

Tutorial:

Inverse Computational Spectral Geometry

3/4

Simone Melzi

Luca Cosmo

Emanuele Rodolà

Maks Ovsjanikov

Michael Bronstein

Outline

- The problem of shape from sound
- Isospectralization: numerical optimization technique
- Applications: matching, style transfer and universal adversarial attacks
- Data driven approach

• Can we infer the boundary of a flat membrane just from the frequencies it emits?

1966

CAN ONE HEAR THE SHAPE OF A DRUM?

MARK KAC, The Rockefeller University, New York

To George Eugene Uhlenbeck on the occasion of his sixty-fifth birthday

"La Physique ne nous donne pas seulement l'occasion de résoudre des problèmes . . . , elle nous fait presentir la solution." H. Poincaré.

Before I explain the title and introduce the theme of the lecture I should like to state that my presentation will be more in the nature of a leisurely excursion than of an organized tour. It will not be my purpose to reach a specified destination at a scheduled time. Rather I should like to allow myself on many

• Can we infer the boundary of a flat membrane just from the frequencies it emits?

• Described by the wave equation z = f(x,y,t)

$$\frac{\partial^2 f}{\partial t^2} = c^2 \nabla^2 f$$

 Spatial frequencies are the eigenvalues of the Laplacian

 Can we reconstruct a 3D mesh from the eigenvalues sequence of its Laplace Beltrami Operator?

 Can we reconstruct a 3D mesh from the eigenvalues sequence of its Laplace Beltrami Operator?

- Shape from sound: toward new tools for quantum gravity (Aesen et al. 2013)
 - Manifold discretized as a star-shaped polyhedra

$$rg \min_{\{r_i\}} \left\| oldsymbol{\lambda} \left(oldsymbol{\Delta}(\{r_i\})
ight) - oldsymbol{\mu}
ight\|_2^2$$

- Shape from sound: toward new tools for quantum gravity (Aesen et al. 2013)
 - Manifold discretized as a star-shaped polyhedra
 - Metric of a 2-dimesnional manifold can be differentiated w.r.t. its eigenvalues

Cotangent Laplacian $\Delta = A^{-1}W$ expressed in terms of discrete metric $\ell_{ij} = \|\mathbf{x}_i - \mathbf{x}_j\|$ where

$$w_{ij} = \begin{cases} \frac{-\ell_{ij}^2 + \ell_{jk}^2 + \ell_{ki}^2}{8A_{ijk}} + \frac{-\ell_{ij}^2 + \ell_{jk}^2 + \ell_{ki}^2}{8A_{ijh}} & \text{if } e_{ij} \in \mathcal{E}_{\mathbf{i}} \\ \frac{-\ell_{ij}^2 + \ell_{jk}^2 + \ell_{ki}^2}{8A_{ijh}} & \text{if } e_{ij} \in \mathcal{E}_{\mathbf{b}} \\ -\sum_{k \neq i} w_{ik} & \text{if } i = j \end{cases} \quad \mathbf{A} = \begin{pmatrix} a_1 \\ \ddots \\ a_n \end{pmatrix} \qquad r_j^{(t+1)} = r_j^{(t)} - \gamma \frac{\nabla}{\nabla r_j} \left\| \boldsymbol{\lambda} \left(\boldsymbol{\Delta}(\{r_i^{(t)}\}) \right) - \boldsymbol{\mu} \right\|_2^2$$

where A_{ijk} is area of triangle ijk and $a_i = \frac{1}{3} \sum A_{ijk}$

$$rg \min_{\{r_i\}} \left\| oldsymbol{\lambda} \left(oldsymbol{\Delta}(\{r_i\})
ight) - oldsymbol{\mu}
ight\|_2^2$$

Gradient descent step:

$$r_j^{(t+1)} = r_j^{(t)} - \gamma rac{
abla}{
abla r_j} \Big\| oldsymbol{\lambda} \left(oldsymbol{\Delta}(\{r_i^{(t)}\})
ight) - oldsymbol{\mu} \Big\|_2^2$$

- Shape from sound: toward new tools for quantum gravity (Aesen et al. 2013)
 - Manifold discretized as a star-shaped polyhedra
 - Metric of a 2-dimesnional manifold can be differentiated w.r.t. its eigenvalues

• Isospectral != Isometric

Metric priors are not enough

RESEARCH ANNOUNCEMENTS

1992

BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 27, Number 1, July 1992

ONE CANNOT HEAR THE SHAPE OF A DRUM

CAROLYN GORDON, DAVID L. WEBB, AND SCOTT WOLPERT

ABSTRACT. We use an extension of Sunada's theorem to construct a nonisometric pair of isospectral simply connected domains in the Euclidean plane, thus answering negatively Kac's question, "can one hear the shape of a drum?" In order to construct simply connected examples, we exploit the observation that an orbifold whose underlying space is a simply connected manifold with boundary need not be simply connected as an orbifold.

$$\min_{\mathbf{X} \in \mathbb{R}^{n \times d}} \| \boldsymbol{\lambda} \left(\boldsymbol{\Delta}(\mathbf{X}) \right) - \boldsymbol{\mu} \|_{\omega} + \rho_X(\mathbf{X})$$

- Optimization directly on the 3D coordinates
- Data term: Weighted norm (frequency balancing)

$$\|\boldsymbol{\lambda} - \boldsymbol{\mu}\|_{\omega}^2 = \sum_{i=1}^k \frac{1}{\mu_i^2} (\lambda_i - \mu_i)^2$$

^{*} Cosmo et al. Isospectralization, or how to hear shape, style, and correspondence. CVPR 2019

$$\min_{\mathbf{X} \in \mathbb{R}^{n \times d}} \left\| \boldsymbol{\lambda} \left(\boldsymbol{\Delta}(\mathbf{X}) \right) - \boldsymbol{\mu} \right\|_{\omega} + \rho_X(\mathbf{X})$$

Regularizers to promote smoothness / maximize volume

• 2D shapes:

$$\rho_{X,1}(\mathbf{X}) = \sum_{e_{ij} \in E_b} \ell_{ij}^2(\mathbf{X})$$

$$\rho_{X,2}(\mathbf{X}) = \left(\sum_{ijk \in F} \left(\mathbf{R}_{\frac{\pi}{2}} \left(\mathbf{x}_j - \mathbf{x}_i\right)\right)^{\top} \left(\mathbf{x}_k - \mathbf{x}_i\right)\right)$$

iter 1

Target shape

• 3D shapes:

$$\rho_{X,1}(\mathbf{X}) = \|\mathbf{\Delta}(\mathbf{X})\mathbf{X}\|_F^2$$

$$\rho_{X,2}(\mathbf{V}) = -\begin{pmatrix} 1\\1\\1 \end{pmatrix}^{\top} \sum_{ijk \in F} \left((\mathbf{x}_j - \mathbf{x}_i) \times (\mathbf{x}_j - \mathbf{x}_k) \right) (\mathbf{x}_i + \mathbf{x}_j + \mathbf{x}_k)$$

 Preprocessing step in Functional Map based matching algorithms for non-isometric shapes

 Preprocessing step in Functional Map based matching algorithms for non-isometric shapes

 Preprocessing step in Functional Map based matching algorithms for (highly) non-isometric shapes

Isospectralization induces isometry

• Style transfer Eigenvalues do not encode pose information

Universal Spectral Adversarial Attacks for Deformable Shapes Rampini et al. CVPR 2021

Spectrum as a proxy for Universal Deformations

Universal Spectral Adversarial Attacks for Deformable Shapes

The perturbation should be undetectable and can be explicitly optimized for.

Universal Spectral Adversarial Attacks for Deformable Shapes

• Given an input shape x, a classifier C, and possibly a target class t, consider:

$$\min_{\mathbf{x}' \in [0,1]^n} \|\mathbf{x} - \mathbf{x}'\|_2^2$$
s.t. $C(\mathbf{x}') = t$ or $C(\mathbf{x}') \neq C(\mathbf{x})$

We call X' an adversarial attack.

Miss-classification constraint relaxed to a penalty term

$$\min_{\mathbf{x}' \in [0,1]^n} \|\mathbf{x} - \mathbf{x}'\|_2^2 + c L(\mathbf{x}', t)$$

• A more general approach is given by:

$$\min_{\delta \in [0,1]^n} d(\mathbf{x}, \mathbf{x} + \boldsymbol{\delta}) + cf(\mathbf{x} + \boldsymbol{\delta})$$

where the perturbation δ appears explicitly, and d is some distane

f is such that $C(x+\delta)=t$ if and oly if $f(x+\delta)\leq 0$.

$$f_{5}(x') = (0.5 - F(x)_{t})^{T}$$

$$f_{5}(x') = -\log(2F(x')_{t} - 2)$$

$$f_{6}(x') = (\max_{i \neq t} (Z(x')_{i}) - Z(x')_{t})^{+}$$

$$f_{7}(x') = \operatorname{softplus}(\max_{i \neq t} (Z(x')_{i}) - Z(x')_{i}) - \log(2)$$

See:

Carlini and Wagner, 2016 "Towards evaluating the robustness of neural networks"

Image-agnostic perturbations are known to exist *

$$\min_{\delta \in [0,1]^n} \sum_i d(\mathbf{x}_i, \mathbf{x}_i + \boldsymbol{\delta}) + cf(\mathbf{x}_i + \boldsymbol{\delta})$$

What about surfaces and point clouds?

Can we even define a single spatial perturbation for an entire collection of shapes?

^{*} Moosavi-Dezfooli et al. Universal adversarial perturbations. CVPR 2017

- We do not always have shapes in correspondence
- Spatial transformations are not invariant to isometries.

• Let $\sigma(X) = (\lambda_1, \lambda_1, \dots, \lambda_k)$ be the shape spectrum

$$\min_{\substack{\rho \in \mathbb{R}^k \\ \mathcal{P}_i}} \sum_{X_i \in \mathcal{S}} \|\sigma(X_i)(1+\rho) - \sigma(\mathcal{P}_i(X_i))\|_2^2$$

s.t.
$$\mathcal{C}(\mathcal{P}_i(X_i)) \neq \mathcal{C}(X_i) \quad \forall X_i \in \mathcal{S}$$

shape-agnostic, universal perturbation.

 \mathcal{P}_i shape-specific, extrinsic (acting on \mathbb{R}^3) perturbations for each shape

$$egin{aligned} oldsymbol{X}_i & \stackrel{\sigma}{\longrightarrow} & (oldsymbol{\lambda}^i) \ oldsymbol{\hat{X}}_i & \stackrel{\sigma}{\longrightarrow} & (ilde{oldsymbol{\lambda}}^i) \end{aligned}$$

 Perturbation expressed as a linear combination of smooth vector fields (eigenvectors of LBO)*:

$$\mathcal{P}_i\left(X_i\right) = X_i + \Phi_i \alpha_i$$

Resulting in the optimization problem:

$$\min_{\substack{\boldsymbol{\rho} \in \mathbb{R}^k \\ \{\alpha_i\}_i}} \sum_{X_i \in \mathcal{S}} \|\sigma(X_i)(1+\boldsymbol{\rho}) - \sigma(X_i + \Phi_i \alpha_i)\|_2^2$$

s.t.
$$C(X_i + \Phi_i \alpha_i) \neq C(X_i) \quad \forall X_i \in \mathcal{S}$$

Universal Spectral Adversarial Attacks for Deformable Shapes

Universal Spectral Adversarial Attacks for Deformable Shapes

Generalization: the deformation can be transferred to unseen shapes and cause misclassification.

$$X \stackrel{\sigma}{\longrightarrow} (\lambda)$$

$$X \stackrel{\sigma}{\longrightarrow} (\tilde{\lambda})$$

$$X \stackrel{\sigma^{-1}}{\longleftarrow} (\tilde{\lambda})$$

$$X \stackrel{\sigma^{-1}}{\longleftarrow} (\tilde{\lambda})$$

$$X \stackrel{\sigma^{-1}}{\longleftarrow} (\tilde{\lambda})$$

$$X \stackrel{\sigma}{\longleftarrow} (\tilde{\lambda})$$

$$\min_{\substack{\boldsymbol{\rho} \in \mathbb{R}^k \\ \alpha \in \mathbb{R}^k}} \sum_{X \in \mathcal{S}} \left\| \sigma\left(X\right) \left(1 + \boldsymbol{\rho}\right) - \sigma\left(X + \Phi\alpha\right) \right\|_2^2$$
 Isospectralization!

Drawbacks of optimization strategy:

- Slow and tedious
- At most 30 eigenvalues
- Alternate optimization of boundary and interior points every 10 iterations
- Re-sampling step is performed once every 200 iterations
- Advanced optimization algorithms to escape local minima (Adam)
- Not straightforward to define priors/regularizers for specific domains

AE-based learning model. (Marin et al. *Instant recovery of shape from spectrum via latent space connections.* 3DV 2020)

Latent space connections

AE-based learning model. (Marin et al. *Instant recovery of shape from spectrum via latent space connections.* 3DV 2020)

Latent space connections

$$\ell = \ell_{\mathcal{X}} + \alpha \ell_{\lambda}, \text{ with}$$

$$\ell_{\mathcal{X}} = \frac{1}{n} \|D(E(\mathbf{X})) - \mathbf{X}\|_F^2$$

$$\ell_{\lambda} = \frac{1}{k} (\|\pi(\lambda) - E(\mathbf{X})\|_2^2 + \|\rho(E(\mathbf{X})) - \lambda\|_2^2)$$

AE-based learning model. (Marin et al. *Instant recovery of shape from spectrum via latent space connections.* 3DV 2020)

Latent space connections

$$\ell = \ell_{\mathcal{X}} + \alpha \ell_{\lambda}, \text{ with}$$

$$\ell_{\mathcal{X}} = \frac{1}{n} \|D(E(\mathbf{X})) - \mathbf{X}\|_F^2$$

$$\ell_{\lambda} = \frac{1}{k} (\|\pi(\lambda) - E(\mathbf{X})\|_2^2 + \|\rho(E(\mathbf{X})) - \lambda\|_2^2)$$

The spectral loss enforces:

$$\rho \approx \pi^{-1}$$

AE-based learning model. (Marin et al. *Instant recovery of shape from spectrum via latent space connections.* 3DV 2020)

Latent space connections

Remarks:

 No back-propagation through the eigen-decomposition

AE-based learning model. (Marin et al. *Instant recovery of shape from spectrum via latent space connections.* 3DV 2020)

Latent space connections

Remarks:

- No back-propagation through the eigen-decomposition
- The input spectrum can be arbitrarily accurate

AE-based learning model. (Marin et al. *Instant recovery of shape from spectrum via latent space connections.* 3DV 2020)

Latent space connections

Remarks:

- No back-propagation through the eigen-decomposition
- The input spectrum can be arbitrarily accurate
- Admits any AE model (e.g. for point clouds, meshes, etc.)

• Shape-from-spectrum reconstruction

Style transfer

• Shape exploration

• Spectra estimation

Summary

- Eigenvalues are
 - Isometry invariant
 - Discretization invariant
 - Correspondence free
- Enables a lot of applications in the shape analysis field:
 - Shape compression and reconstruction
 - Style transfer
 - Shape correspondence
- Physically meaningful (latent) space for shape exploration