
EUROGRAPHICS 2020/ M. Fjeld and J. Frisvald Tutorial

Black Box Geometric Computing with Python
From Theory to Practice

https://geometryprocessing.github.io/blackbox-computing-python

S. Koch1, T. Schneider2 , C. Li2, and D. Panozzo2

1TU Berlin, Germany
2NYU Courant Institute, USA

Install with conda Platforms linux-64,win-64,osx-64

Abstract
The first part of the course is theoretical, and introduces the finite element method trough interactive Jupyter notebooks. It also
covers recent advancements toward an integrated pipeline, considering meshing and element design as a single challenge,
leading to a black box pipeline that can solve simulations on ten thousand in the wild meshes, without any parameter tuning.

In the second part we will move to practice, introducing a set of easy-to-use Python packages for applications in geometric
computing. The presentation will have the form of live coding in a Jupyter notebook. We have designed the presented libraries
to have a shallow learning curve, while also enabling programmers to easily accomplish a wide variety of complex tasks.
Furthermore, these libraries utilize NumPy arrays as a common interface, making them highly composable with each-other as
well as existing scientific computing packages. Finally, our libraries are blazing fast, doing most of the heavy computations in
C++ with a minimal constant-overhead interface to Python.

In the course, we will present a set of real-world examples from geometry processing, physical simulation, and geometric deep
learning. Each example is prototypical of a common task in research or industry and is implemented in a few lines of code. By
the end of the course, attendees will have exposure to a swiss-army-knife of simple, composable, and high-performance tools
for geometric computing.

CCS Concepts
• Mathematics of computing → Numerical analysis; • Theory of computation → Computational geometry; • Comput-
ing methodologies → Machine learning; Scientific visualization; Mesh models; Shape analysis; • Applied computing →
Computer-aided design;

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

https://diglib.eg.orghttps://www.eg.orgDOI: 10.2312/egt.20201000

https://geometryprocessing.github.io/blackbox-computing-python
https://orcid.org/0000-0002-5969-636X
https://doi.org/10.2312/egt.20201000

S. Koch, T Schneider, C. Li, and D. Panozzo / Black Box Geometric Computing with Python: From Theory to Practice

Full day tutorial, 4×90 minutes

1. Presenter Details

Sebastian Koch s.koch@tu-berlin.de.
Sebastian Koch is a Computer Science PhD student at Technis-
che Universitaet Berlin, Germany. His research interests are in
the fields of Geometric Machine Learning, Geometry Processing
and Meshing as well as Digital Fabrication. Sebastian is one of
the maintainers of the libigl python bindings (https://libigl.
github.io). He maintains the ABC Dataset for Geometric Deep
Learning (https://deep-geometry.github.io/abc-dataset)
and is the developer of Meshplot (https://skoch9.github.io/
meshplot), a library for the visualization of point clouds and
meshes in Jupyter Notebooks.

Teseo Schneider teseo.schneider@nyu.edu,
https://cs.nyu.edu/~teseo/.
Teseo Schneider is an assistant professor/faculty fellow in Com-
puter Science at the Courant Institute of Mathematical Sciences
in New York University. Teseo earned his PhD in Computer Sci-
ence from the Università della Svizzera italiana (2017) with the
thesis entitled “Theory and Applications of Bijective Barycentric
Mappings”. He earned a Postdoc.Mobility fellowship by Swiss Na-
tional Science Foundation (SNSF) to pursue his research aiming
to bridge physical simulations and geometry. His research inter-
ests are in finite element simulations, mathematics, discrete differ-
ential geometry, and geometry processing. Teseo is the main de-
veloper of Polyfem (https://polyfem.github.io/) a flexible
and easy to use Finite Element Library, he is one of the maintain-
ers of the libigl python bindings (https://github.com/libigl/
libigl), and contributor to wild meshing (https://github.com/
wildmeshing), a 2D and 3D robust meshing library

Chengchen Li cl3940@nyu.edu.
Chengchen Li is an undergraduate student at New York University
majoring in computer science and math. His research interests are
computer graphics and virtual/augmented/mixed reality. He has ex-
perience in system and computer graphics and finished projects like
GPU memory swapping and geometric computing with python.

Daniele Panozzo panozzo@nyu.edu,
https://cims.nyu.edu/gcl/daniele.html.
Daniele Panozzo is an Assistant Professor of Computer Science
at the Courant Institute of Mathematical Sciences in New York
University. Prior to joining NYU he was a postdoctoral researcher
at ETH Zurich (2012-2015). Daniele earned his PhD in Com-
puter Science from the University of Genova (2012) and his doc-
toral thesis received the EUROGRAPHICS Award for Best PhD
Thesis (2013). His research was awarded the EUROGRAPHICS
Young Researcher Award in 2015, the NSF CAREER Award in
2017, and a Sloan Research Fellowship in 2020. Daniele’s research
group is leading the development of libigl (https://github.com/
libigl/libigl), an award-winning (EUROGRAPHICS Sym-
posium of Geometry Processing Software Award, 2015) open-
source geometry processing library, polyfem (https://polyfem.
github.io), a simple C++ and Python finite element library, and
wild meshing (https://github.com/wildmeshing), a 2D and

3D robust meshing library. Daniele initiated the Graphics Repli-
cability Stamp (http://www.replicabilitystamp.org), which
is an initiative to promote reproducibility of research results and
to allow scientists and practitioners to immediately benefit from
state-of-the-art research results. His research interests are in digi-
tal fabrication, geometry processing, geometric deep learning, and
discrete differential geometry.

2. Outline

The numerical solution of partial differential equations (PDEs) is
ubiquitous in engineering applications, for the simulation of elastic
deformations, fluids, and other physical phenomena. The finite el-
ement method (FEM) is the most commonly used discretization of
PDEs due to its generality and rich selection of off-the-shelf com-
mercial implementations. Ideally, a PDE solver should be a “black
box”: the user provides as input the domain boundary, boundary
conditions, and the governing equations, and the code returns an
evaluator that can compute the value of the solution at any point
of the input domain. This is surprisingly far from being the case
for all existing open-source or commercial software, despite the re-
search efforts in this direction and the large academic and industrial
interest.

To a large extent, this is due to treating meshing and FEM basis
construction as two disjoint problems. The FEM basis construction
may make a seemingly innocuous assumption (e.g., on the geome-
try of elements), that lead to exceedingly difficult requirements for
meshing software.

This state of matters presents a fundamental problem for applica-
tions that require fully automatic, robust processing of large collec-
tions of meshes of varying sizes, an increasingly common situation
as large collections of geometric data become available. Most im-
portantly, this situation arises in the context of machine learning on
geometric and physical data, when one can run large numbers of
simulations to learn from, as well as problems of shape optimiza-
tion, which require solving PDEs in the inner optimization loop on
a constantly changing domain.

In other fields, such as machine learning, the availability of easy-
to-use libraries dramatically pushed the state of the art, allowing
researchers and practitioners to fast prototype algorithms in a few
lines of code. This is unfortunately not yet the case for geometric
computing and FEM, and our goal in this course is to bridge this
gap, introducing our fully automatic, easy-to-use framework to pro-
totype applications at the intersection between graphics, machine
learning, FEM, and scientific computing.

The first part of the course is theoretical, and introduces the
finite element method trough interactive Jupyter notebooks (Fig-
ure 1). It also covers recent advancements toward an integrated
pipeline, considering meshing and element design as a single chal-
lenge, leading to a black box pipeline that can solve simulations on
ten thousand in the wild meshes, without any parameter tuning.

In the second part we will move to practice, introducing a set of
easy-to-use Python packages for applications in geometric comput-
ing. The presentation will have the form of live coding in a Jupyter
notebook (Figures 2 and 3). We have designed the presented li-

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

2

mailto:s.koch@tu-berlin.de
https://libigl.github.io
https://libigl.github.io
https://deep-geometry.github.io/abc-dataset
https://skoch9.github.io/meshplot
https://skoch9.github.io/meshplot
mailto:teseo.schneider@nyu.edu
https://cs.nyu.edu/~teseo/
https://polyfem.github.io/
https://github.com/libigl/libigl
https://github.com/libigl/libigl
https://github.com/wildmeshing
https://github.com/wildmeshing
mailto:cl3940@nyu.edu
mailto:panozzo@nyu.edu
https://cims.nyu.edu/gcl/daniele.html
https://github.com/libigl/libigl
https://github.com/libigl/libigl
https://polyfem.github.io
https://polyfem.github.io
https://github.com/wildmeshing
http://www.replicabilitystamp.org

S. Koch, T Schneider, C. Li, and D. Panozzo / Black Box Geometric Computing with Python: From Theory to Practice

Figure 1: Example of course material for the introduction to finite
elements.

Figure 2: Interactive geometry processing in Python.

Figure 3: Example of easy-to-use FEM code.

braries to have a shallow learning curve, while also enabling pro-
grammers to easily accomplish a wide variety of complex tasks.
Furthermore, these libraries utilize NumPy arrays as a common in-
terface, making them highly composable with each-other as well
as existing scientific computing packages. Finally, our libraries are
blazing fast, doing most of the heavy computations in C++ with a
minimal constant-overhead interface to Python.

In the course, we will present a set of real-world examples from
geometry processing, physical simulation, and geometric deep
learning. Each example is prototypical of a common task in re-
search or industry and is implemented in a few lines of code. By
the end of the course, attendees will have exposure to a swiss-army-
knife of simple, composable, and high-performance tools for geo-
metric computing.

The main course material is available at
https://geometryprocessing.github.io/
blackbox-computing-python

3. Code Example

import numpy as np
import igl
import meshplot as mp
import wildmeshing as wm
import polyfempy as pf

Read an obj and plot, igl
V, F = igl.read_triangle_mesh("mesh.obj")
mp.plot(V, F, shading={"wireframe": True})

Tetrahedralize with wildmeshing
wm.tetrahedralize("mesh.obj", "out.mesh",

mute_log=True)

Numerical simulation with Polyfem
solver = pf.Solver()
solver.load_mesh_from_path("out.mesh")
solver.set_boundary_side_set_from_bary(sideset)

settings = pf.Settings(
pde=pf.PDEs.LinearElasticity)

settings.set_material_params("E", 200)
settings.set_material_params("nu", 0.35)

problem = pf.Problem()
problem.set_displacement(2, [0, 0, 0])
problem.set_force(3, [0, 0.5, 0])
settings.problem = problem

solver.settings(settings)
solver.solve()

Plotting solution with meshplot
p, t, d = solver.get_sampled_solution()
m = np.linalg.norm(d, axis=1)

mp.plot(p+d, t, m)

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

3

https://geometryprocessing.github.io/blackbox-computing-python
https://geometryprocessing.github.io/blackbox-computing-python

S. Koch, T Schneider, C. Li, and D. Panozzo / Black Box Geometric Computing with Python: From Theory to Practice

4. Schedule

Full day tutorial, 4×90 minutes

• Theory 2×90 minutes

– Introduction
– FEM Basics
– Black Box Geometric Computing
– Intro to a set of libraries with bindings: igl, triwild, tetwild,

and polyfem
– Open Q&A

• Practice 2×90 minutes

– IGL
– Meshing and Analysis
– CAD processing for Deep Learning Applications
– Concluding Remarks and Open Q&A

5. Intended Audience

This course is intended for students and researchers interested in
prototyping cutting-edge simulation and geometry processing al-
gorithms. Whether just starting graduate school, supervising an
academic lab, or building tools for industry, this course will intro-
duce fast prototyping for advanced techniques with a few lines of
python!

6. Prerequisites

Attendees should have a firm understanding of undergraduate linear
algebra and calculus. Previous experience with Computer Graph-
ics, Geometry Processing, and Partial Differential Equations is rec-
ommended, but not required. A basic knowledge of Python is nec-
essary.

7. Previously Held Tutorials

Parts of this tutorial were presented at:

• SIGGRAPH 19,
https://geometryprocessing.github.io/
geometric-computing-python/,
https://dl.acm.org/citation.cfm?id=3328067
• IMR 19,

https://teseoch.github.io/blackbox-course-imr/

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

4

https://geometryprocessing.github.io/geometric-computing-python/
https://geometryprocessing.github.io/geometric-computing-python/
https://dl.acm.org/citation.cfm?id=3328067
https://teseoch.github.io/blackbox-course-imr/

