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Agenda

§Overview of machine learning in graphics (10 mins)
§ML in content generation pipelines (12 mins)
§ML to augment rendering (8 mins)
§Challenges and opportunities (10 mins)
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Increased use of ML in computer graphics 

§Asset curation, real-time and offline rendering
• Across the entire production pipeline – games, VFx,  interactive rendering 

§ Improved quality and/or performance, reduced power
• Authoring time, final frame rendering, better quality at same power

§ Improved tools and learnings 
• Hardware and system support – CPUs, GPUs, TPUs, ASICs

Challenges – Datasets, models, generalization, deployment
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Iterative ML training workflow
97:4 • Bako, S. et al.
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Fig. 2. An overview of our general framework. We start by preprocessing di�use and specular data coming from the rendering system independently, and then
feed the information to two separate networks which denoise the di�use and specular illumination, respectively. The output from each network undergoes
reconstruction and postprocessing before being combined to obtain the final, denoised image.

the average loss with respect to the reference values across all the
patches in D:

D� = argmin
�

1
N

NX

i=1
`(ci ,�(Xi ;� )), (3)

In this case, the parameters, � , are optimized with respect to all the
reference examples, not the noisy information as in Eq. 2. If D� is
estimated on a large and representative training data set, then it can
adapt to a wide variety of noise and scene characteristics.

However, the approach of Kalantari et al. [2015] has several limi-
tations, the most important of which is that the function �(Xi ;� )
was hardcoded to be either a joint bilateral or joint non-local means
�lter with bandwidths provided by a multi-layer perceptron (MLP)
with trained weights, � . Because the �lter was �xed, the resulting
system lacked the �exibility to handle the wide range of Monte
Carlo noise that can be encountered in production environments.

To address this limitation, we consider extending the supervised
learning approach to handle signi�cantly more complex functions
for�, which results in more �exibility while still avoiding over�tting.
Thus, we can reduce modeling bias while simultaneously ensuring
the variance of the estimator is kept under control for a suitably
large N . This enables the resulting denoiser to generalize well to
images not used during training.

To do this, we observe that there are three issues inherent to the
supervised learning framework that must be considered to develop
a better MC denoising system:

(i) The function, �, must be �exible enough to capture the com-
plex relationship between input data and reference colors
for a wide range of scenarios. In the following section, we
describe how we model � using deep convolutional networks.

(ii) The choice of loss function, `, is critical. Ideally, the loss
must capture perceptually important di�erences between
the estimated and reference color. However, it must also be
easy to evaluate and optimize. We use the absolute value
loss function, `1, (Sec. 5) and explore its bene�ts in Sec. 7.

(iii) In order for our model to be deep yet avoid over�tting,
we require a large training dataset, D. Since we require
reference images rendered at high sample counts, obtaining

a large data set is extremely computationally expensive.
Furthermore, in order to generalize well, the network needs
examples that are representative of the various e�ects to
be denoised. We describe our data in Sec. 5.

4 DEEP CONVOLUTIONAL DENOISING
In this section, we describe our approach to model the denoising
function � in Eq. (3) with a deep convolutional neural network
(CNN). Since each layer of a CNN applies multiple spatial kernels
with learnable weights that are shared over the entire image space,
they are naturally suited for the denoising task and have indeed been
previously used for traditional image denoising [Xie et al. 2012].
Furthermore, by joining many such layers together with activation
functions, CNNs are able to learn highly nonlinear functions of
the input features, which are important for obtaining high-quality
outputs. Fig. 2 illustrates our entire denoising pipeline. We �rst
focus on the �ltering core of the denoiser—the network architecture
and the reconstruction �lter—and later describe data decomposition
and preprocessing that are speci�c to the problem of MC denoising.

4.1 Network Architecture
We use deep fully convolutional networks with no fully-connected
layers to keep the number of parameters reasonably low. This re-
duces the danger of over�tting and speeds up both training and
inference. Stacking many convolutional layers together e�ectively
increases the size of the input receptive �eld to capture more context
and long-range dependencies [Simonyan and Zisserman 2014].
In each layer l , the network applies a linear convolution to the

output of the previous layer, adds a constant bias, and then applies
an element-wise nonlinear transformation f l (·), also known as
the activation function, to produce output zl = f l

⇣
Wl ⇤ zl�1 + bl

⌘
.

Here,Wl and bl are tensors of weights and biases (the weights in
W are shared appropriately to represent linear convolution kernels),
and zl�1 is the output of the previous layer. For the �rst layer, we
set z0 = Xp , which provides the block of per-pixel vectors around
pixel p as input to our CNN.
For all layers, we use recti�ed linear unit (ReLU) activations,

f l (a) = max(0,a), except for the last layer, L, where f L (a) = a

ACM Transactions on Graphics, Vol. 36, No. 4, Article 97. Publication date: July 2017.
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ML for content generation

Progressive GAN

Animation

AvatarMe

GauGAN
Image credit: T.S. ParkImage credit: T Komura

Image credit: A. LattasImage credit: T. Aila
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ML integrated with rendering

Image Denoising

DL Super Sampling 

Scene relighting

Neural Scene representation and shading

Image credits: P. Srinivasan

©Nvidia©Nvidia
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ML for content generation
Neural Animation, Codec avatars, Photorealistic backgrounds  
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Avatar authoring is time consuming

Motion capture Facial animation capture ©Disney 
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Phase-functioned neural network (PFNN)
Phase-Functioned Neural Networks for Character Control • 42:3

Fig. 3. The three stages of the proposed system: In the data preprocessing stage (le�), the captured motion is processed and control parameters are extracted.
Next this data is fi�ed to heightmap data from virtual environments. The PFNN is then trained by back propagation such that the output parameters can
be generated from the input parameters (middle). Finally, during runtime, the character motion is computed on-the-fly given the user control and the
environmental geometry (right).

projects the motion to the full space using another GP. Kernel-based
approaches su�er from the high memory cost of storing and invert-
ing the covariance matrix, which scales in the square and cube order
of the number of data points, respectively. Local GP approaches
that limit the number of samples for interpolation are proposed to
overcome this issue [Rasmussen and Ghahramani 2002], but require
k�nearest neighbor search which has a large memory usage and a
high cost for precomputation and run-time when used with high
dimensional data such as human movements.

Data-driven motion synthesis using neural networks is attracting
researchers in both the computer animation and machine learning
communities thanks to its high scalability and runtime e�ciency.
Taylor et al. [2009] propose to use the conditional Restricted Boltz-
mann Machine (cRBM) for predicting the next pose of the body
during locomotion. Fragkiadaki et al. [2015] propose an Encoder-
Recurrent-Decoder (ERD) network that applies an LSTM model in
the latent space for predicting the next pose of the body. These
methods can be classi�ed as autoregressive models, where the pose
of the character is predicted based on the previous poses of the
character during locomotion. Autoregressive models are suitable
for real-time applications such as computer games as they update
the pose of the character every frame. The cRBM and RNN models
are more scalable and runtime-e�cient than their classic linear [Xia
et al. 2015] or kernel-based counterparts [Wang et al. 2008]. De-
spite such advantages, they su�er from drifting issues, where the
motion gradually comes o� the motion manifold due to noise and
under-�tting, eventually converging to an average pose. Holden et
al. [2016] instead applies a CNN framework along the time domain
to map low dimensional user signals to the full body motion. This is
an o�ine framework that requires the full control signal along the
time-line to be speci�ed ahead of time for synthesizing the motion.
Our framework in this paper is a time-series approach that can pre-
dict the pose of the character given the user inputs and the previous
state of the character.

Interaction with the Environment. Automatic character controllers
in virtual environments that allow the character to avoid obstacles
and adapt to terrains are useful for real-time applications such as

computer games: these approaches can be classi�ed into methods
based on optimization and shape matching.

Methods based on optimization [Lau and Ku�ner 2005; Safonova
and Hodgins 2007], sampling-based approaches [Coros et al. 2008;
Liu et al. 2010], maximum a posteriori (MAP) estimates [Chai and
Hodgins 2007; Min and Chai 2012], and reinforcement learning
techniques [Lee and Lee 2004; Lee et al. 2010; Levine et al. 2012;
Lo and Zwicker 2008; Peng et al. 2016], predict the action of the
character given the current state of the character (including the
pose) and its relation to the geometry of the environment. They re-
quire cost/value functions that evaluate each action under di�erent
circumstances. Although it is shown that these methods can gen-
erate realistic movements, in some cases the computational cost is
exponential with respect to the number of actions and thus not very
scalable. More importantly, when using kinematic data as the rep-
resentation, it is necessary to conduct k�nearest neighbour search
within the samples [Clavet 2016; Lee et al. 2010] to pull the motion
onto the motion manifold. This can be a limiting factor in terms of
scalability, especially in high dimensional space. Levine et al. [2012]
cope with such an issue by conducting reinforcement learning in
the latent space computed by GPLVM but they require classi�ca-
tion of the motion into categories and limit the search within each
category. Peng et al. [2016] apply deep reinforcement learning in
the control space of physically-based animation in a way which can
handle high dimensional state spaces. This is a very promising di-
rection of research, but the system is only tested in relatively simple
2D environments. Our objective is to control characters in the full
3D kinematic space with complex geometric environments where
previous learning based approaches have not been very successful.
Another set of approaches for controlling characters in a given

environment is to conduct geometric analysis of the environments
and adapt the pose or motion to the novel geometry. Lee et al. [2006]
conduct rigid shape matching to �t contact-rich motions such as
sitting on chairs or lying down on di�erent geometries. Grabner
et al. [2011] conduct a brute-force search in order to discover lo-
cations in the scene geometry where a character can conduct a
speci�c action. Gupta et al. [2011] produce a volume that occupies

ACM Transactions on Graphics, Vol. 36, No. 4, Article 42. Publication date: July 2017.

Using mocap data for character animation in real-time games

Image credits D. Holden ©ACM
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PFNN – Network topology

§Relatively simple network
• Additional cyclic function

§Prior frame, user input and scene 
geometry into consideration

§Outputs next step/ motion
§ Fast performance (ms)
• Integrated into games

42:2 • Holden, D. et al

given at once and the whole output is generated at once. In some
situations such as video games this is undesirable as future inputs
may be a�ected by the player’s actions. RNNs and other autoregres-
sive models [Fragkiadaki et al. 2015; Taylor and Hinton 2009] are
more appropriate for video games and online motion generation as
they only require a single frame of future input, yet they tend to
fail when generating long sequences of motion as the errors in their
prediction are fed back into the input and accumulate. In this way
autoregressive models tend to “die out” when frames of di�erent
phases are erroneously blended together or “explode” when high
frequency noise is fed back into the system [Fragkiadaki et al. 2015].
Such artifacts are di�cult to avoid without strong forms of normal-
ization such as blending the output with the nearest known data
point in the training data [Lee et al. 2010] - a process which badly
a�ects the scalability of the execution time and memory usage.

We propose a novel neural network structure that we call a Phase-
Functioned Neural Network (PFNN). The PFNNworks by generating
the weights of a regression network at each frame as a function of
the phase - a variable representing timing of the motion cycle. Once
generated, the network weights are used to perform a regression
from the control parameters at that frame to the corresponding pose
of the character. The design of the PFNN avoids explicitly mixing
data from several phases - instead constructing a regression function
which evolves smoothly over time with respect to the phase. Unlike
CNN models, this network structure is suitable for online, real-time
locomotion generation, and unlike RNN models we �nd it to be
exceptionally stable and capable of generating high quality motion
continuously in complex environments with expressive user inter-
action. The PFNN is fast and compact requiring only milliseconds of
execution time and a few megabytes of memory, even when trained
on gigabytes of motion capture data. Some of this compactness
can additionally be traded for runtime speed via precomputation
of the phase function, allowing for a customized trade o� between
memory and computational resources.

Dynamically changing the network weights as a function of the
phase instead of keeping them static as in standard neural net-
works signi�cantly increases the expressiveness of the regression
while retaining the compact structure. This allows it to learn from
a large, high dimensional dataset where environmental geometry
and human motion data are coupled. Once trained, the system can
automatically generate appropriate and expressive locomotion for
a character moving over rough terrain and jumping, and avoiding
obstacles - both in natural and urban environments (see Fig. 1 and
Fig. 9). When preparing the training set we also present a process to
�t motion capture data into a large database of arti�cial heightmaps
extracted from video game environments.
In summary, the contribution of the paper is as follows:

• a novel real-time motion synthesis framework that we call
the Phase-Functioned Neural Network (PFNN) that can
perform character control using a large set of motion data
including interactions with the environment, and

• a process to prepare training data for the PFNN by �tting
locomotion data to geometry extracted from virtual envi-
ronments.

Fig. 2. Visual diagram of Phase Functioned Neural Network. Shown in
yellow is the cyclic Phase Function - the functionwhich generates theweights
of the regression network which performs the control task.

2 RELATED WORK
In this section, we �rst review data-driven approaches for generating
locomotion. Next, we review methods for synthesizing character
movements that interact with the environment. Finally, we review
methods based on neural networks that focus on mapping latent
variables to some parameters of the user’s interest.

Data-Driven Locomotion Synthesis. Data-driven locomotion syn-
thesis is a topic that has attracted many researchers in the computer
animation and machine learning community. Frameworks based on
linear bases, kernel-based techniques, and neural networks have all
been successfully applied for such a purpose.
Techniques based on linear bases such as principal component

analysis (PCA) arewidely adopted for reducing the dimensionality of
motion data and also for predicting full body motion from a smaller
number of inputs [Howe et al. 1999; Safonova et al. 2004]. As global
PCA can have issues representing a wide range of movements in
the low dimensional latent space, local PCA is adopted for handling
arbitrary types of movements [Chai and Hodgins 2005; Tautges et al.
2011]. Chai and Hodgins [2005] apply local PCA for synthesizing
full body motion with sparse marker sets. Tautges et al. [2011]
produce similar local structures for predicting full body motion
from sparse inertia sensors. Such structures require a signi�cant
amount of data preprocessing and computation both for training
(i.e., motion segmentation, classi�cation and alignment) and during
run-time (i.e., nearest neighbor search).
Kernel-based approaches are proposed to overcome the limita-

tions of linear methods and consider the nonlinearity of the data.
Radial Basis Functions (RBF) and Gaussian Processes (GP) are com-
mon approaches for blending di�erent types of locomotion [Mukai
2011; Mukai and Kuriyama 2005; Park et al. 2002; Rose et al. 1998].
Gaussian Process Latent Variable Models (GPLVM) are applied for
computing a low dimensional latent space of the data to help solve
the redundancy of inverse kinematics problems [Grochow et al.
2004] or to improve the e�ciency for planning movements [Levine
et al. 2012]. Wang et al. [2008] propose a Gaussian Process Dynamic
Model (GPDM) that learns the dynamics in the latent space and

ACM Transactions on Graphics, Vol. 36, No. 4, Article 42. Publication date: July 2017.

Image credits D. Holden ©ACM
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Face rendering for virtual reality 

§ Facial animation is important for VR 
experiences
• Improved presence

§Hard to convey with an HMD
• Augmentation with extra sensors

§ Fast transmission to support 
distributed participants
• Social interaction in multi-user scenarios
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Facebook – Codec Avatars using deep VAEs

Image credits S. Lombardi ©ACM

Deep Appearance Models to render avatars



EUROGRAPHICS 2022 13

Cameras in HMD with multi-view capture dataset

Deep Appearance Models for Face Rendering • 1:7

Real Headset Frame

Synthetic Headset Frame
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Views
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VR Headset
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Fig. 4. Facial Tracking Pipeline. First, we generate synthetic headset images using image-based rendering on our multi-camera capture data. These images
look geometrically like real headset images but not photometrically because of the di�erence in lighting. To account for this di�erence, we encode both
synthetic headset images and real headset images using a VAE, which encourages learning a common representation of both sets. We can translate between
the two modalities by flipping a conditioning variable.

hand for one frame and propagate the tracked head pose). Then,
for each pixel of the synthetic headset image, we raycast into the
tracked geometry and project that point into one of themulti-camera
images to get a color value. This allows to produce synthetic images
from the perspective of a headset with our multi-camera system.
Unfortunately, the lighting in the headset images and multi-

camera images is quite di�erent (and, in fact, of a di�erent wave-
length) so naively regressing from these synthetic headset images
to facial encoding z will likely not generalize to real headset images.
There has been much work recently on performing unsuper-

vised domain adaptation using adversarial networks that learn to
translate images from one domain to another without any explicit
correspondence (e.g., [Zhu et al. 2017]). One possibility for us is to
use an image-to-image translation approach to transform synthetic
headset images into real headset images and then learn a regression
from translated synthetic headset images to our latent code z. This
scheme has two main drawbacks: �rst, the network learning the
regression to latent code z never trains on real headset images; sec-
ond, the adversarial component of these methods tend to be di�cult
to train.

We take the following alternative approach to solve this problem.
First, we train a single variational autoencoder to encode/decode
both real headset images and synthetic headset images. The Gauss-
ian prior of the latent space will encourage the code y to form a
common representation of both sets of images. We condition the
decoder on a binary value indicating whether the image was from
the set of real headset images or the set of synthetic images so that
this information is not contained in the latent code. Next, we learn
a linear transformation Ay!z that maps the latent code y to the
rendering code z for the synthetic headset images because we have
correspondence between images of our multi-camera system I�t and
latent codes zt = E� (T

µ
t ,Mt ) through our rendering encoder. If the

VAE is successful in learning a common, semantically-consistent
representation of real and synthetic headset images, then this linear
regression will generalize to real headset images.
Note that while there is no guarantee that the semantics of the

expression are the samewhen decoding in each of the twomodalities,
we observe that semantics tend to be preserved. We believe the

primary reason for this is because the two image distributions are
closely aligned and therefore the encoder network can make use of
shared features.
Figure 4 shows a pipeline of our technique. In this pipeline, the

encoder E takes one headset frame Ht consisting of three images,
mouth Hm

t , left eye Hl
t , and right eye Hr

t . Each headset frame is
either real HR

t or synthetic HS
t . The encoder E produces a latent

Gaussian distribution,

µ
y
t , log�

y
t  E (Ht ) . (6)

At training time, we sample from this distribution to get a latent
code,

yt ⇠ N
⇣
µ
y
t ,�

y
t

⌘
, (7)

as before. Our decoder D produces a headset frame given the latent
code and an indicator variable :

Ĥt  D (yt ,R) , (8)

where R 2 {0, 1} indicates whether the decoder should decode a real
headset frame or a synthetic headset frame. This indicator variable
allows the latent code to contain no modality-speci�c information
because the decoder network can get this information from the
indicator variable instead.

The architecture of our headset encoder E is as follows: for each of
the three types of headset images (lower mouth, left eye, right eye),
we create a three-branch network with each branch containing eight
stride-2 convolutions with each convolution followed by a leaky
ReLU with 0.2 leakiness. The number of output channels for the �rst
layer is 64 and doubles every other convolutional layer. The three
branches are then concatenated together and two fully-connected
layers are used to output µyt and log�y

t . For our experiments, the
latent vector y has 256 dimensions. The decoder network D is sim-
ilar: three branches are created, with each branch consisting of a
fully-connected layer followed by eight stride-2 transposed convo-
lutions with each layer followed by a leaky ReLU with 0.2 leakiness.
The �rst transposed convolution has 512 channels as input and this
value halves every other transposed convolution. We condition the
decoder by concatenting the conditioning variable R to every layer,
replicating across all spatial dimensions for convolutional layers.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 1. Publication date: August 2018.
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Fig. 2. Pipeline of our method. Our method begins with input images from the multi-camera capture setup. Given a tracked mesh, we can unwrap these
images into view-specific texture maps. We average these texture maps over all cameras for each frame and input it and the mesh to a variational autoencoder.
The autoencoder learns to reconstruct a mesh and view-specific texture because the network is conditioned on the output viewpoint. At inference time, we
learn to encode a separate signal into the latent parameters z which can be decoded into mesh and texture and rendered to the screen.

50mm lenses, capturing pore-level detail, where each pixel observes
about 50µm on the face.

We preprocess the raw video data by performing multiview stereo
reconstruction. In order to achieve the best results, we evenly place
200 directional LED point lights directed at the face to promote
uniform illumination.
To keep the distribution of facial expressions consistent across

identities, we have each subject make a prede�ned set of 122 fa-
cial expressions. Each subject also recites a set of 50 phonetically-
balanced sentences. The meta-data regarding the semantic content
of the recordings is not utilized in this work, but its inclusion as
additional constraints in our system is straightforward and is a
potential direction for future work.

As input to our deep appearance model learning framework, we
take the original captured images as well as a tracked facial mesh.
To generate this data, we build personalized blendshape models
of the face from the captured expression performances, similar
to Laine et al. [2017], and use it to track the face through the captured
speech performances by matching the images and the dense 3D
reconstructions.

4 BUILDING A DATA-DRIVEN AVATAR
Our primary goal is to create extremely high-�delity facial models
that can be built automatically from a multi-camera capture setup
and rendered and driven in real time in VR (90Hz). In achieving this
goal, we avoid using hand-crafted models or priors, and instead rely
on the rich data we acquired from our multiview capture apparatus.
We unify the concepts of 3D morphable models, image-based

rendering, and variational autoencoders to create a real-time facial
rendering model that can be learned from a multi-camera capture
rig. The idea is to construct a variational autoencoder that jointly en-
codes geometry and appearance. In our model, the decoder outputs
view-dependent textures—that is, a texture map that is “unwrapped”

from a single camera image. It is view-speci�c and therefore con-
tains view-dependent e�ects such as specularities, distortions due
to imperfect geometry estimates, and missing data in areas of the
face that are occluded.
The critical piece of the proposed method is that we use a con-

ditional variational autoencoder to condition on the viewpoint of
the viewer (at training time, the viewer is the camera from which
the texture was unwrapped; at test time, the viewpoint we want
to render from; in both cases the direction is composed with the
inverse of the global head-pose in the scene), allowing us to output
the correct view-speci�c texture. At test time, we can execute the
decoder network in real-time to regress from latent encoding to
geometry and texture and �nally render using rasterization.
Figure 2 visualizes the training and inference pipeline of our al-

gorithm. For this work, we assume that coarse facial geometry has
been tracked and we use it as input to our algorithm with the origi-
nal camera images. After geometry is tracked, we “unwrap” texture
maps for each camera and for every frame of capture. Unwrapping
is performed by tracing a ray from the camera to each texel of the
texture map and copying the image pixel value into the texel if
the ray is not occluded. These view-speci�c texture maps are what
we want to generate at test time: reproducing them will cause the
rendered image to match the ground truth image after rendering.
To learn how to generate them e�ciently, we use a conditional vari-
ational autoencoder (CVAE) [Kingma and Welling 2013]. Because
we jointly model geometry and appearance, our autoencoder has
two branches: an RGB texture map and a vector of mesh vertex
positions.
Let I�t be an image from the multi-camera capture rig at time

instant t from camera� (for a total ofV = 40 cameras). In this work,
we assume that the viewpoint vector is relative to the rigid head
orientation that is estimated from the tracking algorithm. At each
time instant we also have a 3D meshMt (7306 vertices ⇥ 3 = 21918-
dimensional vector) with a consistent topology across time. Using

ACM Transactions on Graphics, Vol. 37, No. 4, Article 1. Publication date: August 2018.

Image credits S. Lombardi ©ACM



EUROGRAPHICS 2022 14

Improved telepresence experience 

Image credits S. Lombardi

Recent work with relightable face models (SIGGRAPH 2021)
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Fast content generation from semantic maps
Photographic Image Synthesis with Cascaded Refinement Networks

Qifeng Chen† ‡ Vladlen Koltun†

(a) Input semantic layouts (b) Synthesized images
Figure 1. Given a pixelwise semantic layout, the presented model synthesizes an image that conforms to this layout. (a) Semantic layouts
from the Cityscapes dataset of urban scenes; semantic classes are coded by color. (b) Images synthesized by our model for these layouts.
The layouts shown here and throughout the paper are from the validation set and depict scenes from new cities that were never seen during
training. Best viewed on the screen.

Abstract

We present an approach to synthesizing photographic

images conditioned on semantic layouts. Given a seman-

tic label map, our approach produces an image with photo-

graphic appearance that conforms to the input layout. The

approach thus functions as a rendering engine that takes

a two-dimensional semantic specification of the scene and

produces a corresponding photographic image. Unlike re-

cent and contemporaneous work, our approach does not

rely on adversarial training. We show that photographic

images can be synthesized from semantic layouts by a sin-

gle feedforward network with appropriate structure, trained

end-to-end with a direct regression objective. The pre-

sented approach scales seamlessly to high resolutions; we

†Intel Labs
‡Stanford University

demonstrate this by synthesizing photographic images at

2-megapixel resolution, the full resolution of our training

data. Extensive perceptual experiments on datasets of out-

door and indoor scenes demonstrate that images synthe-

sized by the presented approach are considerably more re-

alistic than alternative approaches.

1. Introduction

Consider the semantic layouts in Figure 1. A skilled
painter could draw images that depict urban scenes that con-
form to these layouts. Highly trained craftsmen can even
create paintings that approach photorealism [20]. Can we
train computational models that have this ability? Given a
semantic layout of a novel scene, can an artificial system
synthesize an image that depicts this scene and looks like a
photograph?

1

Image to Image translation Synthesizing images

Image credits P. Isola ©IEEE Image credits Q. Chen© ICCV
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NeRF – Novel view synthesis

Easing real-world content capture 

Image credits B. Mildenhall
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Instant NGP - ~real-time training
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ML for Rendering
Post processing, super sampling, denoising
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Deep learning for post-processing effects
Deep Shading: Convolutional Neural Networks for Screen-Space Shading

Oliver Nalbach
Max-Planck-Institut für Informatik

Elena Arabadzhiyska
Max-Planck-Institut für Informatik

Dushyant Mehta
Max-Planck-Institut für Informatik

Hans-Peter Seidel
Max-Planck-Institut für Informatik

Tobias Ritschel
University College London

�ĞĨĞƌƌĞĚ�ƐŚĂĚŝŶŐ�ďƵīĞƌƐ �ĞĨĞƌƌĞĚ�ƐŚĂĚŝŶŐ�ďƵīĞƌƐShaded images

�Ž
Ŷǀ
Žů
ƵƟ

ŽŶ
Ăů
�Ŷ
ĞƵ

ƌĂ
ů�Ŷ

Ğƚ
ǁ
Žƌ
ŬƐ

^ŚĂĚŝŶŐ�ƟŵĞdƌĂŝŶŝŶŐ�ƟŵĞ

^Ś
ĂĚ

ĞĚ
�ƌĞ

ƐƵ
ůƚƐ/ŶƚĞƌŶ͘�ƌĞƉ͘P Cw RdiffNw Ns Dfoc Rspec/gloss

Figure 1: In training (left), our approach learns a mapping from attributes in deferred shading buffers, e. g., positions, normals, reflectance,
to RGB colors using a convolutional neural network (CNN). At run-time (right), the CNN is used to produce effects such as depth-of-field,
sub-surface scattering or ambient occlusion at interactive rates (768⇥512 , px 1 ms rasterizing attributes, 21 /21/ 17 ms network execution).

Abstract

In computer vision, convolutional neural networks (CNNs) have
recently achieved new levels of performance for several inverse
problems where RGB pixel appearance is mapped to attributes such
as positions, normals or reflectance. In computer graphics, screen-
space shading has recently increased the visual quality in interactive
image synthesis, where per-pixel attributes such as positions, nor-
mals or reflectance of a virtual 3D scene are converted into RGB
pixel appearance, enabling effects like ambient occlusion, indirect
light, scattering, depth-of-field, motion blur, or anti-aliasing. In this
paper we consider the diagonal problem: synthesizing appearance
from given per-pixel attributes using a CNN. The resulting Deep
Shading simulates various screen-space effects at competitive qual-
ity and speed while not being programmed by human experts but
learned from example images.

Keywords: global illumination, convolutional neural networks,
screen-space

Concepts: •Computing methodologies ! Neural networks;
Rendering; Rasterization;

1 Introduction

The move to deep architectures in machine learning has precipitated
unprecedented levels of performance on various computer vision
tasks, with several applications having the inverse problem of map-
ping image pixel RGB appearance to attributes such as positions,
normals or reflectance as an intermediate or end objective. Deep
architectures have further opened up avenues for several novel ap-
plications. In computer graphics, screen-space shading has been
instrumental in increasing the visual quality in interactive image
synthesis, employing per-pixel attributes such as positions, normals
or reflectance of a virtual 3D scene to render RGB appearance
that captures effects such as ambient occlusion (AO), indirect light
(GI), sub-surface scattering (SSS), depth-of-field (DOF), motion
blur (MB), and anti-aliasing (AA).

In this paper we turn around the typical flow of information through
computer vision deep learning pipelines to synthesize appearance
from given per-pixel attributes, making use of deep convolutional
architectures (CNNs). We call the resulting approach Deep Shading
[Anonymous 2016]. It can achieve quality and performance similar
or better than human-written shaders, by only learning from exam-
ple data. This avoids human effort in programming those shaders
and ultimately allows to for a deep “übershader” that consistently
combines all previously separate screen space effects.

2 Previous Work

Previous work comes, on the one hand, from a computer graphics
background where attributes have to be converted into appearance
and, on the other hand, from a computer vision background where
appearance has to be converted into attributes.

Attributes-to-appearance The rendering equation [Kajiya 1986]
is a reliable forward model of appearance in the form of radiance
incident at a virtual camera sensor when a three-dimensional de-
scription of the scene in form of attributes like positions, normals
and reflectance is given. Several simulation methods for solving it
exist, such as finite elements, Monte Carlo path tracing and photon
mapping. The high-quality results these achieve come at the cost of
significant computational effort. Interactive performance is only pos-
sible through advanced parallel implementations in specific shader
languages [Owens et al. 2007], which not only demands a substantial
programming effort, but the proficiency as well. By choosing to
leverage deep learning architectures, we seek to overcome those com-
putational costs by focusing computation on converting attributes
into appearance according to example data rather than using physical
principles.

Our approach is based on screen-space shading that has been demon-
strated to approximate many visual effects at high performance,
such as ambient occlusion (AO) [Mittring 2007], indirect light (GI)
[Ritschel et al. 2009], sub-surface scattering (SSS) [Jimenez et al.
2009], participating media [Elek et al. 2013], depth-of-field (DOF)
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Deep Shading- Synthesizing screen space effects using CNNs 

Image credit: O. Nalbach ©Eurographics
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Deep Shading network architecture

§U-shaped CNN
§ Input buffers depend on post 

processing effect desired
• Usually Normals, albedo, motion 

vectors 

§Combined effects using same 
network

§ Fast inference performance

Image credit: O. Nalbach ©Eurographics
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Real-time Segmented Style Transfer

21

Goal: Real-time, temporal consistent, high resolution, per 
object
• A Feedforward Network design using VGG for perpetual 

loss
• Use exact pixel segmentation for synthesized content

Stylization in gaming

During inference
Video content

3D rendered content

Style Transferred Video

Style Image
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Challenges in rendering high resolution games

§ Interactive gaming at high resolutions/ high fps
• 4K gaming @60fps

§Bottlenecks in texture sizes, model detail
• Many millions of polygons, multi GB textures

§Hybrid rendering 
• Global illumination, ray traced reflections, post processing effects

Traditional rendering methods may not suffice
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Deep learning super sampling (DLSS)

Image credit ©Nvidia
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DLSS 2.0 – Auto encoder with motion vectors

Image credit ©Nvidia
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Improved performance in games 

§Render low resolution image
• Image upscale using DL

§Async compute using Tensorcores
• Significant performance improvement 

v/s rendering at higher resolution 

§Wide adoption
• Unity/ Unreal Image credit ©Nvidia
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Intel® Open Image Denoise

§Denoising library for ray traced images
• Final frames and baked lightmaps

§High-quality ML-based denoising filters
§Suitable for interactive and offline rendering
§Simple C/C++ API
§ Easy integration into rendering applications
§Open Source under Apache* 2.0 license
• www.openimagedenoise.org Scene courtesy of Frank Meinl, 

downloaded from Morgan McGuire’s 
Computer Graphics Archive.

*Other names and brands may be claimed as the property of others.
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Ground truth:  
32K spp

The Junk Shop by Alex Treviño. Original Concept by Anaïs Maamar.

http://www.aendom.com/
https://www.artstation.com/chatonlaser
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Ground truth:  
32K spp

Low sample count:  
16 spp

The Junk Shop by Alex Treviño. Original Concept by Anaïs Maamar.

http://www.aendom.com/
https://www.artstation.com/chatonlaser
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Ground truth:  
32K spp

Low sample count: 
16 spp (denoised)

The Junk Shop by Alex Treviño. Original Concept by Anaïs Maamar.

http://www.aendom.com/
https://www.artstation.com/chatonlaser
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More recent papers show promise 

§Photogrammetry and novel view synthesis
§Vfx usages
• Relighting, appearance capture

§Ray tracing and path tracing
• Importance sampling, adaptive sampling with denoising

§ Improving photorealism in games
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Challenges 
Datasets, neural networks, deployment 
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Testing and deploying a published ML model

Published 
neural network

Generate 
additional 

training data

Retrain with 
additional data

Optimize –
pruning, 

quantization

Testing and 
deployment

Production 
software

Iterative process and requires a lot of additional steps

OK
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Dataset curation and augmentation

§Common buffers used – normal, 
albedo, color, position, depth, 
specular, motion vectors

§Most data can be directly obtained 
from renderers 

§ Input resolution 
§Rendering time for dataset
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Some considerations for dataset generation

§Size of dataset to be collected – small v/s large
• Training time v/s quality

§ Licensing of datasets – open v/s closed
§Generalizability across different scenes
• Rendering time implications

§Compressed v/s uncompressed data
• Memory costs and training time

§Data format – color space, dynamic range
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Neural network architecture and optimizations

§Takes some effort to deploy published work 
• Understand performance targets and deployment system

§Common network optimizations
• Pruning, quantization, sparsity

§Use tools such as TensorRT, OpenVINO for auto optimization
• Most take an ONNX file as input

§Considerations for extending from images to videos
• Minimize flicker, include temporal loss terms 
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Deployment considerations

§Training generally uses Pytorch/ Tensorflow
• Impractical for deployment in real-time usages

§Hardware compatibility and driver support
• Fallback software path may not be as performant as hardware supported path

§Standards and APIs evolving to support ML 
• DirectML with DirectX, ONNX as model interchange format

§Third party and ecosystem support
• E.g: Unity Barracuda for inference deployments
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Exciting time to be in graphics

§ Increased use of ML in graphics
§Potential to improve quality, reduce rendering times and 

democratize content generation costs
§ Improved hardware and systems support, 
But..
§Challenges – datasets, networks, deployments

We have just scratched the surface



38
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