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Agenda

= Overview of machine learning in graphics (10 mins)
= ML in content generation pipelines (12 mins)
= ML to augment rendering (8 mins)

» Challenges and opportunities (10 mins)
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Increased use of ML in computer graphics

= Asset curation, real-time and offline rendering
» Across the entire production pipeline — games, VFX, interactive rendering
» Improved quality and/or performance, reduced power

* Authoring time, final frame rendering, better quality at same power

* Improved tools and learnings
* Hardware and system support — CPUs, GPUs, TPUs, ASICs

Challenges — Datasets, models, generalization, deployment
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[terative ML training workflow

Image Credits: S. Bako ©Disney/ Pixar
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ML for content generation

Inferred Reflectance Renderings Head Completion
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Image credit:AT. Aila Image credit: A. Lattas
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Animation GauGAN
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ML integrated with rendering
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©Nvidia
Neural Scene representation and shading DL Super Sampling

©Nvidia
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ML for content generation

Neural Animation, Codec avatars, Photorealistic backgrounds
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Avatar authoring is time consuming

Real-time driven
digital double

- Witness camera Input sequence
ISNE,

Motion capture Facial animation capture ©Disney
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Phase-functioned neural network (PFNN)
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Image credits D. Holden ©ACM

Using mocap data for character animation in real-time games
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PFENN — Network topology

= Relatively simple network

Neural Network

« Additional cyclic function

= Prior frame, user input and scene
geometry into consideration

= Outputs next step/ motion

» Fast performance (ms)

° Integrated INnto games Image credits D. Holden ©ACM
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Face rendering for virtual reality

= Facial animation is important for VR
experiences

* Improved presence
» Hard to convey with an HMD

* Augmentation with extra sensors

* Fast transmission to support
distributed participants

e Social interaction in multi-user scenarios
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Facebook — Codec Avatars using deep VAEs
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Image credits S. Lombardi ©ACM

Deep Appearance Models to render avatars
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Cameras in HMD with multi-view capture dataset
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Improved telepresence experience

Image credits S. Lombardi

Recent work with relightable face models (SIGGRAPH 2021)
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Fast content generation from semantic maps

Labels to Street Scene Labels to Facade BW to Color
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Image to Image translation
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NeRF — Novel view synthesis
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Easing real-world content capture
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Instant NGP - ~real-time training
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ML for Rendering

Post processing, super sampling, denoising
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Deep learning for post-processing effects

Intern. rep.
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Shaded results
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Deep Shading- Synthesizing screen space effects using CNNs
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Deep Shading network architecture

» J-shaped CNN
" |nput buffers depend on post

5] 1] |

processing effect desired

* Usually Normals, albedo, motion | \
vectors Image credit: O. Nalbach ©Eurographics

= Combined effects using same
network

» Fast inference performance
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Real-time Segmented Style Transfer
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Goal: Real-time, temporal consistent, high resolution, per

object
* A Feedforward Network design using VGG for perpetual
loss

* Use exact pixel segmentation for synthesized content
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Challenges in rendering high resolution games

" [nteractive gaming at high resolutions/ high fps
* 4K gaming @60fps

» Bottlenecks in texture sizes, model detail

* Many millions of polygons, multi GB textures

* Hybrid rendering

* Global illumination, ray traced reflections, post processing effects

EUROGRAPHICS 2022

Traditional rendering methods may not suffice
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Deep learning super sampling (DLSS)
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Image credit ©Nvidia
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DLSS 2.0 — Auto encoder with motion vectors
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Image credit ©Nvidia
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Improved performance in games

= Render low resolution image
* Image upscale using DL
= Async compute using Tensorcores

* Significant performance improvement
v/s rendering at higher resolution

* Wide adoption

¢ Un|tY/ Unreal | Image credit ©Nvidia
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Intel” Open Image Denoise

= Denoising library for ray traced images
 Final frames and baked lightmaps

» High-quality ML-based denoising filters

= Suitable for interactive and offline rendering

* Simple C/C++ AP

» Fasy integration into rendering applications

= Open Source under Apache™ 2.0 license

° W\/\/V\/ODe N | magedeﬂOise.O rg Scene courtesy of Frank Meinl,

downloaded from Morgan McGuire's
Computer Graphics Archive.
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Ground truth:
32K spp

| - %
-



http://www.aendom.com/
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More recent papers show promise

» Photogrammetry and novel view synthesis

= /X usages

* Relighting, appearance capture

= Ray tracing and path tracing

* Importance sampling, adaptive sampling with denoising

* Improving photorealism in games
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Challenges

Datasets, neural networks, deployment

EUROGRAPHI CS 2022
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lterative process and requires a lot of additional steps
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Dataset curation and augmentation

= Common buffers used — normal,
albedo, color, position, depth,
specular, motion vectors

» Most data can be directly obtained
from renderers

" |nput resolution
= Rendering time for dataset
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Some considerations for dataset generation

= Size of dataset to be collected — small v/s large
* Training time v/s quality

= Licensing of datasets — open v/s closed

» Generalizability across different scenes
* Rendering time implications

» Compressed v/s uncompressed data
* Memory costs and training time

» Data format — color space, dynamic range
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Neural network architecture and optimizations

= Takes some effort to deploy published work
* Understand performance targets and deployment system

= Common network optimizations
* Pruning, quantization, sparsity

= Use tools such as TensorRT, OpenVINO for auto optimization
* Most take an ONNX file as input

= Considerations for extending from images to videos

e Minimize flicker, include temporal loss terms

EUROGRAPHICS 2022 intel.



Deployment considerations

* Training generally uses Pytorch/ Tensorflow

* Impractical for deployment in real-time usages
» Hardware compatibility and driver support

* Fallback software path may not be as performant as hardware supported path
» Standards and APIs evolving to support ML

* DirectML with DirectX, ONNX as model interchange format

* Third party and ecosystem support

 E.g: Unity Barracuda for inference deployments
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Exciting time to be in graphics

= |ncreased use of ML in graphics

= Potential to improve quality, reduce rendering times and

democratize content generation costs

* Improved hardware and systems support,

But..

= Challenges — datasets, networks, deployments

EUROGRAPHICS 2022

We have just scratched the surface

intel. ¥






References

Kernel-Predicting Convolutional Networks for Denoising Monte Carlo Renderings, S. Bako*, T. Vogels*, B. McWilliams, M. Meyer, J. Novak, A. Harvill, P. Sen, T.
DeRose, and F. Rousselle, "Kernel-Predicting Convolutional Networks for Denoising Monte Carlo Renderings,” ACM Transactions on Graphics, Vol. 36, No. 4,
Article 97, July 2017, (Proceedings of ACM SIGGRAPH 2017)

= ProgressiveGAN - https://arxiv.org/abs/1710.10196

= AvatarMe: Realistically Renderable 3D Facial Reconstruction "In-the-Wild”, Lattas, Alexandros and Moschoglou, Stylianos and Gecer, Baris and Ploumpis,
Stylianos and Triantafyllou, Vasileios and Ghosh, Abhijeet and Zafeiriou, Stefanos, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020, Animation - https://dl.acm.org/doi/abs/10.1145/3386569.3392450

=  Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu., "Semantic Image Synthesis with Spatially-Adaptive Normalization", in CVPR, 2019.

= Denoising with kernel prediction and asymmetric loss functions, Thijs Vogels, Fabrice Rousselle, Brian McWilliams, Gerhard Rothlin, Alex Harvill, David
Adler, Mark Meyer, Jan Novak, ACM Transactions on Graphics, Volume 37, Issue 4, August 2018 Article No.: 124, pp 1-15,
https://doi.org/10.1145/3197517.3201388

= Srinivasan, Pratul & Deng, Boyang & Zhang, Xiuming & Tancik, Matthew & Mildenhall, Ben & Barron, Jonathan. (2020). NeRV: Neural Reflectance and Visibility
Fields for Relighting and View Synthesis.

= Compositional Neural Scene Representations for Shading Inference, Jonathan Granskog, Fabrice Rousselle, Marios Papas, Jan Novak, Transaction on Graphics
(Proceedings of SIGGRAPH 2020), vol. 39, no. 4

= DLSS 2.0, retrieved June 2021, https://www.nvidia.com/en-us/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering/

= S McDonagh, M. Klaudiny, D. Bradley, T. Beeler, I. Matthews and K. Mitchell, "Synthetic Prior Design for Real-Time Face Tracking," 2016 Fourth International
Conference on 3D Vision (3DV), 2016, pp. 639-648, doi: 10.1109/3DV.2016.72.

=  Phase-functioned neural networks for character control : ACM Transactions on GraphicsVolume 36lssue 4July 2017 Article No.: 42pp 1-13,
https://doi.org/10.1145/3072959.3073663

= Deep appearance models for face rendering, Stephen Lombardi, Jason Saragih, Tomas Simon, Yaser Sheikh, ACM Transactions on GraphicsVolume 37Issue
4August 2018 Article No.: 68pp 1-13https://doi.org/10.1145/3197517.3201401

= |mage-to-Image Translation with Conditional Adversarial Networks, Isola, Phillip and Zhu, Jun-Yan and Zhou, Tinghui and Efros, Alexei A, CVPR, 2017

= Photographic Image Synthesis with Cascaded Refinement Networks, Qifeng Chen and Vladlen Koltun, International Conference on Computer Vision (ICCV),
2017

= Deep Shading: Convolutional Neural Networks for Screen Space Shading, O Nalbach, E Arabadzhiyska, D Mehta, HP Seidel, T Ritschel, Computer Graphics Forum
36 (4), 65-78

= Thomas, M. M. and Forbes, A. G, “Deep Illumination: Approximating Dynamic Global Illumination with Generative Adversarial Network”, arXiv e-prints, 2017

EUROGRAPHICS 2022 intel.


https://arxiv.org/abs/1710.10196
https://dl.acm.org/doi/abs/10.1145/3386569.3392450
https://doi.org/10.1145/3197517.3201388
https://www.nvidia.com/en-us/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering/

