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Outline

* The problem of shape from sound
* |sospectralization: numerical optimization technique
* Applications: matching, style transfer and universal

adversarial attacks
 Data driven approach



Shape from sound

* Can we infer the boundary of a flat membrane just from the
frequencies it emits?

1966
CAN ONE HEAR THE SHAPE OF A DRUM?
MARK KAC, The Rockefeller University, New York
To George Eugene Uhlenbeck on the occasion of his sixty-fifth birthday

“La Physique ne nous donne pas sculement
'occasion de résoudre des problémes . . . , elle nous
:

fait presentir la solution.” H. POINCARE.

Before | explain the title and introduce the theme of the lecture I should like
to state that my presentation will be more in the nature of a leisurely excursion
than of an organized tour. It will not be my purpose to reach a specified des-
tination at a scheduled time. Rather | should like to allow mvself on manv



Shape from sound

* Can we infer the boundary of a flat membrane just from the
frequencies it emits?

 Described by the wave equation z = f (x,y,t)

’f a0
o~V
 Spatial frequencies are the eigenvalues of the

Laplacian



Shape from sound

e Can we reconstruct a 3D mesh from the eigenvalues sequence of its
Laplace Beltrami Operator?
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Shape from sound

e Can we reconstruct a 3D mesh from the eigenvalues sequence of its
Laplace Beltrami Operator?

arg min ||A (Ax) — |,
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Shape from sound

e Shape from sound: toward new tools for quantum gravity (Aesen et al. 2013)
* Manifold discretized as a star-shaped polyhedra

argmin | A (A({r:})) — pl]5

w {ri}

pi = 1;d;




Shape from sound

e Shape from sound: toward new tools for quantum gravity (Aesen et al. 2013)
* Manifold discretized as a star-shaped polyhedra
* Metric of a 2-dimesnional manifold can be differentiated w.r.t. its eigenvalues

argmin | A (A({r:})) — pl]5
{r:}

Cotangent Laplacian A = A~!'W expressed in terms of discrete metric

* Gradient descent step:

li; = ||xi — x;|| where
_1‘-’J—/-’A +£3, —{f,+lf,‘+[,—’” ; 2
AL, + —8An if e;; € & ay (1)
= —gadia, ‘ B A= (t+1) _ (1) \ H" (A({Ti })) - “H
J = if e;; € & r = r. — t‘)/_ 2
— 3 ki Wik ifi=j an J J V?”j

where A;;;. is area of triangle ijk and a; = —’; Z Aijk

1jk:ijike€




Shape from sound

e Shape from sound: toward new tools for quantum gravity (Aesen et al. 2013)
* Manifold discretized as a star-shaped polyhedra
* Metric of a 2-dimesnional manifold can be differentiated w.r.t. its eigenvalues




Shape from sound

* |sospectral = Isometric

-
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* Metric priors are not enough

RESEARCH ANNOUNCEMENTS

BULLETIN (New Series) OF THE zﬂﬂ2

AMERICAN MATHEMATICAL SOCIETY
Volume 27, Number 1, July 1992

ONE CANNOT HEAR THE SHAPE OF A DRUM

CAROLYN GORDON, DAVID L. WEBB, AND SCOTT WOLPERT

ABSTRACT. We use an extension of Sunada’s theorem to construct a noniso-
metric pair of isospectral simply connected domains in the Euclidean plane,
thus answering negatively Kac’s question, “can one hear the shape of a drum?”
In order to construct simply connected examples, we exploit the observation
that an orbifold whose underlying space is a simply connected manifold with
boundary need not be simply connected as an orbifold.




Isospectralization™

in A (A(X)) — X
cin A (AX)) = pll, + px (X)

* Optimization directly on the 3D coordinates

* Data term: Weighted norm (frequency balancing)
k
1
A — 2 = Z 2 (N — i)

i=1 """

* Cosmo et al. Isospectralization, or how to hear shape, style, and correspondence. CVPR 2019
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* Regularizers to promote smoothness / maximize volume
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|Isospectralization

« 2D shapes:

iter 1 Target shape

Eigenvalues alignment
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|Isospectralization

* 3D shapes:
1 T
pxa(X) = [AX)X[F o= 1] 2 (G o b

iter 0 Target shape Eigenvalues alignment
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|sospectralization: Applications

* Preprocessing step in Functional Map based matching algorithms
for non-isometric shapes

i
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|sospectralization: Applications

* Preprocessing step in Functional Map based matching algorithms
for non-isometric shapes
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|sospectralization: Applications

* Preprocessing step in Functional Map based matching algorithms

for (highly) non-isometric shapes

% Correspondences
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|sospectralization: Applications

* |sospectralization induces isometry

(5]
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|sospectralization: Applications

I I
e Style transfer e i p
Eigenvalues do not encode ‘
pose information

Target style /

+
Source pose

Target style




|sospectralization: Applications

Universal Spectral Adversarial Attacks for Deformable Shapes
Rampini et al. CVPR 2021

e Spectrum as a proxy for Universal Deformations
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|sospectralization: Applications
Universal Spectral Adversarial Attacks for Deformable Shapes

perturbation

The perturbation should be undetectable and can be explicitly optimized for.

Szegedy et al. Intriguing properties of neural networks. |CLR 2014
Goodfellow et al. Explaining and Harnessing Adversarial Examples. ICLR 2015 21



|sospectralization: Applications
Universal Spectral Adversarial Attacks for Deformable Shapes

* Given an input shape X, a classifier C, and possibly a target class t,
consider:

. .
min ||x — x H2
x’/€[0,1]™

st. C(x')=t or C(X') #C(x)
We call x” an adversarial attack.

* Miss-classification constraint relaxed to a penalty term

min —x'IZ+el(x'.t
i fx =3+ eL(x



|sospectralization: Applications
Universal Spectral Adversarial Attacks for Deformable Shapes

A more general approach is given by:

in d 5 5
somin (x,x+ ) +cf(x+9)

where the perturbation 0 appears explicitly, and d is some distane

f is such that C (x+98)=t if and oly if f (x+9)<O0.

JAE ) = |U— FE Jg)
fs5(z') = —log(2F (z'): — 2)
fe(z') = (111;1;((2(-’1'/)1') — Gl Y

See:

Carlini and Wagner, 2016
“Towards evaluating the robustness of neural networks”
f'...(/)'/\ — aenftnlnce/ma~( 7(0'/\ b 7(0'/\.\ — laa(9)



|sospectralization: Applications
Universal Spectral Adversarial Attacks for Deformable Shapes

' d(X;,X; + 0 i +0
5é%l,rf]ni (xi,%; +0) + cf(x; + 0)

What about surfaces and point clouds?

Can we even define a single spatial
perturbation for an entire collection of shapes?

* Moosavi-Dezfooli et al. Universal adversarial perturbations. CVPR 2017

24



|sospectralization: Applications
Universal Spectral Adversarial Attacks for Deformable Shapes

* We do not always have shapes in correspondence
Spatial transformations are not invariant to isometries.




|sospectralization: Applications
Universal Spectral Adversarial Attacks for Deformable Shapes

e Let 0(X) = (A1, A1,..., k) be the shape spectrum

min Y [lo(X:)(1+ p) — o(P(X))|3

st. C(P(X,) £ C(X,) VX, €S

X, — (A?’)
shape-agnostic, universal perturbation.
- o . 3 . Pi L
P; shape-specific, extrinsic (acting on IR* ) perturbations for
each shape ~




|sospectralization: Applications
Universal Spectral Adversarial Attacks for Deformable Shapes

Perturbation expressed as a linear combination of smooth vector

fields (eigenvectors of LBO)*:

(
Pi (Xi) = Xi + @0 b
f
Resulting in the optimization problem: }
min Z lo(X) (1 + p) — o(X; + D;05) I3 k\
PER™ Xies
{aiys € |

[*] Mariani et al. 2020. "Generating adversarial surfaces via band-limited perturbations". CGF 2020 27



|sospectralization: Applications

Universal Spectral Adversarial Attacks for Deformable Shapes
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|sospectralization: Applications
Universal Spectral Adversarial Attacks for Deformable Shapes

Generalization: the deformation can be transferred to unseen
shapes and cause misclassification.

Universal attack on ID 10 Generalization on ID 10

X —— (X) { P
et ;IHL.,-IIH J.I.,u.llllllq ;TL.,-M T.,nllllﬁ R i R J]Hu,n]llul ;]Man 1.l.,u,lll|lﬁ Ll.,u,nIH

o
X «— (A | | | . | |
ID 2 ID 2 ID 3 ID 3 ID 2 11>'3 ID 3 ID 2 ID 3

mm Z o (X) (14 p) —J(X+<I>a)||2

« ER"’ XeSs
29

Isospectralization!



|Isospectralization

Drawbacks of optimization strategy:

* Slow and tedious = At most 30 eigenvalues
= Alternate optimization of boundary and interior
points every 10 iterations

= Re-sampling step is performed once every 200
iterations

= Advanced optimization algorithms to escape local
minima (Adam)

* Not straightforward to define priors/regularizers for specific domains



Data driven approach

AE-based lea rning model. (Marin et al. Instant recovery of shape from spectrum via
latent space connections. 3DV 2020)

* Latent space connections

32



Data driven approach

AE-based lea rning model. (Marin et al. Instant recovery of shape from spectrum via
latent space connections. 3DV 2020)

* Latent space connections

{=V0x +aly, with

tx = ~|D(E(X)) - X[}

Oo= 2 (l7(X) — EX)|z + llp(E(X)) — All2)

1
k
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Data driven approach

AE-based lea rning model. (Marin et al. Instant recovery of shape from spectrum via
latent space connections. 3DV 2020)

* Latent space connections

{=V0x +aly, with

tx = ~ | D(EX)) - X[}

Oo= 2 (l7(X) — EX)|z + llp(E(X)) — All2)

1
k

The spectral loss enforces:

1

PR
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Data driven approach

AE-based lea rning model. (Marin et al. Instant recovery of shape from spectrum via
latent space connections. 3DV 2020)

* Latent space connections Remarks:

* No back-propagation through
the eigen-decomposition

35



Data driven approach

AE-based lea rning model. (Marin et al. Instant recovery of shape from spectrum via
latent space connections. 3DV 2020)

* Latent space connections Remarks:

* No back-propagation through
the eigen-decomposition

* The input spectrum can be
arbitrarily accurate
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Data driven approach

AE-based lea rning model. (Marin et al. Instant recovery of shape from spectrum via
latent space connections. 3DV 2020)

* Latent space connections Remarks:

* No back-propagation through
the eigen-decomposition

* The input spectrum can be
arbitrarily accurate

* Admits any AE model (e.g. for
point clouds, meshes, etc.)

37



Data driven approach

* Shape-from-spectrum reconstruction INPUT

39



Data driven approach

e Style transfer

m‘}n HSpeC(Xstyle) _p(V)Hg T va_E(XpOSG)Hg

our result

eigenvalues

40



Data driven approach

* Shape exploration

Spectrum
Init - Input Locked - Input in modification 2, 7 &M & Q 7
T T

Low-pass mod. j ' ]
Band-pass mod. <[ |

[ 528

Output shape from D(n(e))

41



Data driven approach

e Spectra estimation

|Spec(X)

eigenvalues
[ [

eigenvalues

Cumulative error
|

20 30

20 30

eigelr(ljvalues indices eigelr(l)values indices
w— [ 0]: 1.12 — []6]: 1.92
— [6]: 8.82 — [6]: 2.30
NN: 2.14 NN: 1.75
e Qurs: (.66 e Quirs: (.67




Summary

* Eigenvalues are
* Isometry invariant
e Discretization invariant
» Correspondence free

* Enables a lot of applications in the shape analysis field:
* Shape compression and reconstruction
 Style transfer
* Shape correspondence

* Physically meaningful (latent) space for shape exploration



