
the queue. The compositor will work its way through the queue
In fifo mode, the queue has size 2: the current image being present, and the
next image. If the app renders fast enough, it might be able to update the next
image to be displayed. In the example above, we skip 3 as it was replaced by
4 before 3 was presented

Image count controls how many images you can push to the queue before having to
wait to re-use a previous image. Most applications use 2 or 3, depending on the
workload and how much latency you can tolerate.

Command Buffers

Wait for last frame to complete

Reset command pool

Being Command Buffer Recording

Begin Render Pass

Record Commands

End Render Pass

End Command Buffer Recording

Submit Command Buffer(s) to Queue

Present Image

Source: https://registry.khronos.org/vulkan/specs/1.2-extensions/html/vkspec.html#commandbuffers-lifecycle

Now that we have created all of the objects we need for rendering is time to issue
some commands to get the GPU to do some work! The main interface to do this in
Vulkan is the command buffer.

If you’re coming from OpenGL this might be new: the driver managed this for you.

However the concept is quite simple: we record the operation we want to perform
(draw, dispatch, etc.) in a buffer and then submit all recorded commands at once.
Before we dive into details, we provide an overview of a typical render loop:

- We wait for the last frame rendering to complete. This is needed as in Vulkan
we are responsible for synchronizing access to resources like command
buffers and queues

- We prepare our command buffer for recording and we begin our render pass
(if we are rendering into an image)

- We record the rendering commands
- Once we are done we close the render pass and and end the command

buffer
- We submit the command buffer to the device queue we created earlier
- Finally we present our image

The image on the right illustrates the lifecycle of a command buffer.

Command Buffers

struct VkCommandPoolCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkCommandPoolCreateFlags flags;

 uint32_t queueFamilyIndex;

}

VkCommandPool commandPool;

vkCreateCommandPool(

device,

pCreateInfo,

nullptr,

&commandPool);

vkResetCommandPool(

 device,

 commandPool,

 flags);

Command buffers are allocated from command pools. As you can see they are really
simple to create. We recommend creating 2/3 command pools, depending on how
many frames you are pipelining. You also need a command pool per queue type -
you can’t submit a command buffer created for a graphics queue to a compute
queue.

As we mentioned in the previous slide, you need to reset the command pool before
recording. The API allows you to reset individual command buffers, but all HW
vendors recommend resetting the whole command pool for performance reasons.

Command Buffers

struct VkCommandBufferAllocateInfo {

 VkStructureType sType;

 const void* pNext;

 VkCommandPool commandPool;

 VkCommandBufferLevel level;

 uint32_t commandBufferCount;

}

VkCommandBuffer commandBuffers[];

vkAllocateCommandBuffers(

 device,

 pAllocateInfo,

 commandBuffers);

Allocating a command buffer is also simple. You can allocate multiple command
buffers from a single pool if you need to. Vulkan distinguishes between primary and
secondary buffers, but only primary command buffers are used in practice (that we
know of). In theory secondary command buffers were introduced to make it easier to
record multiple command buffers in parallel, but they have too many restrictions and
in most implementations they are too slow. We’ll show how to multi-thread your code
in a moment.

Command Buffers

struct VkCommandBufferBeginInfo {

 VkStructureType sType;

 const void* pNext;

 VkCommandBufferUsageFlags flags;

 const VkCommandBufferInheritanceInfo* pInheritanceInfo;

}

vkResetCommandPool(

 device,

 commandPool,

 flags);

VkCommandBufferBeginInfo beginInfo;

vkBeginCommandBuffer(

 commandBuffer,

 &beginInfo);

vkEndCommandBuffer(

 commandBuffer);

Here we show the life cycle of the command buffer in code. For begin, we only care
about the flags field, which is always populated with
VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT (as we are going to
reset the pool each frame).

Descriptor sets

struct VkDescriptorPoolCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkDescriptorPoolCreateFlags flags;
 uint32_t maxSets;
 uint32_t poolSizeCount;
 const VkDescriptorPoolSize* pPoolSizes;
}

struct VkDescriptorPoolSize {
 VkDescriptorType type;
 uint32_t descriptorCount;
}

VkDescriptorPool descriptorPool;

vkCreateDescriptorPool(

 device,

 pCreateInfo,

 nullptr,

 &descriptorPool);

Earlier we created a pipeline layout and we mentioned it was only a description of the
number and type of resources that would be used at render time. Now the time has
come to define the resources we are going to use when the program executes.
These resources are defined in descriptor sets.

Like with command buffers, we need to create a descriptor pool to allocate
descriptors from. When creating a pool we need to estimate how many descriptor
sets we are going to allocate from it. If you exceed the maximum number of
descriptor sets, you should either consider creating a new pool at runtime or
increasing the size of your pool. Both approaches are valid, choose the one the best
suit your needs.

We also need to determine how many descriptors per type can be allocated from the
pool. Again, this involves a bit of guessing. As an alternative, you could create one
pool per pipeline layout, as in that case you know exactly how many resources are
used. However this possibly leads to the creation of many pools, which in turn might
increase memory usage. Again, something you need to experiment with based on
your needs.

Descriptor sets

struct VkDescriptorSetAllocateInfo {
 VkStructureType sType;
 const void* pNext;
 VkDescriptorPool descriptorPool;
 uint32_t descriptorSetCount;
 const VkDescriptorSetLayout* pSetLayouts;
}

VkDescriptorSet descriptorSets[];

vkAllocateDescriptorSets(

 device,

 pAllocateInfo,

 descriptorSets);

Now that we have a descriptor pool, we can allocate a descriptor set from it.
Descriptor sets are expensive to create, our advice it to create them only once and
then update them as needed. It is possible to reset a descriptor pool (like command
buffer pools) and re-create all your descriptor sets, but this shouldn’t be done at each
frame.

When allocating a descriptor set we provide the layout we created earlier.

Descriptor sets

struct VkWriteDescriptorSet {
 VkStructureType sType;
 const void* pNext;
 VkDescriptorSet dstSet;
 uint32_t dstBinding;
 uint32_t dstArrayElement;
 uint32_t descriptorCount;
 VkDescriptorType descriptorType;
 const VkDescriptorImageInfo* pImageInfo;
 const VkDescriptorBufferInfo* pBufferInfo;
 const VkBufferView* pTexelBufferView;
}

struct VkDescriptorImageInfo {
 VkSampler sampler;
 VkImageView imageView;
 VkImageLayout imageLayout;
}

struct VkDescriptorBufferInfo {
 VkBuffer buffer;
 VkDeviceSize offset;
 VkDeviceSize range;
}

VkWriteDescriptorSet descriptorWrites[];

vkUpdateDescriptorSets(

 device,

 descriptorWriteCount,

 descriptorWrites,

 descriptorCopyCount,

 pDescriptorCopies);

The next step is to write the data into the descriptor set. This is where we specify the
resources associated with this descriptor set. If you are re-using descriptors across
multiple sets, you can copy them rather than write them. This should provide some
performance improvements - we won’t cover the details here as copies are similar to
writes.

The information we provide here is similar to the one we provide when creating the
pipeline layout, except now we also specify which resources are bound for each
entry.

Descriptor sets

VkDescriptorBufferInfo bufferInfo = { };
bufferInfo.buffer = buffer;
bufferInfo.offset = 0;
bufferInfo.range = VK_WHOLE_SIZE;

VkWriteDescriptorSet write0 = { };
write0.dstSet = descriptorSet;
write0.dstBinding = 0;
write0.dstArrayElement = 0;
write0.descriptorCount = 1;
write0.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
write0.pBufferInfo = &bufferInfo;

VkDescriptorImageInfo imageInfo = { };
imageInfo.sampler = sampler;
imageInfo.imageView = imageView;
imageInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;

VkWriteDescriptorSet write2 = { };
write1.dstSet = descriptorSet;
write1.dstBinding = 2;
write1.dstArrayElement = 0;
write1.descriptorCount = 1;
write1.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE;
write1.pBufferInfo = &imageInfo;

VkWriteDescriptorSet descriptorWrites[] = {

 write0,

 write1,

 write2

};

vkUpdateDescriptorSets(

 device,

 3,

 descriptorWrites,

 0,

 nullptr);

Here’s what it would look like for our example shader. We have omitted the second
uniform buffer as it’s basically the same as the first one. Now we have all the objects
we need to submit commands to the GPU.

Descriptor sets

vkCmdBindPipeline(
 commandBuffer,
 VK_PIPELINE_BIND_POINT_GRAPHICS,
 pipeline);

vkCmdBindDescriptorSets(
 commandBuffer,
 VK_PIPELINE_BIND_POINT_GRAPHICS,
 pipelineLayout,
 0,
 1,
 &descriptorSet,
 0, // dynamicOffsetCount
 nullptr // pDynamicOffsets
);

vkCmdDraw(
 commandBuffer,
 vertexCount,
 instanceCount,
 firstVertex,
 firstInstance);

And here’s how all the objects we have created are used to submit work to the GPU
(assume we are inside a beingCommandBuffer/beginRenderPass section) :

- We have to bind a pipeline, to tell the driver which program is going to be
used

- We then bind the active descriptor set, to tell the driver which resources are
bound

- We then invoke the draw or compute command as needed
While a pipeline object contains all the state for our draw, we still need to be careful
to avoid changing the pipeline (and descriptors) too often. If possible, try to sort your
draws by pipeline (i.e. material) to reduce state changes as much as possible

We haven’t talked about dynamic offsets. They are useful to reduce descriptor
changes as they allow us to provide buffer offsets at runtime. With this approach you
can bind a single buffer and reuse it across draws. We usually use this for per-draw
data (i.e. model transform, etc.)

Synchronization

Instance Physical
Device Device

Queue
Family Queue

Fence/
Semaphore

Command
Pool

Command
Buffer

Recap:

● Commands are submitted to a Command Buffer
● Command Buffers are submitted to a Queue
● Queues are submitted to a Device

Synchronization is probably the most complex topic in Vulkan. We’ll do our best to
make all the moving parts as clear as possible, but don’t expect to grasp all of it in a
single sitting (we certainly didn’t!).

We start with the synchronization at queue level. We have two primitives at this level:
fences and semaphores.

- Fences are used for CPU<->GPU synchronization
- Semaphores are used for GPU<-> GPU synchronization

Timeline semaphores are the newest synchronization object, and can be used both
for CPU<->GPU and GPU<->GPU synchronization.

There are two sets of synchronization primitives: between queues and inside a single
queue.

Synchronization between queues

Fence

● GPU to CPU synchronization
● Can query or wait status on CPU
● Can be used to wait for queue submission

completion

Semaphore

● GPU to GPU synchronization
● Signalled when all GPU work is done
● Signalled as part of Queue submission

// Wait for previous frame completion

vkWaitForFences(vulkan_device, 1, inFlightFence, VK_TRUE,
UINT64_MAX);

vkResetFences(vulkan_device, 1, inFlightFence);

// Retrieve next swapchain image index

vkAcquireNextImageKHR(device, swapChain, UINT64_MAX,
imageAvailableSemaphore, VK_NULL_HANDLE, &imageIndex);

// Submit command buffer to queue

submitInfo.pWaitSemaphores = &imageAvailableSemaphore;

submitInfo.pSignalSemaphores = &renderFinishedSemaphore;

vkQueueSubmit(graphicsQueue, 1, &submitInfo,
inFlightFence);

// Present

presentInfo.pWaitSemaphores = renderFinishedSemaphore;

vkQueuePresentKHR(presentQueue, &presentInfo);

As synchronization between queues, we mean also queues of different frames.
The simplest example we can give is to have a single queue per frame, and
coordinate CPU and GPU to submit a frame.

Here we show some typical usages of fences and semaphores to coordinate a full
frame.
We are creating a chain of execution that uses a fence to signal when the current
commands submitted have finished. We will wait in the following frame on that on the
CPU for that.
Then we create a chain between waiting for the next swapchain image to be
available before executing the commands, using the pWaitSemaphores in
QueueSubmit struct.
When that is done, it will signal another semaphore that will unlock the actual present
on the screen.

Synchronization: Single Queue and Command Order

Command
Buffer 0

Command
Buffer 2

Command
Buffer 1Command2

Command3

Command0 Command1
vkQueueSubmit

Command0

Command1

Command3

Command2

It is important to know the command execution order.

Queue submission sends the command buffers to be executed on the GPU. At this
stage the commands are just linearly executed based on the order of the command
buffers.
Here we see that if we submit command buffers with the order 0,2,1, the final
command executed will be command 0,1,3,2.
This is important to remember: only the order of submission of the command buffers
determines the order between commands.

The Vulkan spec only guarantees order of execution. This doesn’t mean that the work
of each command will also complete in that order. So, how can we wait for certain
operations to complete on the GPU before doing more work ?
Enter another important element: barriers!

Synchronization: Pipeline Barriers

Top of the Pipe

Vertex Input

Vertex Shader

Fragment Shader

Compute Shader

Early Test

Late Test

Color Attachment

Bottom of the Pipe

Top of the Pipe

Vertex Input

Vertex Shader

Fragment Shader

Compute Shader

Early Test

Late Test

Color Attachment

Bottom of the Pipe

Barrier

Command0 Command1

A Barrier is an object that ensures an order of execution between commands.
Each command goes through a series of stages that are outlined here: depending on
the nature of the command (graphics work or compute work) some stages are
present and other not.
But the important takeaway is that each Command executes some stages of the
GPU pipeline.

The first type of barriers we see is the Pipeline barrier. Its usage is to enforce the
waiting of the following Command in the following Command Buffer depending on
some stages of the GPU pipeline execution.
Sometimes a Pipeline barrier is also called Execution barrier.

Let’s see an example.

Synchronization: Pipeline Barriers

Top of the Pipe

Vertex Input

Vertex Shader

Fragment Shader

Compute Shader

Early Test

Late Test

Color Attachment

Bottom of the Pipe

Top of the Pipe

Vertex Input

Vertex Shader

Fragment Shader

Compute Shader

Early Test

Late Test

Color Attachment

Bottom of the Pipe

Barrier
Command0 Command1

vkCmdDispatch(...);

vkCmdPipelineBarrier(...,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
...);

vkCmdDraw(...);

Source Stage = Producer

Destination Stage = Consumer

For example, let’s visualize a use case: we write to a texture in a compute shader,
and we then read it in a fragment shader.
We have 2 commands that dispatch or draw (commands like vkSetDescriptorSet are
not execution commands, thus are ignored by the barriers): first we dispatch a
compute shader that writes to a texture, then we issue a draw that reads that texture.

We add a pipeline barrier and we specify 2 parameters: the first is the source stage,
the second the destination stage.
To help creating a different mental model of this, the source can be thought as the
Producer while the destination as the Consumer.
Thus we can say that the second command’s fragment shader (vkCmdDraw) will wait
until the Compute Shader stage of the previous command has finished all its
executions to actually start the shaders. NOTE: the vertex shader of the second
command, not having a dependency, can execute even if they some threads of the
GPU are still working on the compute shader.

Synchronization: GPU ‘embarrassingly parallel’ detour

● Fake GPU: 4 threads in parallel.
● Compute creates a 2x2 texture
● Full screen triangle: 3 vertices
● Screen is 2x2: 4 fragments

Compute: (0,0)

Compute: (0,1)

Compute: (1,1)

Compute: (1,0)

GPU Thread 0

GPU Thread 1

GPU Thread 3

GPU Thread 2

GPU Thread 0

GPU Thread 1

GPU Thread 3

GPU Thread 2

Fragment 0

Fragment 1

Fragment 3

Fragment 2

Vertex 0

Vertex 1

Vertex 2

Stall! Waiting for Compute!

Wave 0 Wave 1

GPU Thread 0

GPU Thread 1

GPU Thread 3

GPU Thread 2

Wave 3

To help visualize even further the execution, we will have a quick and simplified
conceptualization of the GPU.
When the GPU executes commands, it will decompose them in smaller tasks that
can occupy 1 wave. Each wave then executes multiple threads in parallel, 4 in our
example.
In the previous example, when we execute the compute shader and then ask to
draw, when we draw there can be some threads that are still executing some
compute work.
A barrier thus enforces some waiting on the GPU so that all the operations of a
certain stage are finished.

In this small conceptualization, if we have a GPU with 4 threads (wow!) we can have
a workload as in the slide. Back to the dispatch followed by the draw, we can arrive at
executing all the vertex work of the second command without waiting, having the
GPU running some compute and some vertex work.
If we have threads left unused we need to wait for all the compute work to finish
before actually starting executing them.

It is much complex than this, but as a mind model can be helpful to visualize what is
happening here.

Synchronization: Memory Barriers

Memory Barriers

● Handles GPU caches
● Specify source/destination access

relative to parent pipeline barrier
● For image barriers, perform layout

changes
● Are always specified as part of a

pipeline barrier
● Remember: source = producer,

destination = consumer

Pipeline
Barrier

// Updated execution + image barrier from previous example
vkCmdDispatch(...);

VkImageMemoryBarrier imageMemoryBarrier = { ...
.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT,
.dstAccessMask = VK_ACCESS_SHADER_READ_BIT,
.oldLayout = VK_IMAGE_LAYOUT_GENERAL,
.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
... };

vkCmdPipelineBarrier(...,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
...
1, &imageMemoryBarrier
...);

vkCmdDraw(...);

Image
Barrier

Buffer
Barrier

Memory
Barrier

Back to synchronization objects, after we ensure a certain execution order, we need
to ensure some memory validation mechanism.
There are three different memory barriers: memory barriers, buffer memory barriers
and image memory barriers.

Memory barriers are always specified as part of a pipeline barrier as additional
arguments to the vkCmdPipelineBarrier function.
There are three memory barrier: a ‘global’ one, buffer memory and image memory.
They all have in common the sourceAccessMask and destinationAccessMasks:
these are telling the GPU how to handle access to that resource before and after the
barrier

Synchronization: Memory Barriers

Memory Barriers

● Handles GPU caches
● Specify source/destination access

relative to parent pipeline barrier
● For image barriers, perform layout

changes
● Are always specified as part of a

pipeline barrier
● Remember: source = producer,

destination = consumer

Pipeline
Barrier

// Updated execution + image barrier from previous example
vkCmdDispatch(...);

VkImageMemoryBarrier imageMemoryBarrier = { ...
.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT,
.dstAccessMask = VK_ACCESS_SHADER_READ_BIT,
.oldLayout = VK_IMAGE_LAYOUT_GENERAL,
.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
... };

vkCmdPipelineBarrier(...,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
...
1, &imageMemoryBarrier
...);

vkCmdDraw(...);

Image
Barrier

Buffer
Barrier

Memory
Barrier

In this case, this image memory barrier is telling the GPU that the compute shader
will write into the specified texture.
NOTE: the compute shader called in vkCmdDispatch is the PRODUCER of the
resource, writing memory in the compute shader.
After all the threads of that compute executes, GPU can update the cache so that
subsequent reads have updated data.

Synchronization: Memory Barriers

Memory Barriers

● Handles GPU caches
● Specify source/destination access

relative to parent pipeline barrier
● For image barriers, perform layout

changes
● Are always specified as part of a

pipeline barrier
● Remember: source = producer,

destination = consumer

Pipeline
Barrier

// Updated execution + image barrier from previous example
vkCmdDispatch(...);

VkImageMemoryBarrier imageMemoryBarrier = { ...
.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT,
.dstAccessMask = VK_ACCESS_SHADER_READ_BIT,
.oldLayout = VK_IMAGE_LAYOUT_GENERAL,
.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
... };

vkCmdPipelineBarrier(...,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
...
1, &imageMemoryBarrier
...);

vkCmdDraw(...);

Image
Barrier

Buffer
Barrier

Memory
Barrier

On the destination side we are telling that the vkCmdDraw’s fragment shader will
read the texture (VK_ACCESS_SHADER_READ,
STAGE_FRAGMENT_SHADER_BIT).
One final element that only Image Memory Barriers have is the layout transition, that
we will see in the next slide.

 Synchronization: Memory Barriers

Memory Barriers

● Handles GPU caches
● Specify source/destination access

relative to parent pipeline barrier
● For image barriers, perform layout

changes
● Are always specified as part of a

pipeline barrier
● Remember: source = producer,

destination = consumer

Pipeline
Barrier

// Updated execution + image barrier from previous example
vkCmdDispatch(...);

VkImageMemoryBarrier imageMemoryBarrier = { ...
.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT,
.dstAccessMask = VK_ACCESS_SHADER_READ_BIT,
.oldLayout = VK_IMAGE_LAYOUT_GENERAL,
.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
... };

vkCmdPipelineBarrier(...,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
...
1, &imageMemoryBarrier
...);

vkCmdDraw(...);

Image
Barrier

Buffer
Barrier

Memory
Barrier

Layouts are a way of describing how the image will be used. They can be used to
determine the access mask (and thus the memory access) that will be used when
issuing a barrier.
In Vulkan an image can contain multiple subresources (like mipmaps), and a layout
works exactly on one of those subresources.
When reading/writing to an image in a compute shader, the layout used is
VK_IMAGE_LAYOUT_GENERAL.
When reading the image in a fragment program the layout is
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL.

Layout transitions ensure that the GPU is aware of the change in use for the
resource. Depending on the type of access, it might need to flush caches,
decompress memory, etc. More importantly, it ensures a correct behavior of the
application. Missing a barrier or using the incorrect layout can cause data corruption.
Validation layers will help catch some of these issues. There is also a synchronization
validation layer that can be enabled using the tool we mentioned on page 9. The
synchronization validation layer will perform a more thorough validation compared to
the standard validation layer.

This can be complicated and confusing, and still now it is in evolution.
Luckily there are few resources around that covers most examples needed (like
https://github.com/KhronosGroup/Vulkan-Docs/wiki/Synchronization-Examples-(Lega
cy-synchronization-APIs)
).
The new Synchronization2 extensions simplified a little the code (with examples here
https://github.com/KhronosGroup/Vulkan-Docs/wiki/Synchronization-Examples), but
the core concepts are the same.

https://github.com/KhronosGroup/Vulkan-Docs/wiki/Synchronization-Examples-(Legacy-synchronization-APIs)
https://github.com/KhronosGroup/Vulkan-Docs/wiki/Synchronization-Examples-(Legacy-synchronization-APIs)
https://github.com/KhronosGroup/Vulkan-Docs/wiki/Synchronization-Examples

 References

● Vulkan spec: https://registry.khronos.org/vulkan/specs/1.3-extensions/html/vkspec.html
● SPIR-V spec: https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.html
● GLSL extensions: https://github.com/KhronosGroup/GLSL/tree/master/extensions
● Vulkan guide: https://github.com/KhronosGroup/Vulkan-Guide
● Examples, best practices and much more: https://www.vulkan.org/learn
● 3D Graphics Rendering Cookbook, Sergey Kosarevsky and Viktor Latypov, Packt Publishing, 2021
● Mastering Graphics Programming with Vulkan, Marco Castorina and Gabriel Sassone, Packt

Publishing, 2023

https://registry.khronos.org/vulkan/specs/1.3-extensions/html/vkspec.html
https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.html
https://github.com/KhronosGroup/GLSL/tree/master/extensions
https://github.com/KhronosGroup/Vulkan-Guide
https://www.vulkan.org/learn

Break

Questions?

	Vulkan for graphics research
	Tutorial Resources
	Presenters
	Topics
	Vulkan objects overview
	Vulkan objects overview 2
	Device and Queues
	Device and Queues (2)
	Device and Queues (3)
	Device and Queues (4)
	Device and Queues (5)
	Device and Queues (6)
	Memory
	Memory (2)
	Resources
	Resources (2)
	Resources (3)
	Resources (4)
	Resources (5)
	Pipelines
	Render Pass
	Render Pass (2)
	Render Pass (3)
	Render Pass (4)
	Render Pass (5)
	Pipeline Layout
	Pipeline Layout (2)
	Pipeline Layout (3)
	Shader Module
	Shader Module (2)
	Compute Pipeline
	Shader Stage
	Graphics Pipeline
	Vertex Input
	Input Assembly
	Viewport
	Rasterization State
	Multisampling
	Depth Stencil State
	Blend State
	Dynamic State
	Break
	Surface
	Surface (2)
	Surface (3)
	Swapchain
	Swapchain (2)
	Command Buffers
	Command Buffers (2)
	Command Buffers (3)
	Command Buffers (4)
	Descriptor sets
	Descriptor sets (2)
	Descriptor sets (3)
	Descriptor sets (4)
	Descriptor sets (5)
	Synchronization
	Synchronization between queues
	Synchronization: Single Queue and Command Order
	Synchronization: Pipeline Barriers
	Synchronization: Pipeline Barriers (2)
	Synchronization: GPU ‘embarrassingly parallel’ detour
	Synchronization: Memory Barriers
	Synchronization: Memory Barriers (2)
	Synchronization: Memory Barriers (3)
	Synchronization: Memory Barriers (4)
	References
	Break (2)

