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Figure 1: Some results of data-driven generative modeling of 3D structures. From top-left to bottom-right: samples from a probabilistic model
learned for part assembly [KCKK12], a probabilistic model of 3D object arrangements [FRS∗12], a deep model for room layouts [WSCR18];
a structural interpolation in a continuous latent space of 3D shape structures learned from a generative autoencoder network [LXC∗17].

Abstract
Many important applications demand 3D content, yet 3D modeling is a notoriously difficult and inaccessible activity. This
tutorial provides a crash course in one of the most promising approaches for democratizing 3D modeling: learning generative
models of 3D structures. Such generative models typically describe a statistical distribution over a space of possible 3D shapes
or 3D scenes, as well as a procedure for sampling new shapes or scenes from the distribution. To be useful by non-experts for
design purposes, a generative model must represent 3D content at a high level of abstraction in which the user can express their
goals—that is, it must be structure-aware. In this tutorial, we will take a deep dive into the most exciting methods for building
generative models of both individual shapes as well as composite scenes, highlighting how standard data-driven methods need
to be adapted, or new methods developed, to create models that are both generative and structure-aware. The tutorial assumes
knowledge of the fundamentals of computer graphics, linear algebra, and probability, though a quick refresher of important
algorithmic ideas from geometric analysis and machine learning is included. Attendees should come away from this tutorial
with a broad understanding of the historical and current work in generative 3D modeling, as well as familiarity with the
mathematical tools needed to start their own research or product development in this area.

CCS Concepts
• Computing methodologies → Probabilistic reasoning; Neural networks; Shape analysis;
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1. Introduction

Creating 3D content is a critical task in many important domains,
including including computer-aided design (CAD), virtual and aug-
mented reality, film and animation, computer games, architecture,
simulation and training, advertising, smart homes, and digital sto-
rytelling. Yet despite the great demand for 3D content, creating it
has remained a notoriously inaccessible skill: one typically needs
extensive training in the use of esoteric software to perform the
necessary detailed manipulations of 3D geometry.

To help alleviate this burden of expertise and to democratize the
practice of 3D modeling, modern research has focused on incorpo-
rating domain knowledge and automatic low-level geometric syn-
thesis into 3D modeling tools. Such tools allow users to focus on
high-level, goal-driven specifications (which are natural for peo-
ple to provide), while allowing the machine to take care of low-
level geometric manipulations. The knowledge to enable this mod-
eling paradigm is typically encapsulated in generative models of
3D structure: statistical distributions over spaces of possible 3D
shapes or 3D scenes. To be useful in design applications, these dis-
tributions need to be both structure-aware (i.e., they directly rep-
resent the shape at a high level of abstraction suitable for layering
design semantics) as well as generative (i.e., allowing for sampling,
either unconditionally or conditionally, new shapes or scenes).

This tutorial will give the audience a crash course on generative
3D modeling, introducing them to the most important techniques
and directions for building generative models of 3D structures. The
first half of the tutorial will be introductory, providing both a broad
overview of the field as well as a quick refresher of important algo-
rithmic ideas from geometric analysis and machine learning. The
second half will consist of a deep dive into the most exciting meth-
ods for building generative models of both individual shapes as well
as composite scenes. We will highlight how standard data-driven
methods need to be adapted, or new methods developed, in order to
create models that are both generative and structure-aware. At the
end, attendees should come away with a historical context, a high-
level understanding of all relevant work in the area, and familiarity
with the mathematical tools to explore further.

Presentation slides and other course notes will be archived at
https://3dstructgen.github.io/ for public reference.

Tutorial Outline

Section Title Presenter Length

Introduction Hao (Richard) Zhang 40 mins
Geometric and Generative

Siddhartha Chaudhuri 40 mins
Modeling Basics

Break 10 mins

Generative Modeling of 3D Shapes Kai (Kevin) Xu 40 mins
Generative Modeling of 3D Scenes Daniel Ritchie 40 mins

2. Necessary Background and Target Audience

Background This tutorial is designed to be as accessible as possi-
ble. It will require a basic background in the fundamentals of geo-
metric modeling, e.g., shape representations, transformations, etc.

Some topics covered will assume familiarity with slightly more ad-
vanced concepts from linear algebra, e.g. singular value decompo-
sition. As the tutorial focuses on machine learning models, comfort
with the basics of probability and statistics is highly desirable.

Target Audience This tutorial is aimed at two audiences:

1. New graduate students in computer graphics, or more experi-
enced researchers in other fields who are looking for an entry
point into this exciting field.

2. Graphics software engineers and developers looking to under-
stand these technologies and how they might fit into their own
pipelines, products, or services.

At the end of the day, our goal is for people in group 1 to be well
equipped with the necessary background and resources to start in-
dependent research of their own in this area, and for people in group
2 to feel confident that they know where to look (and with whom to
consult) if they want to integrate research results into their work.

3. Tutorial Outline

Introduction (40 mins)
Presenter: Hao (Richard) Zhang
Richard will first introduce the presenters, the topics to be cov-
ered by each, and the learning goal for the tutorial: at the end of the
day, attendees should understand the main motivations for studying
generative models of 3D structures, feel equipped to start their own
research projects in generative modeling of 3D shape and scene
structures, or to integrate existing research results into their own
systems. The technical content of his talk will start by explaining
the importance of 3D modeling and content creation in computer
graphics and other relevant fields, outlining the key challenges, and
motivating why structural analysis and modeling would play a cen-
tral role in addressing these challenges. He will then define some
fundamental terms and go over the relevant history of structure-
aware shape analysis, which is foundational for modern-day work
on structure-aware shape synthesis and generative modeling. Fi-
nally, he will briefly highlight the latest and state-of-the-art results
in this field, using deep neural networks and deep generative mod-
els, to set the stage for talks by subsequent presenters.

Geometric and Generative Modeling Basics (40 mins)
Presenter: Siddhartha Chaudhuri
Sid will present the relevant technical basics that audience mem-
bers must understand to do work in generative geometric modeling.
The first part of this section focuses on different representations
of geometry — meshes, volumes, point clouds, part assemblies,
parametric models, etc — and their relative strengths and weak-
nesses from the perspective of machine learning and generative
modeling. The second part of this section focuses on the types of
machine learning models used for generative 3D design, and how
those models may vary from their application in other (non-3D)
domains. Specifically, Sid will discuss how models must handle
“non-regular” structures which are the foundations of 3D represen-
tations: graphs, sets and trees.

Sid will begin the ML section by introducing classical genera-
tive statistical models. The discussion will focus on various proba-
bilistic graphical models: Bayesian networks, random fields, factor
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graphs, and stochastic grammars. Next, Sid will discuss more re-
cent models based on deep neural networks. The discussion will
focus on two themes: (a) generic approaches for building genera-
tive nets, e.g. variational autoencoders and generative adversarial
networks, and (b) specific network models developed for structural
representations, e.g. recursive neural networks and graph convolu-
tional networks. Finally, Sid will briefly touch upon more ambitious
approaches for learning complex generative priors, such as proba-
bilistic program induction.

BREAK (10 mins)

Generative Modeling of 3D Shapes (40 mins)
Presenter: Kai (Kevin) Xu
In this section, Kevin will present and explain different data-driven
methods for synthesizing structured shapes. He will briefly recap
early approaches to the problem, including largely handcrafted
models, move on to relatively low-dimensional data-driven mod-
els (parametrized templates, graphical models, grammars, etc), and
then focus on modern approaches based on deep neural networks.
He will explain why structure-aware generative models present
particular difficulties for standard statistical architectures (fixed-
dimensional graphical models or neural networks), since they need
to process graphs with varying topologies and complexities. He will
highlight various important approaches to this problem, including
deep hierarchical models.

One of the key insights Kevin will share is that 3D structures
can be effectively modeled by a hierarchical organization of parts
encompassing part relationships such as adjacency and symme-
try. In particular, he will introduce GRASS [LXC∗17], a recur-
sive neural network architecture for the hierarchical encoding and
synthesis of 3D shape structures. The network can be tuned in an
adversarial setup to yield a generative model of plausible struc-
tures, from which novel 3D structures can be sampled. Follow-
ing GRASS, he will talk about several works on utilizing hier-
archical structure representation and recursive encoding/decoding
architecture, in achieving structure-aware 3D shape composition,
shape-structure translation, and image-to-structure reconstruction.
Finally, he will also outline directions for the future, such as shape
generation conditioned on functional and semantic objectives, for
goal-driven design.

Generative Modeling of 3D Scenes (40 mins)
Presenter: Daniel Ritchie
This final section will transition from generative models of individ-
ual object shapes to generative models of scenes made of multiple
objects. Individual objects are well-characterized by physical at-
tachment and regular structures such as symmetries. While some
classes of scene exhibit similar strong regularities (e.g. dense ur-
ban scene layouts), many other types of scene do not, instead being
characterized by looser arrangement patterns (e.g. indoor scenes).
This fundamentally different character of scenes necessitates dif-
ferent approaches to generative modeling.

This section focuses in particular on indoor scene modeling,
which is becoming increasingly important not only for traditional
graphics applications in gaming, animation, and simulation, but
also for creating the large quantities of training data required to
power today’s state-of-the-art machine learning systems in com-
puter vision and robotics [Lan18]. It begins with a look back at

the history of the sub-field of indoor scene synthesis, starting with
early rule-based systems [XSF02, Ger09, MSL∗11] and continuing
into the era of partially and fully data-driven methods [YYT∗11,
FRS∗12, KLTZ16]. We will discuss the strengths and limitations
of these approaches, including tasks for which they are still well-
suited today. Most of this section will be devoted to the state-of-the-
art methods in indoor scene synthesis, which are primarily based
on deep neural networks [WSCR18,RWaL19,ZYM∗18,LPX∗18a].
Here, we will compare and contrast the different scene and model
representations used by these methods.

Finally, the section will conclude with a look toward the future,
examining the open problems around scene generative modeling.
The current state-of-the-art models have made large strides in their
ability to generate plausible scenes—i.e. getting the right objects
in the right place—but other important aspects of scenes remain
understudied and difficult to generate. Such aspects include stylis-
tic compatibility, functionality, and how these can be connected to
natural language descriptions of scenes.

4. Presenters

Siddhartha Chaudhuri Siddhartha Chaudhuri is Senior Research
Scientist in the Creative Intelligence Lab at Adobe Research, and
Assistant Professor of Computer Science and Engineering at IIT
Bombay. He obtained his Ph.D. from Stanford University, and
his undergraduate degree from IIT Kanpur. He subsequently did
postdoctoral research at Stanford and Princeton, and taught for
a year at Cornell. Siddhartha’s work combines geometric analy-
sis, machine learning, and UI innovation to make sophisticated
3D geometric modeling accessible even to non-expert users. He
also studies foundational problems in geometry processing (re-
trieval, segmentation, correspondences) that arise from this pursuit.
His research themes include probabilistic assembly-based model-
ing [CKGK11, KCKK12, KLM∗13, SSK∗17], semantic attributes
for design [CKGF13, YCHK15], and generative neural networks
for 3D structures [LXC∗17, ZXC∗18, LPX∗18b], and other appli-
cations of deep learning to 3D geometry processing [KAMC17,
HKC∗18, MKC18, LAK∗18]. He is the original author of the com-
mercial 3D modeling tool Adobe Fuse, and has taught tutorials on
data-driven 3D design (SIGGRAPH Asia 2014) and shape “seman-
tics” (ICVGIP 2016).

Kai (Kevin) Xu Kai Xu is an Associate Professor at the School
of Computer Science, National University of Defense Technol-
ogy, where he received his Ph.D. in 2011. He conducted visiting
research at Simon Fraser University (2008-2010) and Princeton
University (2017-2018). His research interests include geometry
processing and geometric modeling, especially on data-driven ap-
proaches to the problems in those directions, as well as 3D vision
and its robotic applications. He has published over 60 research pa-
pers, including 21 SIGGRAPH/TOG papers. He organized a SIG-
GRAPH Asia course [XKHK17] and a Eurographics STAR tuto-
rial [XKH∗16], both on data-driven shape analysis and processing.
He is currently serving on the editorial board of Computer Graphics
Forum, Computers & Graphics, and The Visual Computer. He also
served as paper co-chair of CAD/Graphics 2017 and ICVRV 2017,
as well as PC member for several prestigious conferences including
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SIGGRAPH, SIGGRAPH Asia, SGP, PG, GMP, etc. Kai has made
several major contributions to structure-aware 3D shape analysis
and modeling with data-driven approach [XLZ∗10, XZZ∗11, XZ-
COC12, VKXZ∗13, ZYL∗17a], and recently with deep learning
methods [LXC∗17, LPX∗18b, ZXC∗18, NLX18].

Daniel Ritchie Daniel Ritchie is an Assistant Professor of Com-
puter Science at Brown University. He received his PhD from Stan-
ford University, advised by Pat Hanrahan and Noah Goodman. His
research sits at the intersection of computer graphics and artifi-
cial intelligence, where he is particularly interested in data-driven
methods for designing, synthesizing, and manipulating visual con-
tent. In the area of generative models for structured 3D content,
he co-authored the first data-driven method for synthesizing 3D
scenes [FRS∗12], as well as the first method applying deep learning
to scene synthesis [WSCR18]. He has also worked extensively on
applying techniques from probabilistic programming to procedu-
ral modeling problems [RLGH15, RMGH15, RTHG16], including
to learning procedural modeling programs from examples [RJT18].
In related work, he has developed systems for inferring generative
graphics programs from unstructured visual inputs such as hand-
drawn sketches [ERSLT18].

Hao (Richard) Zhang Hao (Richard) Zhang is a professor in the
School of Computing Science at Simon Fraser University, Canada.
He obtained his Ph.D. from the Dynamic Graphics Project (DGP),
University of Toronto, and M.Math. and B.Math degrees from the
University of Waterloo, all in computer science. Richard’s research
is in computer graphics with special interests in geometric model-
ing, analysis and synthesis of 3D contents (e.g., shapes and indoor
scenes), machine learning (e.g., generative models for 3D shapes),
as well as computational design, fabrication, and creativity. He has
published more than 120 papers on these topics. Most relevant
to the proposed tutorial topic, Richard was one of the co-authors
of the first Eurographics STAR on structure-aware shape process-
ing [MWZ∗13] and taught SIGGRAPH courses on the topic. With
his collaborators, he has made original and impactful contributions
to structural analysis and synthesis of 3D shapes and environments
including co-analysis [XLZ∗10, SvKK∗11, VKXZ∗13], hierarchi-
cal modeling [WXL∗11, VKXZ∗13, LXC∗17], semi-supervised
learning [WAvK∗12,YZXZ18], topology-varying shape correspon-
dence and modeling [AXZ∗15,ALX∗14,ZYL∗17b], and deep gen-
erative models [LXC∗17, LPX∗18b, ZXC∗18].
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