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M. Kenzel, B. Kerbl, M. Winter and M. Steinberger

In this first part of the tutorial, we will give a quick overview of the history
of the GPU, followed by an introduction to CUDA and how to set up basic
CUDA applications. Afterward, we will consider the CUDA execution model
and how it maps to the underlying hardware architecture, followed by a
few examples for writing CUDA code and first steps towards performance
optimization.
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About These Course Notes

• Practically-oriented portions rely on ability to maintain code samples

• For the full version on the fundamentals of CUDA, GPU hardware and 
recent developments, please refer to the tutorial’s web page at: 
https://cuda-tutorial.github.io

• The full version of these course notes includes additional slides, 
auxiliary media and code samples 
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In order to ensure compliance with applicable copyright and enable
continuous maintenance of slides and relevant code samples, we have
decided to create two separate versions of these course notes.

The version at hand was prepared for a one-time electronic distribution
among the Eurographics 2021 conference participants ahead of the
presentation itself and includes the documentation of previous and
ongoing research into task-based programming with CUDA, as per April
2021.

For the full, extended version of the course notes including an easily
approachable introduction, up-to-date code samples, and descriptions of
recently enabled features in CUDA, please see the tutorial‘s web page.
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History of the GPU and CUDA
From 2D blitters to pure parallel co-processors
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The history of the GPU, even though it started somewhat recently,
describes a fast-moving stream of advancements and improvements,
which turned the initial 2D blitting devices into massively parallel, general-
purpose processors.
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Evolution of the GPU in a Nutshell

1987 - Commodore Amiga, 2D Blitter („bit block transfer), 4096 colors
1996 - 3dfx Voodoo1, triangle rasterization, 500 Mhz, 4MB RAM
1999 - NVIDIA GeForce 256, transform-and-lighting, 120 Mhz
2001 - NVIDIA GeForce 3, vertex and fragment shaders, 200 Mhz
2006 - NVIDIA GeForce 8, compute shaders, 1500 Mhz, 576 GFLOPs
2009 - ATI Radeon HD 5000, tessellation, 850 Mhz, 2720 GFLOPs
2017 - NVIDIA Titan V, tensor cores, 1.2 GHz, 12 TFLOPs
2018 - NVIDIA Geforce 2080, task shaders, ray-tracing, 1.5 Ghz, 14 TFLOPs
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The blitter, which is a portmanteau of „bit“, „block“ and „transfer“, was
featured in the Amiga with fixed resolution and 4096 colors. These cards
had no 3D functionality, only the ability to combine and output different
2D color information. The first 3D capabilities for the wider consumer
market arrived with 3dfx and the Voodoo 1, which would be installed
alongside already running 2D graphics cards to extend machines with 3D
functionality (3D accelerators). These accelerators would take care of
rasterization only, so geometry processing would still occur on the CPU.
With the GeForce 256, GPUs were now capable of doing both 2D and 3D
with a single piece of hardware, and the basic geometry process for 3D
content, transformation and lighting, was moved from the CPU to the GPU
as well. Shortly after, we saw the introduction of vertex and fragment
shaders, that is, the first example of programmable consumer-grade GPUs.
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These abilities to execute custom code on a parallel device were quickly
exploited by crafty developers, who would compute complex simulations
by feeding arbitrary „vertex“ data and interpreting pixel color outputs as
results with improved performance. Luckily, the vendors eventually
responded to these trends and make the exploitation of the GPU‘s parallel
processing more convenient with the introduction of the unified shader
model and compute shaders. Most recently, the developments of the GPU
indicate an interesting trend: developers are given more options for
programmability of the graphics and processing pipeline, and some fixed
functions are either removed or made configurable. At the same time, the
most common operations are facilitated by specialized hardware modules
that can accelerate them over pure software implementations. The GPU
today is, therefore, becoming more general and more specialized at the
same time.
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The Free Lunch is Over[1]

• Ca. 1970 – 2003: The Free Performance Lunch
• Ability to increase transistor count no longer maps to performance gain
• Performance of already-written code no longer increases on its own

• Three walls (as defined by D. Patterson at UC Berkeley)
• Power wall: Cooling expanses not economized by additional performance
• Memory wall: Multiple fast cores are bottlenecked by slow main memory
• ILP wall: There is only so much prediction and pipelining you can do

• Maintain growth with parallel architectures and programming paradigms!
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These changes are strongly motivated by several roadblocks that
conventional, CPU-side execution is facing. Around 2003, it became
apparent that CPU performance no longer increases as time goes by since
further optimizations appear to hit one of three walls: either the power
wall, where raising a CPU’s clock rate is no longer feasible or safe or the
memory wall, which implies that even on multi-core systems, collaborative
computations will be bottlenecked by slow main memory or lastly the ILP
(instruction-level parallelism) wall, which tells us that branch prediction
and machine code analysis can only do as much optimization as the
program flow allows. Thus, in order to maintain growing performance for
processing, the hardware, paradigms, and programming patterns with
which we approach problems have changed in favor of massively parallel
processing.
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Today: GPUs Without Graphics

• Pure compute power for massively-parallel co-processors

• Designed for machine learning, data centers

• E.g.: NVIDIA Tesla/Volta V100, Ampere A100

• No rasterization engines, no display output
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Wikimedia Commons, NVIDIA TESLA V100. CC-BY-SA-4.0: 
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Today’s GPUs provide an answer to this demand for consumers,
developers, and researchers alike. The benefits of their raw compute
power for applications like machine learning, off-line rendering, data
science, physics simulations and many more have given rise to extremely
powerful hardware models like the V100 or the A100 which, despite being
called GPUs, no longer feature a display port: these developments reflect
how the ability to produce real-time graphics has in many cases become
secondary.
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CPU vs. GPU Architectural Properties

• Architecture design dictates programming paradigms for both
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Let us quickly compare the CPU and GPU architecture in broad strokes.
The CPU is a latency-oriented design, meaning it will attempt to receive
the result of computations as quickly as possible. For this purpose, it
features large L1 caches to reduce the average latency of data and only
requires a few, high-performance arithmetic logic units to quickly compute
results. Today’s models will also make heavy use of instruction-level
parallelism to compute partial results ahead of time to further reduce
latency. The GPU design, on the other hand, is throughput-oriented. Due
to the vast number of parallel processors it contains, it cannot provide L1
caches for each of them with a size similar to the CPU. Memory accesses
are therefore more likely to go to slower memory types, which incurs
latency. However, if the GPU is “over-subscribed” with threads, that is, it
runs significantly more threads than physical cores, it can hide these
latencies by quickly switching execution between those threads.
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GPU threads are in general more lightweight than CPU threads, which
makes switching between them more efficient. Even though latencies may
be higher, the ability to switch threads and pipeline additional instructions
quickly ensures that the GPU can achieve a high throughput during the
execution of a job. Hence, the payoff from using GPUs for processing can
rise the more threads are being used for a given compute job.
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CUDA

• Compute Unified Device Architecture, first SDK in February of 2007

• Describes full architecture, encapsulates three APIs
• Driver API
• Runtime API
• Device Runtime API

• Driver API is a superset of runtime
API and can be mixed freely with it
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// Runtime API:
int* a;
cudaMalloc(&a, 4);
cudaMemcpy(a, c, 4, cudaMemcpyHostToDevice);
cudaDeviceSynchronize();

// Driver API:
CUdeviceptr b;
cuMemAlloc(&b, 4);
cuMemcpyHtoD(b, c, 4);
cuCtxSynchronize();

The Compute Unified Device Architecture, or CUDA for short, defines
hardware standards and several APIs to perform high-performance
computing on GPUs in parallel. The three APIs it includes are the driver
API, the runtime API, and the device runtime API. Since it is easiest to get
used to and used in most teaching materials, we will be focussing on the
runtime API in this tutorial. However, the use of the driver API is not much
more difficult, and it provides a strict superset of the runtime API in terms
of functionality, with a few additional advanced features.
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Terminology

• Parallel execution GPUs can be performed through a variety of APIs:
CUDA, OpenCL, DirectX, OpenGL, Vulkan, Mantle…

• Each define their own terminology for components and techniques
• Easily can be confusing, attempts for vendor/API “dictionaries” exist[2]

• Focusing on CUDA, we will employ the associated terminology

• Examples:
• “device” for CUDA-capable parallel processor (NVIDIA GPU)
• “host” for architecture that controls devices (usually CPU)
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Before we get started with CUDA, we must note that the terminology
being used in materials is often vendor-specific. This complicates things
slightly when we try to communicate common concepts that you may
already know from other APIs or architectures because many of them are
given another name by different vendors. Some attempts at making
corresponding dictionaries exist, but we will try to make an effort here to
introduce each of the concepts with basic descriptions and illustrations,
and hopefully you will be able to establish the connections yourself. The
first piece of terminology that is common to CUDA is the separation of
platforms where code is executed. This can be either the device, which
represents a CUDA capable parallel graphics processing unit, or the host,
which communicates with the device via the runtime or driver API, usually
the CPU.
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Why you should care

• Programming Convenience
• Call stacks, heap memory, pointers!
• Strong support for modern C++ features (e.g., template meta-programming)
• Code reuse between host and device, standard library cuda::std
• Vast range of well-maintained libraries for frequent use cases
• Basic compute pipeline setup with only 5 lines of C++ code
• …

• Ahead of the curve: cutting-edge NVIDIA hardware features are often 
available in CUDA first (although porting speed has been increasing)
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A valid question is why you should care about CUDA in particular, given
that by now, there is a large list of frameworks and libraries that handle
processing on the GPU for you, while low-level graphics APIs can provide
direct access to the GPU’s compute capabilities via compute shaders or
similar concepts. However, a strong point of CUDA over other low-level
approaches is the combination of both. For developers, it is more
convenient to write CUDA applications over computer shaders, since
CUDA is continuously improving its support for the C++ standard.
Furthermore, CUDA comes with a collection of ready-to-use libraries for
common use cases. At the same time, low-level GPU functionality is often
exposed by CUDA first, ahead of their adoption in other vendor-agnostic
APIs yet. Hence, CUDA can offer you a versatile approach to GPU
programming: convenient, high-level functionality with libraries, high-
performance with low-level instructions, and a convenient approach to
managing your codebase between different architectures.
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History in the Making

• CUDA, alongside the hardware architecture, is constantly evolving

• In the last few years, CUDA functionality has drastically expanded
• Some changes are obvious and related to general hardware trends
• Others are more subtle and specific to the CUDA environment

• Disclaimer: Some of our code samples today are non-optimal
• Not because they are wrong or deprecated, but because other options exist
• Fundamental patterns can be better realized with recent features
• We will revisit them tomorrow when we discuss novel CUDA capabilities
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The history of the GPU is not over. In the last few years, the GPU
architecture has arguably undergone its most transformative era,
introducing the ability to perform ray tracing and machine learning
directly in hardware. However, these features may have overshadowed
some of the less spectacular changes, which are nonetheless important. In
this tutorial, we will try to introduce first the fundamentals of CUDA.
During this part, we will adhere to the basics and the legacy commands
that are also heavily featured in the CUDA programming guide. However, it
should be noted that the paradigms for programming in CUDA are shifting
towards a clearly defined, cleaner coding style, enabled by newly
introduced features. Thus, the code samples shown today should be taken
with a grain of salt: they are meant to illustrate the features and common
patterns for using CUDA, but developers who are interested in writing
stable and portable code should strive to replace these concepts with
more recent alternatives, which we will be introducing in the third part of
this tutorial, after discussing the underlying hardware details in part 2.
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Getting Started
Environments, Guidelines, Compilers and Debuggers
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Before we can write CUDA applications, there are a few requirements that
we need to fulfill first.
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Setup and Getting Started (Python)

• CUDA Toolkit

• Classical (full control over kernel design)
• C++ build environment
• PyCUDA

• Python-centric
• Numba (parallel GPU code from Python)
• Pyculib (library bindings)
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Initially, we need to decide which method of using CUDA is most suitable
for us. CUDA is available in many shapes in forms, for instance, it can be
accessed via a C++ build environment or via Python. Any use of CUDA will
require the installation of the CUDA toolkit first. If you choose to go with
Python, you may use low-level libraries like PyCUDA, which enable you to
follow the instructions in the CUDA programming guide more closely, or
solutions like Numba, paired with Pyculib, which abstract most of the
implementation details for the purpose of number crunching.

13



Setup and Getting Started (C++)

• C++ build environment (e.g., Microsoft Visual Studio with CUDA 11)

• CUDA Toolkit/Driver: https://developer.nvidia.com/cuda-downloads

• Nsight Systems: https://developer.nvidia.com/nsight-systems

• Nsight Compute: https://developer.nvidia.com/nsight-compute
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However, in order to be able to closely control GPU code generation,
exploit low-level features at will and follow the most common teaching
materials, we will be providing all code samples and application scenarios
in a C++ environment. In order to follow along, recreate or experiment
with the examples, you will need a C++ build environment. Setting up
CUDA projects can be done for instance with CMake for maximum
portability, but it is also easy to set up Visual Studio projects with correct
linked libraries set from the project creation wizard once the CUDA toolkit
and driver are installed. In addition to the toolkit, we also strongly advise
that you get Nsight Systems and Nsight Compute, or equivalent solutions
for debugging and profiling if you are using older hardware.

14



Source Files and Compilation

• CUDA/C++ source files, commonly identified by .cu extension

• Source can contain code for execution on both host and device

• Separate compilation performed by NVIDIA CUDA Compiler (NVCC)

• E.g., compile CUDA source file foo.cu: nvcc foo.cu -o foo
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In general, we will be writing CUDA code in files that are considered by the
NVIDIA CUDA compiler, or NVCC for short. The source files use, by
convention, the extension .cu. Within these code files, it is possible to mix
GPU and CPU code. The proper division of the source into host and device
functions is performed by the NVCC, which compiles them separately and
unites them in an executable. This behavior can, for instance, be hidden
behind an IDE like Visual Studio or a make file for convenience.
Furthermore, there many alternative workflows that the NVCC supports,
such as producing CUDA binaries or machine code for specific
architectures. If you are interested in the different ways in which
compilation and linking can be performed in more complex setups, please
refer to the NVCC manual for documentation.
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Recommended Resources

• CUDA Programming Guide
• CUDA API Reference Manual
• PTX Instruction Set Architecture
• CUDA Compiler Driver NVCC
• CUDA-MEMCHECK
• Nsight Documentation
• Kernel Profiling Guide
• NVIDIA Developer Forums
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Essential reading

Debugging & profiling

Building executables

Clarifications, explanations, intricate details

Lastly, it is vital to know where to get your information. We recommend
that, if you want to obtain a detailed understanding of not only how, but
why the CUDA architecture can achieve the performance that it does, you
consider the resources provided on this slide. The programming guide, the
API reference manual and the PTX ISA are essential reading for anybody
who wants a deeper understanding of the architecture. In addition, there
are detailed manuals for the most useful tools, and the information in
there often complements parts that may be missing in the essential
reading documents. Lastly, if things are still unclear after consulting all of
these resources, the NVIDIA developer forums are a fantastic resource for
getting highly specific questions answered from other members of the
GPU programming community or even professionals.
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The CUDA Execution Model
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Let us now take a first look at how the CUDA architecture handles the
execution of code in parallel.
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Kernel Functions and Device Functions

• Kernel functions may be called directly from host
• Launch configuration, parameters (built-in types, structs, pointers)
• Indicated by __global__ qualifier for functions
• Cannot return values, must be of type void

• Device functions may only be called from kernels or device functions
• No launch configuration, parameters from kernels or device functions
• Indicated by __device__ qualifier for functions
• Support arbitrary return types, recursion
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When we write code for the GPU with CUDA, we can distinguish
__global__ and __device__ functions. The former signify so-called kernel
functions, which may be invoked straight from the host and must not have
a return value other than void. The latter are functions that may only be
called from functions already running on the device, such as kernels or
other __device__ functions.
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Launching Kernels

• Basic kernel, launched with distinct <<<grid,block>>>() syntax

• Kernel launches are asynchronous to host execution
• Does that mean we always need the synchronization towards the end?
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__global__ void HelloWorldGPU()
{

printf("Hello, world, from the GPU!\n");
}

int main()
{

HelloWorldGPU<<<1,12>>>();
cudaDeviceSynchronize();
return 0;

}

With this knowledge, and the addition that CUDA supports printing to the
console, it is extremely simple to write an initial kernel that proves to us
that, it is in fact, running in parallel on the GPU. Note the characteristic
syntax for calling a __global__ function from a standard C++ CPU-side
function, which defines the launch configuration, or „grid“ of threads that
the compute job should use. This syntax will later be replaced by the NVCC
with explicit function calls to run GPU code with the given parameters.
Here, we launch a total of 12 threads, each of which will print a fixed
message. Eventually, in this short example we also call a CUDA function
before the program terminates, called cudaDeviceSynchronize. This may
give the initial impression that, like in other APIs like Vulkan, manual
synchronization is frequently required, but this is actually not the case.
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CUDA Command Execution

• Some CUDA commands are asynchronous with regard to the host, but 
not concurrent to each other (unless explicitly requested)

• By default, CUDA will implicitly assume that consecutive operations 
that could have a dependency also do have a dependency, e.g.:

• Kernel A followed by kernel B  A must finish before B starts
• Copy memory to device before kernel  copy must finish before kernel starts
• Copy results from device after kernel  Kernel must finish before copy starts

• But then why do we need a synchronizing command?
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Some CUDA commands, like kernel calls, are asynchronous with respect to
the host. However, by default, they are not asynchronous to each other.
That means that, unless specified otherwise, CUDA will assume that any
kernel calls or copy instructions are dependent on previous events, and
order them accordingly. For instance, when two kernels are launched in
succession, the second will wait for the first to end before running. On the
other hand, the basic methods for memory copies will synchronize both
the GPU and the CPU. Thus, a kernel, followed by a copy from device to
host will ensure that the copy command can see and transfer the results
that were written by the previously launched kernel back to the CPU.
While it seems like synchronization is mostly implicit, functions for explicit
synchronization are sometimes required, like in the previous example.
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Synchronization (Host with Device)

• cudaDeviceSynchronize() to synchronize CPU and GPU

• cudaEventSynchronize() to synchronize up to certain event

• Overuse incurs performance penalty, rarely needed! Examples:
• Wait for the implicit transfer of the printf buffer to CPU for displaying
• Make sure a timing measurement is available
• Synchronize access to managedmemory on CPU and GPU
• Debugging (cudaDeviceSynchronize returns previous launch errors)
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Two commonly used synchronization functions for the host side are
cudaDeviceSynchronize and cudaEventSynchronize. Both of them
synchronize the GPU and GPU, with the difference that the former
synchronizes the CPU will all previously submitted asynchronous
commands, while the second takes an additional event parameter that
marks a particular point in the GPU execution pipeline. While it may not
break the program to overuse synchronization functions, it will be
detrimental to performance. Hence, cudaDeviceSynchronize should be
reserved for particular use cases and placed with care if performance is
key. The use cases include, for instance debugging applications, the use of
unified managed memory, which we will talk about in part 3, and in the
particular case of our example, when printf is used, to make sure that the
CPU will wait for the implicitly buffered console output to be transferred
back to and processed on the CPU, without the use of an explicit copy
instruction.
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Writing Architecture-Agnostic Code

• __host__ qualifier for host functions, combines with __device__

• Architecture-agnostic code can significantly simplify your code base!

• Critical sections that require architecture-specific instructions can be 
implemented using the __CUDA_ARCH__ preprocessor macro
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__host__ __device__ float squareAnywhere(float x)
{

return x * x;
}

In addition to __global__ and __device__, CUDA defines an additional
decoration for functions, named __host__. This is to signify functions that
should be interpreted by the NVCC as functions that run on the CPU. If
none of the available labels is used, NVCC will by default assume that a
function is a host function. However, the addition of this label opens up a
new possibility for increasing code reuse: functions that are decorated
with both __host__ and __device__ labels will be compiled to run on
both, the host and the device. If the code being used is generic enough to
run on both, this means that developers can write architecture-agnostic
code once that may be executed on both architectures. We will see that,
with the introduction of recent features, the restrictions regarding what
can and cannot be written in this portable manner are continuously
dwindling.
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CUDA Execution Hierarchy

• Execution occurs in a hierarchical model

• CUDA distinguishes four granularities:
• Grid (launch configuration)
• Block (cooperative threads)
• Thread (isolated execution state)

• In-between: warps
• Groups of 32 threads, enable SIMD execution
• Implicitly defined as parts of a block
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Thread

32 threads
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The execution hierarchy of code that is launched to run on the GPU
provides several layers. For a CUDA kernel launch, a definition of a grid is
required, which includes the number of cooperative thread blocks that
should be started, as well as the size of each individual block. Below the
threadblock granularity are individual threads, which can hold individual
information and state during execution. An additional, hardware-governed
layer lies between the two: the warp. Blocks will implicitly be split into
warps, that is, groups of 32 threads, which may execute together on the
SIMD units of the GPU.
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• Grid defines total number of launched threads
• Indirectly, via the number of blocks
• Complete grid defined by grid and block dimensions

• Threads within a block can synchronize

• Up to 32 threads (a warp) execute the same 
instruction on the same SIMD compute unit
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Grid to Blocks to Threads

We can visualize this relationship more clearly. A grid may contain multiple
blocks, each of which has a configurable size that dictates the number of
threads in a block. The threads within a block have special opportunities
to communicate, and may for instance synchronize at a certain point in
the program. However, each thread in a block can have its own state and
memory, and therefore represents its own entity. For the sake of
exploiting SIMD hardware units, threads will always execute in groups of
32, regardless of the block size being used.
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CUDA Block Execution Model

• Grid size can be chosen, regardless of GPU model
• Use grid configuration to complete a particular task
• Abstracts away hardware scheduling details
• Block queue provides processors with work
• Adapting to hardware may raise performance

• Threads in a block can share, synchronize

• Warps of one block are assigned to single streaming multiprocessor (SM)
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Multithreaded CUDA Program

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

GPU with 2 SMs
SM 0 SM 1

SBlock 0 SBlock 1

S 0Block 2 SBlock 3

SMBlock 4 SBlock 5

SBlock 6 SBlock 7

GPU with 4 SMs
SM 0 SM 1 SM 2 SM 3

SBlock 0 S0Block 1 SBlock 2 SMBlock 3

Block 4 SBlock 5 S0Block 6 SBlock 7

When running a kernel, the blocks that make up a grid are committed to
the GPU in a block queue. The GPU will then proceed to process the
blocks in parallel. The degree of parallelisms depends on the hardware
being used but is transparent to the developer: only the problem size, that
is, the grid configuration and how many threads should run, must be
defined. The GPU will then process as many blocks as it can fit on its
parallel compute units and keep fetching work from the block queue until
all threads have completed execution. Each block (and the warps it is
comprised of) is explicitly and fully assigned to one of several larger
processing units of the GPU, the streaming multiprocessors.
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Streaming Multiprocessors

• CUDA cores: basic integer/floating point
arithmetic – high throughput, low latency

• Load/Store (LD/ST): issues memory accesses to
appropriate controller – possibly high latency

• Special Function Unit (SFU): trigonometric
math functions, etc – reduced throughput

• Since Turing and Volta, also include special
tensor cores (not explicitly shown here)
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The streaming multiprocessor, or SM for short, is the powerhouse of the
NVIDIA GPU. It contains the relevant, specialized units that threads can
use to retrieve or compute results. We can distinguish so-called CUDA
cores, which is usually a synonym for the units that perform integer or
floating-point arithmetic, the load and store units, which take of
communicating with different types of memory, special function units,
which perform slower, more complex operations and, last but not least,
the recently introduced tensor cores that have specialized matrix
arithmetic capabilities.
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CUDA Warp Execution Model

• When blocks are assigned to SMs, their warps are made “resident”

• In each cycle, SMs attempt to find warps to execute instruction

• If none of the resident warps are ready to run, the SM will idle

• Each warp scheduler may select a warp that is ready to proceed
• All threads in executed warp run the same instruction convergence
• Different threads are at different points in the program divergence
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When we assign blocks to a particular SM, their warps are described as
being resident on that SM. In each cycle, the SM will then try to schedule
instructions for warps that were assigned to it. Naturally, an SM can only
select warps that are ready to be executed. Hence, if a particular warp is
depending on the result of a computation or a memory transfer, it may
not be scheduled. This brings back the concept of oversubscription of the
compute units of the GPU. The more warps an SM has to choose from, the
higher the chances are that it can hide latency by switching to different
warps.

Since warps execute as one, the threads in them can progress
simultaneously. However, every thread is still its own entity, and may
choose not to participate in a scheduled instruction. In this case, we refer
to the warp as being diverged.
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Warp 
Execution 

Model

Here we can see a basic illustration of the execution model in an SM, with
one potential progression over time. The SM warp schedulers will try to
find ready warps, fetch instructions and dispatch them for execution. It is
unlikely that a warp can immediately continue execution, hence the warp
scheduler will try to find a different warp for the next cycle. As time
progresses, warps eventually make progress until all warps in the block
have completed their tasks.
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CUDA Threads and SIMT

• Each thread may follow a different path, setting it apart from SIMD
• Threads maintain active/inactive state information during program
• Selectively executing instructions when active leads to diverging behavior

• CUDA code can be agnostic of the size and SIMD nature of warps

• New naming convention: single instruction, multiple threads (SIMT)

• Thread behavior usually governed by unique global or local launch ID
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As stated, each thread in a warp has its own set of individually computed
values, as well as an active flag that indicates whether or not a thread will
participate in the computation within its warp. This active flag is all that is
required to elicit individual behavior for threads, even when they progress
as warps. By selectively enabling and disabling this flag, every thread in a
warp can theoretically explore a different flow in the running program and
arrive at a unique state. This is however a design choice in hardware, and
transparent to the programmer. Developers can, for the most part, write
CUDA code as if every individual thread was executed individually, with
some exceptions. This architecture design, which enables threads to
behave like individual entities, while still enabling the exploitation of
efficient SIMD operations when threads are not diverged is described by
the term “same-instruction-multiple-threads”, or SIMT for short.
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• Program flow can vary depending 
on threadIdx and blockIdx, 
gridDim and blockDim

Distinguishing Threads and Blocks

__global__ void PrintIDs()
{

auto tID = threadIdx;
auto bID = blockIdx;
printf("Thread Id: %d,%d\n", tID.x, tID.y);
printf("Block Id: %d,%d\n", bID.x, bID.y);

}

int main()
{

…
dim3 gridSize = { gridX, gridY, gridZ };
dim3 blockSize = { blockX, blockY, blockZ };
PrintIDs<<<gridSize, blockSize>>>();
cudaDeviceSynchronize();
…

Each thread can, for instance, adapt its behavior depending on its launch IDs.
CUDA provides several built-in variables that threads can access in order to
retrieve their ID in the grid or inside a block, which they can use to identify their
target or source position in a given problem domain. Consider for instance an
image, where each thread should be assigned to a particular 2D portion to
perform, e.g., a filtering operation. In this case, the grid may be configured in a
variety of ways. Grids can have up to 3 dimensions, x, y and z, and we can use 3-
dimensional structs as parameters for the kernel launch. In the case of a 2D
image, it makes sense to utilize 2D block and grid dimensions, for instance. After
launching a particular kernel, each thread can retrieve the coordinates of the
block in the grid, as well as the coordinates of the threads inside each block.
The image on the right illustrates this for a simple case, where 2D block and
thread IDs are illustrated for a simple block layout that uses 8 threads on its x-
axis and 1 on its y-axis. The numbers that they are labeled with correspond to
the output that each thread would create when running the code on the left,
respectively.

In combination with another built-in variable, blockDim, threads may also easily
find their unique global ID in the full grid, such as the exact pixel that they
should compute in an output image.
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CUDA Thread Execution Model

• In-order program execution (but compiler may reorder instructions)

• Volta and later architectures support two thread execution modes
• Legacy Thread Scheduling
• Independent Thread Scheduling (ITS)

• On current GPUs with ITS, can select either model with compiler flag

• Can significantly change performance and correctness (!) of code
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Whenever threads run on the GPU, they will follow the compiled
instruction in order. As of now, there is no significant layer for ILP, however,
the compiler may of course decide to reorder the coded operations to
boost performance at runtime. Modern NVIDIA GPUs support two
separate execution modes: one is legacy scheduling, which was the only
available option until the Volta architecture arrived, and independent
thread scheduling, which was introduced with Volta. Which execution
mode should be used can be selected with a compiler flag. However, it is
important to understand the fundamental implications of choosing either
mode, since using one over the other can decide whether or not a
particular code sample elicits undefined behavior or causes crashes.
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Legacy Thread Scheduling

• Only one program counter per warp, i.e., entire warp can only store a 
single position for all threads in the executed program

• All threads that are inactive will not execute current instruction

• Threads may only progress to the next instruction in lockstep

• When branches occur, warp must execute first one, then the other
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Legacy thread scheduling follows the conventional “lockstep” principle.
This mode implies that there is only a single program counter per warp.
That is, all threads in a warp may only ever be at the same instruction in
the program. If program flow diverges, the SM must execute first one
branch to completion and then the other, before the warp can proceed.
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Legacy Thread Scheduling

• Diverged threads will try to reach convergence point before switching

• Cannot get past convergence point until all involved threads arrive

05.05.2021 – 06.05.2021 CUDA and Applications to Task-based Programming 33

if(threadIdx.x & 0x4)
{

A();
X();

}
else
{

B();
Y();

}
C();
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This behavior is illustrated here. Consider for instance the branch given
based on the thread ID. The lower four threads will enter one branch, the
remaining threads will enter the other. However, once a branch has been
chosen, it must be completed before the other branch can begin because
the warp only maintains a single program counter for all threads. It can,
for instance, not switch to execute B directly after A, because that would
imply that half of the threads are at one point in the program, while the
others are at another instruction, hence both branches would need to
maintain separate program counters.
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Legacy Thread Scheduling

• Scheduling dictates what algorithms are and aren’t possible

• Actually, quite easy to get a deadlock between threads within a warp
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if(threadIdx.x & 0x4)
{

A();
waitOnB();

}
else
{

B();
waitOnA();

}
C();
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This has several implications that programmers must respect when they
program for individual threads. For instance, consider the case where half
of the threads in a warp are waiting on the other half. This is illustrated in
this code sample. Because with the legacy thread scheduling model,
threads cannot execute a different branch until the first chosen branch is
complete, this program will hang since either A or B will never be
executed, but each branch is waiting on an event that occurs in the other.
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Independent Thread Scheduling (ITS)

• Two registers reserved, each thread gets its own program counter

• Individual threads can now be at different points in the program

• Warp scheduler can (and does) advance warps on all possible fronts
• Guaranteed progress for all resident threads
• Enables thread-safe implementation of spinlocks, starvation-free algorithms

• Threads in a warp still can only do one instruction at a time
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With independent thread scheduling, situations like this are no longer an
issue. Each thread is given its own, individual program counter, meaning
that theoretically, each thread can store its own unique instruction that it
wants to perform next. The execution of threads still happens in warps,
this has not changed. It is not possible for threads in a warp to perform
different instructions in the same cycle. However, a warp may now be
scheduled to progress at any of the different program counters that the
threads within it are currently holding. Furthermore, ITS provides a
“progress guarantee”: eventually, over a number of cycles, all individual
program counters that the threads in a warp maintain will be visited. This
means that if, for instance, the execution has diverged and two branches,
both are guaranteed to be executed sooner or later.
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Independent Thread Scheduling (ITS)

• Guaranteed progress, one branch can wait on another branch

• Diverged threads may not reconverge, should be explicitly requested!
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if(threadIdx.x & 0x4)
{

A();
waitOnB();

}
else
{

B();
waitOnA();

}
C();
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With ITS enabled, the previous code sample no longer poses a problem. A
branch may be chosen as before start waiting on the other branch. Due to
the progress guarantee, sooner or later, the other branch will be
scheduled and its threads will proceed, which is possible because every
thread has a program counter to maintain its own unique position in the
program code. A side effect of the new design, however, is that program
code can no longer make any assumptions about threads moving in
lockstep since they are free to stay diverged until the program finishes.
The GPU will try to make threads reconverge at opportune times, but if it
is desired that threads are guaranteed to perform given instructions in
groups of 32, e.g., to exploit SIMD behavior, this must now be explicitly
requested with a synchronization command.
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Synchronization (Device only)

• __syncwarp()synchronizes active threads in a warp
• Volta and later architectures only, before that no threads with different PCs
• Additional mask parameter enables synchronizing a subset only
• May be called from different points in the program, as long as masks match

• __syncthreads() synchronizes active threads in block at a point
• All active threads must reach the same instruction in the program
• Undefined behavior if some threads in block do not reach it (likely hang!)

• this_grid().sync() can busy-wait to synchronize entire kernel
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In addition to the host-side functions that synchronize between CPU and
GPU, which we saw before, synchronization may of course also be
performed between the threads running on the device itself. The primitive
to use to force a warp or parts of a warp to reconverge is the __syncwarp
function. __syncwarp only really makes sense on systems that support ITS,
because earlier models would have warps advance in lockstep.
__syncwarp takes an additional mask parameter, which can be used to
define only a subset of the threads in a warp that should synchronize. This
is conveniently done via a 32bit integer, where each bit indicates whether
or not a thread with the corresponding ID should participate in the
synchronization. Interestingly, __syncwarp may be called from different
points in a program, e.g., it is possible for threads in a warp to synchronize
while they are executing different branches. However, according to
documentation, it is an error to have threads reach a __syncwarp they
don’t participate in. One level above is the __syncthreads, which is not so
forgiving and applies to all threads in a block.
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A __syncthreads will make sure that all active threads in a block arrive at
the same point in the program where the synchronization happens. In
contrast to __syncwarp, it may NOT be called from different branches in
the same block, since this may cause the program to hang. Lastly, it is also
possible to synchronize the entire kernel launch grid, that is, wait for all
threads to arrive at a certain point in the program, however, this method
has several restrictions and requires a special setup, as well as the
cooperative groups programming model, which we will see only in part 3.
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Warp-Level Primitives

• Initially, CUDA programming paradigm stopped at block level
• Developers were not meant to assume specific properties about warps

• But performance benefits were too great, so they did anyway (e.g., warp voting)

• Warp-level primitives are instructions where threads in one warp 
exploit the fact that they run together to quickly share information

• Most instructions available since compute capability 3.0 (Kepler)
• Since CUDA Toolkit 9.0, must include synchronization to comply with ITS
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Now that we have a basic understanding of what grids, blocks and threads
are, we should point out the special role of warps. The fact that threads
are scheduled in warps is independent of the grid-block-thread design.
Initially, developers were not meant to assume particular behavioral
properties of warps and the official programming paradigms would not
include them. However, as it turns out, the benefits of exploiting the
knowledge of which threads are scheduled together for an instruction is
much too important for performance to be ignored. The CUDA
programming model has since committed itself to expose and encourage
the use of knowledge about warps during execution. In particular, NVIDIA
hast started to introduce so-called warp level primitives. These include
special instructions that provide a fast lane for threads that are scheduled
together for execution to exchange information with a single, fast
instruction.
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These warp-level primitives have been enabled starting with architectures
that have compute capability of 3.0 or higher. In order to comply with the
CUDA standard in the toolkit 9.0 or newer, they have been updated to
enforce synchronization on devices with ITS. If you are not familiar with
these terms, however, you may be wondering what exactly a compute
capability is, how it associates with the CUDA version, and why those
numbers are at times so dissimilar?
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Compute Capability ≠ CUDA Toolkit Version

• One ensures availability of explicit hardware capabilities, the other 
the toolkit’s support for building applications that can exploit them

• Although not directly associated, restrictions do apply
• E.g., cannot use tensor core instructions on Turing card if toolkit is outdated

• Highest compute capability currently at 8.6

• Latest CUDA Toolkit currently at version 11.2
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It is important to note that those two signify very different things,
although they are related. The compute capability of a given GPU ensures
its ability to perform certain operations, expose features or adhere to
particular hardware specifications, such as the number of available CUDA
cores or tensor cores per SM. On the other hand, the CUDA toolkit version
will govern whether your development environment is capable of
translating code that makes use of new hardware-accelerated instructions
and features. For instance, you cannot use an outdated CUDA toolkit to
compile code that makes use of tensor cores, even if you are running the
compiled code on a Turing card.
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NVIDA Architectures and Compute Capabilities

Architecture Exemplary GPU Model Compute Capability Important Features

Tesla GeForce 8800 GTX 1.0 – 1.3 Basic

Fermi GeForce GTX 480 2.0 – 2.1 Ballots, 32-bit floating point atomics, 3D grids

Kepler GeForce GTX 780 3.0 – 3.7 Shuffle, unified memory, dynamic parallelism

Maxwell GeForce GTX 980 5.0 – 5.3 Half-precision floating point operations

Pascal GeForce GTX 1080 6.0 – 6.2 64-bit floating point atomics

Volta TITAN V 7.0 – 7.2 Tensor cores

Turing GeForce RTX 2080 7.5 More concurrency, RTX cores (not compute)

Ampere GeForce RTX 3090 8.0 – 8.6 L2 Cache Residency Management

Hopper ? 9.0 – ? ?
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Here, we provide a rough summary for orientation of how compute
capabilities map to different architecture generations and some of the
most important features that they introduced to GPU models of that era.
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CUDA Example: Parallel Reduction
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Let us now consider a concrete example where we exploit the parallel
processing power of the GPU with CUDA to accelerate a very common
operation: data reduction.
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Parallel Reduction

• Common and important data-parallel primitive
• Many data elements single output (e.g., sum)
• Easy to implement in CUDA, tree-based approach

• To beat CPU, need to use multiple thread blocks
• A large grid to process large arrays
• More parallelism can better utilize the GPU

• Partition the array, map each entry to a single thread
• Where and how do we combine them to calculate the result?
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For parallel reduction, our aim is to exploit the parallel nature of the GPU
in order to compute some sort of reduced result from a large number of
original inputs, such as their sum, the minimum value, or their average.
Reduction is a general and useful operation and is also rather effective to
compute on the CPU since it can usually be performed with a single pass
over the full input length. However, we will try to show how parallel
computing on the GPU can exploit the knowledge about the different
levels of the execution hierarchy and collaborate across them can yield
significantly improved performance for this type of operation. However,
before we do so, we must first find a way to receive inputs and store the
final result. Hence, let’s have a quick preview of the different memory
types we have at our disposal.
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Types of Memory

• Registers
• Per-thread, fast, automatically allocated for variables

• Local Memory
• Per-thread, slow, used when registers are unavailable

• Shared Memory
• Per-block, fast, allocated by host or __shared__

• Global Memory
• Per-device, slow, allocated by host or __device__

• Constant Memory
• Per-device, fast uniform access, via __constant__

• Texture Memory
• Per-device, slow, with texture reading functionality
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Registers are the fastest type of memory. Similar to registers on the CPU,
they are allocated automatically for basic variables in computations.
However, they are only visible per-thread, hence they are not suited for
device-wide communication. Local memory, too, is memory that is only
visible per-thread, and is used when it is not possible to use the faster
registers. Shared memory is somewhat slower than registers and visible to
all threads within a block. However, this is not sufficient, since we are
considering a potentially vast number of inputs, which may be much more
than the maximum size of a block, that is, 1024 threads. Global memory,
on the other hand, is visible to every thread in the device, but also
significantly slower, since it is not directly located on the SM. It can also be
allocated and written to by the host. Constant memory describes a limited
amount of read-only global memory with a particularly fast cache for
uniform reads, and texture memory has additional capabilities that mirror
those of texture and image variables in common graphics APIs.
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Since we want to read potentially large input arrays to reduce and write
the result where we can later retrieve, we will therefore choose to place
both of them in global memory.
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Parallel Reduction – Every Thread for Himself

• Result must be updatable from every thread  use global memory
• When thousands of threads simply write to memory, results are lost
• First solution: use atomic operations to update single global variable
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__device__ float result = 0;

__global__ void reduceAtomicGlobal(const float* input, int N)
{

int id = threadIdx.x + blockIdx.x*blockDim.x;
if (id < N)

atomicAdd(&result, input[id]);
}

For the variable in which we store the result of our reduction, we can do
this by defining a __device__ variable in the CUDA source file directly. Our
first attempt at a reduction kernel can then add its entry to the result
variable. In this case, we are performing a reduction with addition to
compute the sum of all entries in the input array. We first identify each
thread’s unique ID, using the built-in threadIdx, blockIdx, and blockDim
variables and assuming that all of them are specified with a single
dimension on the x-axis. This is reasonable since the input is a 1D array
and there is no added benefit from using more dimensions in the grid
configuration. Note however that if we were to launch our kernel with a
2D grid instead, we would have to consider the .y coordinates in the
computation as well. Each thread first checks whether its ID is lower than
the number of entries to sum up. This is because thread blocks have a
fixed size, hence, when we launch this kernel, in order to sum up all
results, we need to make sure that we launch enough blocks.
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But since the number of entries in the array N may not be a multiple of
the block size, some of the threads in the last block may not want to
participate in the reduction to avoid access violations. Next, we retrieve
the corresponding entry from the input array and add it to the result
variable. However, we are using a new function, atomicAdd, to access the
__device__ variable instead of updating it directly. Why?
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Atomic Operations

• Updates to the same memory problematic with many threads
• Read/write may occur in arbitrary order, simultaneously, overlap, be stale?
• Atomic operations are indivisible, visible and occur in some sequential order
• Atomic operations where return value is not used are termed reductions
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foo

foo += bar;

foo

atomicAdd(&foo, bar);

Ordered      Updates  ?

As in all multi-threaded applications, it is necessary to protect against data
races to obtain coherent results. If we were to simply add values to a
variable, there is no guarantee that the updates will produce the correct
final result. First, each addition can be broken into two memory
operations for every thread: fetching the current value and writing the
new one. Fetching and writing by threads of the global variable may occur
in any order, hence the result of performing these operations
simultaneously with thousands of threads is undefined. Atomic operations
in CUDA, as most other architectures, provide us with means to perform
updates atomically, i.e., they cannot be interrupted since they are
indivisible. Furthermore, atomic operations are guaranteed to produce
the same effect as if all accesses to the variable had occurred in some
strictly sequential order. Hence, with atomic operations, thousands of
threads can add entries to the same global variable and obtain the correct
result.
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• Initial version is slower than CPU implementation, which is linear

• GPU version has maximal contention on slow, global memory

Performance 268M Float Reduction
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Time 
(TITAN V) Bandwidth

Step
speedup

Cumulative
Speedup

Speedup to
CPU

AtomicGlobal 635.355ms 1.520GB/s 1.000 1.000 0.3

CPU Baseline:
283.989 ms

CPU Parallel Baseline:
85.393 ms

Unfortunately, this guarantee comes at a price. Our initial implementation
performs significantly poorer on a Titan V than even a single-threaded
CPU implementation, let alone a multi-threaded CPU implementation.
However, this is only where we begin to apply our knowledge of the GPU
architecture.
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Parallel Reduction – Blocks Share Fast Memory

• Compute block results in fast, shared memory, update global at end
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__global__ void reduceAtomicShared(const float* input, int N)
{

int id = threadIdx.x + blockIdx.x*blockDim.x;

__shared__ float x;
if (threadIdx.x == 0) x = 0.0f;
__syncthreads();

if (id < N) atomicAdd(&x, input[id]);
__syncthreads();

if (threadIdx.x == 0) atomicAdd(&result, x);
}

As we just mentioned, there is another type of memory, which is found
directly on the SM that a block runs on, and which is supposedly much
faster than global memory. Hence, we can split our reduction into two
stages: first, we perform updates atomically in faster, shared memory, and
then only write the partial results out to global memory. Consider, for
instance, a setup where each block has 256 threads. In this case, we just
reduced the number of atomic updates to slow global memory by a factor
of 256. The main contention was moved from a single, global variable to
multiple variables, one per block, that is held in shared memory on each
SM. Observe that both the initialization and the final addition of the
shared variable are performed only by the first thread in the block. Before
and after the accumulation in shared memory, the entire block
synchronizes. This is to ensure, for one, that the first thread correctly
initializes the shared variable to zero before threads start to accumulate
on it.
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The second __syncthreads is to ensure that all threads in the block have
finished with their accumulation before the first thread in the block
performs a single update to global memory, otherwise, it could update it
with an incomplete result.
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Performance 268M Float Reduction
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Time 
(TITAN V) Bandwidth

Step
speedup

Cumulative
Speedup

Speedup to
CPU

AtomicGlobal 635.355ms 1.520GB/s 1.000 1.000 0.3x

AtomicShared 26.911ms 35.674GB/s 23.61 23.61 3.7x

• Switching from global to shared for most atomics outperforms CPU

• Contention is still high, but must only serialize on fast shared memory

This second version already performs significantly better than our first
attempt. Furthermore, it puts us over the bar for improvement over the
parallel CPU method and is now almost 4 times faster. However, there is
still room for improvement. So far, we simply ported an approach that
would work well on the CPU and reduced the amount of memory
contention it causes. Let us return to the drawing board and consider if
perhaps a different, inherently parallel algorithm can give us better
results.
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Parallel Reduction – Sublinear Runtime

• Multiple iterations to 
reduce full input data 

• In each iteration, add 
two values per thread

• Exclusive access, just 
logଶ 𝑁 serialized steps 
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0
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Our best solution so far must still enforce sequential updates of a common
variable, even though it occurs in faster shared memory. However, if we
are aware of the existence of shared memory, we can come up with an
elegant solution that can achieve the same result with a sublinear
runtime. Consider the illustration given above. Starting with the original
input, we can run multiple iterations in which each thread combines its
current value with that of another thread, yielding a partially reduced
intermediate result. By continuously summing up these partially reduced
results, due to the transitive nature of the operation, we can eventually
obtain the result of the full reduction over the inputs for all threads in the
block in log2(N) iterations.
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Parallel Reduction – Sublinear Runtime
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__global__ void reduceShared(const float* input, int N)
{

__shared__ float data[BLOCKSIZE];
int id = threadIdx.x + blockIdx.x*blockDim.x;
data[threadIdx.x] = (id < N ? input[id] : 0);

for (int s = blockDim.x/2; s > 0; s/=2)
{

__syncthreads();
if (threadIdx.x < s)

data[threadIdx.x] += data[threadIdx.x + s];
}
if (threadIdx.x == 0)

atomicAdd(&result, data[0]);
}

Changing our previous implementation to this new algorithm is not too
difficult, since the majority of it can be implemented with standard C++
instructions. Note that in this case, we have found a new way to deal with
the problem of potentially redundant threads in the last block that is
started. In order to keep our implementation simple, we implicitly pad the
read data to a multiple of the block size by having threads with an ID
beyond N act as if they read a zero value. This way, they can safely
participate in the reduction without changing the final result and altering
our code to handle this special case. Next, we implement the previously
described algorithm with a simple loop structure. However, we have to
make sure that each iteration is secured by a call to __syncthreads to
make sure that all threads have finished their updates before we continue
with the next iteration. This is because, in each iteration, some threads are
dependent on the results that other threads produced in the last iteration.
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Note that there is no __syncthreads before the update to global memory
is made, due to the fact that in the very last iteration, only thread 0
participates in the loop, and it may immediately use the result that it
computed itself without synchronizing.
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Performance 268M Float Reduction
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Time 
(TITAN V) Bandwidth

Step
Speedup

Cumulative
Speedup

Speedup to
CPU

AtomicGlobal 635.355ms 1.520GB/s 1.0 1.00 0.3x

AtomicShared 26.911ms 35.674GB/s 23.6 23.61 3.7x

ReduceShared 2.903ms 333.536GB/s 9.2 218.86 29.3x

• The improved algorithm has a significant impact on performance

• Now even significantly reduced contention on shared memory

We can easily see that choosing a more suitable algorithm has had the
biggest impact on performance so far. Exploiting both the best available
memory types and inherently parallel algorithms are fundamental
principles for obtaining optimal GPU performance. But we can still go a
little farther.

51



Parallel Reduction – Exchanging Registers

• Registers are by far the fastest type of memory to access

• Threads that run together as a warp can exploit warp-level primitives

• Exchange register data with another thread in warp: __shfl_sync
• Returns the value that another thread has in a particular register
• Must include synchronization, because threads may have diverged due to ITS
• Like __syncwarp, threads may shuffle at different points in code on Volta+

• Works like a messaging system – threads can put different registers on the line
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Before, we mentioned that registers are the fastest type of memory
available. We also mentioned that ever since compute capability 3.0, it is
advised and encouraged to exploit knowledge about warps executing
simultaneously with warp-level primitives. The shuffle instruction gives
threads in a warp a fast lane to exchange information in registers, without
having to write them out to shared or global memory. This operation
which, if ITS is enabled, must of course synchronize that the desired
threads are converged before it exchanges values will be exploited by us
for the final stage of the reduction.
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Parallel Reduction – Exchanging Registers
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__global__ void reduceSharedShuffle(const float* input, int N)
{

…
for (int s = blockDim.x/2; s > 16; s/=2)
…
float x = data[threadIdx.x];
if (threadIdx.x < 32)
{

x += __shfl_sync(0xFFFFFFFF, x, threadIdx.x + 16);
x += __shfl_sync(0xFFFFFFFF, x, threadIdx.x + 8);
x += __shfl_sync(0xFFFFFFFF, x, threadIdx.x + 4);
x += __shfl_sync(0xFFFFFFFF, x, threadIdx.x + 2);
x += __shfl_sync(0xFFFFFFFF, x, 1);

}
if (threadIdx.x == 0)

atomicAdd(&result, x);
}

Here we see how this can be applied to optimize our current
implementation for parallel reduction. The reduction in shared memory
stops at 32 partial results. Afterward, we only let the threads in a warp
exchange their accumulated results with each other. In the first iteration,
each thread in the warp will try to read the value of the thread with an ID
that is 16 higher than its own. Note that the 16 higher threads will not
obtain meaningful results from this operation, nor do we need them to.
However, they are still participating in the shuffle, because the lower 16
need to access their registers. In the following iterations, this procedure is
repeated until finally thread 0 receives the accumulated register of thread
1. Having obtained a completely reduced sum, it then performs the sole
update per block to global memory, as before.
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• We will stop at this point, but this could still be taken further

• Note: results can (and do) vary significantly between GPU models

Performance 268M Float Reduction
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Time 
(TITAN V) Bandwidth

Step
Speedup

Cumulative
Speedup

Speedup to
CPU

AtomicGlobal 635.355ms 1.520GB/s 1.0 1.00 0.3x

AtomicShared 26.911ms 35.674GB/s 23.6 23.61 3.7x

ReduceShared 2.903ms 333.536GB/s 9.2 218.86 29.3x

SharedShuffle 2.101ms 460.501GB/s 1.3 302.38 40.4x

Depending on the architecture you are using, the additional use of warp-
level primitives can make a significant difference, although in this case, it
is comparably minor. However, the final achieved speedup relative to our
initial version of a factor larger than 300 shows how important it is to
know how collaborative processing can affect performance on the GPU.
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Parallel Programming for the GPU

• Many algorithms are embarrassingly parallel (e.g., ray tracing)
• Each thread can work completely independently, no communication 
• Even a direct port to the GPU may accelerate processing out of the box

• If developers know how threads collaborate, more opportunities
• The GPU is at its most powerful when it can reuse partial results
• Cache utilization, shared memory and warp primitives play important role
• Competitive algorithms to reorder, reduce, analyze or filter large data sets

• Sorting and scanning
• Building and traversing hierarchical data structures
• Even prioritized task scheduling
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There is a large range of algorithms that can benefit directly from being
ported to a parallel processor. These algorithms, which are usually
classified as embarrassingly parallel, usually have no interdependencies
and their efficiency rises with the number of simultaneously executing
threads. However, if developers are aware of the opportunities to exploit
collaboration by threads at different levels of the execution hierarchy, it
significantly increases the range of algorithms that can be run on parallel
architectures with significant performance gain compared to the CPU. As
we have seen, even a comparably well-suited algorithm with linear
runtime can be executed significantly faster on the GPU if these concepts
are applied.

55



Profiling and Debugging

05.05.2021 – 06.05.2021 CUDA and Applications to Task-based Programming 56

But before you dive into the porting of highly complex algorithms and
ambitious projects to see how much faster they can run on a GPU, we
would like to give an overview of the tools that will allow you to evaluate
and quantify your performance gains in a reproducible manner. It is also
advisable to become familiar with the available tools and methods for
detecting and fixing errors, in short, debugging parallel programs on the
GPU.
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Measuring GPU Runtime

• Possible solution: synchronize CPU and GPU and use std::chrono

• Better: use cudaEvent_t to mark measuring points in execution
• Create events with cudaEventCreate
• Start recording events with cudaEventRecord
• Synchronize only to latest event with cudaEventSynchronize
• Find the duration between two events with cudaEventElapsedTime
• Eventually, clean up with cudaEventDestroy

• Events yield elapsed time in milliseconds, as measured by GPU clock
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Initially, you may try to measure time the way it is commonly done, by
using libraries like std::chrono that access the system clock. However, a
cleaner method is provided by the CUDA toolkit, which can measure the
GPU clock time elapsed between two events that are submitted to the
stream of CUDA commands. Events can be created and recorded at
arbitrary points during your program. For instance, to measure the
runtime of a kernel with events, you can create two events and record the
first just before and the other just after the kernel launch. You may
synchronize on the second event to make sure that it has passed. After
synchronization, the elapsed time between the two can be computed via
cudaEventElapsedTime, which gives the elapsed time in milliseconds as
measured by the GPU with microsecond resolution.
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Profiling Applications with Nsight Systems

• Timeline breakdown of application, identifies provoking architectures

• Allows to analyze the application‘s performance bottleneck
• Identify specific routines, kernels or memory transfer that cause latency
• Detect if execution is GPU bound, find opportunities for improvement

• Example: executing an expensive kernel 5 times in a row
• Capture timeline with Nsight Systems and focus on GPU activity
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Beyond simple timing measurements, a complete suite for profiling CUDA
applications is given by the various tools in the Nsight family. With Nsight
Systems, you can get a high-level overview of the events that occur in your
application to identify, for instance, whether your application is CPU or
GPU bound and which kernels are taking a particularly long time during
execution. In the following, we will look at a short example that launches 5
consecutive, particularly slow kernels.

58



Launching Multiple Kernels Sequentially

• Dependency assumed, kernels 
run one after another in-order

05.05.2021 – 06.05.2021 CUDA and Applications to Task-based Programming 59

__global__ void busy()
{

int start = clock();
while ((clock() - start) < 100'000'000);
printf("I'm awake!\n");

}

int main()
{

for (int i = 0; i < 5; i++)
busy<<<1, 1>>>();

cudaDeviceSynchronize();
}

The complete code for this setup is provided on the right-hand side. The
kernel will simply sleep for a given number of cycles before printing a
single message. After sampling the application execution with Nsight
Systems, we can use it to analyze the timeline for the program execution.
Clearly, we can see that the five kernels that were launched in a loop
execute one after another. We know that this is the case by default since
CUDA will assume that kernels depend on each other unless indicated
otherwise. However, in this example, it is evident there is no implicit
dependency between kernels and they may just as well execute
simultaneously. We can demonstrate how this can be achieved and
confirm the change in the application timeline by introducing the concept
of streams.
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CUDA Streams

• A single, small kernel may not be enough to occupy the entire GPU

• CUDA is capable of running multiple jobs simultaneously

• Implicit dependencies apply, but we can separate them into streams
• Streams are created at runtime and operations are associated with them
• Developer uses streams to separate operations that have no dependency
• Stream that a kernel should be launched in is 4th parameter (we skipped 3rd )
• If no stream specified, default “Null” stream is used
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CUDA enables developers to define independent streams of commands,
where it is assumed that commands in different streams do not depend
on each other. This becomes relevant in cases where, for instance,
multiple smaller kernels should be launched to properly occupy the
available processing units of the GPU, which may not be achieved by a
single simple kernel. The stream can be passed to corresponding CUDA
runtime API calls, such as cudaMemcpyAsync, or can be defined for kernel
launches as the fourth parameter in the <<<>>> syntax.
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Using Streams to Run Kernels Simultaneously

• No dependencies assumed, parallel
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int main()
{

cudaStream_t streams[5];
for (int i = 0; i < 5; i++)
{

cudaStreamCreate(&streams[i]);
busy<<<1, 1, 0, streams[i]>>>();

}
cudaDeviceSynchronize();
for (int i = 0; i < 5; i++)

cudaStreamDestroy(streams[i]);
}

In our example, our five waiting kernels are small and simple enough to
run simultaneously. The example on the right shows how this can be
realized with streams. First, we create a stream for each kernel and then
submit it to the corresponding stream. After the GPU has finished
execution, we eventually take care of destroying the created streams. The
analysis by Nsight Systems proves to us that, in fact, the execution flow of
the program has changed: the five kernels no longer execute one after
another, but instead, run concurrently on the same GPU.
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Profiling Kernels with Nsight Compute

• Nsight launches target application, injects itself in API calls

• Will automatically replay kernels and applications to collect results

• Complete performance report including suggestions for improvement

• Lets users inspect and compare extensive set of performance metrics 
• Provides readouts and stats from hardware counters
• Periodically samples and keeps track of code lines that cause stalls
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Beyond the high-level overview and timeline for an application, we can
also obtain a much more detailed performance report for individual
kernels that we launch with Nsight Compute. Nsight Compute will produce
reliable measurements by injecting itself into the program during its
launch and replaying kernel calls multiple times to obtain readouts for
different performance metrics. The result of this analysis can be a
complete report, including suggestions for performance optimization by
avoiding common issues and bottlenecks. By collecting samples during
kernels of the program state when execution is stalled, it can even indicate
individual lines of code that most likely hurt your performance and should
be revised.
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Profiling Kernels with Nsight Compute

• Each report section contains brief description of analyzed metrics

• Identifies apparent issues and suggests possible solutions
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The report that is produced by Nsight contains multiple sections, each of
which is concerned with a particular performance aspect. Nsight will
provide a short explanation for what a particular metric is trying to
measure and, in case there are apparent issues, will suggest further
resources or steps to resolve bottlenecks and alleviate performance
penalties.
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Catching Errors

• For synchronous CUDA functions (not kernel calls), check return value
• Return value should always equal cudaSuccess
• If not, use cudaGetErrorString for comprehensive description

• For asynchronous functions and kernels, synchronize to retrieve error
• After kernel, call cudaDeviceSynchronize and check its return value
• Can always get and clear last reported error via cudaGetLastError
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kernel<<<gridDim, blockDim>>>();
cudaError_t err = cudaDeviceSynchronize();
if (err != cudaSuccess)
{

const char* errorMessage = cudaGetErrorString(err); /*Handle error*/
}

While it is important to know whether or not programs are efficient, it is
more important still to ensure that they are correct. Most functions that
the CUDA runtime API provides return an error code that either reports
errors of the called function itself if it executes synchronously or errors of
asynchronous, previously executed functions. This makes reacting to a
particular error slightly tricky if asynchronous functions, like kernel
launches, are involved. However, when an application is known to have
errors, they can be easily pinpointed by securing suspicious sections with
synchronization commands, which will always return errors caused by
previous asynchronous commands. Alternatively, at any point during the
program, the functions cudaGetLastError or cudaPeekLastError may be
used to check whether or not an error has previously occurred.
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Debugging Kernels with Nsight

• Edition for Eclipse + CUDA GDB, or Microsoft Visual Studio debugging

• Supports (conditional) breakpoints, code stepping, variable watch

• When stepping, a focus warp is chosen manually or automatically
• If execution is paused, can inspect states of all resident warps and threads
• Can choose to advance only one warp or block at a time
• Warps that, e.g., cause a memory access violation may grab focus
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However, a much more convenient way of debugging CUDA applications is
by using Visual Studio Nsight or Eclipse edition. These plug-ins provide
mechanisms for detailed debugging of host and device code. With Nsight,
developers may use many of the tools that they already utilize for
debugging on the CPU, such as breakpoints, memory watches, and local
variable view for all running threads. Nsight enables code stepping as well.
To do this, a focus warp must be selected, and the stepping occurs either
at warp or block level, one instruction at a time. When errors or
exceptions occur, other warps may automatically grab the focus to draw
attention to this event.
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Debugging Kernels with Nsight

• Overview reveals warps, active and valid masks of individual threads

• Focus warp and current thread (red = error) indicated by yellow arrow
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The overview of the active threads can list them all, warp by warp, and
indicate which thread is currently the focus thread. Developers are free to
switch between threads and warps and inspect the local results for any of
them. As shown here, threads are color-coded to indicate their state, e.g.,
in this case, the entire warp is an exceptional state due to a read from an
illegal address. Selecting the respective warp and analyzing the content of
its threads’ variables should enable developers to identify what caused
this error.

66



Sanitizing Kernels with CUDA-Memcheck Suite

• Run as cuda-memcheck –-tool <tool> <application>

• memcheck: memory errors (access violations, leaks, API errors)

• synccheck: misuse of synchronization (invalid masks, conditions)

• racecheck: data races (read-after-write, write-after-read hazards)

• initcheck: evaluation of uninitialized values (global memory only)
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Lastly, developers may use the memcheck suite to sanitize their kernels.
These command-line-based tools are capable of identifying fundamental
issues that may lead to faulty results, such as memory access errors,
invalid use of synchronization primitives, race conditions, and failure to
initialize memory.
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Helpful Libraries and Tools
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Finally, we want to provide the aspiring CUDA developer with a short,
exemplary list of libraries and tools that may be helpful for the creation of
larger projects.
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Examples of Commonly used Libraries

• CUB/Thrust: additional primitives and functions similar to standard library
• Algorithms: e.g., prefix sum, scan, sort
• Data structures and containers: e.g., vectors

• cuBLAS: basic linear algebra subprograms (BLAS) on top of CUDA

• cuFFT: efficient implementation of discrete fourier transform on the GPU

• cuSparse: algorithms and optimizations for working with sparse matrices 

• TensorRT: interface to learning and inference capabilities with tensor cores
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Compiler Explorer

• Online compiler and assembly viewer: https://godbolt.org

• Currently runs several versions of NVCC 9 through 11

• Allows for inspection of PTX and SASS machine code from C++ input

• Useful for exploring, sharing and discussing the resulting low-level 
instructions and effectiveness of given C++ code snippets

• We used it a lot during the preparation of this tutorial!
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CUDA and Applications to Task-based Programming
M. Kenzel, B. Kerbl, M. Winter, and M. Steinberger

In this second part of the tutorial, having explored the basic CUDA
programming model in part one, we will now take a closer look at how the
programming model maps to the hardware architecture and discuss
various low-level aspects that are crucial for performance.
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The Memory Hierarchy
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Memory tends to be *the* bottleneck in any modern system. And GPUs
are no exception. In fact, given the massive amount of parallel
computation that is typically taking place on a GPU at any given moment,
the effect of memory on performance is arguably even more pronounced
on the GPU than we might be used to from working on the CPU. Thus, in
many ways, GPU programming really is all about making the most of the
GPU’s memory subsystem.
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So let’s have a look at the memory subsystem we will find on an average
GPU today. At first glance, this doesn’t look all that dissimilar to a CPU: we
have some main memory, a second-level cache shared by all cores on the
chip, and a first-level cache for each processing core. However, as we will
see, these caches serve a somewhat different purpose on the GPU than
they would on a CPU.

In addition to these caches, we find a comparatively large register file,
which is needed to keep the thread context state of multiple warps
resident on-chip to enable fast switching between warps for latency
hiding, as well as a region of shared memory local to each processing core.
Furthermore, as a result of the GPU’s heritage in graphics, there are
various special-purpose hardware units integrated into the memory
subsystem such as texture units, ROPs, and caches designed to optimize
for specific access patterns.
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All in all, there are multiple different paths for data to take between the
registers on which computation takes place and main memory.
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CUDA Memory Spaces Overview

• Global Memory
• shared by all threads on the device
• read and write
• cached (L2$ and L1$)
• general-purpose data store

• Local Memory
• private to each thread
• read and write
• cached (L2$ and L1$)

• Registers
• private to each thread

• Shared Memory
• shared by threads within the same block
• low-latency communication

• Texture Memory
• read-only
• cached
• hardware filtering, format conversion, 

border handling

• Constant Memory
• read-only
• cached
• optimized for broadcast access
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In CUDA, these hardware resources are exposed in the form of a number
of memory spaces, each with different properties designed for different
kinds of access patterns. CUDA applications take advantage of the various
capabilities found within the GPU’s memory system by placing and
accessing data in the corresponding CUDA memory space.

We will now have a more detailed look at each one of these memory
spaces and what they have to offer.
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Global Memory

• general-purpose data store
• backed by device memory

• use for input and output data
• linear arrays

• relatively slow
• bandwidth: ≈ 300–700 GiB/s (GDDR5/6 vs HMB2)
• non-cached coalesced access: 375 cycles
• L2 cached access: 190 cycles
• L1 caches access: 30 cycles

⇒ crucial to utilize caches
⇒ access pattern important
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device memory

L2$

L1$

registers

The most important memory space is global memory. It corresponds to
device memory and is accessible to all threads running on the GPU. As a
result of this wide scope, memory accesses potentially have to bubble all
the way up to, or all the way down from device memory. Making use of
the available caches is, thus, vital for performance.
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Global Memory Caches

• Purpose not the same as CPU caches
• much smaller size (especially per thread)
• goal is not minimizing individual access latency via temporal reuse
• instead: smooth-out access patterns
• help with spilled registers (L1$ on Kepler)

• Don’t try cache blocking like on the CPU
• 100s of threads accessing L1$
• 1000s of threads accessing L2$
• use shared memory instead
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If we look at a current high-end gaming GPU with 68 multiprocessors, up
to 2048 resident threads per multiprocessor, 5120 KiB of L2 cache, and
128 KiB of L1 cache, we are left with 64 Bytes of L1 and about 37 Bytes of
L2 cache per thread.
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Global Memory Transactions

• Memory Access Granularity / Cacheline Size
• L1$ & L2$: 32 Byte  / 128 Byte ( 4 sectors of 32 Byte )

• Stores
• Write-through for L1$
• Write-back for L2$

• Memory operations are issued 
per warp

• Threads provide addresses
• Combined to lines/segments needed
• Requested and served

• Try to get coalescing per warp
• Align starting address
• Access within a contiguous region
• ideal: consecutive threads access consecutive memory locations

77

Sector 0 Sector 1 Sector 2 Sector 3

128 B cache line

128 B alignment

32 B sector

One cacheline is 128 Bytes, which is split into 4 sectors of Size 32 Bytes.
Memory Transactions are 32 Byte long and only actually requested 32
Byte sectors are read from memory.
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Granularity Example 1/4

78

testCoalesced done in 0.065568 ms ⇔ 255.875 GiB/s
thread id
0 1 2 43 5 6 7 8 10 12 14 15 169 11 13 17 18 2019 21 22 23 24 26 28 29 30 3125 27

0 1 2 43 5 6 7 8 10 12 14 15 169 11 13 17 18 2019 21 22 23 24 26 28 29 30 3125 27memory location

128 Bytes

__global__ void testCoalesced(int* in, int* out, int elements)
{
int block_offset = blockIdx.x*blockDim.x;
int warp_offset = 32 * (threadIdx.x / 32);
int laneid = threadIdx.x % 32;
int id = (block_offset + warp_offset + laneid) % elements;

out[id] = in[id];
}
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Granularity Example 1/4
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Coalesced
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Granularity Example 2/4

80

testCoalesced done in 0.065568 ms ⇔ 255.875 GiB/s
testMixed done in 0.068128 ms ⇔ 246.26 GiB/s

thread id
0 1 2 43 5 6 7 8 10 12 14 15 169 11 13 17 18 2019 21 22 23 24 26 28 29 30 3125 27

0 1 2 43 5 6 7 8 10 12 14 15 169 11 13 17 18 2019 21 22 23 24 26 28 29 30 3125 27memory location

128 Bytes

__global__ void testMixed(int* in, int* out, int elements)
{
int block_offset = blockIdx.x*blockDim.x;
int warp_offset = 32 * (threadIdx.x / 32);
int elementid = (threadIdx.x * 7) % 32;
int id = (block_offset + warp_offset + elementid) % elements;

out[id] = in[id];
}
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Granularity Example 2/4
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Mixed
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Granularity Example 3/4

82

0 1 2 43 5 6 7 8 10 12 14 15 169 11 13 17 18 2019 21 22 23 24 26 28 29 30 3125 27

thread id
0 1 2 43 5 6 7 8 10 12 14 15 169 11 13 17 18 2019 21 22 23 24 26 28 29 30 3125 27

0 1 2 43 5 6 7 8 10 12 14 15 169 11 13 17 18 2019 21 22 23 24 26 28 29 30 3125 27memory location

128 Bytes

template<int offset>
__global__ void testOffset(int* in, int* out, int elements)
{
int block_offset = blockIdx.x*blockDim.x;
int warp_offset = 32 * (threadIdx.x / 32);
int laneid = threadIdx.x % 32;
int id = ((block_offset + warp_offset + laneid) * offset) % elements;

out[id] = in[id];
}

testCoalesced -> 255.875 GiB/s
testOffset<2> -> 134 GiB/s testOffset<4> -> 72.9 GiB/s
testOffset<8> -> 36.8 GiB/s testOffset<32> -> 17.2 GiB/s
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Granularity Example 3/4

83

Coalesced 255.875 GB/s
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Offset<2> 134.123 GiB/s (0.524)

Granularity Example 3/4
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Granularity Example 3/4

85

Offset<4> 72.9 GiB/s (0.285)
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Offset<8> 36.81 GiB/s (0.144)

Granularity Example 3/4

86
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Offset<32> 17.26 GiB/s (0.07)

Granularity Example 3/4

87
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Granularity Example 4/4

88

testCoalesced done in 0.0655 ms ⇔ 255.875 GiB/s
testOffset<32> done in 0.972 ms ⇔ 17.2605 GiB/s
testScattered done in 2.0385 ms ⇔ 8.23 GiB/s

__global__ void testScattered(int* in, int* out, int elements)
{
int block_offset = blockIdx.x*blockDim.x;
int warp_offset = 32 * (threadIdx.x / 32);
int elementid = threadIdx.x % 32;
int id = ((block_offset + warp_offset + elementid) * 121) % elements;

out[id] = in[id];
}
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Scattered 8.23 GiB/s (0.03)

Granularity Example 4/4

89
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Granularity Example Summary

• testCoalesced 0.066 ms ⇔ 255.875 GiB/s
testMixed 0.068 ms ⇔ 246.260 GiB/s
testOffset<2> 0.125 ms ⇔ 134.123 GiB/s 
testOffset<4> 0.230 ms ⇔ 72.979 GiB/s 
testOffset<8> 0.456 ms ⇔ 36.812 GiB/s 
testOffset<32> 0.972 ms ⇔ 17.260 GiB/s 
testScattered 2.039 ms ⇔ 8.230 GiB/s

• Access pattern within 128 Byte segment does not matter
• Offset between data more requests need to be handled
• Peak performance not met due to computation overhead
• More scattered data access slower with GDDR RAM
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Constant memory

• read-only
• Ideal for coefficients and other data that is 

read uniformly by warps
• Data is stored in global memory, read 

through cache
• __constant__ qualifier
• limited to 64 KiB

• Supports broadcasting
• all threads read same value -> data broadcasted 

to all threads simultaneously
• otherwise diverged

91

device memory

L2$

constant$/tex$

registers immediates
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Constant memory cont’d

• cache throughput
• 4 bytes per warp per clock
• all threads in warp read the same address
• otherwise serialized 

92

__constant__ float myarray[128];
__global__ void kernel()
{
...
float x = myarray[23]; //uniform
float y = myarray[blockIdx.x + 2]; //uniform
float z = myarray[threadIdx.x]; //non-uniform

}
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Constant Memory Example

93

__constant__ float c_array[128];
__global__ void kernel(float* d_array, 

const float* __restrict dc_array)
{
float a = c_array[0]; // const cache 24cyc
float b = c_array[blockIdx.x]; // const cache 24cyc
float c = c_array[threadIdx.x]; // const cache  35cyc
float d = d_array[blockIdx.x]; // L2 cache 24cyc
float e = d_array[threadIdx.x]; // L2 cache 26cyc
float f = dc_array[blockIdx.x]; // L1 cache 23cyc
float g = dc_array[threadIdx.x]; // L1 cache 24cyc

}
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Constant memory

• Only fast if all threads within a warp read the same value
• Constant can be faster than global
• Uses different cache than global
• Compiler can automatically put things to constant

94
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Texture memory

• Textures are laid out in memory to optimize data 
locality for the respective dimensionality 
(cudaArray)

• e.g., accesses within 2D region should hit the cache

• Surfaces allow writing to cudaArrays
• Concurrent writing and reading undefined result

• Surfaces allow writes from kernel, but not concurrent 
writes/reads

• Can also bind global memory to textures

95

device memory

L2$

tex$/L1$

texture unit

registers

texture unit performs addressing mode, filtering, format conversions,
etc.
cudaArray represents the raw surface data laid out in memory
texture object/surface object represents the cudaArray data bound to a
different memory hierarchy
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RowAfterRow - 1D

96
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RowAfterRow: Texture vs Global

97

__global__ void deviceLoadRowAfterRow(const uchar4* data, int width, int height, uchar4* out)
{

uchar4 sum = make_uchar4(0,0,0,0);

int tid = blockIdx.x * blockDim.x + threadIdx.x;
int rowid{0}, colid{0};

while(tid < (height * width))
{

rowid = tid / width;
colid = tid % width;
uchar4 in = data[rowid * width + colid];
sum.x += in.x; sum.y += in.y; sum.z += in.z; sum.w += in.w;
tid += (blockDim.x * gridDim.x);

}
out[blockIdx.x*blockDim.x + threadIdx.x] = sum;

}

uchar4 in = tex2D(myTex,colid,rowid);

const uchar4* __restrict data
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RowAfterRow: Texture vs Global

global linear (cudaMalloc) 445 GiB/s

98
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RowAfterRow: Texture vs Global

global restrict (cudaMalloc) 464 GiB/s

99
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RowAfterRow: Texture vs Global

texture (cudaArray) 387 GiB/s
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ColumnAfterColumn - 1D

101
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ColumnAfterColumn: Texture vs Global

102

__global__ void deviceLoadColumnAfterColumn(const uchar4* data, int width, int height, uchar4* out)
{

uchar4 sum = make_uchar4(0,0,0,0);

int tid = blockIdx.x * blockDim.x + threadIdx.x;
int rowid{0}, colid{0};

while(tid < (height * width))
{

rowid = tid % height;
colid = tid / height;
uchar4 in = data[rowid * width + colid];
sum.x += in.x; sum.y += in.y; sum.z += in.z; sum.w += in.w;
tid += (blockDim.x * gridDim.x);

}
out[blockIdx.x*blockDim.x + threadIdx.x] = sum;

}

uchar4 in = tex2D(myTex,colid,rowid);

const uchar4* __restrict data
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ColumnAfterColumn: Texture vs Global

global linear (cudaMalloc) 268 GiB/s

103

was 445 GiB/s

Only for
> CC 7.0
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ColumnAfterColumn: Texture vs Global

global restrict (cudaMalloc) 270 GiB/s

104

was 464 GiB/s
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ColumnAfterColumn: Texture vs Global

texture (cudaArray) 368 GiB/s

105

was 387 GiB/s
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Texture vs Global: 1D Access

• Row access is similarly efficient with all types -> virtually no cache usage
• Slighty better with linear memory layout compared to textures

• Column Access significantly slower for global vs. texture
• Texture slightly slower than row access

106

Approach 1080TI TITAN V 2080TI 1080TI TITAN V 2080TI
Const Array 0.2499 0.1505 0.1368 268.6 445.9 490.6
Const Array Restrict 0.2468 0.1444 0.1384 271.9 464.8 484.9
Texture 0.345 0.1731 0.1679 194.5 387.8 399.8

Approach 1080TI TITAN V 2080TI 1080TI TITAN V 2080TI
Const Array 1.032 0.2498 1.579 65.02 268.6 42.51
Const Array Restrict 0.964 0.2478 1.567 69.57 270.8 42.83
Texture 0.469 0.1823 0.1996 143 368.2 336.1

ms GiB/s
Row

Column
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RowAfterRow - 1D Cache <2>

107

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7
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RowAfterRow - 1D Cache <4>

108

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7
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RowAfterRow: 1D Cache

109

template <int CACHE_OFFSET>
__global__ void deviceLoadRowAfterRowOffset(const uchar4* data, int width, int height, uchar4* out)
{

uchar4 sum = make_uchar4(0, 0, 0, 0);

int tid = (blockIdx.x * blockDim.x + threadIdx.x) * CACHE_OFFSET;
int rowid{ 0 }, colid{ 0 };

#pragma unroll
for (int i = 0; i < CACHE_OFFSET; ++i, ++tid)
{

rowid = tid / width;
colid = tid % width;
uchar4 in = data[rowid * width + colid];
sum.x += in.x; sum.y += in.y; sum.z += in.z; sum.w += in.w;

}
out[blockIdx.x * blockDim.x + threadIdx.x] = sum;

}
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Const : 1D Cache <2> 1080Ti

110

close to 0 
before

110



Const : 1D Cache <2> TITAN V

111
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Restrict : 1D Cache <2> 1080Ti

112

0 before
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Restrict : 1D Cache <2> TITAN V

113
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Const : 1D Cache <8> 1080Ti

114
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Const : 1D Cache <8> TITAN V

115

40% before
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Restrict : 1D Cache <8> 1080Ti

116

50% before
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Restrict : 1D Cache <8> TITAN V

117

40% before
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Texture : 1D Cache <2> TITAN V

118
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Texture : 1D Cache <8> TITAN V

119
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ColumnAfterColumn - 1D Cache

120

0
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
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ColumnAfterColumn: 1D Cache

121

template <int CACHE_OFFSET>
__global__ void deviceLoadColAfterColOffset(const uchar4* data, int width, int height, uchar4* out)
{

uchar4 sum = make_uchar4(0, 0, 0, 0);

int tid = (blockIdx.x * blockDim.x + threadIdx.x) * CACHE_OFFSET;
int rowid{ 0 }, colid{ 0 };

#pragma unroll
for (int i = 0; i < CACHE_OFFSET; ++i, ++tid)
{

rowid = tid % height;
colid = tid / height;
uchar4 in = data[rowid * width + colid];
sum.x += in.x; sum.y += in.y; sum.z += in.z; sum.w += in.w;

}
out[blockIdx.x * blockDim.x + threadIdx.x] = sum;

}
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Const : 1D Cache <2> Titan V

122
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Restrict : 1D Cache <2> Titan V

123
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Texture : 1D Cache <2> Titan V

124
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1D Cache - Row

125

Approach 1080TI TITAN V 2080TI 1080TI TITAN V 2080TI
Const Array 0.2772 0.1669 0.18 242.1 402.1 372.9
Const Array Restrict 0.2898 0.1731 0.1844 231.6 387.8 364
Texture 0.2827 0.1751 0.1865 237.4 383.3 359.8

Approach 1080TI TITAN V 2080TI 1080TI TITAN V 2080TI
Const Array 0.2829 0.1475 0.1558 237.2 455.1 430.7
Const Array Restrict 0.2374 0.1464 0.1556 282.7 458.3 431.2
Texture 0.2593 0.1526 0.1575 258.8 439.8 426.2

Approach 1080TI TITAN V 2080TI 1080TI TITAN V 2080TI
Const Array 0.5497 0.1331 0.1457 122.1 504.1 460.5
Const Array Restrict 0.217 0.1342 0.1454 309.3 500.2 461.4
Texture 0.3922 0.1853 0.1971 171.1 362.1 340.6

ms GiB/s
Cache <2>

Cache <4>

Cache <8>

Volta/Turing: Both always utilize Unified cache, hence both similar over all
tests
Pascal: We can see difference between L1 and L2 especially in last
example
Texture always slightly slower than linear memory on newer architectures,
not so clear on Pascal
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1D Cache - Column

126

Approach 1080TI TITAN V 2080TI 1080TI TITAN V 2080TI
Const Array 0.9069 0.3839 0.4526 73.99 174.8 148.3
Const Array Restrict 0.8982 0.383 0.451 74.72 175.2 148.8
Texture 0.2977 0.1772 0.2069 225.4 387.8 324.3

Approach 1080TI TITAN V 2080TI 1080TI TITAN V 2080TI
Const Array 0.901 0.3758 0.4154 74.49 178.6 161.6
Const Array Restrict 0.898 0.3758 0.4135 74.74 178.6 162.3
Texture 0.3859 0.1997 0.184 173.9 336.1 364.8

Approach 1080TI TITAN V 2080TI 1080TI TITAN V 2080TI
Const Array 0.9358 0.5069 0.4832 71.71 132.4 138.9
Const Array Restrict 0.9337 0.51 0.4791 71.87 131.6 140.1
Texture 0.4895 0.1956 0.2091 137.1 343.1 321

ms GiB/s
Cache <2>

Cache <4>

Cache <8>

Texture always better for all
Consumer cards significantly slower in column access compared to row
based access, TITAN V not that much
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RowAfterRow – 2D

127

127



RowAfterRow: Texture vs Global

128

__global__ void deviceLoadRowAfterRow(const float4* data, int pitch, int width, int height,
float4* out)
{
float4 sum = make_float4(0,0,0,0);
int xin = blockIdx.x*blockDim.x + threadIdx.x;
int yin = blockIdx.y*blockDim.y + threadIdx.y;
for(int y = yin; y < height; y+=blockDim.y)
{

float4 in = data[xin + y*pitch];
sum.x += in.x; sum.y += in.y; sum.z += in.z; sum.w += in.w;

}
out[xin + yin*gridDim.x*blockDim.x] = sum;

}

float4 in = tex2D(myTex,xin,y);
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RowAfterRow: Texture vs Global

global linear (cudaMalloc) 461 GiB/s

129
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RowAfterRow: Texture vs Global

global 2D (cudaMallocPitch) 464 GiB/s

130
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RowAfterRow: Texture vs Global

texture (cudaArray) 434 GiB/s
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RowAfterRow: Texture vs Global

texture (cudaMallocPitch) 422 GiB/s
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ColumnAfterColumn

133
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ColumnAfterColumn: Texture vs Global

134

__global__ void deviceLoadRowAfterRow(const float4* data, int pitch, int width, int height,
float4* out)
{
float4 sum = make_float4(0,0,0,0);
int xin = blockIdx.x*blockDim.x + threadIdx.x;
int yin = blockIdx.y*blockDim.y + threadIdx.y;
for(int y = yin; y < height; y+=blockDim.y)
{

float4 in = data[xin + y*pitch];
sum.x += in.x; sum.y += in.y; sum.z += in.z; sum.w += in.w;

}
out[xin + yin*gridDim.x*blockDim.x] = sum;

}

float4 in = tex2D(myTex,xin,y);
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ColumnAfterColumn: Texture vs Global

global linear (cudaMalloc) 439 GiB/s
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ColumnAfterColumn: Texture vs Global

global 2D (cudaMallocPitch) 442 GiB/s
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ColumnAfterColumn: Texture vs Global

texture (cudaArray) 434 GiB/s

137
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ColumnAfterColumn: Texture vs Global

texture (cudaMallocPitch) 428 GiB/s

138

138



Texture vs Global: Sliding

• Row access is similarly efficient with all variants

• Column access is divided
• Consumer Cards profit greatly from spatial access pattern in Texture
• Titan V seeminly does not care

139

Approach 1080TI TITAN V 2080TI 1080TI TITAN V 2080TI
Const Array 0.254 0.1454 0.145 264.2 461.5 462.7
Const Array Pitched 0.254 0.1444 0.1452 264.2 464.8 462.1
Texture 0.2552 0.1546 0.1372 263 434 489.2
Texture Array 0.2614 0.1587 0.1495 256.7 422.8 448.9

Approach 1080TI TITAN V 2080TI 1080TI TITAN V 2080TI
Const Array 0.5101 0.1526 0.208 131.6 439.8 322.6
Const Array Pitched 0.51 0.1516 0.2123 131.6 442.8 316.1
Texture 0.253 0.1546 0.1372 265.3 434.1 489.2
Texture Array 0.2805 0.1567 0.1443 239.2 428.3 465.2

ms GiB/s

Row

Column
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Filter X

140
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FilterX: Texture vs Global

141

__global__ void globalFilterX(const uchar4* data, int pitch, int width, int height,
uchar4* out, int offset)
{
uchar4 sum = make_uchar4(0,0,0,0);
int xin = blockIdx.x*blockDim.x + threadIdx.x;
int yin = blockIdx.y*blockDim.y + threadIdx.y;

if(xin >= offset && xin < width-offset-1)
{

for(int x = xin-offset; x <= xin+offset; ++x)
{

uchar4 in = data[x + yin*pitch];
sum.x += in.x; sum.y += in.y; sum.z += in.z; sum.w += in.w;

}
}
yin = yin % blockDim.y;
out[xin + yin*gridDim.x*blockDim.x] = sum;

}

uchar4 in = tex2D(myTex,x,yin);

No need for if
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FilterX: Texture vs Global

global linear (cudaMalloc) 1602 GiB/s
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FilterX: Texture vs Global

texture (cudaArray) 1386 GiB/s

143
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Filter Y

144
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FilterY: Texture vs Global

145

__global__ void globalFilterX(const uchar4* data, int pitch, int width, int height,
uchar4* out, int offset)
{
uchar4 sum = make_uchar4(0,0,0,0);
int xin = blockIdx.x*blockDim.x + threadIdx.x;
int yin = blockIdx.y*blockDim.y + threadIdx.y;

if(yin >= offset && yin < height-offset-1)
{

for(int y = yin-offset; y <= yin+offset; ++y)
{

uchar4 in = data[xin + y*pitch];
sum.x += in.x; sum.y += in.y; sum.z += in.z; sum.w += in.w;

}
}
yin = yin % blockDim.y;
out[xin + yin*gridDim.x*blockDim.x] = sum;

}

uchar4 in = tex2D(myTex,xin,y);

No need for if
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FilterY: Texture vs Global

global linear (cudaMalloc) 1560GB/s
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FilterY: Texture vs Global

texture (cudaArray) 1411 GiB/s

147
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Texture vs Global: Filtering

• Prior to Volta: Texture Access always benefical -> linear memory only cached in L2$

• Volta+: Linear Memory outperforms texture memory -> linear memory cached in L1$ as well

148

Approach 1080TI TITAN V 2080TI 1080TI TITAN V 2080TI
Const Array 1.126 0.4608 0.5302 655.4 1602 1392
Const Array Pitched 1.125 0.4588 0.529 656.4 1609 1237
Texture 0.7414 0.5324 0.6846 955.7 1386 1078
Texture Array 0.7415 0.5304 0.6918 955.5 1392 1067

Approach 1080TI TITAN V 2080TI 1080TI TITAN V 2080TI
Const Array 0.8999 0.4731 0.5975 820.3 1560 1235
Const Array Pitched 0.8994 0.4731 0.5965 820.8 1560 1237
Texture 0.7229 0.5233 0.6922 1021 1411 1066
Texture Array 0.7332 0.5274 0.7141 1007 1400 1034

ms GiB/s

X

Y

148



Random Access in vicinity
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Random Sampling: Texture vs Global

150

template<int Area>
__global__ void deviceReadRandom(const uchar4* data, int pitch, int width, int height, uchar4* out, int samples){
uchar4 sum = make_uchar4(0,0,0,0);
int xin = blockIdx.x*blockDim.x + Area*(threadIdx.x/Area);
int yin = blockIdx.y*blockDim.y + Area*(threadIdx.y/Area);

unsigned int xseed = threadIdx.x *9182 + threadIdx.y*91882 + threadIdx.x*threadIdx.y*811 + 72923181;
unsigned int yseed = threadIdx.x *981 + threadIdx.y*124523 + threadIdx.x*threadIdx.y*327 + 98721121;

for(int sample = 0; sample < samples; ++sample)
{

unsigned int x = xseed%Area;
unsigned int y = yseed%Area;
xseed = (xseed * 1587);
yseed = (yseed * 6971);
uchar4 in = data[xin + x + (yin + y)*pitch];
sum.x += in.x; sum.y += in.y; sum.z += in.z; sum.w += in.w;

}

yin = (yin + threadIdx.y%Area) % blockDim.y;
out[xin + threadIdx.x%Area + yin*width] = sum;

}
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Random Sampling: Texture vs Global

global linear (cudaMalloc) 1014 GiB/s
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Random Sampling: Texture vs Global

texture (cudaArray) 1170 GiB/s
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Texture vs Global: Sampling

• L2 cache important for all examples
• Texture cache boosts speed

153

Approach 1080TI TITAN V 2080TI 1080TI TITAN V 2080TI
Const Array 2.394 0.6615 0.7749 280.4 1014 866.1
Const Array Pitched 2.392 0.6615 0.774 280.5 1014 867
Texture 1.484 0.5734 0.7436 452.3 1170 902.5
Texture Array 1.483 0.5683 0.7492 452.6 1181 895.8

ms GiB/s
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Texture vs Global Conclusion

• Not so clear anymore

• Prior to CC 7.x
• Textures perform as good and sometimes better
• Put less stress on L2 cache
• L1 free for other tasks
• Features: border handling, interpolation, format conversion

• Now
• Unified Cache (L1 + Tex)
• Much more advanced caching

utilizes Unified Cache very efficiently
• Textures still perform best for spatial access pattern or where linear access clearly fails
• But can also be slower if access pattern and cache hits favor linear memory

154

154



Shared Memory
• Shared access within one block (lifetime: block)
• Located on multiprocessor  very fast
• Limited size
• Crossbar: simultaneous access to distinct banks
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Thread 0

Thread 1

Thread 2

Thread 3

Bank 0 Bank 1 Bank 2 Bank 3

__shared__ int s[64]; s[32] s[33] s[34] s[35]
s[0] s[1] s[2] s[3]
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Shared memory
• Accessed via crossbar  access pattern important
• Different behavior for different architectures

• Fermi:
access issued per 32 threads
32 banks a 32 bits per 2 clock cycles

• Kepler:
access issued per 32 threads
32 banks a 64 bits per clock cycle
64-bit mode: two threads can access any part of a 64 bit word
32-bit mode: two threads can access any part of a 64 bit word  which would fall in the 
same bank
modes can be set using the CUDA API

• Now:
access issued per 32 threads
32 banks a 32 bits per clock cycle
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bank = (address/4) % 32

bank = (address/8) % 32

bank = (address/4) % 32
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Shared memory cont’d

• Key to good performance is the access pattern
• Conflict free access: all threads within a warp access different banks 

(mind Kepler exceptions)
• Multicast: all threads accessing the same word are served with one 

transaction
• Serialization: multiple access conflicts will be serialized
• Introduce padding to avoid bank conflicts
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Shared memory cont’d
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Bank 31

Bank 9

Bank 8

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

…

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8
Thread 9

Thread 31 Bank 31

Bank 9

Bank 8

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

…

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8
Thread 9

Thread 31 Bank 31

Bank 9

Bank 8

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0
…

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8
Thread 9

Thread 31 Bank 31

Bank 9

Bank 8

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

…

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8
Thread 9

Thread 31
conflict free access conflict free access broadcast two-way bank conflict

(different words)
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__global__ void kernel(...)
{

__shared__ float mydata[32*32];
...
float sum = 0;
for(uint i = 0; i < 32; ++i)

sum += mydata[threadIdx.x + i*32]; //conflict free
...
sum = 0;
for(uint i = 0; i < 32; ++i)

sum += mydata[threadIdx.x*32 + i]; //32-way conflict
...

}

0
0
0
0
0
0

9
9
9
29
29
29

31
31
31
31
31
3130

30
30
30
30
30

0 1 2 3 4 5 6 7 8 9 3031

Shared memory cont’d
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0 1 2 3 4 5 6 7 8 9 3031
0 1 2 3 4 5 6 7 8 9 3031
0 1 2 3 4 5 6 7 8 293031
0 1 2 3 4 5 6 7 8 293031
0 1 2 3 4 5 6 7 8 293031

1
1
1
1
1
1

2
2
2
2
2
2

3
3
3
3
3
3

4
4
4
4
4
4

5
5
5
5
5
5

6
6
6
6
6
6

7
7
7
7
7
7

8
8
8
8
8
8

numbers represent banks
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__global__ void kernel(...)
{

__shared__ float mydata[32*(32 + 1)];
...
float sum = 0;
for(uint i = 0; i < 32; ++i)

sum += mydata[threadIdx.x + i*33]; //conflict free
...
sum = 0;
for(uint i = 0; i < 32; ++i)

sum += mydata[threadIdx.x*33 + i]; //conflict free
...

}

Shared memory cont’d
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0 1 2 3 4 5 6 7 8 9 3031
1 2 3 4 5 6 7 8 9 1031 0
2 3 4  5 6 7 8 9 1011 0 1
3 4 5 6 7 8 9 1011 0 1 2
4 31 0 1 2 3 4 5 6 7 2 3
31 0 1 2 3 4 5 6 7 8 29300
1
2
3
4
31

1
2
3
4

31
0

0

2
3
4
5

1

3
4

6
1
2

5

4
5
6
7
2
3

5
6
7
8
3
4

6
7
8
9
4
5

10

7
8
9

5
6

10
11

8
9

6
7

10
9

11
0
7
8

30
31
0
1
2

29

31
0
1
2
3
30
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Shared memory use cases

161

__global__ void kernel(...)
{

__shared__ bool run;
run = true;
while(run)
{

__syncthreads();
if(found_it())

run = false;
__syncthreads();

}
}

• Inter-thread communication
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Shared memory use cases
• Inter-thread communication
• Reduce global memory access manual cache
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__global__ void kernel(float* global_data, ...)
{

extern __shared__ float data[];
uint linid = blockIdx.x*blockDim.x + threadIdx.x;
//load
data[threadIdx.x] = global_data[linid];
__syncthreads();
for(uint it = 0; it < max_it; ++it)

calc_iteration(data); //calc
__syncthreads();
//write back
global_data[linid] = data[threadIdx.x];

}
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Shared memory use cases
• Inter-thread communication
• Reduce global memory access manual cache
• Adjust global memory access pattern
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__global__ void transp(float* global_data, float* global_data2)
{

extern __shared__ float data[];
uint linid1 = blockIdx.x*32 + threadIdx.x + blockIdx.y*32*width;
uint linid2 = blockIdx.x*32*width + threadIdx.x + blockIdx.y*32;
for(uint i = 0; i < 32; ++i)

data[threadIdx.x + i*33] = global_data[linid1 + i*width];
__syncthreads();
for(uint j = 0; j < 32; ++j)

global_data2[linid2 + j*width] = data[threadIdx.x*33 + j] ;
}
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Shared memory use cases
• Inter-thread communication
• Reduce global memory access manual cache
• Adjust global memory access pattern
• Indexed access
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__global__ void kernel(...)
{

uint mydata[8]; //will be spilled to local memory
for(uint i = 0; i < 8; ++i)

mydata[i] = complexfunc(i, threadIdx.x);
uint res = 0;
for(uint i = 0; i < 64; ++i)

res += secondfunc(mydata[(threadIdx.x + i) % 8],
mydata[i*threadIdx.x % 8]);

}

164



Shared memory use cases
• Inter-thread communication
• Reduce global memory access manual cache
• Adjust global memory access pattern
• Indexed access 
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__global__ void kernel(...)
{

__shared__ uint allmydata[8*BlockSize];
uint *mydata = allmydata + 8*threadIdx.x;
for(uint i = 0; i < 8; ++i)

mydata[i] = complexfunc(i, threadIdx.x);
uint res = 0;
for(uint i = 0; i < 64; ++i)

res += secondfunc(mydata[(threadIdx.x + i) % 8],
mydata[i*threadIdx.x % 8]);

}
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Shared memory use cases
• Inter-thread communication
• Reduce global memory access manual cache
• Adjust global memory access pattern
• Indexed access
• Combine costly operations
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__global__ void kernel(uint *global_count, ...)
{

__shared__ uint blockcount;
blockcount = 0;
__syncthreads();
uint myoffset = atomicAdd(&blockcount, myadd);
__syncthreads();
if(threadIdx.x == 0)

blockcount = atomicAdd(global_count, blockcount);
__syncthreads();
myoffset += blockcount;

}
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Registers vs Shared Memory vs Global
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Global 
Memory

Shared 
Memory

Registers

190–240 GiB/s (K80) 
510–732 GiB/s (P100)
750–900 GiB/s (V100)

2.9 TiB/s (K80)
9.5 TiB/s (P100)

13.8 TiB/s (V100) 8 TiB/s (Fermi)
27 TiB/s (Kepler)

7.6×
13.5×

6×
12×
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