
Synthetic Data For 
Computer Vision: 
Techniques, 
Challenges, and 
Tools

Sujoy Ganguly | Head of Applied Machine Learning Research, Unity | April 25th, 2022 | Eurographics



Talk Outline

2



Talk Outline

1. Introduction

2



Talk Outline

1. Introduction
2. Methods to Bridge the Sim-to-Real 

Gap

2



Talk Outline

1. Introduction
2. Methods to Bridge the Sim-to-Real 

Gap
3. Burdens of Domain Randomization

2



Talk Outline

1. Introduction
2. Methods to Bridge the Sim-to-Real 

Gap
3. Burdens of Domain Randomization
4. Benchmark Environments and Tools 

to Advance Research in the Sim-to-
Real Gap

2



Labeled data is crucial to train ML Models

Autonomous 
Vehicles


Robotics
 Retail
 Security


Detect objects, lane 
markings, signs and 

traffic signals 

Understand their 
environments, safely 
interact with humans 
and recognize 
products or 
components

Cashier-less 
checkouts, inventory 
management systems 
and footfall analysis 


Need to identify 
potential threats
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Typical Computer Vision Workflow
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Acquire Real 

World Images 

Label & Annotate 
Images

  Train CV 

model 

  Evaluate CV 

model 

  Deploy CV 

model 

70% time is spent on data collection, labeling and 
annotation.

Iterate



Cost of labeling increases with complexity
6

Semantic 
segmentation

Instance segmentation Panoptic  
segmentation

Input Labels

Object detection
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Auto-labelled

No human 
annotation or 
labelling required

Privacy 
Compliant with 
GDPR and privacy 
standards

Iterative
Generate variations 
in datasets with 
simple code 
changes

Affordable
Small teams/startups 
can generate 
massive dataset 
within budget

Representative
Produce training 
dataset that is variant 
and captures the real 
world complexity
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Domain 
Randomization and 
the Sim-to-Real 
Gap



Domain Randomization

•Create the most diverse data set that the 
model can learn by varying properties of 
the simulation1,2.


•For Example:


• Spatial Location and Orientations


• Color and texture of the background


• Lighting


• Optical Occlusions


• Camera position, orientation, and field 
of view
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1Tobin et al. “Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World,” 
2017 IROS


2Hinterstoisser et al. “An Annotation Saved is an Annotation Earned: Using Fully Synthetic Training for Object 
Instance Detection, ” 2019 ICCVW 

Domain Randomized images with bounding box labels
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Extrinsic 

Structured

Un-Structured

Intrinsic
ComplexSimple

Detect a specific 
type of shoe in any 
environment

Detect a wide 
range of shoe 
types in any 
environment

Detect a specific 
furniture set in a 
home

Detect people in a 
home



Burdens of Domain 
Randomization
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• Visual
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adverse shading (Improper smoothing producing dark or flashing artifacts on a mesh)

• Appearance can be varied, e.g., textures and materials can be changed programmatically

• Physical

• Assets should have accurate colliders

• Mass and density can be varied

• Friction, etc. can be varied

• Kinematic

• Objects can be rigged and animated

• Objects in the same class can share rigs and animations

• Animations can be varied

• Fully embodied content

• Content reacts to the action of agents

13
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b. Faces with zero area (Faces having no renderable area)
c. Non-manifold geometry (Cannot be unfolded into a continuous flat area)
d. Faces that are self-intersecting (Faces with more than one closed contour)
e. Free of unattached vertices
f. Smoothing or hard/soft edge adverse shading (Improper smoothing producing dark or flashing 

artifacts on a mesh)
2. UV layout and Set

a. Distortion-free UV coordinates using UV Set 0 allows for placement of albedo, normal, mask, 
anisotropy, etc.
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Tools for Synthetic 
Data Generation



Sensors, Labelers, and Randomizers

●Sensors: Ways of capturing images to be used as input for computer vision 
models


●Labelers: Ways of capturing labels (Ground Truth) for those images to be 
used during training of computer vision models


●Randomizers: Ways of varying the scene

16



Sensor SDK
17

Sensor Library

SensorSDK

SystemGraph

Other Sensor Components

Photo-
detector MotorPoint Cloud 

Encoder

Camera Components

Lens 
Stack

Post-

processingRGB Sensor

Basic Components

Dynamic Arrays Generic 
Nodes

Editor Extension Tool

Scheduler Debugger

Runtime Framework

OnTick Callbacks

Specific Lidar Models

Additional 
Components

Configuration

Specific Camera Models

Additional 
Components

Configuration



Perception SDK Labelers: Off the Shelf
18

Bounding Box 3D Bounding Box

Semantic Segmentation Instance Segmentation
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Perception SDK: Extrinsic Randomizations
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Unstructured / Semi-Structured Structured



Benchmark 
Environment of 
Human Centric 
Computer Vision



PeopleSansPeople

• 28 Human Assets

• 39 diverse Animations sequences

• 21,952 clothing textures

• Parameterized Placement 

randomizer

• Parameterized Lighting and Camera 

System

• Occluders/Distractor objects

• RGB image capture with High 

Definition Render Pipeline

• Labelers:


• Bounding Box

• Semantic Segmentation

• Instance Segmentation

• Pose Labeler


• COCO keypoints

• Packaged macOS and Linux binaries

• CLI + configs to update all 

parameters
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Animation/Pose Randomization
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Clothing Texture (Shader-Graph) Randomizer 
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Clothing Texture (Shader-Graph) Randomizer 
23



PeopleSansPeople
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PeopleSansPeople
24



PeopleSansPeople - Exposed Parameters, Objects
25

category randomizer parameters

3D Objects

Background/Occluder

Object Placement

object placement

separation distance

object placement offset

Background/Occluder Scale

Background/Occluder Rotation object rotation

Foreground Object Placement

object placement

separation distance

object placement offset

Foreground Scale object scale range

Foreground Rotation object rotation

Animation animations

1

category randomizer parameters

Textures

and

Colours

Texture textures

Hue Offset hue offset

Shader Graph Texture

albedo textures

normal textures

mask textures

materials

hue top clothing

hue bottom clothing

2



PeopleSansPeople - Exposed Parameters, Rendering
26

category randomizer parameters

Lights

Sun Angle

hour

day of the year

lattitude

Light Intensity and Colour

intensity

colour

light switcher enabled probability

Light Position and Rotation
position offset from initial position

rotation offset from initial rotation

Camera Camera

field of view

focal length

position offset from initial position

rotation offset from initial rotation

Post-Processing Post Process Volume

vignette intensity

fixed exposure

white balance temperature

depth of field focus distance

colour adjustments: contrast

colour adjustments: saturation

3



Controllable Number and Size of People
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Controllable Placement of People
28

COCO Synth



Enhanced Pose Diversity
29

COCO Synth



Improved Label Consistency
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Baseline Training Method

• Generate Data from 
PeopleSansPeople

• No data hyperparameter 

tuning
• Train model on synthetic only

31

Generate Synthetic Data

Train Model



Baseline Training Method

• Generate Data from 
PeopleSansPeople

• No data hyperparameter 

tuning
• Train model on synthetic only
• Fine-tune model on target real 

data (COCO)

• No weight freezing

• Evaluate on COCO test-
dev2017 

31

Train Model

Real Training Data



Improved Model Performance
32

Bounding Box Average Precision
Real Data Size (COCO) Train from scratch ImageNet pre-training Synthetic pre-training(490,000 

frames)
641 13.82 27.61 41.24 ± 2.07

6411 37.82 42.53 48.97 ± 0.17

32057 52.15 52.75 54.93 ± 0.15

64115 56.73 56.09 57.44 ± 0.11

Keypoint Average Precision
Real Data Size (COCO) Train from scratch ImageNet pre-training Synthetic pre-training(490,000 

frames)
641 6.40 21.90 42.93 ± 2.80

6411 37.30 44.20 52.70 ± 0.36

32057 55.80 57.50 60.37 ± 0.48

64115 62.00 62.40 63.47 ± 0.19



Improved Model Performance - 6411 COCO images
33

ImageNet Pre-training

Synthetic Pre-training



Improved Model Performance - 6411 COCO images
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ImageNet Pre-training

Synthetic Pre-training



Improved Model Performance

• Pre-train Detectron2 
(KeyPoint-RCNN) on synthetic 
data


• Fine-tuning performance 
improves with size of synthetic 
data


• Poor Zero-Shot performance 
with wildly randomized data
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ImageNet pre-training
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Structured Randomizations - Residential Interiors

● Complete project including 8 full houses, apartments, and townhomes

● Fully furnished and lit from an extensive content library

● Ready for domain randomization:

○ Split Grammar system for furniture, decor, and clutter placement

○ Procedural materials and objects to change room appearance

○Multiple lighting scenarios and randomized daylight conditions


● All objects are physics-ready for interaction

37
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3D object pose estimation

• RGB-D image capture

• Labeling


• 3D bounding box

• Semantic Segmentation


• Camera Intrinsic and Extrinsic 
Parameters


• LineMod Assets

• Distractor Objects

• Randomizers


• Camera

• Object placement

• Lighting

• Background Textures
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Conclusions

• Synthetic data can be the future of 
model training, but it is hard to make 
and use.


• PeopleSansPeople: a free to use 
synthetic data generator for human-
centric computer vision research.


• 3D Object Pose Estimation 
environment available early next year. 


• Synthetic data pre-training out 
performs real data pre-training.


• Can we learn optimal parameters of 
synthetic data generators?

40



U N I T Y . C O M
Thank  

you


