Partitioning Surfaces into Quad Patches

Eurographics 2017 Tutorial

Presenter

Marcel Campen New York University



Abstract

The efficient and practical representation and processing of geometrically or topologically complex shapes
often demands a partitioning into patches, each of which is of a simpler nature. Possibilities range from
unstructured arrangements of arbitrarily shaped patches on the one end, to highly structured conforming
networks of all-quadrilateral patches on the other end of the spectrum. Due to its regularity, this latter
extreme of conforming partitions with quadrilateral patches, called quad layouts, or in particular instances
quad meshes, is most beneficial in many application scenarios, for instance enabling the use of tensor-
product representations based on NURBS or Bézier patches, grid-based multiresolution techniques, and
discrete pixel-based map representations. However, this type of partition is also most complicated to
create due to the strict inherent structural restrictions. Traditionally often performed manually in a tedious
and demanding process, research in computer graphics and geometry processing has led to a number of
computer-assisted, semi-automatic, as well as fully automatic approaches to address this problem more
efficiently. This tutorial provides a detailed introduction to this range of methods, treats their strengths
and weaknesses, discusses their applicability and practical limitations, and outlines open problems in this
field.
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Intended Audience

The course targets researchers and developers in areas involving geometric data, who seek to understand
the variety of concepts and techniques that are available to automatically or interactively partition surfaces
into quadrilateral patches, and to learn about the most recent developments in this field. Participants will
get a comprehensive overview, and obtain the knowledge required to choose the proper combination of
techniques for specific tasks where quad layouts are of particular interest.

Prerequisites

The audience ideally should have had some prior exposure to geometric model representations, such as
triangle meshes and spline patches, and have a basic working knowledge of general computer graphics
fundamentals. Some familiarity with the basics of differential geometry are helpful, but not required.

Some exemplary surface partitions (quad layouts). Patch boundaries are visualized in black. Notice that each patch is four-sided, and patches
are conforming (there are no T-junctions).



Background

The tutorial emerged in part from the overview and state-of-the-art discussion in the presenter’s thesis on
“Quad Layouts” that was awarded a Eurographics Best PhD Thesis Award. An accompanying extended
state-of-the-art report is about to appear in Computer Graphics Forum.

Presenter

Marcel Campen is a postdoctoral researcher at the Courant Institute of Mathematical Sciences (New York
University), working with Denis Zorin and Claudio Silva. He received his PhD in 2014 from RWTH
Aachen University, where he worked with Leif Kobbelt. Marcel was awarded a EUROGRAPHICS Best
PhD Thesis Award for his work on quad layouts.

Outline

The tutorial starts with an overview over the variety of areas where quad layouts and quad partitioning
techniques have found application over the past decades. The piecewise representation of surfaces by
means of tensor-product constructions (Splines, NURBS, Bézier patches) or semi-regular quad meshes
(multiblock grids) and the piecewise representation of surface maps and parametrizations via rectangular
charts are major use cases necessitating a conforming quad layout.

The essential distinction between quad layouts and quad meshes is discussed, and terminology and taxon-
omy is addressed to clarify the semantics of the many pertinent terms that are often used in an inconsistent
manner in this context, such as mesh, T-mesh, layout, grid, network, multiblock, semi-regular, base mesh,
base complex, partition.

The notion of a quad layout, or a conforming partition into quadrilateral patches, is formalized, its prop-
erties discussed, and common quality criteria are treated. For many use cases these involve geometric
fidelity, structural simplicity, and some form of shape-aware orientation and alignment of the layout ele-
ments. The often conflicting nature of these objectives is exemplified, exposing the trade-off and balancing
that is typically required when designing or generating a quad layout.

After this introduction, a detailed treatment of the various algorithmic options for the automatic or inter-
active generation and design of quad layouts follows. It is structured based on the following observation:
The problem of quad layout generation (partitioning a surface into conforming quadrilateral patches) has
discrete, combinatorial, and continuous degrees of freedom. These can loosely be attributed to the nodes,
arcs, and patches of the layout, respectively. Many recent techniques take care of these degrees of freedom
sequentially: first the nodes (in particular the extraordinary layout vertices) are determined, then the arcs,
forming a suitable layout connectivity, are established, and finally the embedding of the layout, in partic-
ular of its patches, is optimized. For each step various approaches have been proposed. These can often
be combined quite flexibly, though some techniques take care of multiple of these steps in an integrated
manner, or require additional information from, or a tight coupling with, other steps.

In terms of node determination techniques, sampling-based strategies (uniform, non-uniform, isotropic,
anisotropic) as well as specialized curvature-driven strategies (Gaussian curvature quantization, singularity
extraction from cross fields and trivial connections) are treated.



The determination of a suitable connectivity is probably the most involved and most interesting aspect.
There is a wide variety of techniques. Some are based on modifying a triangular layout (which can be
obtained significantly easier due to simpliciality) into a quadrilateral layout, e.g. via subdivision, merg-
ing, or hybrid algorithms. Others formulate the problem directly as a binary programming problem in a
straightforward manner (selecting arcs from a huge candidate set such that they form a conforming layout)
and make use of clever heuristics to reduce the size of the problem to a tractable level. Another class of
methods operates in a dual setting, based on graph duality, where crossing loops, that can be generated in
a number of shape-aware manners, imply layouts that are automatically conforming and quad-only. Using
integer programming techniques, a valid layout connectivity can furthermore be derived from paramet-
ric lattices. These options are introduced systematically with a focus on technical intricacies, and their
respective advantages, disadvantages, and limitations are discussed.

In terms of approaches for the continuous, geometric optimization of the layout’s embedding in the surface
(determining the patch boundaries and node positions in all detail), isolated, arc-based techniques can be
used, local or global patch parametrization methods can be employed, or mesh smoothing based methods
can be made use of.

Besides these methods targeted at generic quad layouts, a number of methods focusing on restricted classes
of layouts are available. These, for instance, derive quad partitions from shape skeletons, Reeb graphs, or
volumetric maps, or yield more general non-conforming layouts (with T-junctions) that are of interest for
certain use cases. An overview over these methods and their potential benefits (but also their limitations
caused by the restriction) is given. Also, techniques that allow for efficient manual influence on a (semi-
automatic) partitioning process, striking a balance between manual approaches that put all the burden on
the user and fully automatic approaches that provide no or little control, are covered.

The tutorial concludes with a discussion of the future directions and open problems in this area of research
— to indicate to developers the limits and boundaries of what is possible with the state-of-the-art today, and
to outline to researchers where future efforts could be particularly impactful. Major issues are the strict
guaranteeing of quality/optimality for concrete use cases and the generalization to higher dimensions, in
particular for hexahedral layouts for solids.



The following is a manuscript of a state-of-the-art report on the tutorial’s topic
to appear in Computer Graphics Forum.

It serves as a comprehensive reference for all the techniques covered in the tutorial.



Partitioning Surfaces into Quadrilateral Patches: A Survey

Marcel Campen
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Abstract

The efficient and practical representation and processing of geometrically or topologically complex shapes often demands
a partitioning into simpler patches. Possibilities range from unstructured arrangements of arbitrarily shaped patches on the
one end, to highly structured conforming networks of all-quadrilateral patches on the other end of the spectrum. Due to its
regularity, this latter extreme of conforming partitions with quadrilateral patches, called quad layouts, is most beneficial in
many application scenarios, for instance enabling the use of tensor-product representations based on NURBS or Bézier patches,
grid-based multiresolution techniques, and discrete pixel-based map representations. However, this type of partition is also most
complicated to create due to the strict inherent structural restrictions. Traditionally often performed manually in a tedious and
demanding process, research in computer graphics and geometry processing has led to a number of computer-assisted, semi-
automatic, as well as fully automatic approaches to address this problem more efficiently. This survey provides a detailed
discussion of this range of methods, treats their strengths and weaknesses, and outlines open problems in this field of research.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry and Object

Modeling—

1. Introduction

While primitive geometric objects, like spheres, cubes, cylinders,
etc., can often be represented using simple mathematical expres-
sions, objects with more complex geometry and in particular more
complex topology are typically not amenable to such simple repre-
sentation in a practical way. This led to the development of piece-
wise surface representations, where each piece of a partition of a
complex surface can be represented in a simple way. Analogously,
this applies to maps from or onto complex surfaces, which are han-
dled more easily in a piecewise, chart-based manner.

Of particular interest are partitions of surfaces into patches which
are four-sided and conforming (cf. Figure 3), sometimes called
quad layouts (cf. Figure 1). This particular structure, for instance,
enables the use of popular tensor-product representations based
on NURBS or Bézier patches, efficient grid-based multiresolution
techniques, or discrete pixel-based map representations.

It is important to make a distinction between a quad layout and
what is often called a quad mesh. On a structural level, these two
concepts are equivalent, but they follow different geometric objec-
tives. Most importantly, the vertices of a quad mesh are often ex-
pected to sufficiently encode the geometric information via their
spatial positions, implying the full surface geometry or an appropri-
ate approximation thereof via interpolation or subdivision. A quad
layout, on the other hand, is supposed to provide a partition of the
surface, on top of which additional information can be encoded,
for instance to represent the geometry (e.g. via splines) or a sur-
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face map (e.g. via rectangular chart parametrization). This concep-
tual difference necessitates different strategies for the generation
of quad meshes (cf. the broad survey [BLP*13]) and quad layouts:
while a quad mesh basically resamples a surface and its quality can
be assessed locally, in the case of a quad layout the structural, topo-
logical aspect from a global point of view plays an important role.

This survey is concerned with methods that create such quad
layouts for arbitrary surfaces. It is based in parts on the pre-
lude and literature review in the thesis “Quad Layouts: Genera-
tion and Optimization of Conforming Quadrilateral Surface Par-
titions” [Cam14]. It includes extended treatments and updates on
the most recent advances.

Figure 1: A surface partitioned into quadrilateral patches (colored
individually), with an iso-parameter grid visualization of rectangu-
lar parameterizations of the individual patches.



2 Marcel Campen / Partitioning Surfaces into Quadrilateral Patches

Triangle mesh Quad mesh

Multiblock grid

Spline net

Figure 2: Illustration of different kinds of piecewise surface representations. In the case of the triangle mesh the pieces are trilateral, in the

other three cases quadrilateral.

Outline

We begin by outlining the major reasons for the particular interest
in conforming quad layouts in Section 2. In Section 3 the technical
definitions, properties, and context needed for precise discussion of
the topic are introduced. Then, methods for the automatic construc-
tion of quad layouts on given surfaces are surveyed: in Section 4
we focus on the structural, combinatorial aspect of the problem, in
Section 5 on the geometrical aspect. Possibilities for manual, semi-
automatic, and interactive quad layout design are discussed in Sec-
tion 6, and methods targeting special classes of quad layouts are
covered in Section 7. Finally, in Section 8 we outline some of the
major open problems and interesting future directions in the area of
quad layouts.

2. Background

We start by outlining some of the reasons for the particular interest
in conforming quad layouts, as well as in their automatic genera-
tion, from technical and practical points of view.

2.1. Piecewise Surfaces

A very common and particularly simple instance of a piecewise
surface representation is the triangle mesh (cf. Figure 2), typically
representing a surface in a piecewise linear manner, though higher-
order elements are common as well in simulation and analysis.

Analogously, a quad mesh represents and discretizes a surface
using four-sided elements. Of particular interest are semi-regular

conforming non-conforming

Figure 3: lllustration of conforming and non-conforming partition-
ing of a domain into quadrilateral patches. A non-conforming lay-
out may contain T-junctions (blue).

quad meshes (also known as multiblock grids [SB96]), which con-
tain an underlying coarse quadrilateral base structure (cf. Figure
2), i.e. which are a regular refinement of a quad layout. These pro-
vide advantages for various application cases, as detailed in a re-
cent survey [BLP* 13], where they are deemed “the most important
class [of quad meshes] in terms of applications”. For instance, they
enable the application of efficient adaptive and multi-level solver
schemes [BDL10, DHMO09] in the context of quad-based Finite El-
ement simulation and the application of degree adaptation tech-
niques in the context of Isogeometric Analysis [HCB05, Bom12].
Their high level of structuredness is of benefit for applications like
mesh compression [AG03] and Fourier or Wavelet based process-
ing [AUGAOS]. In the field of character animation designers are
interested in quad meshes with good edge-flow [JLW10] (a concept
closely related to a geometry-aware, simple base structure) as these
tend to reduce artifacts and distortions during deformation.

Just like these semi-regular meshes or multiblock grids require
an underlying conforming quad layout, the representation of sur-
faces using Bézier patches, NURBS, or other types of smooth sur-
face constructions [Far02], often requires a quadrilateral partition
to serve as a parametric domain specification.

Building such piecewise representations for an object’s surface
obviously involves two aspects: suitably partitioning the surface
into pieces and finding a suitable representation for the geome-
try within each piece. For the case of triangle meshes, this is a
well-researched, well-understood problem [AUGAO08]. Also lot of
research has been devoted to the automatic generation of quad
meshes and significant advances have been made [BLP*13]. For
the other cases, however, while methods for determining a suit-
able representation per piece are available (e.g. on the basis of
grid fitting or interval assignment [TA93, Mit00, BVKO08], spline
fitting [EH96, KLL96, MK95, MBVW95, AAB*88], or subdivision
surface fitting [LLSO1]), the generation of appropriate quad lay-
outs of high quality in the first place proved to be a hard problem
and has a long history of tedious manual efforts in practice. In this
survey we discuss early automatic approaches to this problem and
the significant advances that have been made in recent years.

It bears noting that there are further types of piecewise surface
representation which do not rely on a quad layout, but on simpler-
to-construct partitions with triangular or polygonal patches. Bézier
triangles and certain types of box splines are examples of such rep-
resentations. Their popularity in practice and support in software
tools, however, is significantly lower compared to representations
based on quadrilateral partitions. There are multiple reasons for this
circumstance. One can argue from a historic point of view that in
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Figure 4: Illustration of a piecewise map from a planar domain onto a surface using a quad layout based chart atlas.

the early days of computer-aided geometric design in the automo-
tive and aircraft industry tensor-product constructions already set
the standard [Far0O2]. But there are also solid theoretical reasons for
preferring quad structures over triangular structures: for instance,
the circumstance that the boundaries of quad layout patches can
very naturally be aligned to principal curvature directions [dC76],
with aesthetic as well as practical advantages [BLP*13].

Also several subdivision surface schemes are able to operate on
layouts with arbitrary polygonal patches, but quadrilateral patches
are advantageous for the smoothness of the resulting surfaces
[Rei95] for prominent schemes [CC78,DS78].

2.2. Piecewise Maps

Not only for the representation of a surface itself, also for the rep-
resentation of maps from or onto the surface (i.e. parameteriza-
tions, texture maps, displacement maps, etc.) is a quad layout of
great value. When dealing with surfaces of three-dimensional ob-
jects, one most often deals with 2-manifold surfaces (with or with-
out boundaries), i.e. they are locally homeomorphic to a disk, thus
amenable to (local) parameterization over R?. The correspondences
provided by such maps for instance allow to apply simpler 2D op-
erations to the surface, even though it is embedded in R3.

For such use cases, however, often a global parameterization is
necessary, for which the whole surface needs to be homeomorphic
to a disc. Hence, the surface needs to be cut. While a minimal cut
graph [EHP02] is topologically sufficient, the resulting metric dis-
tortion in the map can be a problem for many applications.

Therefore, in practice often a chart atlas is used: the surface is
cut (i.e. partitioned) into multiple charts which can be parameter-
ized with low metric distortion. For various reasons (domain sim-
plicity, transition simplicity, discretization and storage, continuity
across chart borders [RNLL10,MZ12]) it is advantageous if these
charts are quads and these quads are conforming, i.e. again one is
interested in quad layouts. Figure 4 illustrates a quad layout based
piecewise map from part of the plane onto the surface.

2.3. Layout Generation

A major source of motivation for investigation into the automation
of the process of quad layout generation has come from the fact that
the creation of quadrilateral partitions, for structured quad meshes,
multiblock grids, spline networks, quadrilateral subdivision base
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meshes, etc., can be an extremely time-consuming task in practice
[HCBO0S5,LRLO6].

From a technical point of view this process of quad layout-
ing, i.e. the partitioning of a surface into conforming quadrilateral
patches, involves determining the layout’s combinatorial structure
as well as its geometric embedding in the surface. The embedding
describes the locations of the layout patches’ corners and borders
on the surface, and possibly parameterizations of the patches. Fig-
ure 5 shows an example quad layout.

In industrial workflows this layouting is often performed manu-
ally by skilled professionals in the animation and engineering sec-
tors through the construction of nets of surface curves. An inherent
issue, and major cause of the complexity of the task, is that a good
quad layout generally is a compromise, balancing layout simplic-
ity, patch rectangularity, feature and principal direction alignment,
and possibly further objectives (cf. Section 3.4).

Ultimately, the hardness of the problem of automatic quad layout
generation mainly stems from two facts:

1. the notion of quality of a quad layout is complex, application-
dependent, sometimes fuzzy or hard to formalize,

2. the optimization problem for the generation of high quality quad
layouts is of mixed nature: it has continuous, discrete, and com-
binatorial or topological degrees of freedom, and these have
global interdependencies.

For instance, the following questions, concerning degrees of
freedom of varying type, must be answered to find a solution to
a quad layout generation task:

e Discrete: How many nodes (patch corners) to use?
e Combinatorial: Which nodes to connect in which ways?
e Continuous: How to embed the layout on the surface?

Figure 5: A quad layout on a surface (left) and an iso-parameter
line visualization of the parameterizations which embed its patches

(right).



4 Marcel Campen / Partitioning Surfaces into Quadrilateral Patches

Due to this heterogeneous nature of the quad layout generation
problem, it is hard to tackle using standard optimization techniques
(“black box solvers”). Hence, numerous special purpose strategies
have been developed for the individual aspects of this problem. We
survey those that tackle the combinatorial, structural aspects of a
quad layout in Section 4, and those that tackle the geometrical em-
bedding aspects in Section 5.

3. Foundations

We are going to deal with quad layouts on orientable two-
dimensional manifolds M (with or without boundary d. M), hence-
forth called surfaces for simplicity.

3.1. Layout Graphs and Embeddings

The notion of a quad layout, a conforming quadrilateral surface
partition, is formalized using the following definitions:

Definition 3.1 (Layout graph) A multigraph G = (N,A) with nodes
N and arcs A, which may contain multiple arcs between pairs of
nodes as well as dangling arcs which are incident to only one node,
defines the graph of a layout.

Definition 3.2 (Graph embedding) Each node h of G is associated
with a map f, : 0 — M that assigns this node to a point on the
surface. Furthermore, each arc a of G is associated with a contin-
uous map fg : [0,l4] = M. The maps are such that f,(0) = f,,(0)
and fu(la) = f¢(0) if h and g are the nodes incident to arc a, i.e.
the curve formed by the embedded arc on the surface starts and
ends at the points onto which the incident nodes are embedded.
Furthermore, embedded arcs may only intersect at their endpoints
and embedded dangling arcs end on dM. The set of maps f then
defines a graph embedding for G.

Figure 6 illustrates this. The embedded arcs partition the surface
into regions (called patches) bounded by embedded arcs, embed-
ded nodes, and possibly segments of d M — such patches bounded
partially by oM are called trimmed. If all patches are homeomor-
phic to discs, the graph embedding formally is a 2-cell embedding
(with boundary).

Definition 3.3 (Node valence) The valence val(h) of a node h is
the number of incident arcs. Note that one arc can be incident to a
node (and contribute to the valence) two times. An interior node

Figure 6: lllustration of a layout graph (red nodes, black arcs) and
an embedding of this graph on a surface.

of valence 4 is called regular, otherwise irregular; a node on oM
is commonly considered regular if it is of valence 3 and two of
the incident arcs are aligned with the boundary (for non-aligned
boundary cases there is no generic notion of regularity).

Definition 3.4 (Patch valence) The valence val(p) of a patch p that
is homeomorphic to a disc is the number of embedded nodes along
the patch border. Note that one node can occur multiple times along
a patch border. A non-trimmed patch of valence 4 is called regular,
otherwise irregular.

If all patches are regular, a 2-cell embedding of a layout graph
can easily be extended to a layout embedding:

Definition 3.5 (Layout embedding) In addition to the node and arc
maps, each regular patch p can be associated with a continuous
map fp : [0,wp] X [0,hp] — M (or a restriction thereof in case of a
trimmed patch) such that this map agrees with the maps of the inci-
dent arcs, e.g. fp(x,0) = fa(x) or fp(x,0) = fu(la — x) (depending
on the orientation). The set of maps f then defines a layout embed-
ding for G.

Figure 7 illustrates the embedding of a patch via its associated
map fp.

Definition 3.6 (Quad layout) A layout graph G together with a
layout embedding f in surface M where all patches are regular is
called a quad layout L (cf. Figure 5 for an example).

3.2. Structural Properties

At regular nodes the four incident arcs can be parti-
tioned into two pairs (depicted in red and blue on the
right) of opposite arcs in the intuitive way. Based on
this, separatrices can be defined:

Definition 3.7 (Separatrix) A chain of successively opposite arcs
which starts at an irregular node and ends at a (not necessarily dis-
tinct) irregular node or oM is called (discrete) separatrix.

Note that we will later also deal with separatrices of cross fields
and separatrices of parameterizations — concepts which are closely
related but formally different.

Figure 8 illustrates the components of a quad layout.

Definition 3.8 (Layout minimality) If each arc of a quad layout is
part of a separatrix, the layout is called minimal.

o

Figure 7: lllustration of an individual patch embedding map.
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Figure 8: lllustration of a layout’s (primal) components.

In a minimal layout, there are no chains of arcs which are cyclic
or start and end at O M.

Definition 3.9 (Base complex) The largest minimal sub-layout of a
layout is called its base complex.

Note that the base complex of a quad layout (or quad mesh) can
equivalently be defined as being formed by all the separatrices of
the layout.

3.3. Layout Duality

For the description and modification of the layout structure it can
be of benefit to consider the dual layout:

Definition 3.10 (Dual) The combinatorial dual D of the cell com-
plex specified by the quad layout £ is called the dual layout.

D contains a vertex for each patch of £, an edge for each arc of
L, and a region for each node of £; we use the terms vertex, edge,
and region for dual layouts in order to distinguish from nodes, arcs,
and patches of primal layouts. Except for boundary cases, D is a 4-
regular cell complex, i.e. every non-boundary dual vertex has four
incident dual edges. Hence, at every non-boundary vertex there are
two pairs of opposite edges. The set of all edges uniquely decom-
poses into a disjoint collection of cycles (and, when boundaries ex-
ist, boundary-to-boundary chains) of successively opposite edges.
Note that these dual edge cycles (chains) correspond to — possibly
non-simple, i.e. self-crossing — cyclic (or boundary-to-boundary)
quad strips in £. Geometrically, these dual edge cycles (chains)
correspond to an arrangement of loops (or boundary-to-boundary
curves) on the surface, cf. Figure 9; the loop intersections define
the vertices and the loop segments between any two intersections
define the edges of D. The induced partition of M consequently
defines the regions of D (cf. Figure 9). Note that a specific embed-
ding for D is not inherent to the topological concept of duality.

3.4. Layout Quality

The quality of a quad layout is a measure that, at least to some ex-
tent, depends on the intended application. However, we can identify
some generic aspects which are common to many application sce-
narios:

e Geometric fidelity: patches should map to planar rectangles
with low parametric distortion
e Structural simplicity: the number of patches should be small
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Figure 9: Illustration of a layout’s primal and dual components.

Geometric fidelity generally promotes mapping or representation
quality, because the parametric distortion is a key factor in many ap-
plications, while structural simplicity gives preference to simpler
surface representations, simpler mapping domains, or more flexi-
bility for hierarchical structures (e.g. in the context of multi-block
grids).

Unfortunately, both aspects tend to be opposing objectives. For
instance, a genus 1 surface can always be covered with just a single
conforming quad patch, but then the parametric distortion can be ar-
bitrarily high, depending on the geometric shape of the surface. On
the contrary, low distortion can be achieved at the expense of a large
number of small patches (and possibly large number of irregular
nodes [MZ13]), as in the case of quad meshing [BZK09,JTPS15].

The abstract quality of the layout hence is a function of complex-
ity and distortion, and an appropriate trade-off needs to be made.
How this relation looks like in detail is application-dependent.

As a consequence of this interplay of fidelity and simplicity ob-
jectives, methods for generating quad meshes, which typically rely
on a target quad size and quad anisotropy (possibly varying over the
surface) specified a priori [RLL*06, DBG*06, KNP07, HZM*08,
BZK09,ZHLB10,KMZ11,BCE*13,MPZ14, LHJ* 14, PPTSH14],
are not well-suited for generating quad layouts; patch dimensions
must rather be chosen automatically so as to arrive at a suitably
balanced quality. Patches of widely varying sizes and aspect ratios,
depending on the geometry of the surface and the global structure
of the layout, can be optimal in this context.

One further aspect is quite commonly of relevance for a layout’s
quality:

e Principal direction alignment: the arcs and also the iso-
parametric curves of the embedded patches should follow direc-
tions of principal curvature on the surface with low deviation.

The importance of this aspect for prominent use cases of quad
layouts is well known [LRL06, ACSD*03, CSAD04, CIE*16]. De-
pending on the application, it serves maximizing surface approxi-
mation quality [D’A0O], minimizing normal noise and aliasing arti-
facts [BKO1], optimizing element planarity [LXW™*11], or achiev-
ing smooth curvature distribution (due to their tensor-product na-
ture common spline surface representations are prone to ripples
(curvature oscillations) if aligned badly [KBZ15]). Besides, princi-
pal direction alignment can also be of interest for aesthetic reasons.
Due to their specific symmetries, quad layouts and quad meshes
have the natural ability to align to the orthogonal principal direc-
tions. In fact, this is one of the major reasons for preferring them
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over simplicial layouts [BLP*13]. Alignment to creases and bound-
aries may be seen as a special case of this principal direction align-
ment, but it can be advantageous to consider this in a dedicated,
strict manner.

3.5. Layout Conformity

In this survey we focus on the generation of conforming quad lay-
outs (cf. Figure 3). This focus is chosen because, first of all, con-
formity is an essential requirement for many use cases and, sec-
ondly, even in many of the cases where non-conformity can be dealt
with, one actually needs to construct a conforming layout in the first
place, as explained in the following.

Examples of techniques that are able to deal with non-
conformity, with so-called T-layouts or T-meshes, are T-splines
and T-NURCCs [SZBNO3] or dyadic T-mesh subdivision [KBZ15].
The option to have T-junctions can provide additional flexibility
for modeling and editing purposes [SCF*04, BVKOS8]. It is very
important, though, to notice that not every T-layout is suitable for
these applications. In many cases it is required that the layouts,
while being non-conforming, allow for a globally consistent as-
signment of (knot) intervals [SZBNO03, TA93] to the layout’s arcs
(mapping each patch to a rectangle in parameter space), or equiv-
alently, for a global layout embedding in form of a seamless sur-
face parametrization (cf. Section 5.2). In a few instances subdivi-
sion and spline techniques have been generalized to non-consistent
knot intervals [SFL*08], but this comes with drawbacks such as
non-stationarity or impractically high polynomial degrees. Glob-
ally consistent (non-zero) knot intervals, however, exist if and only
if the non-conforming layout actually has an underlying conform-
ing layout of which it is a locally refined or coarsened version.

Existing approaches to automatic non-conforming quad layout
construction often respect this implicitly (without explicit men-
tion): they take as input a conforming quad layout or mesh,
and obtain a T-layout as a subset thereof [MPKZ10, LRLO6,
SCF*04,EGKT08, GMSO14], a locally regular refinement thereof
[WZXH12,SZBNO03], or as a subset of the iso-parametric curves
of a global seamless surface parametrization (cf. Section 4.2.4)
[HWW*06,CBK15].

4. Layout Structure Determination

The combinatorial structure of a layout is determined by its layout
graph. For its construction one needs to determine a suitable set
of nodes and connect these by a suitable set of arcs such that the
resulting graph is a valid quad layout graph (i.e. such that it can
be embedded in a given surface forming all-regular patches). We
survey techniques that strive to solve these problems in Sections
4.1 and 4.2, respectively.

A few methods do not strictly fit in either category (node or arc
determination) as they generate both, nodes and arcs, in an inher-
ently combined manner. The most prominent examples are tech-
niques based on the Morse-Smale complex (cf. Section 4.1.1). This
circumstance is pointed out whenever such a method is discussed
in the following.

4.1. Nodes

The node configuration, i.e. the number of layout nodes and pos-
sibly their desired valences (and their (preliminary) positions on
the surface), needs to be decided on early. Without these nodes
at hand, we cannot talk about their connectivity, or the quad na-
ture of patches. Of particular interest are the irregular nodes, those
with a valence different from 4 — regular nodes can be created on
demand afterwards by many of the methods that create arcs (cf.
Section 4.2) for a given node configuration (typically implicitly, by
crossing arcs) where necessary or beneficial.

The valences of these irregular nodes are further discrete degrees
of freedom. They can already be decided on and fixed from the very
beginning, or be left open. Some of the methods that create arcs for
the nodes expect the desired valences as input, others cannot respect
such demands but rather imply the valences by the arcs they create.
Prescribing node valences is particularly reasonable when nodes
are deduced from the surface’s curvature (cf. Section 4.1.2).

4.1.1. Sampling-based

A very simple option for the determination of a set of nodes (not
necessarily particularly well suited specifically for a quad layout) is
to distribute a prescribed number of samples in some regular man-
ner over the surface.

Isotropic. An initial set of samples can be distributed over the sur-
face, for instance, in a random manner [Tur92], using error diffu-
sion [AdVDIO05], via poisson disk sampling [CTW*09], or by far-
thest point sampling [PCO6].

To achieve high regularity and isotropy, Lloyd’s relaxation can
subsequently be applied [DFG99], reaching a state where the sam-
ples induce a centroidal Voronoi diagram [PCO06].

Isotropically distributed nodes, i.e. uniformly sized patches, are,
however, not necessarily beneficial for high layout quality. Variably
and anisotropically sized patches typically allow for simpler, more
parsimonious representations.

Anisotropic. Variants of some of the above approaches can take a
prescribed sizing and anisotropy into account, for instance derived
from the surface’s shape operator in order to achieve some form of
principal curvature direction dependence [LWSF10]. Note, how-
ever, that this is only a form of anisotropy determined a priori from
local measures. Letting the global structure of the layout decide the
patch dimensions, as some of the more sophisticated methods to be
discussed in the following section allow, can be beneficial in order
to yield simple, yet high-quality layouts.

Quad-oriented. So far no attention has been paid to the fact that
the samples are actually supposed to get connected to form nicely
shaped quadrilateral patches. This aspect can be considered by
making use of (an approximation of) the Loo-norm, rather than the
standard Lp-norm, in the Lloyd relaxation process [LL10].

Another option is the use of the critical points of Laplace-
Beltrami eigenfunctions on the surface (or similar surface func-
tions [HZM™*08, ZHLB10, LHJ* 14]) as nodes. These even come
with a pure quad connectivity via Morse-Smale theory [DBG*06].
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Error-driven. Using controlled triangle mesh simplification
[GGKO2] or clustering approaches [EH96, BMRJ04, PCK04], one
can yield a sampling (often effectively a sub-sampling of the ini-
tial mesh vertices) that fulfils certain quality conditions. For in-
stance, one can ensure that the surface regions in between samples
are not far from being planar. This may be helpful if quad layouts
with near-planar patches are sought. However, note that these ap-
proaches typically do not take into account the fact that ultimately a
layout with quadrilateral patches is to be constructed. Strict quality
guaranteed can thus not be given in general.

4.1.2. Gaussian Curvature-based

The two global layout quality criteria geometric fidelity and struc-
tural simplicity discussed in Section 3.4 imply some local criteria.
For instance, a patch corner ide-
ally has an angle of %. Thus,
a node of valence k ideally lies
at a point where the surface has
Gaussian curvature 21 — k7 be-
cause around such a point the
(cut) surface unfolds to a sector
with inner angle k% [PS98] as
depicted here. It is obvious that
this ideal state typically cannot
be achieved — unless the sur-
face has isolated points s; with
a Gaussian curvature that is an
integer multiple of 5 while all other points of the surface have van-
ishing Gaussian curvature. Then one could place an irregular node
n; of valence val(n;) = k; onto each point s; with Gaussian cur-
vature 2 — k;5 (regular nodes could be placed anywhere else as
needed). This is only possible on an extremely restricted class of
surfaces, namely those of unions of boxes (in particular polycubes,
cf. Section 7.2).

| S}
A

On general surfaces with an arbitrary Gaussian curvature distri-
bution, it proved very powerful to construct an alternative notion of
Gaussian curvature that is as close as possible to the original cur-
vature, subject to the condition that it is zero almost everywhere,
except for some isolated points where it is some multiple of %
Then suitable nodes can be derived trivially as above. For this the
meaning of “as close as possible” needs to be clarified. A appropri-
ate measure for this can be defined in terms of the metric connec-
tion [CDS10]. A connection defines a notion of parallel transport
on a surface and thus implies a notion of curvature. In particular,
the Levi-Civita connection V¢ — the unique metric connection that
transports tangent vectors without torsion — implies the usual Gaus-
sian curvature.

The idea now is to construct a connection V% which (A) is (in
the least-squares sense) as close as possible to the original V¢
while (B) implying a curvature which is an integer multiple of 7
everywhere (while it is O for all but a finite number of points s;).
Due to condition (B), we can then easily derive a set of irregular
nodes and their valences from this connection. Due to condition
(A) we can expect that this irregular node configuration, while not
ideal, is in some sense as good as possible for the given surface
geometry.

preliminary manuscript

Connection Construction. In the discrete set-
ting, i.e. on a triangle mesh, a metric connec-
tion can be expressed via adjustment angles
a across the edges, which express the tangen-
tial rotation a tangent vector undergoes as it
is transported from one face to a neighboring
face across an edge. The discrete Levi-Civita connection is char-
acterized by all these angles being zero. As we are interested in
a connection as close as possible to Levi-Civita, our objective is
|let]|2 — min, subject to condition (B).

A

(X.l'j

As detailed in [CDS10] condition (B) can be expressed via con-
straints for a set of basis face cycles which enforce that the adjust-
ment angles exactly cancel the curvature of the Levi-Civita con-
nection :i:m,-%. The factors m; (which imply at which vertices the
implied Gaussian curvature is which multiple of %) are integer vari-
ables of the optimization problem ||o||; — min, i.e. we end up with
a mixed integer problem. Hence, a mixed integer solver is neces-
sary for this optimization.

Cross Field Construction. An alternative formulation of this op-
timization problem, based on tangent direction fields, is possible. It
is essentially equivalent but provides additional interesting insights
and possibilities (in particular: consideration of principal direction
alignment).

Instead of representing the per-edge adjust-
ment angles as explicit variables, we can repre-
sent them implicitly as the angular differences
between variable tangent directions in the inci-
dent faces, i.e. o;; = 6; — 0; + K;;, where 0 are
the angles of the tangent directions with respect
to a local per-face reference system and the constant x;; aligns the
reference systems.

We could then perform an optimization with respect to the objec-
tive Yo cr (95 —0; +Kij)2 — min, where E is the set of triangle
mesh edges. Due to the relation between o and 0 this is essen-
tially equivalent to the connection based optimization problem —
with one significant difference: constraints for a condition akin to
(B) are inherent to this formulation. The resulting connection obvi-
ously transports vectors to themselves along any curve (just notice
that by construction the field © — and any constant rotation thereof
— is parallel w.r.t. the connection given by o). Hence the implied
curvature is always an integer multiple of 27t everywhere. The mul-
tiplicity, however, is fixed arbitrarily (formally and more precisely,
it is implied by the indices of the field of chosen local reference
systems) and we are actually interested in multiples of Z, not 2.

Both problems can be solved by adding integer variables m to
the system which allow to add any multiple of % to the terms:

2 .
Ze;/EE (9,' —9j+l<,-j+m,-j%) — min.

The connection V z resulting from this optimization then fulfills
(A) and (B). In particular, a vector is not necessarily transported
to itself along any curve by this connection but may be off by a
multiple of 5. A cross (a set of four directions invariant to rotations
by %), however, is always transported to itself, so we are in fact
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optimizing a cross field C for smoothness — a
cross field which “by example” represents V% .
Therefore it comes as no surprise that exactly
the same optimization problem is used for the
construction of smooth cross fields [LVRLO6,
PZ07,RVLL08,VCD*16] for purposes of field-
guided quad meshing [BZK09].

Principal Direction Alignment. Various techniques have been
proposed that allow taking some principal curvature alignment
objective into account when generating a smooth cross field
[VCD*16]. It can be beneficial to make use of these here in the
construction of the cross field from which the layout nodes are de-
rived. This influences the resulting node configuration, empirically
increasing its suitability for a layout connectivity of high quality
(cf. Section 3.4).

Optimization. The above optimization problems can be solved us-
ing mixed integer solvers [BZK12], as described in [BZK09]. But
also alternative formulations that do not require a mixed integer
solver have been proposed [KCPS13,DVPSH14]. In these methods
the integer degrees of freedom are essentially expressed implic-
itly [PZ07] rather than explicitly [LVRLO06]. Furthermore, taking
the integrability of the cross field into account allows to influence
the implied node configuration towards allowing for more rectan-
gular patches (typically at the expense of a higher number of nodes,
thus patches) [Niel2, DVPSH15]. It can also be helpful to abstract
from noise or geometric detail in this context in order to avoid an
excessive number of nodes [RVAL09, ECBK 14].

Figure 10 shows the irregular nodes obtained for various models
using the described method.

Validity. This connection or cross field based approach yields
nodes together with a prescription of desired valences for these
nodes. In general, a set of nodes with prescribed valences does not
necessarily admit a pure quad layout that realizes these valences. It
follows from Euler’s polyhedron formula that, for any quad layout,
Y.en(1—val(n;)/4) =y, where , is the surface’s Euler character-
istic, and N the set of layout nodes.

We note that summands corresponding to regular nodes of va-
lence 4 vanish. The sum over the irregular nodes’ terms, however,
needs to match the surface’s Euler characteristic. This constraint
needs to be considered in the optimization because otherwise the
set of nodes does not admit a quad layout.

Fortunately, when determining the nodes and valences as de-
scribed above, this condition is always fulfilled. It is a consequence
of the Poincaré-Hopf theorem, relating a cross field’s singularity
indices (which imply the node valences) to the surface’s Euler char-
acteristic [Cam14,RVLLO0S8,PZ07]. It must, however, be noted that
this condition is a necessary, not a sufficient condition. However,
only a single configuration fulfilling Euler’s condition but not ad-
mitting a quad layout exists [JT73, MPZ14], and one can simply
modify it should it occur.

4.2. Arcs

Once the desired nodes have been determined, their connectivity
needs to be established, i.e. arcs need to be created. This settles the
combinatorial degrees of freedom. It is important to note that this is
not a purely combinatorial problem, it has a topological component.
In particular, an arc cannot be identified by its two incident nodes
alone; its path homotopy class is crucial in addition. Intuitively, an
arc can wind around the handles of a surface (and the nodes on the
surface) different numbers of times, ultimately implying different
layouts. To be precise: the path homotopy class with respect to the
surface punctured by the nodes (i.e. we can treat the nodes as form-
ing small holes in the surface) is what matters [MPKZ10]. Note
that two nodes can be connected by multiple, non-homotopic arcs,
and a node can be connected to itself by an arc.

The number of arcs to choose from is thus infinite. A large va-
riety of methods have been proposed to make this choice in such a
way that the resulting layout consists of only quadrilateral patches.
We discuss them in this section. We remark that some of them (in-
herently) introduce additional nodes in the process. While some
introduce irregular nodes, others are able to restrict to additional
regular nodes which do not negatively affect the geometric layout
quality.

»

Figure 10: Irregular nodes computed using a principal direction
guided cross field optimization (cf. Section 4.1.2). Valence 3 nodes
in red, valence 5 nodes in blue, valence 6 nodes in cyan. Note how
most valence 3 nodes lie in regions with positive Gaussian curva-
ture and valence 5+ nodes in regions with negative Gaussian cur-
vature, but where appropriate or necessary, e.g. in order to fulfill
the Poincaré-Hopf theorem, nodes can also arise in flat regions.
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4.2.1. Triangulation-based

One might imagine simple strategies of adding arcs between nodes
one by one in an incremental, greedy manner (e.g. using advancing
front techniques), or based on some notion of node proximity (de-
fined, e.g., by a Voronoi diagram). Achieving a final state in which
every single implied patch has valence 4, i.e. is a quad, however, is
hard.

If we were to drop this structural requirement, i.e. aim for arbi-
trary polygonal patches, the problem becomes easy. Interestingly,
achieving a layout in which every single implied patch has valence
3, i.e. is a triangle, is not harder than this unconstrained problem:
once a polygonal layout is available, each n-gon can easily be split
into n — 2 triangles by locally inserting n — 3 additional arcs — ef-
fectively because triangles are simplices. Splitting into quads by
additional arcs, by contrast, only works if each polygon is a 2n-gon
(a condition hard to impose on a Voronoi diagram or any incremen-
tal arc generation approach).

Based on this insight, a number of methods have been developed
that initially create a triangle (or polygonal) layout, which is then
turned into a quad layout by various kinds of modifications per-
formed in a post-process. These are discussed in this subsection.

An initial triangle layout can, for instance, be generated us-
ing intrinsic or restricted Delaunay tessellation [AdVDIOS, PCO06,
YLL*09] (or, if available, simply be taken from the mesh used to
obtain the nodes, cf. Section 4.1.1). Polygonal layouts typically re-
sult from clustering approaches [CSAD04, PCK04, BMRJ04]

When using the Delaunay tessellation approach, it can be advis-
able to employ (an approximation of) the Loo-norm in the compu-
tation. This has been demonstrated to yield triangulations whose
triangles often form well-shaped quads in pairs [LL10]. This “pre-
conditioning” of shape and arrangement of the triangles can lead to
a quad layout of higher quality when applying the post-processing
techniques described in the following. Still, control over the geo-
metric fidelity and alignment is limited due to the two-step nature
of all of these approaches.

Pairing. Two adjacent triangles can be turned into a quadrilateral
by removing the separating arc
from the mesh, thereby pairing
the two triangles to become a
quad. This pairing can be mod-
eled using the dual graph of the
triangle mesh.

The dual graph (V,E) consists of a set V of dual vertices, one
for each triangle, and a set E of dual edges, one for each arc. Note
that each dual edge identifies a pair of triangles. A subset E’ of the
edges thus describes a set of triangle pairs. To allow for a merging
of triangle pairs to quads, it is important that no triangle appears in
more than one pair. This gives rise to the following definition.

A matching of the dual graph is a subset E’ C E such that each
vertex of V has at most one incident edge in E’. A matching is per-
fect (or complete) if each vertex of V has exactly one incident edge
in E’; in this case 2|E’| = |V|. A perfect matching thus describes a
triangle pairing such that a pure quad layout is obtained. An imper-
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fect matching, by contrast, leaves one or more triangles unpaired,
resulting in a mixed triangle-quad layout.

A variety of strategies have been proposed for the construction
of matchings for given triangulations, as detailed in the following.
Because we are dealing with manifold triangle meshes, note that
we can reasonably assume |E| = O(|V|) for the dual graph in the
following.

e Greedy Matching. Add edges from E to E’ (initialized with @)
one by one, preserving the matching property (at most one inci-
dent edge per vertex). The ordering can be driven by some qual-
ity measure, a weight w(e) assigned to each dual edge ¢ € E,
assessing the shape properties of the quad resulting from each in-
dividual pair [BF98,1.1.94,JSK91, Hei83]. Assuming the weight
can be computed in O(1) time per edge, this approach has time
complexity O(nlogn).

e Maximum-Cardinality Matching. Ignoring geometric quality
of the result and instead aiming for a layout with as many quads
(as few triangles) as possible, one can aim for a matching that is
as complete as possible, maximizing |E’|. Such a matching can
be found in time O(n') [B1u90].

o Max-Min-Weight Matching. The dual graph typically admits
many matchings of maximum cardinality. Among those, it is rea-
sonable to aim for the best one — in terms of some quality mea-
sure. One way of defining this is via maximality of the minimum
weight of edges in E',i.e. E' = arg maxyc 7 mingc w(e), where
F is the set of all maximum-cardinality matchings [EH96]. This
setup assumes that a high weight indicates a preferable pair, lead-
ing to a high quality quad. A max-min-weight matching can be
found in time O(n*) [Law76].

o Minimum-Cost Perfect Matching. Instead of considering the
weight of only the worst pair in the matching, one can con-
sider the cost c(F) = Y,cr w(e), i.e. the sum of weights of all
edges in the matching F', and select one with minimum cost, i.e.
E' =arg ming ¢ 7 c(F) [RLS™12]. This setup assumes that a low
weight indicates a preferable pair. Under the assumption that
a perfect matching exists, this minimum cost matching can be
found in time O(nz), using an improved variant [Gab90, Kol09]
of the blossom algorithm [Edm65].

This assumption holds in many cases: every triangle mesh
without boundary has a dual perfect matching [EKK*11]. For
meshes with boundary, however, a perfect matching does not al-
ways exist (in particular for meshes with an odd number of tri-
angles). Remacle et al. [RLS*12] describe a simple strategy to
effectively make unpaired triangles appear along the boundary
only, where they can be eliminated by simple local modifica-
tions (flips and splits). There is no proof of guaranteed success
though.

Refinement. Instead of treating a triangle as a half-quad (to be
paired with another triangle to form a full quad), it can be treated to
be consisting of multiple quads. The application of a suitable mesh
refinement operator can materialize these individual quads, making
them replace the original triangles.
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e Catmull-Clark. Inserting an additional node in the center of
each arc and each patch,
and then inserting additional
arcs connecting each arc —
center node to the adjacent
patch center nodes leads to
a pure quad layout. Effec-
tively, each triangle is split into three quads by this operation
(the refinement operator used in the Catmull-Clark subdivision
scheme [CC78]). This technique has been used for the purpose
of quad layout construction [DSC09, PPT*11].

This refinement operator can be applied to arbitrary polygon
meshes as well: an n-gon is then split into n quads [PCKO04].

It must be noted that the quality of the resulting quad layout in
terms of regularity is low. The center node inserted into an n-gon
has valence n in the layout. In the case of a triangle mesh, this
leads to numerous irregular nodes of valence 3, and in the case
of polygon meshes potentially to high-valence nodes.

o Arc-Centric. Inserting an additional node in the center of each
patch, and then inserting p
additional arcs connect-
ing each such patch cen-
ter node to the patch’s
corner nodes, splits ev-
ery triangle into three -
sub-triangles. Now removing the original arcs, pairs these sub-
triangles to form quads (one per original arc) [VZ01]. Note that
this creates a quad mesh with half as many quads as Catmull-
Clark refinement does. Special care must, however, be taken at
boundaries, where sub-triangles have no partner. One can, for
instance, split boundary arcs to solve this issue in terms of con-
nectivity.

Note that this refinement operator can be applied to arbitrary
polygon meshes as well.

e Polygon Split. When dealing with polygonal initial layouts, an-
other strategy that inserts only arcs but no additional nodes, thus
creates layouts with a lower number of patches than the above
refinement operators, can be
used [BMRJO4]: each 2n-
gon is split into n — 1 quads
by inserting n — 2 arcs. Each
(2n+1)-gon, however, can
only be split into n — 1 quads
and 1 triangle (by inserting n — 1 arcs). For general polygonal
layouts, it does thus create a mixed triangle-quad layout only.

Hybrid Pairing and Refinement. Performing a complete pairing
(by means of a dual perfect matching) is relatively expensive and
might leave limited control over quality. One can instead perform a
partial pairing by some greedy approach that is stopped when some
quality criterion is about to be violated (or when no further pairing
is possible). The resulting mixed triangle-quad layout can then be
turned into a pure quad layout by one of the refinement operators.
This partial pre-pairing can have the advantage of achieving a sim-
pler result (compared to applying refinement to the triangle layout

immediately) and higher regularity (because refinement of quads
does not introduce additional irregular vertices) [VZ01].

Higher quality can be achieved by applying the refinement not to
partially paired triangle meshes, but to quad-dominant layouts cre-
ated with particular attention to surface geometry and directional
alignment [RLL*06,JTPS15, MK04, LKHO0S].

Decimation. Once a pure quad layout has been obtained using
pairing or refinement techniques, one might want to try to adjust
the complexity, node density, or regularity of the quad layout us-
ing generic quad mesh decimation techniques [DSSC08, DSC09,
TPC*10]. Driving this decimation in a way that the resulting layout
is geometrically faithful and irregular vertices end up in plausible
locations is challenging. In this context Panozzo et al. [PPT*11]
use special kinds of pre-computed sizing fields (called fitmaps) to
influence the decimation process.

4.2.2. Binary Optimization

While a partition into triangles can easily be obtained in various
ways (cf. Section 4.2.1), directly creating a partition where all
patches are quadrilateral is not possible in similarly simple, local,
greedy manners. For pure quad layouts, more global approaches are
necessary to take this condition into account.

The problem that needs to be solved can be formalized as fol-
lows: select a subset of the set of all possible arcs, such that each
patch implied by this subset is quadrilateral.

The hardness of this problem mainly comes from two facts: the
set of all possible arcs is infinite in general (cf. Section 4.2), and
the question of whether the implied patches are quadrilateral is not
a purely combinatorial but a geometric question, considering that
intersections of arcs need to be taken into account (either be pre-
vented, or be considered as implicitly forming additional regular
nodes).

This hard problem has recently been tackled by pre-filtering the
set of all possible arcs such that firstly it becomes relatively small
and, in particular, finite, and secondly arcs intersect only in specific
ways, such that intersections can be taken into account more eas-
ily. The simplified problem can then be formulated as a global bi-
nary optimization problem and approached using standard solvers
[RRP15,ZZY16,PPM*16,RP17]. An objective based on the arcs’
geometric quality (e.g. in terms of simplicity or alignment to de-
sired directions) can be used to find a good layout among the valid
ones.

This pre-filtering approach comes with a risk, though: there is
no guarantee that the selected subset actually admits a quad layout;
and if it does, it might be arbitrarily far away from the optimum in
terms of quality.

Pre-Filtering To restrict the possible intersection patterns, one can
restrict the arcs’ tangents based on a global seamless parametriza-
tion of the surface which has cones at the nodes (with the cone an-
gles corresponding to the desired node valences) [MZ12, BZK09,
TACSDO06], cf. Figure 13 for an example of such parametrizations.

The separatrices of such a parametrization (i.e. the u- and v-
isocurves emanating from the nodes) are guaranteed to be finite
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if the parametrization’s charts’ transitions have rational transla-
tional components [CBK15]. They furthermore intersect only or-
thogonally away from the nodes, and the patches formed are all
quadrilateral (cf. Section 4.2.4). Directly using these separatrices
as arcs, however, is problematic: the implied quad layout can be
highly complex because the separatrices can be arbitrarily long and
form arbitrarily many intersections [BLK11, TPP*11].

It can however be shown that the structural properties are
preserved if one allows the arcs’ tangential direction to deviate
from the parametrization’s isocurve directions by less than £45°
[CBK12]. The arcs do then no longer intersect orthogonally, but
those aligned to the local u-isocurve (45°) do still transversally
intersect those aligned to the local v-isocurve. With proper precau-
tions (in particular: a single arc per port of each node), this is suffi-
cient to guarantee that no non-quad patches are formed [RRP15].

This can be exploited by considering as candidate arcs only
curves that fulfil this < +45° criterion with respect to a given
global seamless parametrization, or, to simplify implementation,
a quantized [CBK15] version thereof (effectively a quad mesh)
[ZZY16,RP17]. The property of all patches being quadrilateral can
then be expressed using relatively simple binary conditions that
prevent multiple intersecting candidate arcs that are locally aligned
to the same parametric direction from being chosen for the layout
together [RRP15].

The candidate arc set defined in this way is still infinite, though.
Additional criteria are necessary to reduce it to a finite size. For
instance, one can use an arc length cut-off, a threshold on a spi-
ral pitch measure [RRP15], a cardinality threshold [PPM™*16], or
regional restrictions [ZZY 16, RP17]. Figure 11 shows an exam-
ple candidate set on a simple surface. Depending on the choice
of parameters, the candidate set might, however, be too small in
the sense of not admitting any quad layout at all — unless one in-
cludes the arcs of some initial (possibly low quality) quad layout
in the set, effectively enabling a fallback to this solution in the
worst case [RP17] (a property shared with simplification strate-
gies [TPP*11, BLK11] that start from initial layouts, cf. Section

A=
3

Figure 11: Candidate arcs/separatrices for a given node configura-
tion (black dots, their ports depicted using blue arrows) [RRP15].
Chosing a proper subset of these based on a system of binary con-
ditions and local quality ratings can yield the quad layout on the
bottom left. (Image courtesy of F. Razafindrazaka)
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4.2.4). A very generous choice, on the other hand, can lead to an
overly large, intractable optimization problem.

A potential difficulty with this approach is the hardness of con-
structing a global (quantized) seamless parametrization in the first
place [MPZ14, CBK15]. One can consider using a cross field
(which also provides two orthogonal directions everywhere on
the surface) instead [PPM* 16, KLF15], as it is significantly eas-
ier to construct for a given set of nodes (i.e. field singularities)
[VCD*16]. However, not for all cross fields do the separatrices (the
field’s integral curves emanating from singularities) form a quad
layout, and the resulting candidate arcs may not admit any quad
layout either, no matter how the thresholds are chosen. This can,
for instance, be due to the existence of attractors in the field or
due to globally unfit field holonomy [MPZ14,KNPO07]. With a suit-
able formulation one can, however, at least obtain partial or non-
conforming layouts in such problematic cases, that can be post-
processed into quad layouts by refinement operations [PPM*16].

4.2.3. Dual Loops

As discussed in Sections 4.2.1 and 4.2.2 directly constructing a
quad layout — without having to resort to post-processing based on
pairing or refinement strategies — requires a global consideration of
the problem; incremental, greedy construction seems intractable.
However, it was observed [CBK12] that an incremental construc-
tion is possible in the dual setting: instead of the primal arcs of the
layout, one considers its dual edges. As discussed in Section 3.3
these dual edges form loops [MBBM97].

The key observation in this dual setting is that any arrangement
of loops that A) have only simple intersections and B) partition the
surface into regions of disk topology, is dual to a pure quad lay-
out [CBK12], Figure 12 shows an example. An intersection is not
simple if the loops are in tangential contact or if more than two
loops intersect at the same point. Such arrangements can easily be
constructed incrementally: simply add loops until all non-disk re-
gions are split into disks, while avoiding non-simple intersections.

The major challenge, though, is to perform this in such a way
that the resulting quad layout is not only structurally pure, but ge-
ometrically faithful as well. Two methods that take layout sim-
plicity, arc straightness, and alignment to principal directions and
feature curves into account in an incremental dual loop construc-
tion process have been proposed in recent years. One takes a set
of nodes and valences as input and constructs suitable arcs, the
other more flexibly constructs nodes and arcs simultaneously. We
describe them in the following.

In general, the dual loops should be short, straight (geodesically),
and aligned to directions of principal curvature [CBK12]. These
three objectives are not compatible in general, i.e. they must be
balanced. The relative weighting between straightness and princi-
pal direction alignment can reasonably be driven by a measure of
local surface shape anisotropy. For instance, in regions where the
surface is cylindrical and thus has a very pronounced directional
nature, aligning to either one of the principal directions is more im-
portant than in nearly flat or spherical regions, where straightness
should be the commanding principle.

The relative weighting of the shortness objective versus these di-
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Figure 12: Dual loops approach. Left: principal direction aligned
cross field. Middle: dual loops arrangement (on the surface and
separate for clarity). Right: primal pure quad layout.

rectional objectives is a free parameter that, to some extent, allows
to choose between simpler and more geometrically faithful layouts.

Fixed Nodes. In analogy to the description in Section 4.2.2, for a
given configuration of nodes and valences, a cross field with singu-
larities of corresponding indices at these nodes can be constructed
(cf. Figure 12 left). Alternatively, a global seamless parametrization
with cones at the nodes, as in the primal, global binary optimization
based approach, can be used. This cross field (or parametrization)
is optimized based on straightness (low Dirichlet energy) and prin-
cipal curvature direction alignment objectives [BZK09, VCD*16].

Now consider a closed integral curve of the cross field (or
isocurve of the parametrization): it forms a loop that is perfectly
in line with the combined straightness and alignment objective
represented by the cross field — but en-
tirely neglects the shortness objective;
these curves can be arbitrarily long and
wind around the surface many times
(blue in the inset). By contrast, a closed
geodesic curve forms a loop that exclu-
sively considers the shortness objective.

The idea now is to combine these two concepts and construct
anisotropic geodesic loops (green in the inset), where the underly-
ing anisotropic metric is implied by the cross field, and the chosen
strength of the anisotropy effectively balances the shortness objec-
tive and the directional objective. Dual loops which are optimal in
a discrete anisotropic geodesic sense can efficiently be found using
a dynamic programming approach, akin to Dijkstra’s shortest path
algorithm [CBK12]. Using additional constraints, improper loop
intersections can be ruled out.

One can then add such optimal loops one by one. As one wants
to use the predetermined nodes for the implied primal layout, the
nodes should come to lie in separate regions of the dual layout,
i.e. each pair of nodes should be separated by loops. Guided by
this principle, loops can be added with the goal of separating yet
unseparated nodes [CBK12]. This is not guaranteed to be always
possible, so some nodes might get merged in the final layout. If
using a cross field and not a parametrization to guide the loops,
globally unfit field holonomy is theoretically able to prevent finding
enough loops to partition the surface into only disk-like regions,
similar to the primal case (cf. Section 4.2.2).

Once enough dual loops have been constructed, the actual primal

quad layout can be generated by dualizing the embedded graph de-
fined by the arrangement of loops. Figure 12 shows and example of
the dual and primal layout.

Free Nodes Alternatively, one can construct the dual layout more
flexibly by not relying on predetermined nodes. This is particularly
important to enable user interaction, guidance, and additional de-
sign constraints in the process [CK14a].

Without prescribed nodes, one cannot make use of the cross field
or parametrization (whose singularities or cones correspond to pre-
scribed nodes) as before. Without the directional information pro-
vided by them, we cannot model the set of desirable dual loops as
anisotropic geodesics. We need to model the objectives of straight-
ness and of directional alignment (which are otherwise taken care
of jointly by the cross field alignment) separately.

For this purpose elastica curves are required. In contrast to
geodesics, their optimization additionally takes second-order curve
properties into account, which is required to be able to consider
straightness. By constructing the so-called derivative graph of a sur-
face triangulation, optimal discrete elastica loops can still be found
using an efficient Dijkstra-type algorithm [CK14a], and positional
and directional constraints can be taken into account for interactive
layout design purposes.

One of the advantages of this approach is that the restrictions
due to a predetermined cross field, that could present an obstacle to
obtaining a good layout, are dropped.

4.2.4. Integer Grid Maps

A valid set of arcs, or, more precisely, separatrices (i.e. chains of
arcs between irregular nodes, cf. Section 3), can be derived from
a global parametrization’s isocurves emanating from the nodes.
If the parametrization is seamless and has a cone of angle k% at
each node of valence k [MZ12], there are k such curves emanat-
ing from each valence k node, they intersect only orthogonally
(implying additional regular nodes), and partition the surface into
quadrilateral regions. However, only if the seamless parametriza-
tion is quantized [CBK15] (or, without loss of generality, integer
rounded [BZK09, KNP07]), do these curves form a finite quad lay-
out. Figure 13 shows an example.

Such a parametrization is also known as integer grid map
[BCE*13], because it maps a regular axis aligned grid in parameter
space onto a quad mesh on the surface. Many recent quad mesh-
ing methods (cf. Section 3.4) are based on this principle. The quad
layout formed by the parametrization’s separatrix curves actually is
the base complex (cf. Section 3) of this implied quad mesh.

This base complex can, however, be arbitrarily fine; the separa-
trix curves can wind around the underlying object many times and
form numerous intersections, implying additional (regular) nodes
and thus additional patches (cf. Figure 13 left and Figure 14).
While additional constraints can be added to the parametrization
optimization problem to yield a simpler base complex [MPKZ10]
(cf. Figure 13 right), choosing an appropriate and valid set of con-
straints is challenging, and their effectiveness limited.
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Figure 13: Global seamless parametrization with cones at nodes
(blue dots), visualized using a fine grid of isocurves. The
parametrizations on the left and right differ slightly. On the left,
the separatrices (shown only partially) form a very complex lay-
out with small patches. On the right, the separatrices are short and
form a very simple quad layout.

Extremal Integer Grid Maps

One powerful way to strictly simplify the base complex, though, is
to make the underlying integer grid simpler in the first place. As
the base complex is a subset, thus either equally or less complex,
this bounds the complexity of the resulting quad layout. This is
achieved by performing a stronger quantization of the parametriza-
tion, resulting in a coarser implied quad mesh.

This, however, comes with a complication: the robustness of
many integer grid map generation methods decreases with increas-
ing coarseness. The parametrization tends to become invalid (non-
injective, containing degeneracies or inversions) more easily. Coun-
termeasures such as stiffening [BZKO09] are often not powerful
enough to prevent this in this case either.

Recent advances in this field have, however, led to robust round-
ing or quantization techniques [BCE* 13, CBK15]. With these, the
quantization strength (target edge length) can be increased arbitrar-
ily, even to extreme values beyond the size of the model. Due to the
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Figure 14: Quad meshes [BZK09] and their base complexes. On
the left the arcs of the base complex are highlighted (red). In the
middle the base complex patches are visualized by individual colors
— on the right a very similar quad mesh of this object is depicted
(same resolution, same number and type of irregular nodes) with
a much simpler base complex is depicted. The chances of directly
yielding a mesh with such a simple, nicely structured base complex
from an unconstrained integer grid map construction are very low.
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Figure 15: Quad layouts obtained from an extremal integer grid
map, optimized for as-large-as-possible patches (given prescribed
irregular nodes) [BCE* 13]. (Image courtesy of D. Bommes)

robust procedures, still a valid result can be obtained; the involved
correctness constraints implicitly (anisotropically) reduce the size
of the individual quad elements such that they fit the prescribed
nodes. In this way, very coarse quad meshes, with possibly even
coarser base complexes, can be obtained.

It can be observed, though, that for large prescribed target edge
lengths, the optimization of the parametrization seems to be dom-
inated by the aim of fulfilling the involved validity constraints,
and geometric quality occasionally suffers, resulting, e.g., in badly
shaped patches and badly aligned arcs.

Figure 15 shows some example layouts obtained in this way.

Greedy Simplification

The recent robust methods that are able to construct extremal in-
teger grid maps [CBK15, BCE*13] are not particularly simple
and consist of multiple non-trivial components. Somewhat simpler,
non-robust variants [KNP07, BZK09], however, can only reliably
be used to generate relatively fine quad meshes, with a high number
of additional regular nodes, i.e. long separatrices that form many
intersections.

A possible approach is to take such an initial layout which is too
fine, too complex, and subsequently attempt to simplify it by means
of connectivity editing operations applied to the separatices, aiming
for shorter separatrices that form fewer intersections. This can be
seen as a local variant of the global binary optimization approach
(cf. Section 4.2.2), with the difference that a valid starting layout is
known which is then incrementally modified. This avoids the risk of
not finding any solution (in case pre-filtering was to aggressive) at
the cost of possibly not getting very far with the local modifications.

Using sets of operators that preserve the quad structure, one at-
tempts to reduce the total length of separatrices, thus the complex-
ity of the implied layout. Such operators can be built from sepa-
ratrix removal and re-insertion steps [TPP*11], or by focusing on
eliminating certain helical configurations, which were identified as
most relevant for base complex simplicity [BLK11]. Using greedy
strategies the underlying huge search spaces are then explored in
the search of modified quad meshes with a simpler base complex,
implying simpler quad layouts.
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5. Layout Embedding Optimization

Once the layout’s structure in terms of nodes and connecting arcs
has been determined, the layout’s embedding in the surface needs
to be decided. This involves answering the questions of where ex-
actly the nodes should be positioned and which routes over the sur-
face the arcs should take. The embedded nodes and arcs then de-
lineate the quad patches — whose interior embedding (in form of
parametrizations over rectangles, cf. Section 3) one might want to
compute and optimize as well.

All of the node determination methods (cf. Section 4.1) and most
of the arc determination methods (cf. Section 4.2) already provide
an embedding of the nodes and arcs. While this could be taken as
is, it is typically reasonable to consider it preliminary and strive
for optimization. We discuss methods that were proposed for this
purpose in the following.

5.1. Arc Straightening

Embedded arcs should ideally be as straight as possible, i.e. they
should be geodesic curves on the surface — at least when consid-
ering the situation just locally. This allows the two neighboring
patches to be mapped to rectangular domains with low distortion
along this arc.

Using simple straightening approaches the initial (possibly
jagged, badly routed) arcs can be adjusted towards, or completely
turned into, geodesic curves [PCKO04, LRLO6]. But while being
geodesic is optimal locally for an individual arc, globally, where
the interplay of arcs and
patches is important, it
can be problematic. This
can be seen in the inset
where geodesically em-
bedded arcs lead to near-
degenerate patches. Com-
pare this to the layout embedding depicted in Figure 5. Obviously,
to achieve a layout of overall high quality, it can be advantageous to
embed arcs non-geodesically — depending on the global situation.

5.2. Global Parametrization Optimizaton

To perform a global optimization of the node, arc, and patch em-
beddings in an integrated manner, one makes use of a global (chart
atlas based) parametrization that represents a complete layout em-
bedding (cf. Section 3), consisting of node, arc, and patch embed-
dings. This global parametrization is to be optimized with respect to
some distortion measure, for instance aiming for isometry or con-
formality.

Unfortunately, this leads to a non-linear, non-convex optimiza-
tion problem. If one keeps the nodes fixed, one arrives at a sim-
ple, convex problem for certain objectives, such as harmonicity
[TACSD06,BVKOS] or cross field alignment [CK14b]. Such a for-
mulation can thus be used to efficiently optimize the arc and patch
embeddings (cf. Figure 16 top) — while the nodes remain in their
initial positions.

Full optimization including free node positions has been tackled

Figure 16: Left: initial nodes and arcs. Top right: global
parametrization, implying optimized arc and patch embeddings —
but nodes remain unaltered. Bottom right: global parametrization
after additionally optimizing node embeddings, implying patch em-
beddings with lower distortion, thus overall higher quality.

by alternating strategies. One possibility is to keep a subset of arcs
and nodes fixed while efficiently optimizing the embedding of the
others, and repeating this a sufficient number of times while rotat-
ing the choice of fixed and free arcs and nodes [TPP*11]. Another
option is to alternatingly optimize arc as well as patch embeddings
while keeping the nodes fixed (via simple linear system solves, as
mentioned above), and improve the node positions for fixed patch
embeddings (using a gradient descent strategy) [CK14b] (cf. Fig-
ure 16 bottom). The latter method is independent of the quality of
the initial arc embeddings.

5.3. Global Mesh Optimization

A simpler, but less robust, variant of optimization via a global
parametrization is optimization via a quad mesh. Effectively, one
could consider this a discretized version of the approach described
in Section 5.2: based on an initial parametrization of the patches
(e.g. by means of Tutte’s embedding), create a regular grid of quads
per patch, which together form a quad mesh aligned with the initial
arcs [CBK12] (cf. Figure 17 left and middle). The chosen resolu-
tion of this mesh affects the efficiency and robustness of the follow-
ing optimization.

Instead of iteratively optimizing the parametrization, which due
to its singularities and chart-atlas nature is relatively involved, one
can then apply quad mesh smoothing techniques [ZBX05], together
with reprojection to avoid quad mesh vertices from moving off the
surface. The final layout can be extracted as the base complex of
the optimized quad mesh in the end (cf. Figure 17 right).

Figure 17: Discrete, mesh based quad layout embedding optimiza-
tion via constrained quad mesh smoothing.

preliminary manuscript



Marcel Campen / Partitioning Surfaces into Quadrilateral Patches 15

The simplicity of this approach comes with a price though: the
reprojection of the vertices, and possibly the final layout, onto the
surface is not unconditionally robust; the quad mesh resolution in
relation to the surface feature size needs to be sufficiently fine.

6. Manual Influence

Due to the complexity and hardness of the quad layout generation
problem, the results of current fully automatic methods are not al-
ways qualitatively suitable for all application scenarios. Guidance
provided by additional user input can be leveraged to influence the
results, to shape or design the layout according to specific require-
ments.

While an entirely manual layout construction [BVKO0S8, KL96,
MBVW95, AAB*88] is certainly an option, the involved global
structural conditions and geometric interdependencies make this a
challenging, tedious, and time consuming approach, even for ex-
perienced users. To cite Takayama et al. [TPSHSH13] in this re-
gard: “it is often quite challenging even for professional artists
to manually design a perfect quad mesh on the first try. Since
the quality [...] is a global property, the correction of a single
mistake might require regeneration of the entire mesh.”. They
hence proposed a system which provides various helpful guides
and automatisms to reduce the user’s workload — for the case
of subdivision base mesh design. Similarly, semi-automatic, as-
sisted approaches were proposed for the creation of quad layouts
[TACSDO06, TDN*12,CK14a,JLW 10, ULP*15]. The user (directly
or indirectly, e.g. via dual loops or a skeleton) places nodes and
delineates the connecting arcs.

This user-controlled approach to the problem can be advanta-
geous because layout design decisions might depend on the in-
tended use of the layout and cannot always be derived automati-
cally from geometry alone. An additional possibility to manually
influence the resulting quad layout is to edit the result of an auto-
matic method in a post-process using suitable structure-preserving
operators [PZKW11,PBJW14].

7. Restricted Layout Classes

The methods discussed in the previous sections target general quad
layouts. Effects of discretization and parameter choices aside, any
quad layout could theoretically arise from many of these methods.

A number of methods that create quad layouts from restricted
classes have been described in the literature as well. This is not nec-
essarily always due to applications’ demand for these specific types
of layouts. In this sense, while the general methods could theoret-
ically yield the qualitatively optimal layout, the restriction might
unnecessarily limit the quality that can be achieved. On the other
hand, this restriction may help to prevent bad or even worst-cases,
which the general methods cannot strictly rule out, from arising.
Furthermore, manual control (cf. Section 6) over the resulting lay-
out can be easier for restricted classes of layouts. This, for instance,
is exploited in skeleton-driven techniques, as described in the fol-
lowing.
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7.1. Skeletal Layouts

Given a proper (homotopy equivalent) skeleton for a 3D model,
designed manually or created automatically [TDS*16], structured
quad layouts for the surface can be derived. Essentially, a partition
of the surface into topological cylinders and punctured spheres can
be associated with the skeleton: each bone corresponds to a topo-
logical cylinder, and each joint to a topological sphere, punctured
such that the cylinders of the incident bones can be attached. For au-
tomatic skeletonization methods, this partition and correspondence
is often a byproduct of the process.

Each cylindrical region can always be partitioned into a cyclic
chain of k (arbitrary, but commonly chosen to be 4) quads (effec-
tively by a map of the region to an open k-gonal prism). Then one
is only left with defining compatible canonical quad partitions for
n-times punctured spheres, such that the combination of these lo-
cal quad layout templates for bones and joints form a global quad
layout [JLW10, ULP*15].

7.2. Polycube Layouts

A number of methods deal with so-called polycube maps
[THCMO04], which involve a map of a surface onto a polycube sur-
face, which consists of orthogonal polygon facets. As each orthog-
onal polygon, thus the entire polycube surface, can easily be subdi-
vided into conforming quadrilateral patches, this allows to define a
quad layout for the surface via the inverse map.

While these polycube maps are of interest for volumetric map-
ping and meshing purposes [GSZ11, HIS*14, FXBH16], the re-
striction to the specific sub-class of quad layouts that can result
from such a map does not necessarily provide particular benefits
for the surface case from an application perspective, and particu-
larly not in terms of computational simplicity or robustness. A po-
tential benefit could be the general absence of self-intersecting dual
loops from polycube surface layouts, e.g. for volumetric meshing
purposes [MHO02, KBLK13].

8. Future Directions

Finally, we briefly discuss some of the major open problems and
interesting future directions. While many of the presented methods
have their own unanswered detail questions, e.g. regarding specific
guarantees and properties, we focus here on the overarching as-
pects.

8.1. Optimality

Quad layout generation approaches treated so far in the literature
are typically based on heuristics and simplified, abstracted objec-
tives, not a true application-specific quality measure. This could be
due to the fact that the actual measure can be quite hard to formal-
ize, too hard to optimize for, or simply too application-specific, i.e.
not generic enough for a research publication targeting a general
audience.

As such, all the automatic methods proposed can rarely give
strict guarantees concerning the quality and suitability of the result
for any specific application scenario with hard requirements.



16 Marcel Campen / Partitioning Surfaces into Quadrilateral Patches

It would certainly be valuable to have methods available that are
able to create a layout with specific guarantees, such as, for in-
stance, a bound on the surface approximation error when the layout
is used as a base domain for a particular spline-based surface rep-
resentation, or a bound on the distortion when the layout is used as
domain for a piecewise surface map. As finding the globally opti-
mal layout satisfying certain constraints is likely to be intractable
in a general case, and directly yielding any (non-optimal) layout
fulfilling certain hard conditions is perhaps not within reach either,
it would also be of benefit to have methods that are able to effi-
ciently incrementally modify a quad layout, improving it towards a
specific goal, ideally being able to guarantee that certain conditions
will ultimately be met — albeit in a sub-optimal (non-parsimonious)
manner.

8.2. Sub-Problem Integration

The decomposition of the quad layout generation problem into sub-
problems which are solved in sequence, is a popular and efficient
strategy employed by many of the recent methods. It, for instance,
allows the discrete, the combinatorial, and the continuous aspects
of the problem to be tackled separately, by specialized optimization
techniques.

On the other hand, higher quality could potentially be achieved
if the entire problem would be solved at once, in an integrated man-
ner. For instance, consider that the quality of a node configuration
can only vaguely be judged without knowledge of also the arc con-
nectivity and the patch embedding. As a simpler, but also more lim-
ited, alternative to an integrated optimization, one could consider
making, in some form, retroactive adjustments to the node config-
uration during the arc construction, or adjustments to the nodes or
arcs during the patch embedding optimization, so as to arrive at a
layout of higher quality.

8.3. Hexahedral Layouts of 3D Solids

Just like quadrilateral layouts enable tensor product constructions
in 2D (on surfaces of objects), hexahedral layouts enable this in 3D
(in objects’ interior volumes). In such partitions, each part (or cell)
is topologically cubical. Some applications require such a three-
dimensional (piecewise) representation of a solid’s interior volume
— for instance for simulations that cannot be expressed on the sur-
face alone. A generalization of the discussed quad layout genera-
tion techniques to this hex layout case would be of high value.

Quite unfortunately, while the continuous embedding optimiza-
tion techniques (cf. Section 5) could be adapted based on three-
dimensional field-guided parameterization [NRP11], the most pow-
erful node determination techniques (cf. Section 4.1) and nearly all
connectivity determination techniques (cf. Section 4.2) do not gen-
eralize from 2D to 3D, as detailed in the following. As an alter-
native to hex layout construction from scratch, one could proceed
incrementally, first constructing a surface quad layout and then ex-
tending it to a volume hex layout [Eril4], but only a restricted class
of quad layouts is suitable and achieving high geometric layout
quality poses a major challenge.

Cross Fields. The node determination technique based on cross
fields (cf. Section 4.1.2) does not extend to 3D. While in 2D vir-
tually any node configuration that can result from this method is
valid, for the 3D analog based on 3D frame fields [HTWB11] addi-
tional global constraints need to be met such that a valid singular-
ity network (implying nodes and arcs) can be deduced [VCD*16].
Thus, so far manual singularity specification [NRP11] has been
used, or attempts been made to repair invalid configurations in
a post-process [LLX*12, JHW™14], though, to cite Jiang et al.
[JHW™14], “it remains an open problem to give a sufficient con-
dition”.

Dual Loops. The concept of dual loops (cf. Section 4.2.3) ex-
tends to the three-dimensional case in the form of dual sheets
[MBBM97]. The efficient generation of candidate dual sheets,
however, is an unsolved problem. While minimal embedded loops
can be generated using efficient Dijkstra-type techniques, minimal
embedded surfaces (as natural model for good dual sheets) are not
amenable to such efficient generation [GralO]. A particular chal-
lenge is that dual sheets of unknown topology (arbitrary genus, ar-
bitrary number of boundaries) must be dealt with, while dual loops
are always simple curves.

Seamless Parametrization. A number of techniques discussed re-
lies on a seamless surface parametrization (cf. Sections 4.2.2,4.2.4,
5.2). For the surface case, a robust solution to the problem of ob-
taining such a parametrization is known [MPZ14]. Many compo-
nents thereof (e.g. the field tracing or the motorcycle graph) have
not yet been extended to 3D.

Pairing. Just like a triangulation can easily be obtained for a sur-
face, a tetrahedralization can easily be obtained for a solid’s vol-
ume. As we have seen, triangle layouts can often be converted into
quad layouts (though not necessarily of high quality) by means of
pairing (cf. Section 4.2.1). One can try to extend this and com-
bine multiple tetrahedra to hexahedra. This, however, only works
to some extent [SRUL16], yielding hexahedra dominant layouts.

Refinement. While Catmull-Clark refinement (cf. Section 4.2.1)
turns any polygonal layout into a quad layout, polyhedral layouts
are turned into hexahedral layouts by an analogous refinement only
if all polyhedra are trivalent (i.e. three edges meet at each corner).
This is the case for tetrahedra. Unfortunately, this one construction
that actually does extend to 3D is typically the worst in terms of
quality already in 2D; note that most nodes and arcs of the resulting
hexahedral layout are irregular rather than regular.

Morse-Smale Complex. While in 2D a pure quad layout can be
derived from scalar fields via Morse-Smale theory (cf. Section
4.1.1), the existence of multiple types of saddle-points in 3D scalar
fields typically leads to Morse-Smale complexes with cells that are
not hexahedral [LHJ*14].

Layout Simplification. We considered the simplification of fine
quad layouts (or meshes) to coarser layouts (cf. Section 4.2.4).
Recently, a similar technique has been proposed for hexahe-
dral meshes [GDC15]. The robust generation of pure hexahedral
meshes to begin with remains an issue [JHW™* 14, FXBH16] to be
investigated.
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9. Summary

The problem of partitioning surfaces into quadrilateral patches is
not a simple, and not an easy problem. It comes with discrete, com-
binatorial, topological, and continuous degrees of freedom, global
structural conditions and interdependencies, as well as a variety
of non-trivial qualitative requirements. A multitude of techniques
have been used and proposed to construct and optimize a quad lay-
out’s nodes, arcs, patches, and their embedding in the underlying
surface.

For the nodes, there are approaches based on sampling, which
are relatively simple, but often not particularly suited for quad
patches, even less for conforming and parsimonious quad layouts.
Approaches based on the surface’s Gaussian curvature have proven
powerful in this context and are employed by many recent methods.

For the construction of arcs, defining the layout’s connectivity,
the simplest methods are based on direct conversion of initial tri-
angular layouts. This allows for robust implementations, but the
results are typically not of high quality in terms of alignment and
regularity. Direct, primal construction of quadrilateral connectivity
involves a global combinatorial optimization problem, and the ma-
jor challenge is the reduction of the infinite search space to a finite
yet feasible subspace. Dual approaches allow for efficient connec-
tivity construction in an incremental manner. The control over the
layout’s quality is less direct in this setting though, due to the in-
direct, dual perspective. Extremal or simplified integer grid maps
allow to derive connectivity information from a quantized global
parametrization. The main challenge in this context is the robust
construction of an injective and seamless global parametrization.

For the optimization of patch embeddings, local approaches are
simple but limited in their effectiveness. State-of-the-art methods
employ a global parametrization, representing all the nodes’, arcs’,
and patches’ embeddings in the surface, which can iteratively be
optimized while taking their interdependencies into account.

Directions for future work include the investigation of methods
that enable the creation of layouts particularly suited for specific
applications, ideally being able to provide strict guarantees, e.g.
regarding error bounds. The automatic construction of 3D hexahe-
dral layouts likewise is of significant interest, and the generalization
of the discussed quad layouting techniques to the next dimension
poses a multitude of open problems and interesting challenges.
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