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M. Kenzel, B. Kerbl, M. Winter and M. Steinberger

These are the course notes for the third part of the tutorial on “CUDA and
Applications to Task-based Programming”, as presented at the
Eurographics conference 2021. In this part, we treat advanced
mechanisms of CUDA that were not covered by earlier parts, novel
features of recent toolkits and architectures, as well as overall trends and
caveats for future developments.
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About These Course Notes

• Practically-oriented portions rely on ability to maintain code samples

• For the full version on the fundamentals of CUDA, GPU hardware and 
recent developments, please refer to the tutorial’s web page at: 
https://cuda-tutorial.github.io

• The full version of these course notes includes additional slides, 
auxiliary media and code samples 
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In order to ensure compliance with applicable copyright and enable
continuous maintenance of slides and relevant code samples, we have
decided to create two separate versions of these course notes.

The version at hand was prepared for a one-time electronic distribution
among the Eurographics 2021 conference participants ahead of the
presentation itself and includes the documentation of previous and
ongoing research into task-based programming with CUDA, as per April
2021.

For the full, extended version of the course notes including an easily
approachable introduction, up-to-date code samples, and descriptions of
recently enabled features in CUDA, please see the tutorial‘s web page.
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Managed Memory
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The first topic that we want to consider in this portion of the tutorial is
CUDA‘s opt-in approach for unified memory between host and device,
managed memory.
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Using Managed Memory

• CUDA‘s opt-in approach to unified, automatically managed memory

• Define static variables in .cu files with
new CUDA __managed__ keyword

• Allocate managed memory dynamically: 
cudaMallocManaged

• Supported since CC 3.0 with 64-bit OS

05.05.2021 – 06.05.2021 CUDA and Applications to Task-based Programming 4

__managed__ int foo;

__global__ void kernel(int* bar)
{

printf("%d %x\n", foo, *bar);
}

int main()
{

foo = 42;
int* bar;
cudaMallocManaged(&bar, 4);
*bar = 0xcaffe;
kernel<<<1, 1>>>(bar);
cudaDeviceSynchronize();

}

Ever since compute capability 3.0 (Kepler), CUDA has had support for the
basic concept of unified memory. The methods for managing it allow for a
significant amount of control, even on devices where it is not supported
directly by the system allocators. The fundamental additions to the CUDA
architecture that managed memory provides are the __managed__
keyword for defining variables in memory, as well as the
cudaMallocManaged method to allocate storage on the host side. The
managed memory will automatically be migrated to the location where it
is accessed, without explicit commands to trigger the transfer. This
solution decouples the handle to a memory range from its actual physical
storage, which is transient and may change multiple times during
execution.
Initially, there was a noticeable performance penalty associated with the
use of unified memory, but recently, managed memory has experienced a
significant boost, making it much more practical than it used to be in
addition to simplifying the code base, so we will quickly revisit it here.
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Concurrent Access by CPU and GPUs

• If kernels and CPU execution overlap, both may access same memory

• Concurrent access supported since CC 6.0, but not guaranteed
• Even Turing GPUs and newer may not support concurrent access
• Before attempting it, must check property concurrentManagedAccess

• If not supported, developer must ensure that managed memory is
not accessed by the CPU while the GPU is running kernels

• Applies to all managed memory, regardless of whether the GPU accesses it
• cudaDeviceSynchronize to secure access from the CPU
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With unified or managed memory, both the CPU and GPU may try to
access the same variables at the same time, since kernel launches and
CPU-side execution are asynchronous. While it is now possible on some
systems to have concurrent accesses, older cards with compute capability
lower than 6.0 and even moderately modern ones may not support it. In
this case, the CPU must ensure that its access to managed memory does
not overlap with kernel execution. This can for instance be achieved with
synchronization primitives.
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Concurrent Access by CPU and GPUs

• Also applies if GPU uses different memory or no memory at all
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__managed__ int x, y=2;

__global__ void kernel() {
printf("%d\n", x);

}

int main() {
kernel<<< 1, 1 >>>();
y = 20; // Error on some GPUs, all CC < 6.0
cudaDeviceSynchronize();
return 0;

}

__managed__ int x, y=2;

__global__ void kernel() {
printf("%d\n", x);

}

int main() {
kernel<<< 1, 1 >>>();
cudaDeviceSynchronize();
y = 20;
return 0;

}

In this example, we see on the left a code segment that is problematic on
cards without concurrent access support. On the right is an alternative
implementation that makes sure to separate access from CPU and GPU
temporally. This version is safe to execute on older hardware as well.
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Concurrent Access with Streams

• Possible to associate given ranges of
memory with streams / processors

• cudaStreamAttachMemAsync

• Access to a memory range given to:
• cudaMemAttachHost (CPU)
• cudaMemAttachGlobal (all streams)
• cudaMemAttachSingle (one stream)
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__managed__ int x = 42, y = 2;

__global__ void kernel() {
printf("%d\n", x);

}

int main() {
cudaStream_t s1;
cudaStreamCreate(&s1);
unsigned int acc = cudaMemAttachHost;
cudaStreamAttachMemAsync(s1, &y, 4, acc);
kernel <<<1, 1 >>> ();
y = 20;
cudaDeviceSynchronize();
return 0;

}

Alternatively, it is also possible to attach particular managed memory
ranges to streams. This way, the access to particular managed memory
ranges can be exclusively associated with a particular stream.
Furthermore, the access to the range can be restricted to, e.g., signify that
until further notice, managed memory may only be accessed by the host.
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Use Case: Simpler Multi-Threaded Access

• Multiple CPU threads 
with managed access

• Default stream would
cause synchronization

• With streams, CPU 
threads can control
exclusive access
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void run_task(int *in, int *out, int length)
{

int *data;
cudaMallocManaged((void **)&data, length, cudaMemAttachHost);
cudaStreamAttachMemAsync(stream, data);
cudaStreamSynchronize(stream);

for(int i=0; i<N; i++) {
transform<<< 100, 256, 0, stream >>>(in, data, length);
cudaStreamSynchronize(stream);
host_process(data, length);
convert<<< 100, 256, 0, stream >>>(out, data, length);

}
}

A common use case for the assignment of managed memory to streams is
the processing of separate tasks in individual CPU threads. With every
thread creating and associating a separate stream to the memory it
intends to use, they are free to use managed memory concurrently
without the need for synchronization across multiple threads. An
exemplary setup that achieves this is given in the code segment above.
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Tuning Managed Memory Performance

• Several issues that programs should consider with managed memory
• Avoid excessive faulting: can cause data migration and page table updates
• Keep data close to accessing processor: decrease latencies on access
• Memory thrashing: memory is constantly migrated back and forth

• Developers can assist memory management with performance hints
• Migrate a range of data to a specific location and map it to processor’s page 

tables within a given stream with cudaMemPrefetchAsync
• Additionally, can provide hints on the usage of data with cudaMemAdvise:

preferred location, devices on which it should stay mapped, mostly read
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Important performance guidelines for managed memory is the avoidance
of excessive faulting, since this negatively impacts performance.
Furthermore, it should be ensured that data is always close to the
processor that accesses it. Lastly, when memory is often migrated
between host and device, this can quickly lead to thrashing, which is
detrimental to performance as well. Managed memory has recently been
made significantly more effective, insofar as the migration of data can now
occur with a fine-granular page faulting algorithm, which somewhat
alleviates these problems. However, developers can additionally provide
hints that make memory management easier at runtime. In order to do so,
they can „prefetch“ memory to a certain location ahead of it being used.
Furthermore, developers can define general advice on the utilization of
memory to indicate the preferred location of physical storage, the devices
where it should remain mapped, and whether or not the access is
governed by reading rather than writing.
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ITS – Opportunities & Pitfalls
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Next up, we will take another look at some of the details of Independent
Thread Scheduling, which was introduced with the Volta architecture.
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Independent Thread Scheduling (ITS)

• Guaranteed progress, one branch can wait on another branch

• Diverged threads may not reconverge, should be explicitly requested!
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if(threadIdx.x & 0x4)
{

A();
waitOnB();

}
else
{

B();
waitOnA();

}
C();
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We previously discussed the behavior of ITS, and how it enables for
instance use cases where threads in the same warp may wait on each
other, which would have caused a deadlock with legacy scheduling.
However, with guaranteed progress, such algorithms are now safe to
implement in CUDA.
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Use Case: Mutual Exclusion (Busy Wait)

• Minimalistic busy-wait loop 
implementation, run on Turing

• threadfence acts as barrier,
can realize an acquire/release 
pattern in CUDA

• Hangs with ITS disabled, 
works with ITS enabled
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__device__ int lock = 0;

__global__ void incrementCounter()
{

while (atomicCAS(&lock, 0, 1) != 0);
__threadfence();
count++;
__threadfence();
atomicExch(&lock, 0);

}

int main()
{

incrementCounter<<<256, 256>>>();
return 0;

}

A simple test to demonstrate the new capabilities of ITS is given by this
minimal example, in which we control a critical section that has exclusive
excess to a counter. __threadfence can be understood as a general barrier,
and therefore can model access patterns like release and acquire. Here,
we combine it with atomic operations on a global variable to secure the
counter variable. Every thread will attempt to acquire the lock, change the
counter and release the lock again. In a warp, only one thread can succeed
at any time. If after succeeding the other branch is executed, with legacy
scheduling, the routine can never finish. Running without ITS support, this
example will therefore likely cause a hang. With ITS enabled, it is safe to
execute and eventually terminates.
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Enabling/Disabling ITS

• Currently, GPUs can still switch between legacy scheduling and ITS

• Compiler flags to enable ITS 
• -arch=compute_70 -code=sm_70 for Volta
• -arch=compute_75 -code=sm_75 for Turing

• Compiler flags to disable ITS 
• -arch=compute_60 -code=sm_70 for Volta
• -arch=compute_60 -code=sm_75 for Turing
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The switches to disable or enable ITS are listed here. Currently, GPU
models still support both modes, so it is possible to run the previous
example on newer GPUs with ITS enabled/disabled to see the results. It is
not yet certain if legacy scheduling will eventually be abandoned in favor
of ITS, however, other GPU compute APIs, like OpenGL‘s compute shader,
appear to default to legacy scheduling for compatibility reasons.
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Limitations and Caveats of ITS

• No amount of hardware scheduling can save you from live lock

• Only guaranteed progress for resident warps!
• Threads will wait forever if their progress depends on non-resident warp
• Number of concurrently resident warps can be retrieved with driver API
• cuOccupancyMaxActiveBlocksPerMultiprocessor× #SMs
• Computed based on resource requirements of kernel and hardware specs

• More care must be taken to ensure SIMD behavior of warps!
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There are of course a few limitations to ITS. First of all, ITS cannot absolve
developers of improper parallel coding. While it can in fact take care of
deadlocks, it is still very much required of developers to be aware of the
scheduling model of GPUs to make sure they can avoid live locks as well.
Second, ITS can only provide a progress guarantee for threads and warps
that are resident at any point in time. That is, in case of a large launched
grid, if the progress of threads depends on a thread that was not launched
until all SMs were filled up, the system cannot progress and will hang,
since resident warps are not switched out until they complete execution.
Lastly, ITS, due to the fact that it is not guaranteed to reconverge, may
break several assumptions regarding warp level programming. In order to
ensure a fully or partially reconverged warp, developers must make proper
use of __syncwarp and can no longer assume lockstep progress at warp
level, which is a hard habit to break.
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ITS and the Importance of __syncwarp
• The concept of threads progressing in strict lockstep no longer applies

• __syncwarp is used to explicitly force synchronization, reconvergence

• Force executing threads to wait until all in mask hit a __syncwarp
• Volta+: group of threads can synchronize from different points in the program
• Masks of the called __syncwarpmust match

• Extremely important for porting code to Volta and newer architectures!
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__syncwarp may, at first glance, seem like a smaller version of
__syncthreads, however, it has a number of interesting peculiarities that
make it more versatile. Most importantly, __syncwarp is parameterized by
a mask that indicates the threads that should participate in
synchronization, in contrast to __syncthreads, which must always include
all non-exited threads in the block.
__syncwarp may be executed from different points in the program,
enabling for instance a warp to synchronize across two different branches,
as long as the masks match. If optimizations at warp-level are made by
developers, in order to write correct code, they will need to make
generous use of __syncwarp in many common patterns.
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Warp Synchronization (e.g., Reduction)
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__shared__ shmem[blockDim.x];
unsigned tid = threadIdx.x;

shmem[tid] += shmem[tid+16];
shmem[tid] += shmem[tid+8];
shmem[tid] += shmem[tid+4];
shmem[tid] += shmem[tid+2];
shmem[tid] += shmem[tid+1];

__shared__ shmem[blockDim.x];
unsigned tid = threadIdx.x;
int v = shmem[tid];

v += shmem[tid+16]; __syncwarp();
shmem[tid] = v; __syncwarp();
v += shmem[tid+8]; __syncwarp();
shmem[tid] = v; __syncwarp();
v += shmem[tid+4]; __syncwarp();
shmem[tid] = v; __syncwarp();
v += shmem[tid+2]; __syncwarp();
shmem[tid] = v; __syncwarp();
v += shmem[tid+1]; __syncwarp();
shmem[tid] = v;

__shared__ shmem[blockDim.x];
unsigned tid = threadIdx.x;

shmem[tid] += shmem[tid+16];
__syncwarp();
shmem[tid] += shmem[tid+8];
__syncwarp();
shmem[tid] += shmem[tid+4];
__syncwarp();
shmem[tid] += shmem[tid+2];
__syncwarp();
shmem[tid] += shmem[tid+1];
__syncwarp();
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Consider the example on the left, which outlines the last stages of a
parallel reduction. Naturally, if we know that ITS is active, we cannot
assume lockstep progress and must secure every update of the shared
variables with a __syncwarp operation. However, the initial response of
many developers is not sufficient. In this case, the access in each step is
not secured by an if clause to restrict the participating threads. Hence, the
threads with a higher ID might overwrite their results before they are read
by lower-ID threads. In order to make these updates secure, either
additional if clauses would have to be introduced that exclude higher
thread IDs, or a more generous use of __syncwarp is required.
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CUDA Graph API
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In the next section, we will consider the CUDA graph API.
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CUDA Graphs

• Many HPC applications build on iterative structure
• Work submitted for every iteration
• Repetitive in nature
• E.g., physics simulations, learning or inference

• Modeling CUDA applications as graphs
• Typical HPC applications are strongly pipelined
• Series of stages, e.g., memory copies, kernel launches, …
• Connected by dependencies
• Often don’t change frequently or not at all
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Many applications consist of not one, but a larger number of kernels that
are in some way pipelined or processed iteratively. Usually, the nature of
the computations that must occur does not change significantly, and a
program performs the same steps in the same order for a number of
iterations. A good example would for instance be the simulation of game
physics, where in each frame, several small, incremental updates are
made to achieve adequate precision. These applications can often easily
be expressed in the form of a graph, where each step represents a node
and edges indicate dependencies. CUDA graphs enable the definition of
applications with this graph structure, in order to separate the definition
of program flow and execution.
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Benefits

• Overhead of CUDA operations can be significant
• CUDA graphs allow to define or record execution ahead of time
• Reuse same launch schedule many times
• Separation of definition and execution reduces overall overhead

• Given a clearly defined schedule, driver can make optimizations
• As whole workflow is visible, including

• Kernel execution
• CPU-side functions
• Data movement
• …
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When one places a kernel into a stream, the host driver performs a
sequence of operations in preparation for the execution of the kernel.
These operations are what are typically called “kernel overhead”. If the
driver, however, is aware of the program structure and the operations that
will be repeatedly launched, it can make optimizations in preparation for
this particular workload. In order to enable the driver to exploit this
additional knowledge, developers can construct these graphs either from
scratch or existing code.
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Node Types

• Kernel launch
• CPU function call
• Memory copy operation
• Memory setting
• Child graph

• Option to modularize
• Attach subgraphs to parent graph

• Empty Node
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CUDA Graphs support fundamental node types that suffice to build
arbitrary applications from their combinations. It is possible to create,
attach and parameterize nodes at any point before the graphs are made
final.
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Create CUDA Graph from Scratch
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cudaGraph_t graph;

// Define graph of work + dependencies
cudaGraphCreate(&graph);
cudaGraphAddKernelNode(kernel_A, graph, ...);
cudaGraphAddKernelNode(kernel_B, graph, ...);
cudaGraphAddKernelNode(kernel_C, graph, ...);
cudaGraphAddKernelNode(kernel_D, graph, ...);

// Instantiate graph and apply optimizations
cudaGraphInstantiate(&instance, graph);

// Launch executable graph 100 times
for(int i=0; i<100; i++)

cudaGraphLaunch(instance, stream);

A
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D
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Here we see a minimalistic example for the use of CUDA graphs. First,
graphs must be created. After creation, a graph’s structure, consisting of
individual nodes and their dependencies, is defined. Before execution, a
defined graph must be instantiated to enable CUDA to analyze it, validate
it, optimize it and eventually yield the final, executable graph. Once
instantiated, the executable graph can be reused as often as desired.
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Record Existing CUDA Code as Graph
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if (!recorded)
{

// Define a graph and record CUDA instructions
cudaGraphCreate(&graph);
cudaStreamBeginCapture(stream, cudaStreamCaptureModeGlobal);
// Call your 100 kernels with unchanging parameters
for(int i=0; i<100; i++)

iterationKernel<<< …, stream >>>(i)
// End capture and make graph executable
cudaStreamEndCapture(stream, &graph);
cudaGraphInstantiate(&instance, graph, 0, 0, 0);
recorded = true;

}
else

cudaGraphLaunch(instance, stream);
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However, it is also possible to record code into a CUDA graph instead. This
is particularly valuable for the transfer of existing codebases to the graph
API. In this example, once at program startup, a collection of commands
that are executed in every frame of a simulation are recorded into a graph,
which is then instantiated. After the initial recording, the graph is ready for
execution and can be executed directly. In the best-case scenario, an
existing code segment can be wrapped with the commands for recording
and instantiating in order to replicate the behavior of legacy code with the
graph API.
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Streams and Graph Dependencies

• When constructing graphs from scratch, no dependencies assumed
• Need to manually add them (compare Vulkan/DX12)

• When recording existing code, standard CUDA dependencies apply
• Events are assumed to depend on previous events in the same stream (strict!)
• No dependencies across different recorded streams in the same graph

• It is possible to record multiple streams into the same CUDA graph
• However, only one stream, the „origin“ stream, must start the recording
• To capture other streams, add dependencies on origin (e.g., event waits)
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In CUDA without graph APIs, we rely on streams in order to define the
dependencies between different CUDA operations. By sorting commands
into different streams, we indicate that they are not dependent on one
another and can be concurrently scheduled. When using the graph API to
build graphs from scratch, by default no dependencies are assumed. That
is, if multiple kernel execution nodes are added to a graph without the
definition of a dependency, they will execute as if they were all launched
into separate streams.

When code is recorded into a graph, the conventional dependency model
is assumed. For instance, if a single stream is recorded, all commands that
may have potential dependencies on one another are treated as such. If
multiple streams are being recorded, the commands in different streams
may run concurrently.
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Example
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// Start by initating stream capture
cudaStreamBeginCapture(stream1, cudaStreamCaptureModeGlobal);

// Build stream work as usual
A<<< ..., stream1 >>>();
cudaEventRecord(e1, stream1);
B<<< ..., stream1 >>>();
cudaStreamWaitEvent(stream2, e1);
C<<< ..., stream2 >>>();
cudaEventRecord(e2, stream2);
cudaStreamWaitEvent(stream1, e2);
D<<< ..., stream1 >>>();

// Now convert the stream to a graph
cudaStreamEndCapture(stream1, &graph);
// Create executable graph instance before launching…

Event required to initiate 
recording another stream
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B C
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B
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…

…
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stream1 stream2
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Capturing multiple streams into a graph takes a little extra care. Each
captured graph must have an origin stream, and other captures streams
must somehow be associated with the origin. Simply starting a capture in
one stream before commands are executed in another will not suffice. In
order to establish this association, one stream may for instance wait on an
empty event from the origin stream. This way, the dependency of one
stream on the other is made explicit and captured in the graph as well.
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Use Case: Cloth Simulation

• Mass-spring cloth model, Verlet integration, 30 iterations per frame…

• Used in GPU programming lecture

• 5ms per frame, initially

• 4.5ms after adding CUDA graphs
• 5 minutes of effort
• 10% performance benefit
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Here we show a use case from our GPU programming lecture. This
example implements a simple cloth simulation, where a mass-spring
model is solved with Verlet integration. For updating the positions of the
individual vertices, a simple update procedure is called many times in each
frame with a small time step. Hence, the pipeline is highly repetitive and
the kernels extremely simple, which makes the kernel launch overhead
more substantial in proportion. By capturing the update routine in a graph
and replaying it in each frame, we were able to improve the performance
by approximately 10%.
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Accessing Tensor Cores
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A highly popular topic of GPUs today is the introduction of tensor cores
and their crucial role in many machine learning algorithms. For those of
you who wondered what exactly it is that tensor cores do, we will now
take a short look under the hood and describe what makes them tick.
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Tensor Cores

• Volta architecture has prominently introduced Tensor Cores
• Programmable Matrix-Multiply-and-Accumulate (MMA)
• E.g., Titan V / Tesla V100 contain 8 Tensor Cores per SM

• Tensor core operates on matrices: A M × K , B K × N , C(M × N)
• 4 × 4 × 4 (M× N × K) matrix processing array, performs 𝐷 = 𝐴 ⋅ 𝐵 + 𝐶
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With the arrival of the Volta architecture, NVIDIA GPUs have added a new
function unit to the streaming multiprocessors, that is, the tensor core.
The number and capability of tensor cores is rising quickly, and they are
one of the most popular features currently. A tensor core and its abilities
are easily defined: each tensor core can perform a particular fused matrix
operation based on 3 inputs: a 4 × 4 matrix 𝐴, a 4 × 4 matrix 𝐵, and a
third 4 × 4 matrix for accumulation, let’s call it 𝐶. The result that a single
tensor core can compute is 𝐴 × 𝐵 + 𝐶, which on its own does not seem
too helpful. However, the strength of tensor cores originates from its
collaboration with other cores to process larger constructs.
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Tensor Cores

• Easily accessed through libraries
• Primarily via TensorRT, cuDNN and cuBLAS
• Recommended for highest performance in most use cases

• Also exposed directly in CUDA kernel code
• Exact data layout can be treated as blackbox, low-level definitions in CUDA 11
• No specific instructions to be performed individually per thread
• Warp matrix functions exposed to developers via mma.h header
• Threads in a warp work together to collaboratively execute tensor operations
• Each warp must uniformly perform the same nvcuda::wmma instructions
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This collaboration can be achieved in one or two ways. The first is by using
one of the readily-available libraries that make use of these capabilities in
highly-optimized kernels, such as TensorRT, cuDNN or cuBLAS. For general
purpose applications, it is recommended to use these solutions for higher
performance.

However, the access to tensor cores is also exposed in CUDA directly via a
separate header for matrix multiplication and accumulation of small
matrices, which are usually only a part of the total input. These matrix
tiles, or „fragments“, can be larger than 4 × 4 if threads in a warp
cooperate. The MMA headers define warp-level primitives, that is, tensor
cores must be utilized collaboratively by all the threads in a given warp.
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Tensor Cores

• Each core can do 64 floating point fused-multiply-add (FMA) per clock
• E.g., with 8 tensor cores: 64 * 2 * 8 operations/cycle  1024 operations/cycle

• Restrictions on format for input fragments, e.g.:
• A = __half (16bit float), B = __half, C = float 
• A = __half, B = __half, C = __half
• A = char, B = char, C = int
• A = precision::tf32, B = precision::tf32, C = float

• Warps collaborate to process larger fragments
• Maximal dimensions governed by data types used
• E.g., max. 16 × 16 × 16 for A = __half, B = __half, C = float
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The performance of these computations is significant since the tensor
core is optimized for this very specific operation. A tensor core can
achieve 64 fused-multiply-add operations per clocks. With 8 tensor cores
per SM, this leads to a vast 1024 operations performed in each cycle.
However, restrictions do apply in their utilization. A common assumption
is that tensor cores work directly on single-precision floating point values,
however, this is only true for the accumulation part of the operation. So
far, the input fragments 𝐴 and 𝐵 may not be 32-bit wide, but rather 16-bit
half-precision or the more adaptive tf32 type, which has a bigger range
than half-precision types.
The choice of what data types are used as input directly affects the
maximum size of the fragments that can be collaboratively computed. A
common configuration, with half-precision for input fragments 𝐴 and 𝐵,
enables warps to compute MMA operations on 16 × 16 fragments. When
using, e.g., tf32 for 𝐴 and 𝐵 instead, one of the dimensions must be
halved.
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Using Tensor Cores in CUDA
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// Contains section of a matrix distributed across all threads in warp
template<typename Use, int m, int n, int k, typename T, typename Layout=void> class fragment;

// Waits until all warps are at load matrix and then loads matrix
void load_matrix_sync(fragment<...> &a, const T* mptr, unsigned ldm);
void load_matrix_sync(fragment<...> &a, const T* mptr, unsigned ldm, layout_t layout);

// Waits until all warps are at store matrix and then stores matrix
void store_matrix_sync(T* mptr, const fragment<...> &a, unsigned ldm, layout_t layout);

// Fill fragment with constant value v
void fill_fragment(fragment<...> &a, const T& v);

// Perform warp-synchronous matrix multiply-accumulate d = a*b + c
void mma_sync(fragment<...> &d, const fragment<...> &a, const fragment<...> &b,
const fragment<...> &c, bool satf=false);
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Here, we list the relevant types and functions that are exposed to warps
for performing tensor core operations:
- fragment: Overloaded class, containing a section of a matrix distributed

across all threads in a warp. Mapping of matrix elements into fragment
internal storage is unspecified (and subject to change). Use can be
<matrix_a, matrix_b, accumulator>, M,N,K are shape of matrix.

- load_matrix: waits until all threads in a warp are at load and then loads
fragment from memory. ptr must be 256bit aligned, ldm is stride
between elements in consecutive rows/columns (multiple of 16 Bytes,
i.e. 8 half elements or 4 float elements). All values must be the same for
all threads in a warp, must also be called by all threads in a warp,
otherwise undefined

- store_matrix: Same ideas as with load
- fill_fragment: Mapping is unknown, v must be the same for all threads
- mma_sync: performs warp-synchronous matrix multiply-accumulate

(MMA)
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using namespace nvcuda;

__global__ void wmma_example(half* a, half* b, float* c)
{

// Declare the fragments
wmma::fragment<wmma::matrix_a, 16, 16, 16, half, wmma::col_major> a_frag;
wmma::fragment<wmma::matrix_b, 16, 16, 16, half, wmma::col_major> b_frag;
wmma::fragment<wmma::accumulator, 16, 16, 16, float> acc_frag;
wmma::fill_fragment(acc_frag, 0.0f);
// Load the inputs
wmma::load_matrix_sync(a_frag, a, 16);
wmma::load_matrix_sync(b_frag, b, 16);
// Perform the matrix multiplication
wmma::mma_sync(acc_frag, a_frag, b_frag, acc_frag);
// Store the output
wmma::store_matrix_sync(c, acc_frag, 16, wmma::mem_col_major);

}

Load/init
input/output

Magic!

Store output
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Multiplying two Matrices

Here, we show a minimal example of using tensor cores with the available
functions. First, we define the fragments that a warp can collaboratively
work on, in this case, a 16 × 16 portion of a matrix, with the data format
being half-precision floats. The accumulator has a higher precision, it can
be single-precision float without reducing the fragment size. After filling
the accumulator with all zeros, we collaboratively load in the data to fill
the input fragments 𝐴 and 𝐵. Once done, the warp must synchronize and
perform the matrix multiplication and accumulation in cooperation.
Finally, the result of this computation, stored in the accumulator, is written
back to memory.
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Use Case: Denoising with CNNs

• Partial path-traced (1spp) results can be reconstructed using CNNs
• TensorRT enables directly using CUDA resources as input
• Sampling, inference, cleanup and visualization all on-chip
• Used, e.g., by Tatzgern et al. for “Stochastic Substitute Trees”[1]
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Although knowing the exact functionality of tensor cores is interesting, a
much more practical approach for the most common use cases, like
machine learning, is to use the available libraries, like TensorRT. The
corresponding solutions support the loading and inference with network
layouts in common machine learning formats, such as ONNX, and can
compute results with unprecedented performance. For instance, we have
used TensorRT to use convolutional networks for the reconstruction of
undersampled renderings in previous work, which was published last year
at I3D. In the paper, Stochastic Substitute Trees, the sampling,
reconstruction, and visualization of an approach inspired by instant
radiosity can execute completely on the GPU to give real-time
performance in complex lighting scenarios.
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New Warp-Level Primitives
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Let us now turn to the warp-level primitives that we haven‘t discussed so
far. In addition to shuffling and voting, recent architectures have
introduced additional primitives that provide interesting use cases for
optimization.
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Match and Reduce

• __match_sync (new since compute capability 7.0, Volta)
• Submit a value, return bitmask with threads that submitted the same value
• E.g., identify threads that have the same value in a particular register

• __reduce_sync (new since compute capability 8.0, Ampere)
• Perform warp-wide reduction (addition, OR, XOR, MIN, …) 
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1 18 3 1 3

{0,3,5} {1} {0,3,5} {0,3,5}{2,4} {2,4}__match_sync_any(0b111111, val) =

val =

Two new exciting operations can now occur with high efficiency within a
warp. One is the __match_sync operation, which has been enabled since
Volta. Previously, we had the __ballot operation, which enabled us to find
out for which threads in a warp a certain predicated evaluates to true.
However, now threads can individually identify the threads whose value in
a given register matches their own.

Additionally, it is now possible to reduce results from registers to a single
result with a single instruction. This functionality is accelerated in
hardware with the Ampere architecture.
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Use Case: Vertex Deduplication

• Use case: identify duplicate vertices in a batch of triangles
• For rasterization, geometry is usually

partitioned into batches
• Each warp processes a separate 

triangle batch independently
• To avoid redundant vertex shading, 

need to deduplicate indices
• Can be achieved with shuffles

in software (e.g., Kenzel et al.[2])
• __match_any_sync greatly 

simplifies the deduplication!
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…, 0,1,7, 7,1,2, 3,4,2, 2,4,7, 7,4,5, 7,5,6, 7,6,0, …
0 1 2 3 4 5 6

For the first of the two, we can easily find interesting use cases. Consider
for instance the task of processing a mesh. For rendering and many other
geometry tasks, meshes are split into triangle batches with a given
number of indices. When processing must be performed per vertex, e.g.,
for vertex shading, in order to exploit significant reuse of vertices in a
mesh, duplicate vertices can be identified, and each unique vertex can
only be shaded once. This was for instance realized in our previous work
on enabling vertex reuse on the GPU in software. Previously, we addressed
this by shuffling vertex indices and recording duplicates among threads.
However, with the Volta architecture, this task maps to a single hardware-
accelerated instruction.
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Use Case: Parallel Reduction Final Stage
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__global__ void reduceSharedShuffle(const float* input, float* result, int N)
{

…
x = data[threadIdx.x];
if (threadIdx.x < 32)
{

x += __shfl_sync(0xFFFFFFFF, x, threadIdx.x + 16);
x += __shfl_sync(0xFFFFFFFF, x, threadIdx.x + 8);
x += __shfl_sync(0xFFFFFFFF, x, threadIdx.x + 4);
x += __shfl_sync(0xFFFFFFFF, x, threadIdx.x + 2);
x += __shfl_sync(0xFFFFFFFF, x, 1);

}
if (threadIdx.x == 0)

atomicAdd(result, x);
}

__global__ void reduceSharedShuffle(const float* input, float* result, int N)
{

…
x = data[threadIdx.x];
if (threadIdx.x < 32)
{

x = __reduce_add_sync(0xFFFFFFFF, x);

}
if (threadIdx.x == 0)

atomicAdd(result, x);
}

For the latter reduce operation, the application is more straightforward.
Consider for instance the implementation of a reduction, where we used
shuffling in the later stages to exploit intra-warp communication. The
aggregate of different shuffle instructions can now be replaced with a
single reduce instruction for the entire warp.
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Opportunistic Warp-Level Programming

• Due to ITS, threads no longer progress in lockstep

• At any point of a kernel, an arbitrary set of threads may be active

• New primitive __activemask returns a bitmask of current threads
• Does not include warp synchronization!
• Threads can simply let each other know if they are at the same instruction

• Enables set of threads to quickly collaborate anywhere in the program
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Lastly, another operation is made available that is strongly motivated by
the introduction of ITS, and how it affects thread scheduling. With ITS,
threads may no longer progress in lockstep, diverge and reconverge
somewhat arbitrarily. __activemask is a special warp primitive, since it
does not include synchronization and no mask must be provided. This
means that it can be called without knowing which threads will be calling
it. __activemask returns a set of threads about which it makes no concrete
guarantees, other than that these threads are converged at the point
where __activemask is called. If the result of this function is used as a
mask, other warp-level primitives can use it to opportunistically form
groups of threads that are currently converged to optimize particular
computations.
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Use Case: Aggreate Atomics in Warp

• Use __activemask to combine increments before writing data
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{
unsigned int writemask = __activemask();
unsigned int total = __popc(writemask);
unsigned int prefix = __popc(writemask & __lanemask_lt());
int elected_lane = __ffs(writemask) - 1;
int base_offset = 0;
if (prefix == 0) {

base_offset = atomicAdd(p, total);
}
base_offset = __shfl_sync(writemask, base_offset, elected_lane);
int thread_offset = prefix + base_offset;
return thread_offset;

}

Which one am I?

Thread 0 adds atomically to get offset

For instance, consider this coding example. While it may be a bit on the
intricate side, the goal is actually very simple: At the point where this code
is executed, the threads that run it are supposed to write their result to a
unique position in a buffer, which they obtain by raising an atomic counter
p. To reduce the number of atomic simultaneous operations on the
counter p, they opportunistically identify all the threads in the warp that
are also currently executing this part of the program, i.e., converged
threads. Having identified them, they find the thread in the list with the
lowest ID and let it perform a single atomic addition with the size of the
converged group. Afterward, every thread in this opportunistic group
writes their entry to an appropriate offset in the target buffer.
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Outlook

• Opportunistic programming depends on correct use of mask
• Use of __activemask is easy to get wrong
• Due to ITS, can result in computation of incomplete results

• The list of special functions to remember is getting longer
• Increasing number of warp-level primitives to remember and apply
• Raise performance, but are often restricted to specific architectures
• Complicates generation of portable code

• Better: use cooperative thread groups (also available since CUDA 9.0)
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All of these new instructions are helpful, but they also illustrate something
else: getting optimal performance out of the GPU is getting more and
more intricate. Comparably simple goals, like the one realized in the
example we just gave, require a lot of careful design, correct handling and
interpreting of bitmasks, and remembering the individual optimizations
that can be done in hardware. This may seem discouraging, especially for
newcomers to CUDA. However, in addition to exposing these new low-
level operations, CUDA also now provides developers with a helpful new
library called cooperative groups, which encapsulates these behaviors but
abstracts the low-level details for improved usability.
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Cooperative Groups
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This is exactly the topic that we will be dealing with in the next section of
this tutorial.
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Cooperative Groups
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• To best exploit the GPU, threads may want to cooperate at any scope
• A few threads
• An entire warp
• An entire block
• All blocks in a grid

• Cooperative groups hide the details of collaboration between threads
• Efficient cooperation between threads in block/warp via primitives
• Require careful handling, correct masking, controlled synchronization
• Cooperative groups simplify the code structure, abstract low-level commands

Cooperative groups can be seen as NVIDIA‘s commitment to the idea that
cooperation is key, regardless of whether it happens across multiple
blocks, within a block, within a warp, or even just a few threads that
happen to execute together. At each of these levels, it is important that
developers can exploit the means for cooperation between threads, and
that they can exploit it easily. Cooperative groups try to unify the defining
properties of thread groups with a common utilization principle that can
abstract away many of the intricate, low-level details.
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Cooperative Groups
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…
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Thread Block 
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To illustrate this idea, we can visualize different levels of the execution
hierarchy and associate each of them with a particular pendant in the
cooperative groups model. Conventionally, CUDA uses built-in variables to
identify the block that each thread belongs to. With cooperative groups,
each thread can retrieve a handle to a group that represents its block,
which is of the thread block group type. A thread block group can be
further partitioned into thread block tile groups with a given size that
must be a power of 2 and no larger than a warp (except for the
experimental cooperative groups extensions). Somewhat orthogonal to
groups created based on size, but always at most of size 32 is finally the
coalesced group, which represents a group of threads that are, at some
point in time, converged (compare to our previous example of
opportunistic warp-level programming).
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Cooperative Groups

• Not built-in, extra features included via cooperative_groups.h

• Cooperative groups functionalities include:
• Data structures and types for groups of different sizes
• Methods to create new groups from implicit scopes or larger groups
• Methods to synchronize threads in a group
• Algorithms to collaboratively perform more complex operations
• Operations to inspect group properties

• Total group size
• Thread ID within a given group
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The cooperative groups design is available through an additional header,
which includes data structures that describe types for the individual
groups of threads, methods to synchronize groups, algorithms that allow
them to collaborate toward a specific goal, and functions that developers
can use to access generic properties of groups, such as their size.
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Creating Cooperative Groups
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// Obtain a group for the current thread block
auto threadblock = cooperative_groups::this_thread_glock();
// Obtain a group for each warp in the thread block
auto warpgroup = cooperative_groups::tiled_partition<32>(threadblock);
// Obtain a group for each warp in the thread block
auto subwarp16 = cooperative_groups::tiled_partition<16>(threadblock);
// Obtain a group for all currently coalesced threads in the warp
auto active = cooperative_groups::coalesced_threads();

// Thread block groups can sync, reflect
threadblock.sync();
printf("Size: %d Id: %d\n", threadblock.size(), threadblock.thread_rank());

// Explicit groups are smaller than warps - can use warp-level primitives!
uint answer = active.ballot(foo == 42);
uint neighbor_answer = active.shfl_down(answer, 1);

Here, we see examples for the creation of a thread‘s variable describing a
group that represents its thread block, a group that represents its warp, a
smaller group representing a 16-wide tile of the block that the thread
happens to fall into, and lastly the group of converged threads that this
thread is a part of. The threadblock group, like all the others, has the
option to synchronize with the other threads in it. Synchronization is now
abstracted by the group interface, so instead of calling the specific
__syncthreads(), developers may simply call the .sync method. Each group
will also provide its members with a unique „rank“ within each respective
group, regardless of their higher-level position. E.g., a thread with
threadIdx.x == 7 may very well be the thread with rank 0 in a coalesced
group, such that ranks always run from 0 to group.size(). Furthermore,
tiled partition groups and coalesced groups may exploit fast warp-level
primitives as methods of their groups. Note that providing masks is not
necessary: the threads that should participate are an implicit property of
the group.
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Use Case: Updating Reduction Final Stage

• Cooperative groups also provide reduction functions on CC < 8.0

05.05.2021 – 06.05.2021 CUDA and Applications to Task-based Programming 45

__global__ void reduceSharedShuffle(const float* input, float* result, int N)
{

…
x = data[threadIdx.x];
if (threadIdx.x < 32)
{

x += data[threadIdx.x + 32];
x = __reduce_add_sync(0xFFFFFFFF, x);

}
if (threadIdx.x == 0)

atomicAdd(result, x);
}

__global__ void reduceSharedShuffle(const float* input, float* result, int N)
{

…
auto warp = cooperative_groups::tiled_partition<32>(threadblock);
if (warp.meta_group_rank() == 0) // First warp group only
{

int warpLane = warp.thread_rank();
float v = values[warpLane] + values[warpLane + 32];
v = cooperative_groups::reduce(warp, v, cooperative_groups::plus<float>());
if (warpLane == 0)

atomicAdd(&result, v);
}

}

We can use cooperative groups to rewrite the final stage of our reduction
with these new mechanics. While in this case, the code does not become
shorter, it arguably becomes clearer. Behavior is not explicitly governed
based on thread ID. Instead, a block is first partitioned into warps, and
only a single warp chooses to participate in the final stages of the
reduction. Second, the warp then proceeds to call the more general
reduce method, which now may be called even on architectures that do
not support the __reduce intrinsic. E.g., on Turing cards or earlier, the
reduce method will default to shuffle operations. The inclusion of high-
performance primitives where possible and efficient software fallbacks
elsewhere is an important step toward additional relief for developers
who can now quickly write code that performs well on multiple
architectures without introducing special control flow paths.
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Use Case: Opportunistic Group Creation

• Revisit aggregation of atomic increments with warp-level primitives
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{
unsigned int writemask = __activemask();
unsigned int total = __popc(writemask);
unsigned int prefix = __popc(writemask & __lanemask_lt());
int elected_lane = __ffs(writemask) - 1;
int base_offset = 0;
if (prefix == 0) {

base_offset = atomicAdd(p, total);
}
base_offset = __shfl_sync(writemask, base_offset, elected_lane);
int thread_offset = prefix + base_offset;
return thread_offset;

}

{
cg::coalesced_group g = cg::coalesced_threads();
int prev;
if (g.thread_rank() == 0)
{

prev = atomicAdd(p, g.size());
}
prev = g.thread_rank() + g.shfl(prev, 0);
return prev;

}

Finally, we can revisit the solution we previously explored for opportunistic
warp-level programming. The intrinsics and manipulations we used before
enabled us to recreate the behavior that cooperative groups is built upon:
the focus on collaborative threads. With the creation of a coalesced
group, identifying leader threads, group size or shuffling results among
coalesced threads becomes trivial. Internally, of course, the same
manipulations are still taking place, but are now hidden from the
developer who can achieve the same efficiency with much cleaner and
more comprehensible code.
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CUDA Standard Library libcu++ 
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Another exciting new feature that promises to make CUDA much more
convenient is the CUDA standard library, libcu++.
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A Unified Standard Library for CUDA

• Previously, thrust to use std::-like containers, sorting, scanning…

• libcu++ brings the functionality of the standard library to the device

• Incremental integration of features (chrono, complex, atomic, …)

• Introduce two new namespaces that may be used on host and device
• cuda::std:: for standard API functionality according to specification
• cuda:: for extended features to exploit device-side optimization
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Up until now, to have the comfort of the standard library, CUDA provided
thrust, which offers commonly used operations for sorting, scanning, as
well as basic containers and interfaces on the host side. However, with
libcu++, NVIDIA is bringing the functionality of the standard library,
according to specification (and beyond) to the device side. This is an
incremental effort. The first parts that have been realized include the
chrono library, numeric features such as complex numbers, and atomics.
To conform to the specifications, the library provides a namespace
cuda::std. However, since the GPU has architectural peculiarities that are
not completely captured by specification, it also includes the opt-in name
space cuda::, which offers data types and algorithms with additional
parameters and settings.
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Time, Numerics and Utility

• cuda::std::chrono: provides system and high-resolution clock
• May be used on either CPU and GPU, but using different system clocks:
%globaltimer (PTX) for device, gettimeofday or equivalent on CPU

• Logical discrepancies between readouts may occur (accepted by standard)

• Numerics library: ratios, complex numbers, cstdint, cfloat and climits

• Utility library: tuples, pairs, functional and version

• Further support (std::iostream, std::vector) in progress
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For chrono, the CUDA standard library now offers a system and high-
resolution clock that make use of the special built-in clock registers
defined by the PTX ISA. In the numerics portion, the library includes
support for complex numbers, ratios, as well as limits for built-in types.
The utility library currently focuses on the implementation of tuples and
pairs. A highly demanded addition is the vector containter which,
according to the developers, is already high up on their TODO list.
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Memory Coherency Model Recap

• We can enforce 
memory 
coherency with 
basic barriers…

• But the PTX ISA
defines common
coherency model

• A lot of effort spent on enforcing coherent memory model: since Volta, 
PTX exposes acquire, release, relaxed, acq_rel,…!
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__device__ void signal_flag(volatile int& flag)
{

__threadfence();
flag = 1;

}

__device__ void poll_flag_then_read(volatile int& flag, int& data)
{

while (flag != 1);
__threadfence();
return data;

}

Before we focus on atomics in the CUDA standard library, let‘s first quickly
recap the basic CUDA memory model. Regarding memory ordering, the
__threadfence operation is an established, though somewhat crude,
mechanism for achieving ordered access, by acting like a general barrier.
However, a considerable amount of time has now been spent on actually
enforcing a clearly defined memory coherency model on NVIDIA GPUs,
that reflects that of common CPUs. This memory coherency model has
clear definitions for access with release and acquire semantics, which are
much more nuanced than thread fences.
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libcu++ Atomics 

• cuda::std::atomic and cuda::atomic expose most parts of 
the coherent memory model through atomic variables and operations

• Support for std::atomic, extensions to exploit device peculiarities

• Maps instructions of std:: library to underlying PTX commands

• Reduce code complexity, improve code reuse, avoid common pitfalls
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This is where the libcu++ atomics come in. Currently, they are the
preferred way to expose this modern memory coherency model to C++
without the need to write explicit PTX instructions. By introducing a
memory coherency model that mirrors the CPU, as well as exposing it
through a standard library, writing CUDA code now becomes significantly
more portable. In addition, the ability to write __device__ __host__
functions that behave the same on both architectures enables a
significantly higher code reuse.
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Use Case: Flags with libcu++ Atomics
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__host__ __device__ void signal_flag(atomic<bool>& flag) { // Works on CPU and GPU!
flag = true;

}

__host__ __device__ int poll_flag_then_read(atomic<bool>& flag, int& data) {
while (flag != 1);
return data;

}

__host__ __device__ void signal_flag(atomic<bool>& flag) {
flag.store(true, memory_order_release);
flag.notify_all();

}

__host__ __device__ int poll_flag_then_read(atomic<bool>& flag, int& data) {
flag.wait(false, memory_order_acquire);
return data;

}

This is an example of coding with the libcu++ standard library. Note that
we can replicate the same operations as before, which needed to be
protected by __threadfence and decorated with a vague, non-portable
volatile qualifier, with clear atomic definitions instead. In addition to
atomic store, load and arithmetic operations, the new atomics also
support waiting and notification of waiting threads.
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Use Case: Locks and Critical Sections

• Synchronization primitives from std:: already available in libcu++
• May of course only be used on devices that can utilize them (Volta and later)
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__global__ void incrementCounter(cuda::std::binary_semaphore* semaphore)
{

semaphore->acquire();
count++;
semaphore->release();

}

int main()
{

cuda::std::binary_semaphore* sem;
cudaMallocManaged(&sem, sizeof(cuda::std::binary_semaphore));
new (sem) cuda::std::binary_semaphore(1);
incrementCounter<<<256, 256>>>(sem);
…

These new features make it easy to create efficient implementations of
common synchronization primitives, however, several of them, like binary
semaphores, are already included in libcu++ as well to spare developers
the additional effort.
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libcu++ Caveats 

• When porting, std:: needs more verbose code for same behavior
• E.g., atomics default to strongest memory coherence (sequentially consistent)
• Also, default scope of synchronization primitives is system (host+device)
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// Before
__device__ void increment_old(int* val)
{

atomicAdd(val, 1);
}
// Now
__device__ void increment_new(cuda::atomic<int, cuda::thread_scope_block>* val)
{

val->fetch_add(1, cuda::memory_order_relaxed);
}

While it is definitely on its way to becoming an integral part of CUDA
applications, the use of the libcu++ library is not without caveats,
especially to long-term users of „conventional“ CUDA. For instance, with
the new constructs, achieving the same behavior that developers are used
to on the device side can now be much more verbose. E.g., the default
behavior of atomic operations conventionally is relaxed, which is not the
default in the standard library. Also, care must be taken that, when
performance is essential, cuda::std may not be used, since only the
primitives in cuda:: offer the ability to define reduced visibility of atomic
variables (e.g., shared atomics).
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libcu++ Caveats 

• Expect very different compilation results!
• If you frequently inspect your code, this may need some getting used to
• Minor differences, e.g., atomic operations may not convert to reductions
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// Before
__device__ void increment_old(int* val)
{

atomicAdd(val, 1);
}
// Now
__device__ void increment_new(cuda::atomic<int, cuda::thread_scope_device>* val)
{

val->fetch_add(1, cuda::memory_order_relaxed);
}

RED.E.ADD.STRONG.GPU [R2.64], R5

ATOM.E.ADD.STRONG.GPU PT, RZ, [R2.64], R5

Another, more subtle difference is that while in general, the compiled
results of code that uses libcu++ can exploit the memory coherency model
better than legacy code, sometimes the result is not what you would
expect. For instance, in this case, we perform atomic operations on a
variable in both device functions, without using the returned results. The
compiler should be able to turn the atomic addition into a simple
reduction, however, in the case where the standard library is used, it
cannot make this conversion.
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Use Case: Asynchronous Data Copies

• First step in many algorithms is copying data from global to shared

• Until now, no direct line of communication between the two
• Data has to move via intermediate register, visible after __syncthreads
• Ampere architecture offers hardware acceleration for this type of transfer
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Register (temp)

foo[id]

__global__ void kernel(int* foo)
{

__shared__ int shared_foo[256];
int id = threadIdx.x + blockIdx.x * blockDim.x;
shared_foo[id] = foo[i];
__syncthreads();
...

}

shared_foo[id]

Libcu++ also includes definitions for CUDA barriers, which largely mimic
the behavior of std::barrier types. These become important to exploit,
e.g., a new feature of the Ampere architecture for efficiently transferring
data from global to shared memory. Until now, such transfers, which are
very common in most kernels, had to go through an intermediate register
before being stored in memory.
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Use Case: Asynchronous Data Copies

• Transfer directly from global memory to shared, no register needed

• May synchronize with the availability of data only at a later time
• Copy operation can be tied to a barrier
• Data becomes visible eventually when threads wait on barrier
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foo[…]

…
__shared__ int shared_foo[256];
__shared__ cuda::barrier<cuda::thread_scope::thread_scope_block> barrier;
…
auto block = cooperative_groups::this_thread_block();
size_t blockID = block.group_index().x * block.size();
cuda::memcpy_async(block, shared_foo, foo + blockID, 4 * 256, barrier);
barrier.arrive_and_wait();
…

shared_foo[…]

With libcu++, we can use barriers and the new cooperative
memcpy_async functionality, which enables us to kick off an asynchronous
copy of data from global to shared memory and, at some later point in the
program, wait for that transfer to finish before progressing. The true
benefit of this new functionality, which enables staging in shared memory,
is significant for performance, but its implementation is a bit more
involved–we won‘t address it in detail here. However, the interested
participant is strongly encouraged to refer to the appendix of the CUDA
Programming guide on asynchronous data copies.
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Set-Aside L2 Cache
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The last recently introduced feature that we want to mention in this
tutorial is the set-aside L2 cache.
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Controlling the Residency of Data in L2

• Data read from global memory have different access frequency
• Data that is accessed frequently – persistent 
• Data that is accessed rarely (perhaps only once) – streaming

• For best performance, L2 should ensure persistent data remains
• Fewer accesses to slower global memory
• Impossible to predict, L2 behavior is reactive, eviction randomized

• With CUDA 11 and CC 8.0+, it becomes possible to define a set-aside
region of the L2 cache that can be freely managed by the developer
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Not all data is made equal. Some of it used frequently in kernels, other
data may be more transient and not used more than once. In the context
of the residency in L2 cache, we can distinguish these as persistent data
and streaming data. To achieve maximum performance, the L2 cache
management should encourage that persistent data remains while
streaming data is quickly evicted. However, this behavior is purely reactive,
since the cache cannot predict program flow and frequently used
information. With CUDA 11 and the Ampere architecture, it is now
possible to define set-aside regions of the L2 cache that will be managed
according to the definitions by the developer.
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Set-Aside L2 Cache Region

• Define desired set-aside region (must be smaller than total L2 size)
• cudaDeviceSetLimit(cudaLimitPersistingL2CacheSize,…)
• Size must be less than persistingL2CacheMaxSize limit

• Once defined, set-aside region can be associated with data
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cudaStreamAttrValue attrib; // Stream level attributes data structure
cudaAccessPolicyWindow apw;
apw.base_ptr = reinterpret_cast<void*>(data); // Global Memory data pointer
apw.num_bytes = window_size; // Number of bytes for persistence
apw.hitRatio = 0.6; // Hint for cache hit ratio
apw.hitProp = cudaAccessPropertyPersisting; // Persistence Property
apw.missProp = cudaAccessPropertyStreaming;
attrib.accessPolicyWindow = apw;
cudaStreamSetAttribute(s1, cudaStreamAttributeAccessPolicyWindow, &attrib);

The amount of L2 cache that can be used in this way is defined by a
property that can be queried from the active GPU. A memory range can
then be associated with a portion of the set-aside L2 cache and configured
with various properties that define how it will be maintained.

60



Set-Aside L2 Cache Region Access Policy

• hitRatio: Portion of given data that will receive hit/miss property
• E.g., 32 KB window size, 50% hit ratio:

• 16 KB (random) will receive property hitProp
• Remaining 16 KB will receive property missProp

• hitProp/missProp: What happens in case of a hit/miss
• cudaAccessPropertyStream – data less likely to remain in L2 cache
• cudaAccessPropertyPersisting – data more likely to remain in L2
• cudaAccessPropertyNormal – restore usual, „normal“ L2 behavior
(also important to evict cache lines from earlier kernels that may still remain!)
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The hit ratio of a memory portion defines how much of it (chosen
randomly) should comply with the defined hit property. The remainder
will comply with the miss property. For instance, with a hit ratio of 50%,
half of the memory associated will be treated with the hit property and
the other half with miss. The properties can be set to encourage behavior
for persistent data or streaming data, or the associated memory can be
cleared of its persistent or streaming property to return to „normal“
caching behavior.
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Misconceptions and Hints
“It is better to know nothing than to know what ain’t so” – Josh Billings 
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Finally, we would like point out general cavetas, trends, things that
changed from how they used to be and our personal suggestions for
working with CUDA.
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How the Tables Have Turned

• Shared memory vs caching: caches are becoming more effective
• Then: it usually paid off to use shared memory for manually managed “cache”
• Now: L1 and L2 more effective, forced shared memory can hurt performance

• Texture memory vs global memory: performance is equalized
• Then: recommended to use texture memory whenever data is read-only
• Now: in many cases, similar performance from global and texture memory

• Unified (managed) memory: data migration is now more efficient
• Then: performance might significantly degrade from managed memory use
• Now: fine-granular page faulting, much closer to manual management
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First, there a few things that used to be go-to solutions for increased
performance, which are no longer universally true. For instance, caches
are catching up with the benefits of shared memory. The L2 and L1 cache
have adapted caching policies, to the point where it is no longer always
smarter to prefer manual handling of shared memory over an
automatically managed L1 cache.
Second, texture memory was long promoted as an immediate boost to
performance for read-only data. This property too seems to be less
evident than it used to be. Performance of global and texture memory is,
for a wide range of patterns, mostly similar, except for random access
patterns within a small, spatially confined window. Of course, the
additional functionality of texture memory (filtering, sampling) remains.
Lastly, as we already pointed out, unified (managed memory) is no longer
the performance hog it used to be. Thanks to fine-granular page faulting
mechanisms and better migration policies, it has become a viable
alternative in many applications.
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Sending Threads to Sleep

• Previously, programmers would use __threadfence to force sleep

• No longer necessary, for two reasons:
1. Warps will now be scheduled 

due to progress guarantee
2. If individual threads should 

back off, Volta+ now exposes 
__nanosleep function

• Used, e.g., in libcu++ to wait
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__device__ void mutex_lock(unsigned int *mutex) {
unsigned int ns = 8;
while (atomicCAS(mutex, 0, 1) == 1) {

__nanosleep(ns);
if (ns < 256) {

ns *= 2;
}

}
}

Developers used to abuse the __threadfence operation to force threads to
back off and release certain resources. It was also a common requirement
for blocking algorithms where threads depend on the progress of other
threads. A thread fence would cause the calling warp to yield and let other
warps progress before being scheduled again. These hacks are no longer
necessary, since ITS guarantees progress for all resident threads. In case
where it is still desired that threads back off and releaes resources, like
locks, Volta introduced the __nanosleep function for that very purpose.
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Suggestions for Good CUDA Performance

• When optimizing CUDA applications for the modern GPU
1. Try to come up with an algorithm you know works well in parallel
2. If there are no previous results/recommendations, go with best assumption
3. From the start, think about minimizing memory requirements!

• Compressions? Encoding? Smaller data types? Alignment?
• This will pay off regardless of compiler optimizations

4. Once initial version is done, check performance metrics (Nsight Compute)
5. Optimizers can suggest load improvements–not better algorithms or layouts
6. Don’t bother with: 

• Writing basic math operations with bit magic (compiler is probably smarter than you)
• “Tweaks and tricks” like changing uint loop counters to int
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Given the recent developments and expected trends, we offer our
personal recommendation of the above steps to be followed in this order
for developing algorithms with modern CUDA.
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Suggestions for Good CUDA Experience

• Embrace libraries shipped with CUDA (cooperative groups, libcu++…)
• They may change frequently, but they are here to stay
• Official way to expose barriers, memory consistency model without PTX

• Don’t be afraid of ITS, but make sure you understand legacy model
• If you have been assuming lockstep, ITS may surprise you, but it makes sense
• Other compute APIs will keep using the legacy scheduling on your Volta+ GPU

• Forget as much as you can about threadfence and volatile
• Replace as many instances as you can with new cuda::std
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Finally, we want to highlight key ideas that we believe will make
development more stable, secure and efficient moving forward. One
would be the adoption of the libraries shipped with CUDA, specifically
cooperative groups and the standard library, particularly if one intends to
write CUDA code in C++ rather than PTX. Second, we would like to
encourage developers to embrace the ITS. While it is a significant change
and breaks many of the previously used optimization patterns, Volta, in
general, was a great step towards bringing the CPU and GPU closer
together and enabling more portable and stable code. Another sign of this
development is the effort to introduce the new memory coherency model,
which makes special solutions, like combining the volatile decorator with
__threadfence no longer necessary. The GPU takes care to ensure the new
coherency model, and its behavior has changed accordingly, making these
special cases largely unnecessary.
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Suggestions for Good CUDA Experience

• Embrace the graph API for sequential and concurrent kernels
• Can replicate the behavior of streams with dependencies
• Defined before execution, can isolate setup and launch code
• Enables driver to optimize performance

• Consider cooperative groups over your own solutions
• Many developers have their own group implementation already available
• Cooperative groups are designed to optimize in hardware where possible
• Also provide software implementations for backward compatibility
• Facilitates comprehension of your code by others
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We also recommend embracing the graph API and considering its use over
the conventional solution with streams. Graphs that are directly designed
from scratch have clear and easily understood dependencies that can be
extrapolated from a few lines that define a CUDA graph. But the main
benefit of creating graphs is the performance gain, which can be obtained
regardless of whether graphs are built from scratch or capture from code.

Many CUDA developers out there will have noticed that they themselves
have something similar to the cooperative groups implementation. We
recommend that it should be attempted to switch to cooperative groups
instead or integrate them into custom solutions to benefit from the clean
design and the architecture-agnostic patterns they provide.
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Things We Did Not Cover

• Shared Memory Data Staging (shared pipelines)

• Virtual Memory Management

• Stream Ordered Memory Allocator

• Compiler Optimizations

• …
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Lastly, there are few important things that we did not manage to treat in
this tutorial (and perhaps a few more that we didn‘t think of), which are
nonetheless exciting and worthy of you looking into them if you are aiming
to advance your CUDA expertise. Examples and detailed explanations for
these can be found in the list of recommended reading material that we
provided in the first part of the tutorial. We hope that during the course of
this tutorial, you either confirmed or discovered that CUDA has a vast
amount of great features to offer and plan to pursue it on your own from
here on out.
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CUDA and Applications to Task-based Programming
M. Kenzel, B. Kerbl, M. Winter and M. Steinberger

These are the course notes for the final portion of the tutorial on “CUDA
and Applications to Task-based Programming”, as presented at the
Eurographics conference 2021, wherein we discuss relevant results from
dedicated efforts in the scientific community, as well as the established
and state-of-the-art use cases for applications of task-based programming
with CUDA.
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Overview

• Different levels of the GPU hierarchy and GPU queues

• Task-based Scheduling
• Host Controller Architecture
• Persistent Threads & Megakernels
• Dynamic Parallelism

• Mixed Parallelism usage scenarios
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Let us now turn to Task-based scheduling on the GPU. In this part of the
tutorial, we will cover the different levels of the GPU hierarchy and how
they can be exploited for different programming patterns. We then turn to
Task Scheduling, first detailing queues on GPUs, a core component of most
task scheduling approaches. Based on such queues, we then build
different schemes for task scheduling on the GPUs, controlled from the
CPU or entirely from the GPU. Lastly, we will hear about some examples,
which greatly benefit from task parallelism and typically exhibit mixed
parallelism during execution.
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Motivation

• Heterogeneous parallelism in many applications
• Different stages 

• May have different levels of parallelism
• May have different requirements

• Shared Memory
• Registers

• May generate new work

• Hard to fit into existing 
programming model
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CTA / SM Registers / Thread Shared Memory

BoundSplit-U

BoundSplit-V

Dice & ShadeCheck

Blend

REYES-style
Micropolygon Rendering

When considering many applications one might like to parallelize, we
notice that many of those exhibit heterogeneous parallelism throughout.
This can manifest differently depending on the application
• Some might simply experience different levels of parallelism throughout

the stages of an application, where, to give a hypothetical example, a
work item might best be handled by a single thread for the first stage
but by a block in the last stage. Choosing one or the other overall will
result in poor performance

• Different stages might also have different requirements, i.e., need more
or less shared memory or registers, etc.

• Lastly, stages might also generate new work and dynamic resource
management is really challenging on the GPU

Overall it is quite clear that fitting all of that into the existing programming
model can be quite challenging and requires a lot of manual effort and
performance tuning to get right.
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Types of Parallelism

Task Parallelism
• Parallelize different, independent 

computation
• Distribute tasks to processors
• e.g., Multitasking, Pipeline 

Parallelism

Data Parallelism
• Parallelize same computation on 

different, independent data
• Distribute data to processors
• e.g., Image Processing, Loop-level 

Parallelism, Tiling, Divide and 
Conquer
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When we talk about parallelism in general, there are typically two types
that come to mind, task parallelism as well as data parallelism. In general
computing environments, we typically experience task parallelism. This
means, we have different and independent computations and we want to
parallelize these computations by distributing the tasks to the available
processors. Multitasking and Pipeline Parallelism are typical examples of
task parallelism. On the GPU, we generally work with data parallelism,
which means that we perform the same computation on many different,
independent data items. Here, the data is distributed to the processors.
The classical example would be any form of image processing (performing
some operation per pixel), but also loop-level parallelism falls into that
category as well as tiling and divide-and-conquer approaches. As our focus
in today’s tutorial is on task scheduling, we will try to see how this data-
parallel architecture on the GPU can be appropriated for task-parallel
operations.
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Kernel-based Programming Model
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To shortly recap the overall terms and hierarchy on the GPU, here is a
short overview.

Starting at the lowest level, we have threads, whereas 32 threads are
executed together as a warp, scheduled by the warp scheduler. Multiple
warps are combined into so-called blocks. All threads within a block are
furthermore guaranteed to reside on one multiprocessor (SM) and share a
faster cache (L1) and have access to fast, shared memory, useful for
communication between threads in a block.

Threads from different blocks do not share the same, fast memory in
shared memory, and also do not have any guarantees if they execute on
the same or different SMs or concurrently or one after the other. Hence,
threads of different blocks should not rely on cooperation but perform
largely independent computations. The whole configuration running on
the GPU is called a grid.
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Kernel-based Programming Model

75

Here we have a classical example which fits a rigid grid configuration quite
well with image processing.

Here, one can start one entity (can be a thread, a sub-group of a warp, a
full warp or block) for each pixel and perform any kind of operation per
pixel. As long as these operations are uniform over the whole image, we
expect no differences in run-time between pixels and overall a well-
optimized execution pattern.
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Kernel-based Programming Model
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On the other hand, let’s think about the graphics pipeline in general. We
have various stages with very different levels of parallelism, levels of
utilization of the GPU, requirements for sorting at certain points, etc.

This is a prime example of mixed parallelism that is hard/impossible to
capture with one single, rigid grid configuration and requires more effort
to efficiently execute. One core problem is inherent in the dynamic nature
of the problem, given a certain input to the input assembly stage, the
number of shader invocations in the following stages is scene-dependent
and requires support for dynamic work generation.
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How to organize work?

• What we want
• Keep track of work items
• Allow simultaneous access by all cores for best utilization of cores
• Allow for work generation

• Organized work as tasks and store it in queues
• Allow “software scheduler” to fetch/append work
• Linearizable
• Low resource footprint
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Based on this problem of dynamic work generation, we first have to think
about the organization of the work at hand. In a general environment, we
want to keep track of a number of work items, allow access to these
simultaneously by all cores and also allow the cores to dynamically
generate new work.

One possibility in this case would entail organizing work as tasks and
storing these tasks or references to these tasks in queues. These allow a
software scheduler to fetch new work to execute but also enqueue new
work to be executed by a different core. Furthermore, it would be great if
the queue is also linearizable and has a low resource footprint, since
especially memory resources can be quite scarce on the GPU.

77



Queues
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In the following, we’d like to present to you three different variants of
queues that we have used in a number of our own publications for various
purposes. Hence this is not an exhaustive list of different queue types on
GPUs, but a selection based on our own research directions.
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Index Queue

• Queue with support for 
integral values

• Fixed size
• Supports concurrent 

enqueues and dequeues

value value valuevaluevalue 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF0xFF0xFF value value

back_ front_

__device__ bool IndexQueue::enqueue(index_t index)
{

int fill = atomicAdd(&count_, 1);
if (fill < size_)
{

unsigned int pos = atomicAdd(&back_, 1) % size_;
while (atomicCAS(queue_ + pos, FREE, index) != FREE)

sleep();

return true;
}
return false;

}

__device__ bool IndexQueue::dequeue(index_t& element)
{

if (atomicSub(&count_, 1) <= 0)
{

atomicAdd(&count_, 1);
return false;

}
unsigned int pos = atomicAdd(&front_, 1) % size_;
while ((element = atomicExch(queue_ + pos, FREE)) == FREE)

sleep();
return true;

}

size_ = 12
count_ = 6 valuevaluevalue 0xFF0xFF0xFFcount_ = 7 value
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Let’s start with a simple queue that can be used for integral values. These
values can be used for multiple purposes but typically they form a
reference to a task or resource. This queue has a fixed size as well as a
front and a back pointer, acts as a ringbuffer and supports concurrent
enqueues and dequeues, which is a very important requirement for task
scheduling with dynamic work generation.

During an enqueue operation, first the count (counting the number of
elements currently in the queue) is increment and a check against the size
protects against overwriting existing data. Most current queue
implementations do not explicitly handle “out-of-queue-storage”, hence
choosing a sensible size from the beginning is important.

After that, the back pointer is incremented atomically, resulting in a
position in the queue modulo the queue size.
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To enable concurrent enqueues/dequeues, elements are not just taken
from the queue as the assigned slot might have been reported as free by
another thread in a concurrent dequeue operation, but the data might not
have been read yet. To protect against write-before-read, writing to the
queue is done using an atomic Compare-And-Swap operation, which will
not alter the queue state until the position is marked as free.

The sleep operation is done using __nanosleep() on post-Volta
architectures and done using a threadfence() on older architectures, which
we have found to also work heuristically, resulting in re-scheduling.

Dequeue operations are expected to fail quite often, as multiple threads
might query for new work to become available. Hence if decrementing the
count fails, it is just incremented again atomically and control is returned
to the user. Otherwise, the front pointer is moved back, once again
resulting in a position in the queue modulo the queue size. And as with
enqueue, an element is not just taken from the queue but this is done
using an atomic Exchange, as a queue position might have already been
advertised as containing a value but the write to this position has not
happened yet. This protects against read-before-write problems, whose
frequency typically depends on the number of concurrent threads
potentially accessing the queue and the size of the queue.

Queues like this found use in multiple of our projects, ranging from
dynamic graph management, where a queue could track dynamic vertices
or edges, to dynamic memory management, tracking free pages of
memory within the system.
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Hierarchical Bucket Queue

• If memory is abundant
• Multiple Queues (buckets)
• Access policy determined by user

• Applications
• Prioritization
• Task Aggregation
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Hierarchical Bucket Queuing for Fine-Grained 
Priority Scheduling on the GPU

Bernhard Kerbl, Michael Kenzel, Dieter Schmalstieg, Hans-Peter Seidel, 
Markus Steinberger

EG‘17

Another type of queue could be an approach called “Hierarchical Bucket
Queue”, which relies on the abundance of memory and allows for new
applications by instantiating multiple queues, so-called buckets with a
user-determined access policy.

Based on such a design, one can realize new applications, like prioritization
of tasks as well as task aggregation. The underlying queue implementation
can follow a similar design to the queue discussed before, but the
combination of multiple queues allows for new concepts. This queueing
approach was introduced by Bernhard Kerbl and colleagues as a paper at
Eurographics 2017, called “Hierarchical Bucket Queuing for Fine-Grained
Priority Scheduling on the GPU”, if one wants to read up on the details.
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CUDA Cores

Bucket I (High)

HBQ: Prioritization
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Bucket II (Low)

Task 4

CUDA Cores

Task 5

Task 2Task 3 Task 1

One new concept would be prioritization of tasks. One simple way of
achieving prioritization would be to instantiate multiple queues with
varying priorities. This way, executing threads would query high priority
queues preferentially first before taking work from lower priority queues.
This system can also be extended hierarchically, where more than two
queues would be instantiated into multiple levels of a priority hierarchy.
We will show an example of something like that later on.
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CUDA Cores
64 Threads

Bucket I

HBQ: Task Aggregation
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Bucket II
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Another new concept would be task aggregation, whereas one queue
could hold simple task items that are executed one by one, while another
might hold smaller tasks, that are then executed as an aggregate for more
efficient execution. In this example here, Bucket I has larger tasks that
have 64 work items in them, efficiently handled by 64 threads and
generates a number of smaller tasks with 16 items each. The second
Bucket hence acts as an aggregation queue, where the executing cores
always withdraw 4 tasks with 16 work items each, hence once again 64
work items for 64 threads to execute the work efficiently.
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HBQ: Examples

• Ray-Prioritization in Path Tracing
• Regions with high variance need more samples

• Use coarse priority intervals
• High-to-Low Prioritization

Use variance as Priority

• N bucket queues of fixed size
• Choose bucket based on current observed variance
• Linear sorting of work according to image error
• More threads scheduled to work on noisy regions
• Achieve uniform quality with non-uniform sampling
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HI LO
…

One concrete example for the application of task prioritization would be
ray prioritization in path tracing. Here it may make sense to prioritize
regions with a high variance, where it can make sense to build up coarse
priority intervals, and using the variance as a measure of priority, use a
high-to-low prioritization.

In this concrete example, one could instantiate a number of bucket
queues with a fixed size per queue, whereas a bucket is chosen depending
on the currently observed variance.
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HBQ: Examples

• Reyes-style Micropolygon Rendering
• Prefer render jobs over split jobs

• Two buckets for different routines

• Prioritize splits based on focus distance
• High: Near
• Low: Far

• Dual-level scheduling
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HI

HI LO…

LO

Render (Dice)

Split horizontally

Split vertically

Another example would be classical Reyes-style Micropolygon Rendering,
an application consisting of multiple stages that are executed, as shown in
the graphic on the right. Since visual output is most important, it would be
favorable to prefer render jobs over splitting jobs to guarantee smoother
playback. Furthermore, one can prioritize geometry splits based on the
distance to the camera, once again favoring geometry close to the camera
compared to further away.

That way, Rendering is prioritized over splitting geometry, whereas
splitting near geometry is prioritized over splitting geometry further away
or maybe not in focus in an Augmented Reality scenario.
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Broker Queue | Design

• Static ring buffer of size N
• Head/Tail pointers (packed into 64-bit integer)
• Can contain elements or pointers
• Head and Tail can wrap around buffer

• Ticketing System
• Enqueue/Dequeue associated with ticket number

• Operations only execute if their ticket has been issued
• Position in buffer can have multiple tickets
• Results in fair ordering

• Operations with earlier ticket is guaranteed to finish first
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void waitforTicket(T Pos, T ExpectedTicket)
{

auto Ticket = Tickets[Pos];
while (Ticket != ExpectedTicket) do
{

backoff();
Ticket = Tickets[Pos];

}
}

The Broker Queue: A Fast, 
Linearizable FIFO Queue for 

Fine-Granular Work Distribution 
on the GPU 

Bernhard Kerbl, Michael Kenzel, Joerg H. Mueller, 
Dieter Schmalstieg and Markus Steinberger

ICS‘18

Finally, let’s look at another design for a queue, called the Broker Queue.
The basic queue is once again very similar to the basic index queue
discussed before, build on a static ring buffer of a certain size with head
and tail pointers (in this case packed into one 64bit integer). It can also
contain just references to tasks but also complete tasks as well.

The main change compared to the previous approach is the introduction
of a ticketing system. Each operation on the queue, each
enqueue/dequeue operation, is associated with a ticket number. An
operation only executes once its ticket has been issued, resulting in fair
ordering overall. Operations that have an earlier ticket are guaranteed to
finish first. Furthermore, each queue position can have multiple tickets
concurrently. This queue design is based on a paper, once again by
Bernhard Kerbl and colleagues, at ICS’18 called: “The Broker Queue: A
Fast, Linearizable FIFO Queue for Fine-Granular Work Distribution on the
GPU”.
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Broker Queue | Access Data

• Write/Read Data
• Increment head/tail to get ticket
• Wait for Ɵcket → perform operaƟon

• If successful → issue next Ɵcket for slot
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void putData(T Element)
{

auto Pos = atomicAdd(&Tail, 1);
auto P = Pos % N;
waitForTicket(P, 2 * (Pos/N));
RingBuffer[P] = Element;
Tickets[P] = 2 * (Pos/N) + 1;

}

T readData()
{

auto Pos = atomicAdd(&Head, 1);
auto P = Pos % N;
waitforTicket(P, 2 * (Pos/N) + 1);
Element = RingBuffer[P];
Tickets[P] = 2 * ((Pos + N) / N);
return Element;

}

Accessing the queue now utilized the ticketing system to grant or
temporarily deny access to a queue element. A position is found by
increment the head or tail pointer as before, resulting in a position
modulo the queue size.

But before an access can occur, each executing thread has to wait for its
ticket to be issued. Only once this has happened, the operation, enqueue
or dequeuing from the queue, can occur and after completion, the next
ticket for the current slot will be issued.
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Broker Queue | Broker

• Broker
• Acts as safeguard

• Many overlapping operations
• Won’t let just any trying thread pass

• Keeps tally of promised operations
• Ensures balanced ratio between enqueue/dequeue

• Count
• Reflects fill state after promised operations
• Modified via atomicAdd/Sub
• Contended atomics less of an issue on GPU

• Would be a problem on CPU
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Additional to the ticketing system, there exists also a so-called Broker,
which acts as a safeguard in-between the incoming enqueue and dequeue
operations, as there can be many overlapping operations, while the actual
write/read accesses only occur much later and also in unpredictable order.
It keeps a tally of the number of promised operations and overall tries to
keep a balanced ratio between the enqueue and dequeue operations.

This tally is tracked via an atomic count variable, which reflects the fill
state after a promised operation has been performed.
As is the case with all queue designs discussed up until now, all rely heavily
on atomics, but since atomics are very well optimized on the GPU,
contended access is much less of an issue compared to the CPU, where
such a design might be problematic.
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Broker Queue | Enqueue

• Enqueue/Dequeue
• Wait for Broker

• Ensure operations is balanced

• Always check full/empty state
• Broker and queue parameters loosely connected

• Both have to reflect same state

• Check in loop
• Non-blocking behavior
• Makes queue a linearizable FIFO queue
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STATUS enqueue(T element)
{

while(not ensureEnqueue()) do
{

auto s = queue_state; // Read head/tail
if(N <= s.tail - s.head < (N + MaxThreads/2))

return FULL;
}
putData(element);
return SUCCESS;

}

T dequeue()
{

while(not ensureDequeue()) do
{

auto s = queue_state; // Read head/tail
if((N + MaxThreads/2) <= s.tail - s.head - 1)

return EMPTY;
}
return readData();

}

Before the ticketing system is now accessed, each executing thread first
has to get by the Broker, which ensures that the operations are balanced.
While waiting for the Broker, the state is always queried, as the individual
parameters of the Broker and the queue itself are only loosely connected
and may return differing state information. Hence, in a loop the state is
checked using non-blocking access, which makes this queue design a
linearizable FIFO queue.
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Broker Queue | Example
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Dequeue

Enqueue

#Threads = 8

Buffer Size (N) = 2
H

T

Deq < Enq, Deqp = 2.
Enqp = Deqp + N = 4.

Here we have a concrete example, with a Broker with a certain policy, in
this case enqueue operations should be prioritized over dequeue
operations and a certain number of operations, in this case six, might
access the queue at one point in time. In this example, we have a buffer
size of two and eight threads trying to access the queue, two trying to
dequeue and the others waiting on an enqueue operation.
Given this policy, the Broker will let six threads through to the actual
ticketing system and the enqueuing threads will start their work. As there
are more threads present than there are physical queue spaces, the other
threads are waiting on tickets to be fulfilled, while two enqueuing threads
can start their work immediately, the other two enqueue threads move
the head pointer, but wait on their tickets. The remaining two threads
waiting for the enqueue operation are currently held back by the Broker.
As soon as the enqueue operations are done, the two dequeueing threads
can take this work from the queue and signal the tickets of the remaining
enqueuing threads.
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Broker Queue | Non-linearizable variants

• Broker Work Distribution
• Ignores loop

• May report erroneous state

• Benefits
• Simpler!
• Potentially faster

• Broker Stealing Queue
• Multiple Broker Queues

• Steals work if available

• Ensures looping
• Locally consistent
• Not globally linearizable
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This base design can also be utilized in different, non-linearizable variants,
two of which are noted here. By ignoring the loop, one can build a simpler
and potentially faster work distribution at the cost of potentially erroneous
state information intermittently. Another option would include a so-called
Broker Stealing Queue, which consists of multiple Broker Queues which still
remain locally consistent and can steal work from another, but are not
globally linearizable.

90



Task-based Scheduling
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After this introduction to some queue types, let’s now focus on task-based
scheduling itself.
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What do we need to solve?

• We want
• Ability to handle heterogeneous workloads
• Dynamic work generation
• Efficient scheduling
• Exploit shared memory

Supersampled
ImagePrimitives ShadeDice and 

SampleSplitBound
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What do we need to solve? What are the properties of applications that
our task scheduling system should be able to handle?
• First of all, the individual tasks might have very different requirements

and levels of parallelism. The two plots on the right show different
representations of such an application setup. On top, we can visualize
an application consisting of multiple tasks, each of these tasks can have
a queue in global memory associated with it which can contain work
items. It may also have a local queue, exploiting shared memory and
each work item might be handled by a different number of threads,
starting from just one thread, sub-groups within a warp, a warp or even
a full block handling one item. On the bottom, we see a visual
representation for a Reyes-style renderer, with different stages and the
bars for each stage visualize the number of threads required per item,
the shared memory requirements, as well as the register requirements
for each stage -> overall the requirements are very heterogeneous in
this scenario.
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• The system should also be able to handle dynamic work generation,
once again considering Reyes-style rendering, the number of splits
depends on the geometry currently in view and hence results in a
dynamic number of samples to shade

• All these different requirements can make efficient scheduling quite
challenging

• Lastly, if possible, we should try to exploit shared memory to increase
performance even further
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Run to Completion

• Simplest execution model

• All stages in a single kernel
• Does NOT support

• Global synchronization
• Dynamic work generation

• Requirements of largest stage
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Let’s start by investigating very simple models for such task-based
applications. One of the simplest, although likely not the one typically
chosen, would be the Run to Completion model, which puts all stages of
our application into one, single kernel.

Since we cannot guarantee that all blocks fit on the device at once, we
cannot guarantee support for dynamic work generation (also in this simple
model, we typically also don’t have a queue for work items), also no global
synchronization between stages is possible. Furthermore, the
requirements of the largest stage (i.e. register requirements, shared
memory, etc.) count towards the possible occupancy achieved.

On the positive side, this model does not require synchronization with the
CPU and may hold data in shared memory from one stage to the next, but
the drawbacks largely outweigh these benefits.
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Kernel by Kernel

• Most commonly used

• Split application into series of 
kernel launches

• Each kernel tailored to task
• Requirements per kernel

• CPU Synchronization
• Requires controller on CPU

for dynamic work generation
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Next, we have the most well-known approach, so-called Kernel by Kernel,
where the application is simply split into a series of kernel launches for
each stage in the application. The obvious benefit is that each kernel is
specifically tailored to the task, hence we can reach optimal occupancy for
each of the stages.

On the downside, we now require CPU synchronization, which means
additional overhead and removes the possibility of using shared memory
to keep memory local from one stage to the next. And in general, it would
require some form of a controller on the CPU to allow for dynamic work
generation, as otherwise the stages would just run once for the given
work and then are done.
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Time-Sliced Kernels

• Variant of KBK that supports dynamic work generation

• CPU checks amount of work per task
• Launches kernels with work

• Into separate streams for concurrent execution
• Wait for kernels to finish

• Check work again and start launching again
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A variant of the Kernel by Kernel approach is typically called Time-sliced
Kernels. This augments the basic approach by a controller on the CPU side
to allow for dynamic work generation. This also means that work queues
have to be used.

The controller then can read back the current queue fill levels from the
GPU and then launch new kernels with work, possibly also in separate
streams for potential concurrent execution. This checking is done in a
loop, where the controller waits for the kernels to finish, checks the
amount of work and potentially launches new kernels.
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Time-Sliced Kernels

96

e.g. Laine et al. [2013]

CPU

GPU

launch sync launchsynclaunch sync

Here we can see a visualization of this approach. The CPU controller is in
charge of monitoring the current amount of work, and after fixed
synchronization points it can start new work. This means copying the fill
levels of the GPU queues back to the CPU at each synchronization point,
so that the host controller can decide how much new work to launch on
the device.
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Time-Sliced Kernels

+no divergence
+optimal occupancy

–CPU synchronization
97

CPU

GPU

launch sync launchsynclaunch sync

The benefits of this approach are
• There is no (added) divergence within a kernel
• This also means that we should observe optimal occupancy for each

kernel

The drawbacks are
• There is need for CPU synchronization, which adds some overhead to

the execution
• We cannot easily use shared memory to keep data local from one stage

to the other (only within one stage, consider a stage that could
generate new input for itself)

• Load imbalance might be a problem
• If one kernel runs longer than the others due to longer

processing, parts of the device might be unused until the next
CPU sync as no new work can be launched until the
synchronization point with the CPU comes up
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Persistent Threads

• Threads execute in a loop

• Global work queue 
• Draw in new work from queue
• Execute work
• Enqueue new work (depends on the queue implementation)
• Continue until no work left

• Implicit load balancing
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One of the first ideas that shouldered the responsibility of scheduling
directly on the GPU was called Persistent Threads. With this approach,
threads execute in a loop and draw in new work from a global work
queue. This queue, at least as first mentioned, supports only one task
type.

Each thread (or work unit) can draw in new work from the queue, execute
it, enqueue new work (if the queue supports concurrent
enqueues/dequeues) and simply continues until no work is left. Since each
thread can immediately draw new work as soon as it is finished, this
results in implicit load balancing.
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Persistent Threads

99

e.g., Aila and Laine [2009]

work queue

worker block

task

In its original form, it mainly dealt with the issue of load balancing, but the
queue as used by Aila and Laine does not support dynamic work
generation. Each block keeps executing as long as work is available in the
work queue, hence load balancing is done implicitly.

As no new work can be generated, at least with this basic design, blocks
simply return if the queue is empty.
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Persistent Threads

+load balancing
+(dynamic work generation)

–only one type of task
100

Persistent threads improve upon the load balancing issues of the time-
sliced kernels approach and may in theory also support dynamic work
generation, depending on the queue implementation. But in this basic
version, only one task type is possible.

The generalized form of persistent threads is called MegaKernel and is
discussed next.
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Megakernel

• Generalized version of persistent threads
• Can handle different task types
• Depending on queue also

dynamic work generation

• May suffer from divergence

• Occupancy still bound by 
largest procedure
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Taking the basic concept from persistent threads, i.e. having the blocks
execute in a loop on the GPU and drawing in new work from work queues,
we can get to so-called MegaKernels by allowing for different task types.
This requires additional scheduling between the different work queues
and depending on the queue implementation, this also supports dynamic
work generation.

While we now can offer the same functionality as with Time-sliced kernels,
just with implicit load balancing directly on the GPU and with no explicit
CPU synchronization required, there are still some drawbacks:
• The occupancy is still tied to the largest procedure, as every block has to

be able to execute each task
• Furthermore, as each block might execute multiple, different tasks at

the same time, there is also potential for divergence negatively affecting
overall performance within blocks
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Persistent Megakernel

102

e.g. Steinberger et al. [2012]

different 
tasks

divergence

dynamic work 
generation

Here we can see one visualization of a MegaKernel, based on our own
work called Softshell. The queue supports multiple task types (typically
with an abstraction around multiple queues for one task type) and also
dynamic work generation. Each block still draws in new work after all work
has been finished per block, hence load balancing is quite well handled
but still divergence may occur within a block.
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Persistent Megakernel

+load balancing
+dynamic work generation
+multitasking

–divergence
–suboptimal occupancy
–bottleneck: work queue
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To sum up, the benefits of a MegaKernel are:
• Implicit load balancing over the blocks, as each can immediately start

new work upon finishing execution of “old” work
• The queues support dynamic work generation
• And multiple tasks types are support as well

The drawbacks include
• Divergence within a block can reduce overall performance, especially if

there are large discrepancies between run-times of different tasks
• Occupancy is tied to the largest stage, hence large discrepancies

between stages once again reduce performance overall
• The work queue has to be efficient, as many blocks keep polling for new

work
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Dynamic Parallelism

• Nested parallelism occurs in many applications

• Since CUDA 5.0 
• Kernels can launch other kernels
• Dynamically adapt to 

amount of work

• Link with cudadevrt
• Compile with -rdc
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NVIDIA Developer Blog, Adaptive Parallel Computation with CUDA Dynamic Parallelism, 2014 
https://developer.nvidia.com/blog/introduction-cuda-dynamic-parallelism

Before diving into the last set of techniques, let’s first introduce dynamic
parallelism. Starting with CUDA 5.0, NVIDIA reacted to the problem of
nested parallelism being common in many applications by allowing for
kernels to launch other kernels. This way one can dynamically adapt to the
amount of work. On the right you can see a typical problem, where it can
be quite hard to find a good grid size selection for some simulation
problem, as it can be too coarse or too fine overall. Being able to react to
the coarseness of the problem directly on the GPU can be a great benefit.

To use dynamic parallelism, device linking has to be enabled and one has
to link against the CUDA Device Runtime.
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Dynamic Parallelism

105

launch sync
CPU

GPU

Here we see a visualization of how a task scheduling could work using
dynamic parallelism. The CPU would launch an initial block, which then
could launch new work in new kernels, specifically tailored to the amount
of work as well as the type of work. Hence, occupancy should be quite
optimal.
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Dynamic Parallelism

• Group of thread blocks is called a grid
Parent grid launches child grids

• Child grid inherits attributes
• L1 cache
• Shared memory configuration
• Stack Size

• Child grids are fully nested
Parent grid can cudaDeviceSynchronize()

Only thread which launches is aware
of actual kernel launch
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NVIDIA Developer Blog, CUDA Dynamic Parallelism API and Principles, 2014 
https://developer.nvidia.com/blog/cuda-dynamic-parallelism-api-principles

Back to the basics on Dynamic Parallelism: A group of blocks (each
consisting of a certain number of warps, each consisting of 32 threads), is
called a grid. In the context of DP, we speak of a parent grid launching a
child grid.

The child grid inherits some attributes from the parent, this includes the
configuration of Unified (L1) cache and shared memory as well as the
stack size. Child grids are always fully nested within the parent launch as
one can see in the graphic on the right. The parent grid implicitly waits for
the child grid to finish, but can also explicitly synchronize with the child
grid by calling cudaDeviceSynchronize(). One important note, only the
thread that actually performed the launch is aware of the child grid and
can synchronize.
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Dynamic Parallelism

• cudaDeviceSynchronize() is expensive
• May cause the currently running block to 

be paused and swapped to global memory

• Fully-consistent view of global memory
• Both directions with sync
• Weakly consistent in-between

• Passing pointers to child grid
• Global, zero-copy host and constant
• Shared and local memory
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NVIDIA Developer Blog, CUDA Dynamic Parallelism API and Principles, 2014 
https://developer.nvidia.com/blog/cuda-dynamic-parallelism-api-principles

Unfortunately but expectedly, a full cudaDeviceSynchronize can be quite
expensive as it might cause the currently running block to be paused and
swapped to global memory. This means that all the current state of a block
(registers, shared memory etc.) has to be copied to and from global
memory. But, at least for global memory, there exists a fully-consistent
view between child and parent, so a parent writing to memory and then
launching a child grid is guaranteed that the child sees the value.
Furthermore, if a child writes something and the parent synchronizes on
the child, it is also guaranteed to observe the value. Inbetween the model
is weakly consistent and there is no guarantee. One further limitation is
given by what can be passed to the child grid regarding memory:
• Global memory, managed (or zero-copy host) memory as well as

constant memory can be passed between parent and child
• Shared memory as well as local memory cannot be passed to the child

grid
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Dynamic Parallelism

• Child grids launched sequentially
• Happens even if launched by different threads
• Use streams

• Streams on device are non-blocking
• Kernels in different streams can execute concurrently

• Do not rely on that!
• Streams in different blocks are different

• Streams in same block can be used by all threads in block
• cudaStreamDestroy() returns kernels immediately

cudaStream_t s; 
cudaStreamCreateWithFlags(&s, cudaStreamNonBlocking);
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Identical to the host, child grids are launched sequentially, even if
launched by different threads by default. To allow for concurrent
execution, one has to use streams.

Streams on the device are non-blocking (launches in the same stream
occur still sequentially), hence kernels in different streams can execute
concurrently. One important note: Do not rely on this, as there is no
guarantee that two kernels will actually run concurrently, so a producer-
consumer system between two kernels is not guaranteed to work.
Furthermore, beware that streams in different blocks are different, while
streams in the same block can be used by all the threads. Lastly, one can
use cudaStreamDestroy() to immediately return a kernel.
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Dynamic Parallelism

• Recursion depth
• Nesting depth

• Kernels launched from host (Depth = 0)
• Hardware Limit = 24

• Synchronization depth
• Deepest level to sync (Default = 2)

cudaLimitDevRuntimeSyncDepth()

• Pending launches (Default = 2048)
• cudaDeviceSetLimit(cudaLimitDevRuntimePendingLaunchCount, 123456)
• Virtualized pool (more flexible, but additional launches more costly)
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If all of that sounds great, here are now a few caveats:
• There exist some hardware limits:

• There is a maximum nesting depth of 24, limited by the
hardware. Kernels are launched at depth 0 from the host ->
recursive launches only work up to the given hardware limit

• Furthermore, there is a limit how far the synchronization is
possible.

• The number of pending launches is also limited
• Once can increase this from the default of 2048, but this can be

quite costly

All of these limits exist as there are physical limitations, as states have to
be stored in memory etc. Overall, performance is limited quite a lot as
soon as one approaches any of these limits.
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Hybrid Dynamic Parallelism (HDP)

110

Controller

check check

One possible solution would look something like that, with a controller on
the GPU, checking the individual queues, launching new work into
separate, tailored kernels. This design mimics the TSK design from earlier,
with one central controller unit (possibly a single thread, or warp), that
routinely checks the work queues for new work and launches
corresponding new kernels.
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Dynamic Parallelism

+dynamic work generation
+GPU autonomy
+optimal occupancy

–no fine grained work generation though
–cannot use local memory to pass on data
–limited launch depth

111

launch synchronize
CPU

GPU

Overall, to summarize the benefits of DP:
• It automatically supports dynamic work generation
• It is GPU autonomous, same as the MegaKernel, foregoing the

synchronization with the host
• In contrast to the MegaKernel, it can tailor each launch to the specific

task, resulting in optimal occupancy

But there are some severe limitations:
• Due to the limit (and performance penalty) of launching many small

kernels, one cannot successfully allow for fine-grained work generation
• One cannot pass local memory directly to a kernel, only through global

memory
• The limited launch depth limits the approach of each kernel launching

new work (which would render the controller obsolete)
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Feature Comparison

112

TSK HDP WMK

collect tasks per procedure ● ● ●

GPU autonomy ● ●

optimal occupancy ● ●

adaptive scheduling ●

fast local queuing ●

Lastly, let’s compare all three approaches (Time-sliced kernels TSK, Hybrid
Dynamic Parallelism HDP as well as MegaKernel (in this case an already
advanced version called Whippletree, based on our own work, called
WMK):
• All of them support dynamic work generation and collecting tasks from

some form of queue for each stage/procedure of an application
• Only HDP and WMK are GPU autonomous
• Only TSK and HDP can reach optimal occupancy as each kernel handles

just one task type, while WMK is limited by the resource requirements
of the largest kernel

• But only WMK supports both adaptive scheduling as well as fast local
queuing in shared memory
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Feature Comparison A

B

C D

E

F

3
1

2

Characteristics
A – Adaptive Scheduling
B – Optimal Occupancy
C – Local Queueing
D – Launch Overhead
E – GPU autonomy
F – Mixed Requirements

Level
1 – negative    2 – neutral    3 – positive

HDP

A

B

C D

E

F

TSK

A

B

C D

E

F

WMK

A

B

C D

E

F
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Here we have a different visualization of six characteristics
• Adaptive Scheduling: This is a great benefit of the MegaKernel, which

can only be approximated with the other approaches
• Optimal Occupancy: HDP and TSK can tailor their kernels to the

requirements, contrary to the MegaKernel
• Local Queuing: The Megakernel can support that for different tasks, HDP

only for recursion
• Launch Overhead: CPU synchronization is worst, followed by GPU

synchronization and then no launches at all for the MegaKernel
• GPU Autonomy: WMK & HDP are autonomous, TSK requires

synchronization
• Mixed Requirements: Neither approach can fully utilize mixed

requirements, as homogeneous stages fit Megakernel best and
heterogeneous stages fit TSK & HDP best
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Future Ideas

• Allow combination of
MegaKernel and HDP

• Controller can launch
individual procedures or
smaller Megakernels

• Benefits
• Combine homogeneous 

workloads in MegaKernel
• Split apart heterogeneous

workloads
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Following on this last idea, one possible evolution of these concepts would
be a combination of the benefits of the MegaKernel and HDP. The
controller in this instance can not only launch individual kernels for tasks
but also smaller Megakernels.

This way, one can combine homogeneous workloads into a MegaKernel
and split apart heterogeneous workloads into different kernels, in theory
combining the benefits of both approaches.
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Examples

Lastly, let’s look at some examples, starting with a few applications that
require a task-scheduling framework on the GPU and then we finish on a
software implementation of a rendering pipeline.
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Procedural Geometry Generation

• Spaceships generated randomly
• Similar to approach by Ritchie et al. on the CPU
• Input 

• Number of Cubes
• Random Parameter Table

• Recursive Tasks
• Responsible for different parts

of Spaceship

• Very homogenous overall
• MegaKernel performs best

• Local Queues help with
recursion
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Top-RecursionWing-RecursionBody-Recursion

Duplicate
CTA / SM Registers / Thread Shared Memory

Type Registers Worker 
Size

Shared 
Memory

Occupancy

Body-Recursion 56 1 2064 50%

Wing-Recursion 56 1 2064 50%

Top-Recursion 56 1 2064 50%

Duplicate 61 1 2064 50%

First of we can look at Procedural Geometry Generation. Here we set up an
example which generates random spaceships, similar to an approach by
Ritchie and colleagues on the CPU. One can input the number of cubes
that should make up the spaceship and a parameter table that steers the
random generation of the wings and top structure of this spaceship.

This pipeline is very homogeneous overall with loads of recursive tasks,
benefiting from local queueing. Overall, a MegaKernel approach performs
best here.
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SVG Rendering

• Implements hierarchical 
rasterization approach

• Some coarse rasterization tasks
• Determine potential coverage, 

depending on hierarchy different size
• Fine rasterization stage

• Heterogeneous requirements
• Especially worker size and shared memory
• Lots of recursion

HDP & TSK on-par with WMK
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Type Registers Worker 
Size

Shared 
Memory

Occupancy

Coarse <7,1> 70 16 3600 38%

Coarse <1,7> 70 16 3600 38%

Coarse <7,7> 71 8 21008 38%

FineStage 60 128 32 50%

Fine Stage

Coarse < 7 , 7 >

Coarse < 1 , 7 >

Coarse < 7 , 1 >

CTA / SM Registers / Thread Shared Memory

Next, we can look at a hierarchical SVG rasterization approach, consisting
of some coarse stages, which determine first the potential coverage and
then are executed, depending on the current hierarchy level and there is
also a fine rasterization stage. Overall, the requirements are quite
heterogeneous, especially considering worker size and shared memory.
But there is also significant recursion and local queueing helps, so overall
all approaches are on a similar level regarding performance.
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Catmull-Clark Subdivision

• Simple input mesh → detailed geometry
• Recursive subdivision
• Split mesh into patches

• Execution
• Heterogeneous shared memory

requirements
• Large input data 

• up to 500B
• TSK & HDP outperform WMK
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Type Registers Worker 
Size

Shared 
Memory

Occupancy

Poly-Patch 60 16 22736 50%

Quad-Patch 64 16 15952 50%

Regular-Patch 64 16 7056 50%

CTA / SM Registers / Thread Shared Memory

Quad-Patch Regular-PatchPoly-Patch

Next, we can look at Catmull-Clark Subdivision, which takes a simple input
mesh and, using recursive subdivision by splitting the mesh into patches,
generates highly detailed output geometry.

We observe quite heterogeneous shared memory requirements overall
and have to load quite a bit of data for each input patch. Overall, TSK &
HDP outperformWMK, but not by a huge margin.
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Reyes Rendering

• Split scene recursively into 
micropolygons

• Recursively split and render

• Heterogeneous workload
• Different worker size, shared

memory, registers
• TSK & HDP outperform WMK
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Type Registers Worker 
Size

Shared 
Memory

Occupancy

Check 24 16 2192 100%

Bound/Split U 63 4 14864 50%

Bound/Split V 62 4 14864 50%

Dice & Shade 104 256 6168 25%

Blend 14 1 2072 100%

CTA / SM Registers / Thread Shared Memory

BoundSplit-U

BoundSplit-V

Dice & ShadeCheck

Blend

Lastly, the previously mentioned Reyes Rendering, where the scene is
recursively split into micropolygons, which are further split up to a certain
level and then rendered in the end. Here we have a prime example of a
heterogeneous workload, with different numbers of workers per item,
different register requirements as well as shared memory requirements.
Here, TSK & HDP clearly outperform the MegaKernel approach.
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CURE
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Lastly, we can look at one project of ours which dealt with implementing a
software rendering pipeline.
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Basic Graphics Pipeline

121

Vertex Shading Primitive Assembly Projection Rasterization
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Here we have the basic graphics pipeline as it existed some years ago,
consisting of:
1. Vertex Shading
2. Primitive Assembly
3. Projection
4. Rasterization

Back then, everything was fixed-function and was purpose-built for the
task of rendering simple meshes.
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Compute 
Shader

Compute 
Mode

Geometry 
Shader

Fragment 
Shader

Primitive 
Processing Rasterization Fragment 

Processing Framebuffer

Vertex 
Shader

Vertex 
Processing

Input 
Assembly Tessellation

today!

Mesh 
Shader

Fragment 
Shader

Primitive 
Generation Rasterization Fragment 

Processing Framebuffer

Task 
Shader

Task 
Generation

Mesh 
Generation

Ray 
Generatio
n Shader

Ray 
Generation Ray Tracing Ray Shading
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Today, we have access to different types of pipelines, depending on the
GPU in your system. The classical pipeline, now augmented by Tessellation
and also further means of geometry processing, still exists and still is
mostly used today for most rendering applications. But also new pipeline
models have been introduced in the recent years on modern GPUs.

This includes a pipeline based on Mesh Shaders (introduced with Turing
GPUs) and can replace the traditional pipeline. It adds two new shader
stages, the task shader (operates in work groups and can emit mesh
shader workgroups) as well as the mesh shader (generates primitives),
both similar to compute shaders and having greater flexibility and
scalability at possibly a reduced bandwidth.

Furthermore, we also got Ray Tracing support (also introduced with Turing
GPUs) as well.
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Programmable Hardware Pipeline

Hardware-accelerated Software Pipeline?
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Depending on the actual use case, different pipelines might work best. But
still, those pipelines have a rigid structure, which might not fit all scenarios
equally well. Hence we thought about the possibility of moving from a
programmable hardware pipeline to a hardware-accelerated software
pipeline to be able to adapt to specific use cases and test the benefits of
new pipeline designs.
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Compute 
Shader

Compute 
Mode

tomorrow?
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So instead of using fixed-function units, the question is if we can just do
everything in compute mode, is that feasible?
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Challenges

125

Vertex
Attributes

Indices
Input

Assembly
Triangles Raster

Operations
Raster

Operations
Fragment

Shading
Fragment

ShadingRasterizerRasterizer
Vertex

Shading
Clipping/
Culling

Primitive
Assembly

Triangle
Setup

Framebuffer

Geometry Processing Rasterization

Primitive ProcessingVertex Processing Fragment Processing

object-space parallelism screen-space parallelism

vertex-level parallelism primitive-level parallelism in-order blending

primitive order
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During a classical rendering pipeline, we not only have multiple different
stages, but also have to think about different levels of parallelism and
maybe have to obey primitive order.

The first part of the pipeline deals with object-space parallelism, while the
second part deals with screen-space parallelism.
When we look more closely at the first part, we can further distinguish
between vertex-level and primitive-level parallelism.
Furthermore, if we require in-order blending, primitive order has to be
kept the same throughout the pipeline.

125



GPU Pipeline Implementation
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When we think about execution patterns, we have to be careful about our
memory footprint. Using a sequential design (like KBK), executing one
stage of the pipeline after the other, we quickly run into problems with
memory consumption, as is visualized on the left side. Rendering pipelines
are usually built on a streaming approach, as can be seen on the right side,
here we use much less memory overall.
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How do we implement it?

• Design Principle:
• globally sort middle
• locally sort everywhere else

Vertex
Attributes

Indices
Input

Assembly
Triangles Raster

Operations
Raster

Operations
Fragment

Shading
Fragment

ShadingRasterizerRasterizerVertex
Shading

Clipping/
Culling

Primitive
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Triangle
Setup

Framebuffer

Geometry Processing Rasterization

Primitive ProcessingVertex Processing Fragment Processing
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To keep primitive order, we also have to think about sorting. One sensible
solution is to globally sort middle and locally sort everywhere else during
the pipeline.
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Megakernel Approach

• fill GPU with worker blocks

• run either
• Geometry Processing or
• Rasterization

• global load balancing:
raster queues

• local load balancing:
on-chip buffers

input primitives
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RasterRaster

RasterRaster
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In our design, we build on a MegaKernel approach and start by filling the
GPU with worker blocks. Each block can handle either Geometry
Processing or Rasterization tasks. Global load balancing is handled via the
raster queues, but also local load balancing is possible by using shared
memory directly on-chip for improved performance, so only in the end
one has to write to global memory again. This is based on work by Michael
Kenzel and colleagues (“A high-performance software graphics pipeline
architecture for the GPU“ at Siggraph’18).
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Comparison with Hardware Pipeline

increase shader load ⇨ pipeline overhead less significant
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We also did some comparisons against the standard hardware pipeline. In
this plot, you can see the overhead plotted. As can be seen, there is quite
significant overhead compared to the specific hardware units which
obviously are faster than a respective software implementation. But we
can see that by increasing the shader load, i.e., minimising the overhead
accumulated from the software pipeline compared to the hardware
pipeline, the performance actually gets quite close to the hardware
pipeline overall.
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Performance Breakdown

• workload dominated by
• framebuffer
• primitive order
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We also looked more closely at the performance cost of the individual
stages. The workload overall is dominated by the primitive ordering as
well as writing to the framebuffer, as ROPs are not directly accessible via
software yet. If one could access the ROPs directly and primitive order is
not a huge factor, performance would actually be really competitive.
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Application examples
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Lastly, what such a modular pipeline design allows are applications which
can be quite hard to handle using the traditional, fixed pipeline.
Here we have four examples
• Checkerboard Rendering
• Foveated Rendering with an adaptive sampling rate
• Heightmaps can lead to issues, here the geometry shader could be used

but is typically slower
• Programmable blending (different blending that is available with ROPs)
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Conclusion

• Task-parallelism vs. Data-parallelism
• Need to organize work

• Queues

• Different scheduling techniques
• Time-Sliced Kernels
• MegaKernel
• Dynamic Parallelism

• Many examples benefit
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This concludes our tutorial session, so let’s summarize quickly what you
should take with you:
• We initially looked at the general CUDA programming model and how it

fits to different applications
• We discussed the need to organize work using some data structure and

we introduced several variants of a queue
• Then we talked in detail about different techniques for scheduling tasks

on the GPU
• Finally, we mentioned a few examples and compared the individual

techniques regarding their feasibility on some examples
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