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Outline

2

• The problem of shape from sound 
• Isospectralization: numerical optimization technique
• Applications: matching, style transfer and universal 

adversarial attacks
• Data driven approach



Shape from sound

• Can we infer the boundary of a flat membrane just from the 
frequencies it emits?
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Shape from sound

• Can we infer the boundary of a flat membrane just from the 
frequencies it emits?
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• Described by the wave equation

• Spatial frequencies are the eigenvalues of the 
Laplacian



Shape from sound

• Can we reconstruct a 3D mesh from the eigenvalues sequence of its 
Laplace Beltrami Operator?
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Spectral decomposition



Shape from sound

• Can we reconstruct a 3D mesh from the eigenvalues sequence of its 
Laplace Beltrami Operator?
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Spectral decomposition



Shape from sound

• Shape from sound: toward new tools for quantum gravity (Aesen et al. 2013)

• Manifold discretized as a star-shaped polyhedra
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• Gradient descent step:
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Shape from sound

• Isospectral != Isometric

• Metric priors are not enough
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1992



Isospectralization*
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* Cosmo et al. Isospectralization, or how to hear shape, style, and correspondence. CVPR 2019

• Optimization directly on the 3D coordinates
• Data term: Weighted norm (frequency balancing)



Isospectralization
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• Regularizers to promote smoothness / maximize volume



Isospectralization

• 2D shapes:
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Isospectralization

• 3D shapes:
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Isospectralization: Applications

• Preprocessing step in Functional Map based matching algorithms 
for non-isometric shapes 

15



Isospectralization: Applications

• Preprocessing step in Functional Map based matching algorithms 
for non-isometric shapes 
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Isospectralization: Applications

• Preprocessing step in Functional Map based matching algorithms 
for (highly) non-isometric shapes 
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Isospectralization: Applications

• Isospectralization induces isometry

18



Isospectralization: Applications

• Style transfer

19

Eigenvalues do not encode 
pose information



Universal Spectral Adversarial Attacks for Deformable Shapes
Rampini et al. CVPR 2021

• Spectrum as a proxy for Universal Deformations
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Isospectralization: Applications



Universal Spectral Adversarial Attacks for Deformable Shapes
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The perturbation should be undetectable and can be explicitly optimized for.

?
?

?

Szegedy et al. Intriguing properties of neural networks. ICLR 2014
Goodfellow et al. Explaining and Harnessing Adversarial Examples. ICLR 2015

Isospectralization: Applications



• Given an input shape , a classifier , and possibly a target class , 

consider:

We call x’  an adversarial attack.

• Miss-classification constraint relaxed to a penalty term
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Universal Spectral Adversarial Attacks for Deformable Shapes
Isospectralization: Applications



• A more general approach is given by:

where the perturbation appears explicitly, and is some distane 

is such that if and oly if .
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See:

Carlini and Wagner, 2016
“Towards evaluating the robustness of neural networks”

Universal Spectral Adversarial Attacks for Deformable Shapes
Isospectralization: Applications



Universal Spectral Adversarial Attacks for Deformable Shapes
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Image-agnostic perturbations are known to exist *.

What about surfaces and point clouds?

Can we even define a single spatial
perturbation for an entire collection of shapes?

Isospectralization: Applications

* Moosavi-Dezfooli et al. Universal adversarial perturbations. CVPR 2017



• We do not always have shapes in correspondence
• Spatial transformations are not invariant to isometries.

Universal Spectral Adversarial Attacks for Deformable Shapes
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Isospectralization: Applications



• Let                                       be the shape spectrum

Universal Spectral Adversarial Attacks for Deformable Shapes

26

shape-agnostic, universal perturbation.

shape-specific, extrinsic (acting on       ) perturbations for 
each shape

Isospectralization: Applications



Universal Spectral Adversarial Attacks for Deformable Shapes

• Perturbation expressed as a linear combination of smooth vector 

fields (eigenvectors of LBO)*:

• Resulting in the optimization problem:
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Isospectralization: Applications

[*] Mariani et al. 2020. "Generating adversarial surfaces via band-limited perturbations". CGF 2020



Universal Spectral Adversarial Attacks for Deformable Shapes
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Isospectralization: Applications



Universal Spectral Adversarial Attacks for Deformable Shapes

Generalization: the deformation can be transferred to unseen 
shapes and cause misclassification.
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Isospectralization!

Isospectralization: Applications



Isospectralization

Drawbacks of optimization strategy:

• Slow and tedious

• Not straightforward to define priors/regularizers for specific domains
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▪ At most 30 eigenvalues
▪ Alternate optimization of boundary and interior 

points every 10 iterations
▪ Re-sampling step is performed once every 200 

iterations
▪ Advanced optimization algorithms to escape local 

minima (Adam)



Data driven approach

AE-based learning model. (Marin et al. Instant recovery of shape from spectrum via 

latent space connections. 3DV 2020)

• Latent space connections
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The spectral loss enforces:

Data driven approach

AE-based learning model. (Marin et al. Instant recovery of shape from spectrum via 

latent space connections. 3DV 2020)

• Latent space connections
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Remarks:

• No back-propagation through 
the eigen-decomposition

Data driven approach

AE-based learning model. (Marin et al. Instant recovery of shape from spectrum via 

latent space connections. 3DV 2020)

• Latent space connections
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Remarks:

• No back-propagation through 
the eigen-decomposition

• The input spectrum can be 
arbitrarily accurate

Data driven approach

AE-based learning model. (Marin et al. Instant recovery of shape from spectrum via 

latent space connections. 3DV 2020)

• Latent space connections
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Remarks:

• No back-propagation through 
the eigen-decomposition

• The input spectrum can be 
arbitrarily accurate

• Admits any AE model (e.g. for 
point clouds, meshes, etc.)

Data driven approach

AE-based learning model. (Marin et al. Instant recovery of shape from spectrum via 

latent space connections. 3DV 2020)

• Latent space connections
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INPUT

Data driven approach

• Shape-from-spectrum reconstruction
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Data driven approach

• Style transfer
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Data driven approach

• Shape exploration
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Data driven approach

• Spectra estimation
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Summary

• Eigenvalues are 
• Isometry invariant

• Discretization invariant

• Correspondence free

• Enables a lot of applications in the shape analysis field:
• Shape compression and reconstruction

• Style transfer

• Shape correspondence

• Physically meaningful (latent) space for shape exploration


