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What is virtual camera control?

* process by which the camera is interactively or
automatically controlled in a 3D environment

— e.g. games, virtual storytelling, modeling, data / scientific
visualisation

* encompasses a collection of techniques to

— aid the user in controlling the camera

— place the camera in a suitable position

— maintain the visibility of targets
— make well-composed shots
— plan camera paths

— perform cuts between shots
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Application: Games

Interactive computer games serve the benchmark application for
camera control techniques. Most importantly, they impose the
necessity for real-time camera control. A canonical camera
control problem involves following one or more characters whilst
simultaneously avoiding occlusions in a highly cluttered
environment. Furthermore, narrative aspects of real-time games
can be supported by judicious choice of shot edits both during
and between periods of actual game play. The increasing
geometric complexity of games means that most deployed
camera control algorithms in real-time 3D games rely upon fast
(but fundamentally limited) visibility checking techniques.

Camera control in games has received considerably less attention
in computer games than visual realism, though as John Giors (a
game developer at Pandemic Studios) noted, “the camera is the
window through which the player interacts with the simulated
world”. Recent console game releases demonstrate an increasing



desire to enhance the portrayal of narrative aspects of games and
furnish players with a more cinematic experience. This requires the
operationalization of the rules and conventions of cinematography. This
is particularly relevant in the case of games that are produced as a film
spin-offs, where mirroring the choices of the director is an important
means of relating the game play to the original cinematic experience.



Example: Heavy Rain

Heavy Rain, © Quantic Dream, 2010
I —

This video can be found at
https://www.youtube.com/watch?v=fMK6sTnMxBI.

Heavy Rain, as other similar games that are being
increasingly developed, closely mimic the language of
movies in presenting the virtual experience to the
user, using editing and camera movements that
follow a specific cinematographic style. However, all
cameras in the game have been more or less
manually designed for the range of actions and
events that the game can display (and that have to be
thus known in advance).


https://www.youtube.com/watch?v=fMK6sTnMxBI

Application: Modelers
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« 3D artists specify
— camera position

— look-at / up vectors

« control provided

— classical interpolation methods (splines with key

frames/control points) - B
— fine control of the velocity curves supported
— target constraints supported
>

« other basic notions from cinematic practice are not
supported (e.g. framing)

® Location of the camera
7 ) ® & LookAt vector of the camera

* designer is the cameraman (not the director)
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In three-dimensional modeling environments, virtual cameras are
typically configured through the specification of the location of the
camera and two vectors that represent the look-at and up
directions of the camera. The specification of camera motion is
usually undertaken through a combination of direct editing and
interpolation, such as the use of splines with key frames and/or
control points. Animation of the camera is realized by interpolating
the camera location, up and look-at vectors across key frames.
Fine control of camera speed is provided through the ability to
manipulate the velocity graphs for each curve.

A set of complementary tools provides modelers with the ability to
use the position of a unique static or dynamic target object to
constrain the look-at vector. Modelers may also allow the use of
offset parameters to shift the camera a small amount from the
targeted object or path. Similarly, some tools allow constraints to
be added to fix each component of the look-at vector individually.



Physical metaphors are also used to aid tracking, such as virtual rods
that link the camera to a target object. With the possibility to extend the
functionality of modelers through scripting languages and plug-ins, new
controllers for cameras can be readily implemented (e.g. using physics-
based systems). Furthermore, with the rise of image-based rendering,
the creation of cam- era paths using imported sensor data from real
cameras is increasingly popular.

In practice, the underlying camera control model (i.e. two spline curves)
is not well suited to describing the behavioral characteristics of a real
world cameraman, or the mechanical properties of real camera systems.
Despite the fact that a number of proposals exist for describing
cinematic practice in terms of camera position, orientation and
movement, most modelers have not attempted to explicitly incorporate
such notions in their tools. Even basic functionality,

such as automatically moving to an unoccluded view of a focal object,
cannot be found in current commercial modeling environments.

This mismatch can in part be explained by the general utility that most
modeling environments strive to achieve. Cinematic terminology is
largely derived from character oriented shot compositions, such as over-
the-shoulder shots, close shots and mid shots. Operating in these terms
would require the semantic (rather than just geometric) representation of
objects. Furthermore, the problem of translating most cinematographic
notions into controllers is non-trivial, for example, even the seemingly
simple notion of a shot will encompass a large set of possible, and often
distinct, solutions. However, providing users with high-level tools based
on cinematic constructs for the specification of cameras and camera
paths, would represent a significant advance over the existing key-frame
and velocity graph-based controls.



Application: Visualisation -
Multimodal Systems

» support user understanding of
presented data or procedures

— or any task the user is performing

« coordination of language and
graphics e sttty 14
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In practice, even partially automated three-dimensional
multimedia generation requires an interpretation and synthesis
framework by which both the visuospatial properties of a
viewpoint can be computed (i.e. the interpretive framework) and
the viewpoint controlled according to the constraints arising from
the semantics of the language used (i.e. the synthesis
framework). Likewise, future scientific and information
visualization systems will benefit greatly from intelligent camera
control algorithms that are sensitive to both the underlying
characteristics of the domain and the task that the user is
engaged in. Such adaptive behavior presupposes the ability to
evaluate the perceptual characteristics of a viewpoint on a scene
and the capability to modify it in a manner that is beneficial to the
user.

Beyond simple object references, the coordination of language
and graphics poses a number of interesting problems for camera



control. Indeed, such applications are a rich source of constraints on a
camera, as the semantics of some spatial terms can only be interpreted
by reference to an appropriate perspective. For example, descriptions
involving spatial prepositions (e.g. in front of , left of ) and dimensional
adjectives (e.g. big, wide) assume a patrticular vantage point. For
projective prepositions the choice of a deictic or intrinsic reference
frame, for example, for the interpretation of in front, directly depends on
the viewpoint of a hypothetical viewer.



Application: Movies

* CG movies

 digital previz

— tools to aid the prototyping
of camera angles and
movements

While big-budget CG movies can use professional camera
animators and even real-cameras motion capture, low-budget CG
movies are becoming more and more practical as the rendering
capabilities of games engines (UE4, Unity) progress towards
large scenes with realistic global lighting and cinema-level post
process effects. In this context, it make also sense to develop
camera control algorithms that can aid the user in quickly placing
and moving cameras, as well as editing the final result. The same
need is even more pressing in the context of previz tools, in which
one should be able to quickly preview camerawork into a digital,
simplified version of the film set. Sophisticated camera control
and editing algorithms are thus key to the realisation of a new
generation of storyboarding tools that allow the cinematographer
to “prototype” a movie.



Tutorial Software

» Unity Viewpoint Computation Library:
https://github.com/robertoranon/Unity-ViewpointComputation

* ToricCam library:
https://sites.google.com/site/christophelino/libraries/toric-cam

» “Back To The Future” data set,
https://cinematography.inria.fr/resources/continuity-editing-for-
3d-animation/
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In this session we will see some foundations of virtual camera control and | will also
give some basic definitions for modelling key aspects.

But before talking about virtual cameras, let first see how a real camera is controlled.



How to represent real cameras ?

» Operator / mechanical system
* Position / orient the camera
* Physical considerations

* Shape (comprising the operator / system)

* Volumes and masses

* Intrinsic camera parameters
* Lens type, sensor size, aperture
« Optical considerations (lens)
» Brings image distortion

* And depth of field

Sensor
or film

Lens

) ) Lens optical system
Image distortion Depth of field effect
$ Algorithms and techniques for virtual camera control May 9, 2016

When considering a real camera, there is a great number of settings that can be
accounted for.

First, the camera is held by an operator or by a mechanical system such as a dolly or
a crane.

The camera has a globally non-deformable shape and volume, it has a mass, and
while manipulating the camera one should also account for the deformable shape
and the mass of the operator or the mechanical system.

In the same way, there are also a number of intrinsic aspects to consider. Indeed, the
camera is capturing the world through a physical lens — which one can possibly
change between shooting sessions — which will provide a means to project the scene
content onto a sensor, which in turn will allow creating a 2D image of the captured
scene. The final projection depends on a set of parameters such the sensor size or
aperture of the camera (which plays with the amount of light entering the camera).
But this projection also come with some optical side-effects, namely an image
distortion, due to the shape of the lens, and a blur effect which is called the « depth
of field » and is linked to the focal length, i.e. a distance defining how the optical
system converges or diverges light.



These multiple complex aspects are currently addressed in as many fields as
computer animation, computer vision, or robotics. In this tuttorial we will only

consider a subset of them, those which are commonly addressed in computer
animation.



Model of a virtual camera

» « ldeal » camera model (pinhole)

* No operator (free camera)

* No mass, n

S

In the world space

mage distortion (ideal screen project

o
(1

» 7D camera (offered in any 3D modeler) aspect =width/height

» 3D world position : X, Y, Z width

» 3D world orientation (pan, tilt, roll View Frustum
3 Euler angles AT (-2) height
Or a quaternion PR
Or a look-at direction (= 0) «— zNear

* 1D zoom oy

* Field of view angle : Z  EYE or COP (Center of Projection)

* Aspect Ratio (fixed)
o _ In the cameraspace
* Screen width / Scr

(1]
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In fact, to simply the problem of handling cameras a bit, in the animation community
what we use (and what can basically be found in any 3D modeler) is a pinhole
camera model. This is an « ideal » model in that it considers the camera does not
have any lens and that the camera is reduced to a single point without a mass. What
it means is that the camera will be totally free to move in space and there will be no
side-effect coming from the optical system while projecting the scene geometry
onto the screen.

So what we will handle is the 7 essential camera parameters : the 3D camera
position, defined in cartesian space; the 3D camera orientation, though it is basically
described with three Euler angles (pan for the left-right rotation, tilt for the up-down
rotation, and roll for the rotation around the camera axis), due to gimbal lock it is
often handled through quaternions in 3d modelers and rendering engines; another
way to fix the camera orientation is by providing a look-at direction or look-at point,
from wich the camera orientation is computed, also ensuring that the roll angle of
the camera is set to zero (assuming that we provided the camera with a proper up
vector, i.e. pointing up, fopr instance here the up vector should be Z). The last
camera parameter is the zoom factor, which is often handled as a field of view angle
(the wider the more we capture scene geometry). And the aspect ratio (i.e. the ratio
between the screen width and height) is considered as fixed (common values are



3:2, 4:3 or 16:9).

And these three elements defines the camera projection matrix which is simply
computed as the product of three matrices (one for zoom, one for rotation and one

for translation).



Possible extensions to our basic camera model

* Simulate a mechanical system
* Built upon the scene graph
and user inputs

* Example of a 3D stereo camera
* Build a camera « rig »:

2 cameras (left / right eye)

» Control : inter-axis + convergence angle

® Consistency has to be enforced by hand !

* Depth of field
* Area of « focus » (interval of distance) di2 di2

‘ Left Right )

Virtual 3D stereoscopic camerarig
$ Algorithms and techniques for virtual camera control May 9, 2016

More practically, if we want to build a virtual camera system closer to a real one, or
to build a virtual stereo camera it is now possible to rely on the scene graph. For
instance we can easily use successive nodes to handle the joints of an articulated
arm that reproduces a crane. Or in the same way, we can quite easily build a stereo
camera rig by linking two cameras together, which will then add two new
parameters to the camera system (namely an inter-axis distance between both
cameras center of projection and a convergence angle which however need to be
artificially kept consistent).

» Shader (blur objects which are out of focus)

As for depth of fields, it is also possible to handle this aspect by using a shader that
will blur out-of-focus objects, while keeping in-focus objects sharp.

But in this tutorial we will assume we are not handling such parameters, so now let’s
come back to our simple pinhole camera model, and see how we can manipulate the
camera.



Automated viewpoint computation

Specification of the desired shot:

= Specified features F?
N SN ’ 2D space

(Screen)

l

Search
; 7D Space C
First half: Second half: (Camera configurations

Buildings +Characters Positions X,Y,Z
Orientations 6, ¢, ),
Field of Views ¢)

Best 7D camera configuration c € C satisfing all F' ?
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The core problem in controlling cameras is the one of visual composition, i.e.
deciding what parts of the scene geometry we would like to see and how would like
to arrange them onto the screen.

We can for instance want some buildings to appear on the left of the screen, the
woman to appear on the top-middle, and the man on the right.

The main difficulty in controlling the camera come from the fact that such a visual
composition is given as a set of 2D constraints (in the screen space) and we then
need to determine all the 7 parameters of the camera so that the resulting
viewpoint can satisfy the desired composition. This make the search problem
strongly non-linear.



Interactive viewpoint computation

mapping
parameters C
Classical Mouse + Keyboard
Dedicated to objectinspection — ougea Ot
{ .| e
and scene exploration o ey T s
' ) Camera ¥
- ¥ Camera ?.
Based on Motion Capture Comera e o
Mimic real camera work [Khan etal. 2005]
Direct mapping to camera parameters

Goal: control the shotcomposition

» Direct/ indirect control of image features F

» Many interaction metaphors

Optitrack 7

What practical tools to speed-up user tasks ?

If we want to move the camera, a first way to do is by directly letting teh user handle
the camera parameters.

The process relies on the use of an input device offering a number of degrees of
freedom to the user, and by handling these degrees of freedom the input values will
be mapped (straighforwardly or not) onto output camera parameters.

There have been a large number of such mappings provided in the littérature. We
can divide them into two main categories: those relying on mouse/keyboard
interfaces which have mainly been designed in mind for object inspection or scene
exploration tasks, and some more recent mappings relying on post-WIMP interface
such as here a virtual camera device based on motion capture that enables the user
to handle the camera as a real operator.

The question raised behind this interactive viewpoint computation is how can we
practically help users in their creative and technical tasks?



Computation of camera paths

Tt — 11
t0 () [
Keyframe ¢ s . ~ Y
m. Keyframe ct!
JAN - .
* Strongly coupled with camera models Keyframe ct2
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* Classical approach (3D animation)
Quaternion trajectories (slerp)

Linear / spline-based interpolation

N
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« Traditional motions (cinema) o
N o
* Uses tripods / articulated arms g(\
- %y

* Pan/Tilt
oo COWN
* Pedestal ooy i
Dolly, Track Ty
Crane / Boom s
l_,,_ i A
Naturally creates
smooth camera motions
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Another way to move camera is by relying on an automated computation process to
create camera paths.

The models for representing camera paths in 3D modelers are still strongly coupled
with camera models (i.e. the data representation levels). The user has to define key
camera configurations by putting keyframes in the timeline then use an interpolation
algorithm. The classical interpolation approach is to rely on quaternions trajectories
(Slerp) and linear or spline-based interpolations of the camera parameters (position,
orientation and zoom) as it is for animating any 3D object of the scene.

However, as we have seen a bit earlier, real cinemas commonly use tripods or
articulated arms to create smooth trajectories such as pan, tilt, pedestal, dolly, track,
crane, boom, etc.

So, a question that raises here is how could we represent and generate such
traditional camera motions?



Interactive and automated editing

« Shots Shot#1 Shot#2  Shot#3
Y T

Where to cut to ?

. Best next viewpoint ?
L Continuity rules, cinema conventions
When / Why to cut ? Shooting and editing dialogues
- Best moment to cut ? [Arijon 76]
. Pace, occlusions, actions : .
Shot#1 ‘_.
+ Traditional editing (cinema) Shot #2 | IE%

= Rely on « cook-books » / empiric rules
: F Shot#3
= Shoot rushes + cut + paste

Time
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A final concern in controlling cameras is how to handle the editing. Editing is the
process of selecting shots and linking them by introducing cuts.

This first requires to choose a sequence shots which respect some continuity rules
and follows cinema conventions. For instance a classical rule is the one related to
the line of interest (Lol) which can be represented as an imaginary line drawn
between two characters. Crossing this line would change the relative positions of
characters on the screen so, in real films, directors rely on a set of cookbooks
providing practical rules on how to place cameras around characters and how to
make cuts between such cameras.

The editing process then requires to find the best moment to cut (i.e. decide when
to cut and above all why to cut to another camera).

This is thus a fairly high level process which raises question about how to model this
cinematic knowledge and how to interactively or automatically create good edits.
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When a camera becomes
interactive...

...we need to understand:

 the nature of the mapping between the user
inputs and the camera parameters (internal
constraints)

+ the effect of other constraints on the camera
parameters (i.e. external constraints such as
visibility or surface of objects)
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« Interactive » here is taken in the sense that the user is interacting with the
camera (ie manipulating features).

And there are two key questions:

-how is the mapping going to be performed between the user inputs and the
camera parameters (which in turn asks the question of which camera model)?
This essentially depends on the type task to perform, the nature of the
environment, the importance of precision and accuracy, but also aspects such
as the cognitive load of the user (and how camera manipulation is critical in
performing the task)

-what is the influence of external constraints on the camera parameters (object
geometry, scene complexity, visibility etc)?

And how these constraints guide or counter the user, eg simple collision
detection will block the camera (thus the user) from going through a wall but
won’t prevent him from getting stuck against in front of these walls? So how
can the geometry guide the user in his task?



Interactive camera control

4 properties broadly characterize the space of interactive
camera control techniques:

+ degrees of freedom of the input device V‘

* low degree of freedom input devices (e.g. virtual arcball
[Sho92], [CMS88])

+ 6 degree of freedom input devices (direct metaphors)
« directness of the mappings

£
+ control camera parameters, velocity, acceleration,. v ¢

» nature of the constraint on motion:

* physical metaphors N\ _
«  geometrical Q | )
+ task

« world space vs. screen space based control

¥

In the domain of camera control, literature displays a large range of mappings
between user inputs and camera parameters. Direct mapping techniques will
associate inputs (mouse coordinates) directly to camera parameters, while
indirect technigues will operate through specific interction widgets (e.qg. I-
widgets [Singh06]) or spaces (screen-space [TTLCC] or application-specific
space).



Augmenting usability

How? by reducing the dimensionality of the problem

® Fixing camera parameters (e.g. roll parameter)

Automatically computing camera parameters
® Lookat of the camera fixed to a target
® Adding physical constraints to the camera

Constraining camera parameters to a sub-space of
possible motions

Proposing new camera models
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Techniques have rapidly introduced constraints to augment the usability by
assisting the computation of some degrees of freedom. This is typically
addressed by reducing the dimensionality of the control problem, and/or the
application of physics-based models, vector fields or path planning to constrain
possible movement and avoid obstacles [HW97]. For example, the application
of a physical model to camera motion control has been explored by Turner et
al. [TBGT91]. User inputs are treated as forces acting on a weighted mass
(the camera) and friction and inertia are incorporated to damp degrees of
freedom that are not the user's primary concern.




Constraints in proximal

Khan et al [KKS*05] developed a “hovercam” metaphor Object
for individual object inspection: @ IL'
.E‘;‘ E:
.\ ,.": p e
i o e b ® e
.E
«apply user input to the eye point EO (current camera position) ? -
and look-at point LO, to create E1 and L1; Objact
search for the closest point C on the object from the new eye 9 st
position E1; .
«turn the camera to look at C, and
«correct the distance 81 to the object to match the original oned
distance to the object d to generate the final eye position E2 @ -:': ;
«clip the distance travelled o
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This slide illustrates interactive approaches related to object (referred as
proximal inspection) and environment exploration. A certain knowledge of the
environment is utilized to assist the user in his navigation or exploration task.
Such approaches are split according to their local or global awareness of the
3D scene.

Khan et al. [KKS+05] propose an interaction technique for proximal object
inspection that automatically avoids collisions with scene objects and local
environments. The hovercam tries to maintain the camera at both a fixed
distance around the object and (relatively) normal to the surface, following a
hovercraft metaphor. Thus the camera easily turns around corners and pans
along at surfaces, while avoiding both collisions and occlusions. Specific
techniques are devised to manage cavities and sharp turns.



Constraints: Khan [KKS*05]

PN
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Left, top and bottom: negociating bumps and holes in proximal inspection
Righ, top and bottom: negociating corners




Constraints: Shellcam [Bbk14]

* Boubakeur extended the approach using a
smooth motion subspace on arbritrary objects

* A scale-dependent offset shell is computed
around the geometry

» it provides tangent directions for panftilt
camera motions

+ the zoom changes the offset shell

Z-Bufter Normais

* The shellis a low frequency offset of the % v
geometry #v,;u/;zm@

This work can really be viewed as a generalization of the Hovercam, and
removes a number of tweaks and limitations the technique had.

The idea consists in computing offset shells around the geometry and having
the camera navigate on these shells, or traverse them.

The distance to the geometry defines the frequency of the offset shell
(close=high frequency, so follows closely the details on the surface, far= low
frequency so follows a smoothed representation of the surface).

Shells are dynamically computed in the vicinity of the camera (not as a
precomputation), making the techniques adpatable in any 3D modeller



Constraints: Burtnyk [BKF*02]

* Burtnyk et al. [BKF*02] developed a system to constrain the
camera motions to authored surfaces which are linked with
hand-built transitions

b

& a®
o

« continuous drag between surfaces and transitions

« transitions are triggered at specific locations on the
constraint surface
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In more stylistic way compared to [KKS*05], Burtnyk et al. [BKF+02] propose
an approach in which the camera is constrained to a surface defined around
the object to explore (as in [HW97]). The surfaces are designed to constrain
the camera to yield interesting viewpoints of the object that will guarantee a
certain level of quality in the user's exploratory experience, and automated
transitions are constructed between the edges of different surfaces in the
scene. The user navigation freely in the bounds of the constraint surface, and
on reaching an edge is guided to another constraint surface, or hand-built
transition.




Constraints in interactive
exploration

oL

Hanson et al [HW97] Andujar et al [AVF04] Hong et al [HMK*97]

We now detail techniques that rely on the geometry of the whole environment
to build constraints, that assist the users in either navigation or exploration
tasks.




Environment-based control

* methods to assist navigation/exploration are mostly
based on motion planning techniques from the field
of robotics:

potential fields and vector fields
cell-and-portal decomposition
regular or probabilistic roadmaps

* methods require heavy pre-computations

in cost (cell-and-portal) or in storage of data structures
(probabilistic roadmaps)

* (generally) inappropriate for dynamic environments
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Environment-based assistance, for which applications are generally dedicated
to the exploration of complex environments, requires specific approaches that
are related to the more general problem of path-planning. Applications can be
found both in navigation (searching for a precise target) and in exploration
(gathering knowledge in the scene). Motion planning problems in computer
graphics have mostly been inspired by robotics utilizing techniques such as
potential fields, cell decomposition and roadmaps.




Potential-field constraints

Principle:

« originated in theoretical physics from the study of
charged particle interactions

* in the 3D world:

obstacles are considered as repulsive potentials
targets are considered as attractive potentials
the field function F is defined as the aggregation of all potentials

the solving process is based on a set of local moves following the
steepest descent. The gradient of F gives the direction of the move:

M(p) = —=VF(p)
» potential field can be locally updated [Bec02]
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The low cost of implementation and evaluation of potential fields make them a
candidate for applications in real-time contexts.

The efficiency of the method is however overshadowed by its limitations with
respect to the management of local minima as well as difficulties incorporating
highly dynamic environments. Nonetheless, some authors have proposed
extensions such as Beckhaus [Bec02] who relies on dynamic potential fields to
manage changing environments by discretizing the search space using a
uniform rectangular grid and therefore only locally re-computing the potentials.




Vector-field constraints (1)

Extension of potential fields [HW97, XH98]:

* requires a constraint surface:
navigation surface that establishes the
reachable areas in the environment

* requires a camera model field: to each point of the
constraint surface is attached some orientation
constraint

* abi-cubic spline interpolation is used to interpolate
between the user specified orientation constraints

- possibility to automate the process [TC01] F2=%1:
L=
4F

In [HW97], the constraint surface is defined by the user, together with a
number of orientation key-points. Recent approaches consider automated
computation of either scalar or vector fields to assist the users both in location
and orientation [TCO1, ETTQ7]. This requires to answer a number of key
issues (handling bottlenecks such as narrow doorways, handling large open
spaces, identifying essential landmarks that make this problem a difficult one).



Vector-field constraints (2)

» Application to virtual colonoscopy [HMK97]:

* repulsive forces to maintain the camera away from the
colonic surfaces: V(X)

+ attractive forces towards the target: V(X)
+ energy dissipation factor: k,

+ rigid body dynamics to handle user interaction: F .,

P(f) = —VV(X) _kIP(f) +Fu.u'l'(t)7

Virtual endoscopy enables the exploration of the internal structures of a
patient's anatomy. Difficulties arise in the interactive control of the camera
within the complex internal structures. Ideally important anatomical features
should be emphasized and significant occlusions and confined spaces
avoided. The underlying techniques mostly rely on skeletonization of the
structures and on path planning approaches such as potential fields. For
example, [HMK97] and [CHL+98] report a technique that avoids collisions for
guided navigation in the human colon. The surfaces of the colon and the
center line of the colon are modeled with repulsive and attractive fields
respectively.

In [HMK97], the camera is guided by some repulsive forces from the colonic
surface, attractive ones that push the camera towards a given target, and user
inputs (when pointing an area on the surface). The process is however very
specific to the problem (a more general geometry would lead to many cases of
failure or inappropriate guidance).



Towards indirect interaction

* multiple approaches implement more elaborate
interactions with the camera (i.e. from
parameters manipulation to properties
manipulation)

« through-the-lens techniques: interaction is performed on
the content of the screen (for specifying camera motions,
or screen composition)

» reactive techniques: control is operated over targets
which indirectly control the camera motions (typically
following avatars [LC08,HHS01])
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In moving further away from the direct manipulation of camera parameters,
through-the-lens techniques enable the control of the screen content




“Through the lens” control

* indicate desired positions of objects on the screen: through the
lens camera control (Gleicher & Witkin [GW92])

« difference between the actual screen locations and the desired
locations indicated by the user is treated as a velocity

» relationship between the velocity (fl) of m displaced points on the
screen and velocity (q)of camera parameters expressed with
Jacobian that represents the perspective transformation:

h=Jq
» improved complexity of the solving due to Kung et al [KKH95]

s B ool




“Through the lens” control
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“Through the lens” control

* multiple primitives (lines, circles, paths) can be used to
control the composition [YCLO08]

* amass-spring interaction metaphor dampers the users
manipulations (often over-constrained)

« composition can be further manipulated by interacting with
light sources, shadows and penumbras together with camera
parameters

s B ool




Visual servoing techniques

+ use robotics techniques to control camera motions through
screen-space constraints [MCOZ]

+ the relation between the changes in 3D environment and the
changes in the 2D projected image is expressed in the image
Jacobian

transformation

P =Lg(P.p)Te

« key idea is to invert the equation (constraining the velocity of the
key features, compute the camera velocity)

s B ol

Visual servoing techniques relies on the regulation in the final image of a set of
visual features (points, segments, lines).

The image Jacobian (L) expresses the link between the motion of a visual
features (P) in the 2D screen and the motion of the camera (it's a linearization
of the projection relation for the camera configuration).

The key idea is then to invert the equation, in order to express the variation on
camera parameters that correspond to a desired motion of the visual feature
on the screen. For exemple, in order to constrain a mobile 3D point at a given
location on screen, requires to solve Jg=0 at every frame.



Visual servoing techniques

* invert of the Jacobian? generally non-square
compute its pseudo inverse with a Singular Value Decomposition
« secondary tasks can be handled given that the
primary task doesn't use all dofs
path coherency
collision detection
constrain to cinematographic motions (travelling, ...)
» solving process:
computation of the Jacobian + SVD decomposition
minimization of secondary targets (gradient-based technique)
+ visibility needs to be handled separately
by excluding some areas from the camera dofs

s B ol

The Jacobian matrix is generally non square (m x n):

-m is the number dofs of the camera (7 for euler-based, 8 for quaternion-
based)

-n is the number of parameters of the visual features in 2D (2 for a point, 3 for
a line, 4 for a segment)

The pseudo inverse of the matrix can be computed by Singular Value
Decomposition which is in O(mn”2).

If all camera dofs are not constrained, one can perform secondary tasks (see
details in next slide) through a minimization process.

Solving process is quite efficient (cost of Jacobian + SVD + minimization).
However:
«difficult to balance between primary and secondary tasks

*some tasks cannot be easily expressed as a minimization process
(visibility/occlusion)



Though the lens control with
The Toric Space

* Introducing a novel 3DOF representation
of a camera [LC15]

+ dedicated to viewpoint manipulation of
two targets

» Three parameters to control the position:
* «a:angle between targets A and B
* 6 : horizontal angle
* ¢ :vertical angle

+ the framing of the two targets is
implicitly defined in the model

(Unity and C++ code available: ToricCam)
_

Toric space is a novel representation for manipulating two targets in a screen
(and for other camera control tasks as we’ll see later).

The idea behind the toric space is a generalized model (in that the model
encompasses constraints). These constraints are the on-screen locations of
two targets.

3 angles are then defined in this space: alpha, representing the angle between
the targets and the camera, theta, the horizontal angle, and phi the vertical
angle.

By changing values of phi and theta, the camera moves, but the constraint
remain satisfied (ie whatever value of phi, theta) the targets project at the
same location on screen.

Code is available here: https://sourceforge.net/projects/toric-cam/



Manipulations in the Toric
Space

Principle:
* Manipulation of one target:
» while the other is constrained in the screen-space
» and roll is constrained to 0 (or a fixed value) e
* Interactions:
» change on-screen positions, distances, and
vantage angles
» example for on-screen positions: SmSmmrew Somacracs
* we search for a position on the manifold
surface where roll is null and minimizes the
change in on-screen position

of the seiectod sutsect s onkorced

2

min (pa — pi)° + (P — Pl3)
(6,0)
_
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Viewpoint Computation

* given:
— acamera model (e.g., position - orientation - FOV), and a
domain D c R’ of allowed camera parameters

— requirements about the visual composition of targets in the
computed image

» compute a value for each camera parameter to
(best) satisfy the requirements

1 e e

This is the classical form of the viewpoint computation
problem as reported in several papers, e.g. [Olivier et al.
1999, Bares et al. 2000, Christie and Normand 2005,
Burelli et al 2008, Ranon and Urli 2014]. In some cases,
the problem could be reduced in its dimensions, e.g.
because some degrees of freedom, or the FOV of the
camera are fixed in advance.



requirements: houses 1 and 2 completely visible, seen from the front; houses
area on screen each about 10%

| B¢

This is an example solution to a viewpoint computation
problem, where requirements about visibility, and angle
between camera and houses, are fully satisfied: there are
no objects between the camera and the houses, and we
can see both houses from the front. However, since the
houses are at quite different distances from the camera,
it is impossible to fully satisfy both the angle and
projected area requirements. Another solution could
have instead framed the houses from a different angle,
and try to instead make them have the same projected
area.



Approaches to VC

 algebraic: when we can establish an algebraic relation between
requirements and camera parameters

— works only in very limited situations

¢ in all other cases, we can use:

— constraint-based approaches: express requirements as constraints
over D, find camera parameters c that satisfy constraints, or fail

— optimisation-based approaches: express requirements as a satisfaction
function F:D—[0, 1], find camera parameters ¢ that maximise F

I+ e o

Algebraic approaches (e.g. [Blinn, 1988]) work only for 1-
2 targets and are not able to take into account some kind
of requirements, most notably visibility, since it is a
property which depends on the spatial layout of the
whole scene. As such, they are of very limited use.

Constrain-based and optimisation approaches do not
exhibit such limitations and generally can work with an
arbitrary number of targets and any kind of properties
that can be expressed through constraints or satisfaction
functions. We focus, in the following, on optimisation
approaches since they have the nice ability to compute a
solution even when the problem is over-constrained, i.e.
when the visual properties cannot be all satisfied. This



situation is far more common than one may think, since in a
dynamic environment, targets can easily be in configurations
that make a VC problem not perfectly solvable.



Visual Composition Requirements

» we consider the following types of visual composition requirements:

— size (width, height, area) of targets on screen
— visibility of targets on screen

— angle of targets with camera

* we need to:

— model each type of requirement as a satisfaction function f:D—[0, 1]

— model the satisfaction function of a virtual camera ¢ as some composition of
the requirement satisfaction functions, i.e. F(f1,f,...,fr):D—[0,1]

I+ e o

We consider a basic set of visual composition
requirements, however sufficient to express a wide range
of application needs, to explain the process of turning
them into satisfaction functions. Other types of
requirements can be quite easily modelled, and can also
include aesthetics features such as balance, rule of the
thirds, and so on. For example, rule of the thirds has
been used in [Abdullah et al 2011, Bares 2006], and
balance has been modelled in [Abdullah et al 2011]. It is
also possible, as shown e.g. in [Olivier et al. 1999] to
model requirements that involve two or more targets, e.g.
“target T1 should be seen to the right of target T2” or
“target T1 should be smaller than target T2".



Modeling requirement functions

* arequirement has a type (size, visibility,...) and a desired value

— the “type” part computes the value v of a visual feature (size, visibility
angle) of a target t for a given camera, i.e. fyype(€):D— Vwhere V is the
set of possible values of the visual feature

0 angle of camera with 21’
target front vector

— the “desired value” part computes a satisfaction value from the value of
the visual feature, i.e. feesired: V—[0, 1]and can be e.g. modelled as a
linear spline

example fdesired

F (C) = fdesired(ftype(c))

« optimisation approaches typically need to sample a considerable
number of points in D to find a good solution: therefore, computing
ftype must keep into account accuracy vs cost

— compromise might depend on specific application demands

I+ e o

In some papers, instead of a linear spline, a gaussian
function is used, with the goal of smoothing the function
around the desired value. In general, this is advisable,
since we don’t need extreme precision with visual
features: for example, it is very hard to distinguish from a
projected target area of 0.95 the area of the screen, and
a projected area of 0.97 the area of the screen.



Measuring Size (area)

* mesh vs bounding volume
— what about objects with holes
* rendering (and counting pixels)

» geometrical methods

— bounding sphere

— bounding box

rendering at 1000x750 rendering at 500x375 rendering at 80x60 rendering at 40x30 geometric evaluation

261.87 63.47 9.7 8.44 0.005

g ey o e men

To measure area, it is common to use some kind of
bounding volume (bounding sphere, AABB, ...), which
makes it much easier to perform geometrical
calculations, and also works nicely with objects with
holes (e.g. a grilled fence), where typically the perceived
area on the frame is intended to include those holes. The
typical considerations about bounding volume fitting
apply (e.g. spheres are better for nearly spherical
objects, ...).

There are basically two alternatives to measure size: one
Is to render the target with a unique color, perhaps at low
resolution, and then count the pixels after having moved
the rendered image to main memory; the other one is to



use some geometrical computation with the bounding volume.
For example, [Ranon and Urli 2014] compute the area of a
target t by taking the (oriented or axis-aligned) bounding box of
t, finding the vertices of it that are visible from v, and projecting
them, using the fast look-up table approach proposed in
[Schmalstieg and Tobler, 1999]. The resulting 2D hull polygon
Is then clipped by the viewport through a standard Cohen-
Sutherland algorithm, and finally, as the resulting polygon is
convex, a contour integral approach can be used to quickly
compute its area.

The table reports average times in milliseconds needed to
compute the size of a target in a scene, using rendering at
various resolutions and the geometrical approach outlined
above. As we can see, cost using rendering, even at very low
resolutions, is orders of magnitude greater than a geometrical
method, even considering that by using rendering methods,
we can measure the size of all targets, instead of just one. The
major cost of rendering methods is the transfer of the image to
main memory. All technical details about the data reported in
the table can be found in [Ranon and Urli, 2014].

For height and width, similar considerations apply.



Measuring Visibility

* mesh vs bounding volume
— objects with holes

* rendering (and counting
pixels)

» geometrical methods

— ray casting

rendering at 1000x750 rendering at 500x375 rendering at 80x60 rendering at 40x30 geometric evaluation

261.68 63.1 9.61 8.96 0.1

g | e e

To measure visibility of a target, there are basically two
alternatives: one is to render the scene using a unique
color for the target, another color for the scene, and
turning on blending, and then count blended and
coloured pixels after having moved the rendered image
to main memory; the other one is to perform a number of
ray casts, e.g. to selected points in the bounding volume
of the target or to random mesh vertices. For example,
[Ranon and Urli 2014] use 9 ray casts, to the center and
corners of the bounding box of the target, and report
visibility as the ratio of ray casts which do not cross other
objects before reaching the target. Even 6 ray casts are
sufficient in most situations.




The table reports average times in milliseconds needed to
compute the visibility of a target in a scene, using rendering at
various resolutions and ray casting with 9 rays. As we can see,
cost using rendering, even at very low resolutions, is at least
one order of magnitude greater than the ray casting method.



Angle

» the angle between a target-
specific vector u and the vector
from ¢ to the camera

— typically, u can be the forward
vector of the target (horizontal
angle between camera and
target), or its up vector (vertical
angle between camera and
target)

— other choices are possible, e.g.,
for a character, u could be the
direction of the head

I+ e o

An angle requirement, being just the computation of an
angle between two vectors, is very cheap to compute.




Computing Satisfaction

* typical solution is a weighted sum of individual f
F(c)=)_ file)
2

— corresponds to logical AND of all requirements

— weights allow one to set requirements importance, but are not
easy to manage

» can use also other logical operators (e.g. OR is max)
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A weighted sum allows one to express the logical AND of
all requirements, and weights allow one to control a
requirement importance with respect to the others.
However, this might not be expressive enough for some
situations. Suppose, for example, that the satisfaction of
a visibility requirement should be set to zero if the target
Is off screen, in order to penalise solutions where targets
are off screen (recall that the ray casting method for
measuring visibility does not check if the target is on
screen or not). This cannot be expressed using weighted
sums. A recent proposal by Lino [Lino 2015] introduces
more sophisticated operators to build F from individual
requirements functions, e.g. to cover situations like the
one presented above.



Solving VC

* due to complexity of the objective function and non-continuity (e.g.,
think visibility), black-box optimisation approaches are preferable

» use of random values (stochastic optimisation) to escape local
minima

* population-based approaches have the additional advantage that
poor initialisation can be corrected

* Particle-Swarm Optimisation (PSO) has all these features and,
moreover, it is known for fast convergence

— used by several authors, e.g. [Burelli et al. 2008, Abdullah et al. 2011,
Ranon and Urli 2014]
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Black-box optimization approaches are suitable when we
can compute the objective function, but we have no
analytical expression for it that can be used, e.g., to
compute gradients. Combining this with the fact that our
search space is quite large, there is the need to adopt
stochastic techniques to promote exploration and
escaping local minima.

Population-based techniques add to this the usage of
several candidates to explore search space. There are a
lot of population-based optimization approaches that can
be used in VC. Some authors have, fir example, used
genetic algorithms, e.g. [Olivier et al. 1999]



PSO for VC

— idea: a swarm of cameras wanders through D in search of the optimum
(i.e. the parameters ¢ that maximise F)

— at each step, we move a camera and evaluate F on it
— we always record:

« the best visited position in D for each camera (p)

+ the global best visited position pg

— the equations for moving a camera from its position in D x™7 to a new
position x™ are

n _ , n—1_n—1 . n—1 n—1 o n—1 n—1
Vi =w” vy tan (Pi —X; ) +€ara (Pg —X; )
=gl eyl i=12,...,N

w, ¢; and ¢, are PSO-specific parameters; r; and r, are random numbers in [0,1] |

The idea is that a camera will move both towards the
leader camera (the one that found the best parameters
so far) and towards its local best found parameters. r1
and r2 throw in a bit of randomisation, while c1 and cz are
parameters in [0,1] that can be used to balance the
importance of the local optimum versus the global one. w
is an inertia weight which it establishes the influence of
the search history on the current move. A common
strategy is to use a decreasing inertia value, from a
starting winit to an ending Wend value.

In this version of PSO, a single global leader is used,;
there are variants of PSO that use more leaders, e.g.
according to distance from cameras. It is also worth



noting that there are dozens of PSO variants that slightly
change the equations by e.g. reducing the number of
parameters.



PSO for VC

initialize n random cameras in array CAMERAS
i=0;
while (there is still time left) {

move CAMERASi];

evaluate F(CAMERAS]i]);

compute new local and global optima;

i =(i+1) mod n;

}
optimum = CAMERASIg];

I+ e o

At the beginning, we can set each camera local optimum
to the initial position in D, and any index as the global
optimum g.

The equations in the previous slide do NOT prevent a
camera from exiting D. In the case it happens, we can
simply set its satisfaction to zero, and it will return in D in
successive steps; another option is to clamp the
parameters to be inside D.



DEMO

I+ e o

Various demos using our Unity Viewpoint Computation
Library, available at
https://github.com/robertoranon/Unity-
ViewpointComputation



Improving PSO

* unlucky random initialisation coupled with little
available time (e.g. few milliseconds) and/or large
search space can make PSO fail

* current methods to tackle this issue are:
— ‘“smart” initialisation
— lazy F evaluation

— PSO parameters tuning

I+ e o

Even with the mentioned methods, there is no guarantee
that a PSO run will find a good camera, i.e., from time to
time, bad runs can happen. In such cases, a simple
remedy is to restart the PSO.



Smart Initialisation

« size and angle requirements are very common in VC problems

« it is quite easy to initialise a camera such that it roughly satisfies a
size or angle requirement (or both)

« e.g., for size, we can compute a roughly optimal distance to a target
by the formula
target size 1

distance = - — — .
target’s projection size tan(v/2)

where target size and projection size are easily computed by using a
bounding sphere, assumed centered on the screen

« if a problem has k targets, we can distribute cameras among them,

and initialise each camera around optimal values for the assigned
target

I+ o

The detailed description of the approach is in [Ranon and
Urli, 2014]. Smart initialisation can be mixed with purely
random initialisation to improve swarm diversity and thus
coverage of D.



Lazy F evaluation

+ the evaluation of F can be terminated as soon as we know that
we cannot improve on the camera local best value (lazy
evaluation)

— the computed value would have no effect on camera movement

* we can then order the requirements by cost of evaluation
(angle, size, visibility) so that we avoid computing unnecessary
(and costly) requirements

» other strategies are possible, e.g. combine lazy evaluation with
computing first the projection of bounding box of all targets, and
then set the satisfaction of any requirement for the same target,
if the projection is off-screen, to zero

Iaﬁ—

The last method is explained in detail in [Ranon and Urli,
2014].



PSO parameters tuning

» the values of n (the number of cameras in the
swarm), c1, c2, and w can greatly influence the
behaviour of PSO

» given a set of scenes and VC problems, and a set
of possible PSO parameter values, one can run all
possible combinations, and then use statistical
methods to derive optimal PSO parameter values

* in our experience, derived parameters are quite
good for all similar settings

I+ e o

The influence of PSO parameters tuning is generally
underestimated. [Ranon and Urli 2004] proves that, for
VC problems, it can make a significant difference. In the
following, we review the main steps of their parameter
tuning process, which is based on the Friedman rank
sum test, and Friedman post-hoc analysis



PSO parameters tuning

Scene  Triang] Objects  Scene AABB

city 474083 324 300 x 100 x 300 (vol: 9 x 10°) 5 prOblems per scene
house 324182 50 120 x 23 x 100 (vol: 276 x 10?)

e 110474 240 13.9 x 3.0 x 21.8 (vol: 909.06)

es

3, 40, 60, 50, 100, 130, 160, 200, 240, 390, 330, 350 18720 Combinations

20 runs per scene, problem, combination = 5148000 runs

considering 6 time budgets for PSO: 5, 10, 20, 40, 100, 200 milliseconds

The parameters tuning considers three scenes (exterior,
interior, mixed) with 5 problems for each scene, ranging
from 1 to 5 targets. We consider a choice of PSO
parameters from the literature, and, for each choice of
parameters, and problem, we perform 20 runs of PSO.
We repeat the procedure for 6 different time budgets.
Our analysis then ranks the parameter combinations
from the best to the worst, and prunes the ones that are
statistically inferior.



PSO parameters tuning

T (ms) How Restriction on parameters values Median evaluations

many Wend) full partial
5 102 60 13
10 167 108 43
20 17 176 135
40 144 373 294
100 173 707 625
200 218 1204 1206

0.005 0.0 0.02 004 0 02

Normalized satisfaction
|

Variant
Variant £ Burell et al. 2008, tuned £ Random init, tuned E-3 All improvements, untuned -3 Euler, tuned £ Non-smart evaluation, tuned £ All improvements, tuned

I:ﬁ—

The results show that parameter tuning has a significant
effect (green vs pink box plots). The graph shows also
the influence of smart initialisation (yellow vs pink box
plots) and lazy evaluation (blue vs pink box plots).
Generally, using 20-30 particles is best for time budgets
under 50 milliseconds, and smart initialisation is
especially effective when the time budget is very low.



Conclusions

» VC cost is comparable to frame rendering; however,
it can be spread among a few successive frames

 all techniques presented in this part, and more, are
implemented in the C# Unity Library available at
https://github.com/robertoranon/Unity-ViewpointComputation
— quite easy to port to other engines (UE4 port is under way)
— easily implement your own properties, evaluation methods,
solver
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Creating (realistic) camera paths

...is a specific challenge

it displays the issues the current path planning
techniques have (how to decompose the
environment, how to plan paths)

¢ and the issues related to camera control:

* ensuring visual on-screen properties along the path
(visibility, framing, angle, ...)

+ enforcing smoothness of camera
motions/orientations

» respecting classical features of camera motions

s B ool




Cell-and-portal decomposition

« performs partitions of the environment into sub-regions (the
cells), and connections between sub-regions (the portals)

* an adjacency graph is built by connecting cells

* camera exploration/navigation tasks can then be casted as a
planning process in the adjacency graph [AVF04]

s B ol

Virtual endoscopy enables the exploration of the internal structures of a
patient's anatomy. Difficulties arise in the interactive control of the camera
within the complex internal structures. Ideally important anatomical features
should be emphasized and significant occlusions and confined spaces
avoided. The underlying techniques mostly rely on skeletonization of the
structures and on path planning approaches such as potential fields. For
example, [HMK97] and [CHL+98] report a technique that avoids collisions for
guided navigation in the human colon. The surfaces of the colon and the
center line of the colon are modeled with repulsive and attractive fields
respectively.

In [HMK97], the camera is guided by some repulsive forces from the colonic
surface, attractive ones that push the camera towards a given target, and user
inputs (when pointing an area on the surface). The process is however very
specific to the problem (a more general geometry would lead to many cases of
failure or inappropriate guidance).



Cell-and-portal decomposition

» provides a structure to the environment to better perform
navigation/walkthrough tasks (the decomposition can be
authored)

* Andujar etal. [AVF04] employ this structure to:

identify the individual interest of each cell (with an entropy-based
metric)

compute the sequence of most relevant cells to visit

compute a path connecting the cells, portals and relevant
viewpoints in the cells

Cell decomposition approaches split the environment into spatial regions
(cells) and build a network that connects the regions. Navigation and
exploration tasks utilize this cell connectivity while enforcing other properties
on the camera. For example, [AVF04] proposed such a technique to ease the
navigation process and achieve shots of important entities and locations.
Using a cell-and portal decomposition of the scene together with an entropy-
based measure of the relevance of each cell, critical way-points for the path
could be identified.



Voxel-based decomposition

« aregular partitioning of the free space (voxels) can be used to

generate guided tours [ETTO7]:

+ visibility of (authored) landmarks is computed for each of the voxels in a
pre-process

» all voxels that view at least one landmark are connected together to form
a adjacency graph

* asolving process (Travel Salesman-like) computes the suite of voxels to
visit in the graph to ensure that each landmark has been viewed at least
once

* ininteractive mode, a memory of the visited landmarks is maintained to
guide/constrain the users navigation, through a spring-based physical
system :

Following an idea similar to Andujar, yet in a more interactive context,
EImqvuist etal. [ETTO7] propose to automate the construction of a navigation
graph between user-defined landmarks. The environment is decomposed into
voxels, each of which is evaluated for visibility against the landmarks. An
adjacency graph is then built between voxels sharing the same landmarks, and
explored with a TSP algorithm to compute the best path that visits all the
landmarks.



Roadmap constraints

* roadmap planners operate in two phases:
« first sampling the space of possible configurations

« second constructing a connectivity graph by linking neighbour
samples (and checking for collision on the links)

» simple to construct and navigate inside the graph

« complex to determine the appropriate density of sampling (but PRM
complexity is a factor of the scene complexity)

s B ol

Roadmaps, and especially probabilistic roadmaps are a simple-to-implement
and efficient technique to perform path planning tasks at the level of an
environment. For transition planning (moving from on landmark to another),
target tracking and cut-jumping (switching between viewpoints), the process
needs to be augmented by visibility computation, either in a static way [NOO03],
on in a dynamic way [LCO08].




Roadmaps in camera planning

» [NOO3] rely on probabilistic roadmap techniques for camera
planning:
« roadmap is consisting of collision-free camera motions (the
camera is abstracted as a sphere, the motion as a cylinder)
* planning is performed with an advanced Dijkstra process
(avoids sharps turns)

« path is smoothed and camera orientation anticipates camera
motion

In [NOO3] visibility is guaranteed between connected nodes. Such PRMs can
be used in an interactive approach by selecting the most appropriate given the
current configuration and the user inputs. The main drawback lies in the cost
of updating the data structure when considering dynamic elements.



A local/dynamic roadmap

» Using a locally defined probabilistic
roadmap [LCO08] s
» a probabilistic roadmap is created around the <]
target and moves with the target (camera = , %
positions are expressed in polar coordinates) P AN ] %%
+  the path planning is performed in the roadmap to ‘ S b
move the camera N e
+ collision/occluded nodes are removed from the
graph using a lazy evaluations strategy
* new nodes are inserted using a density
parameter

« cuts can be performed between regions (by
connecting distant edges)

Previous approaches generally suffer from their locality (searching for
viewpoints in the local neighborhood of the current camera location). Chang
and Li introduce a probabilistic roadmap technique that helps to reduce this
locality:

«a roadmap is defined in the local basis of the camera target (the roadmap is
built once, and then is only locally modified)

spaths are searched for in this roadmap by evaluating every configuration wrt.
visibility of the target and possible collision of the path with the environment:

— occluded viewpoints and non reachable viewpoints are removed
from the roadmap

— new viewpoints are added when necessary

«in critical situations, cuts can be performed between viewpoints (cuts are
represented as expensive edges in the roadmap)

Provides a reactive approach that is more global (lazy-evaluation of the
knowledge in connected edges), and allows cuts between paths.



Extract and re-target camera motions

+ [SDM14] propose to extract camera targets
from movies

* eg using SIFT-based feature tracking (Voodoo
software)

* Trajectories are then retargeted to the virtual environment
(using the ToricSpace)

* All trajectories are then expressed in a motion graph

around the targets (similar to [LC08]) F‘K"/

» the graph enables continuous or cut transitions between & .D
pieces of trajectories

* characteristic noise and nature of motions in maintained »

s B ol

This approach is an attempt to retain “realistic” characteristics of “real” camera
trajectories and re-use them in virtual environments.

Trajectories are expressed in a “caera motion graph” that is exploited in real-
time to determine the best trajectory, and best transitions between trajectories.

A camera motion graph consists of (i) pieces of original camera

trajectories attached to one or multiple targets, (ii) generated continuous
transitions between camera trajectories

and (iii) transitions representing cuts between camera trajectories. Pieces of
original camera trajectories are built

by extracting camera motions from real movies using vision-based techniques,
or relying on motion capture tech-

niques using a virtual camera system.

A retargeting is proposed to recompute all the camera trajectories in

a normalized representation, making camera paths easily adaptable to new 3D
environments.

The camera motion graph is then constructed by sampling all pairs of camera
trajectories

and evaluating the possibility and quality of continuous or cut transitions.



A global/dynamic roadmap

* Oskam et al [OSTG10] propose a visibility

aware roadmap technique:

» uniform sphere-sampling of the free space in the
environment
pre-computing sphere-to-sphere visibility
(stochastic ray casting)

« connecting overlapping spheres to build a
roadmap

+ planning a rough path from source to target that
ensure visibility of a target (focus point)

+ refining the path using rendering-based
technique

X

Authors present a powerful, and simple to implement technique, that can be
adapted to many situations. The algorithm first samples the free space with
regularly placed overlapping spheres.

Portals (between two spheres) are created where spheres intersect, and a
graph is built. Sphere-to-sphere visibility is precomputed (in the static scene)
using a stochastic sample process (ie each sphere knows a probability of
seeing another sphere. The roadmap is then created, and planning can be
performed (eg, classical A*), from an initial given location to a final location,
while maximizing visibility of a focus point.

A specific refinement is performed to smooth out the path and to maximize the
real visibility of a focus point (the path computed with A* only has estimated
visibility)

The roadmap can be locally and dynamically updated when changes in the
scene geometry occur



Toric Space interpolations

* Interpolating in the space of visual features
* introduced by [LC15]

» givento viewpoints v1 and v2:

+ extract visual features (angle between targets, ‘
distance to targets, vantage angle of targets) for ‘)
viewpoint v1 and v2

« perform a linear interpolation of the visual
features of the first framing between v1 and v2

perform a linear interpolation of the visual e . W]
features of the last framing between v1 and v2 m & ﬁf
+ and then blend between the two trajectories

s B ol

Interpolating in the space of visual features ... rather then in the space of
camera parameters.

While viewpoint interpolation is generally based on spline techniques (one
spline for the camera path, and one spline for the camera lookat point is a
common representation), in many cases the interpolations fail to maintain
visual properties, and animators generally need to tune the spline curves.

In the idea the process is the following:

-a first path is generated between v1 and v2 by maintaining the framing at v1.
-a second path is generated between v2 and v2 by maintaining the framing of
V2

-a blending between both paths is then generated so that at the beginning, the
camera maintains the framing at v1, and and the end maintains the framing v2,
and between nicely interpolates the framings.
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Visibility: A Fundamental Challenge

* many applications require the visibility of
target objects (games, sci. visualization,...)
9 + importance of visibility (triggers interaction,
depth cue, scene understanding, spatial
relations...)
+ visibility is application-dependent
* a matter of perception (e.g. object recognition)
« visibility has multiple interpretations
» spatial visibility (considering sparse occluders)
« temporal visibility (with fast moving occluders)

Visibility is a central challenge in camera control. Games, for example, require
to maintain the visibility of the player and of secondary elements
simultaneously (opponents, exits, items,...). Furthermore, games have been
operating an important move these last years to a more cinematic experience.
In scientific visualization, data may be hidden in a complex geometry setups
that evolve over time. In navigation tasks, maintaining the visibility of multiple
known landmarks avoids the users from getting lost or loosing time in re-
orientation.

However visibility is application dependent and has multiple interpretations,
which means there is no generic solution to the problem. One can look at the
overview proposed by [EImquist08] who details techniques to handle occlusion
in data and object visualization (however not on how to compute viewpoints
that maintain visibility, but on how to alter the geometry or scene graph). This
section only considers means to evaluate occlusion and to escape from
occlusion.

M. Christie & P. Olivier 12
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And Complex Challenge

* two problems:
* how visible is the target?
* where should | move the camera to?
+ cost of evaluating visibility/predicting motion

« complexity of the target/complexity of the scene
+ maintenance of visibility data structures

* maintaining visual stability with sparse or
fast-moving occluders

J81] ° integration of visibility computation in the

f N whole camera control process

* how to balance its influence with other descriptors

The complexity of handling visibility in camera control has many sources:

«first of all, the real-time nature of most applications require efficient evaluation
AND anticipation of occlusion

*second, maintaining visibility in dynamic environements is computationaly
expensive (as it is for occlusion culling in the field of visibility techniques for
efficient rendering)

«third, the targets are generally complex-shaped objects, for which the
estimation of the full visibility is an expensive process.

M. Christie & P. Olivier 13
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Handling Visibility
Two classes of techniques for camera control:
+ local visibility computation:
* principle: sample or reason in a local area
* with ray-casting techniques

» with bounding volume intersection
* with hardware rendering techniques

+ global visibility computation:
« pre-computation from the static geometry (offline)
» cell-and-portal visibility structure
* hierarchical cells, ...
* Followed by an online estimation of visibility

s B ol

In this course, we will consider both:

the problem of visibility determination (ie estimating how much a target is
occluded)

the problem of occlusion-free viewpoints determination (ie computing
viewpoints from which target objects are visible)

For both problems, local and global techniques can be employed in similar
ways:

+local technigues rely on a restricted knowledge of the environment (but can
be easily updated)

+global techniques rely on a full knowledge of the visibility in the environment
(that is expensive to update)

M. Christie & P. Olivier 14
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Ray-casting

control applications

* simple to implement

volumes for performance

of visibility

bounding box and center of the target)

« atechnique of choice in most interactive camera
* low-cost: logarithmic in the number of objects

* provided as a primitive in most interactive environments
» targets/occluders can be easily abstracted by bounding

» easy integration in the camera control pipeline
* but only provides a rough and partial estimation

* most approaches evaluate a fixed number of rays (e.g.

requires to define a ratio between quality and cost

In ray casting approaches the candidate position for the camera is evaluated
by casting a ray in the direction of the target object. An incremental
improvement on simple ray casting approaches can be achieved by casting
from an array of candidate camera locations (at a linear increase in cost), and,
where the visibility of multiple target objects is required, by repeating the
process for each target object. Deciding how to move the camera based on
such collections of single point estimates of visibility has a number of
limitations, for example, it is not possible to maintain partial visibility of a target
object as it moves behind a sparse occluder (such as a set of railings).
Furthermore, using a single point to approximate the geometrical complexity of

a target object fails to sufficiently characterize its visibility.

M. Christie & P. Olivier 15
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w Bounding volumes
e > * Principle:

» both the targets and the camera are encompassed in
a primitive shape (sphere, AA-box, OBB)
Y * intersections are performed between the shape and
the occluders (collision detection)
+ easy to encompass the temporal evolution of the
camera/target in the primitive shape

/. ' N + Sphere-based occlusion detection [CN05]

Using bounding volumes for visibility detection is a rough and conservative -
yet rapid - way of estimating occlusion (i.e. can be used before more
expensive technigues such as hardware rendering). Many libraries provide
efficient means of detecting collision with primitives, and in most cases, the
process only requires a boolean result from the test (ie. not the volume, depth
or point of intersection). Courty & Marchand [CM01, MCO02] avoid occlusion in
a target tracking problem by computing an approximate bounding volume that
encompasses both the camera and the target. Occluders (i.e. not the camera
or the target objects) are prevented from entering the volume corresponding to
target motion or camera motion. However, the approximate nature of the
bounding volumes restricts both expressiveness (e.g. quantify partial
occlusion) and practical application (e.g. over-estimation for complex shapes).

A study the evolution of the depth/volume of intersection is possible to get an
idea of how occlusion is evolving. This can be used in a preventive way by
proposing large volumes around the camera. However, these approximations
are rough and the cost of computing the intersected volume may overshadow
the lightweight advantages of the technique.

M. Christie & P. Olivier 16
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Estimating visibility (1)

Use hardware rendering techniques for estimating the
visibility of a target object
« Step 1: perform a rendering of the target object
+ Step 2: perform a rendering of the occluders

« Step 3: use a stencil buffer, occlusion queries, or pixel
shaders to determine overlap between pixels

+ even low resolution buffers provide a good
estimation of the visibility

 visibility can be weighted by the informative value

of parts of the targets
* by rendering with an appropriate importance map (texture)
* and computing the product of visibility and importance

-

Degree of visibility of the target is determined by the ratio between the number
of visible pixels of the target and the total number of pixels of the target.

Increasing the resolution of the rendered buffers obviously improves the
precision in the visibility estimation (and rapidly converges to a good
estimation)

Occluders and target objects can have specific geometries adapted to the
rendering

low resolution geometries, partial models (eg remove arms and legs, keep
hands and feet)

« removal of sparse occluders, or alpha blended textures (e.qg. fine fences,
leaves etc...)

Important regions on the surface of the targets can be either manually or
automatically (silhouette, saliency) computed and rendered on the surface of

M. Christie & P. Olivier 17



the target. Visibility can then be weighted by this importance map.
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Occlusion-free views

Hardware rendering techniques for computing
occlusion-free views:
+ for a single target:

* arendering is performed from the target object to the area
where visibility should be checked

» only the depth information is stored and used (principle of
shadow volumes)

locally: projections can be performed in a small region of
interest (around the camera configuration) [CONO8]

globally: projections can be performed all around the target
» on the six faces of a bounding box [MMGKO09]
projected onto the surface of a bounding sphere [Bares99]

Only a small number of real-time approaches for occlusion-aware camera
control have been proposed. Crucially, existing techniques (e.g [HO00]) cannot
be easily extended to capture the full spatial extent of target objects (i.e. they
model target objects as points). The computation of occlusion-free viewpoints
is closely related to the well known problem of visibility determination
[COCSDO00, Dur00] which has a bearing on a range of sub-fields in computer
graphics, from hidden surface removal and occlusion culling, to global
illumination and image-based modeling and rendering.

Here we move from visibility estimation to the computation of occlusion-free
viewpoints with hardware rendering techniques. The principle is close to the
one of ray-casting: renderings are performed from the target object to the area
where visibility should be checked, and most similar to the principles in
shadow volume computation (studying the depth buffer to estimate whether
the geometry is shadowed or not).

M. Christie & P. Olivier 18



Siggraph Asia 2009 Courses: Camera Control in Computer Graphics

Occlusion-free views

» By rendering from the target surface towards a region
of potential camera configurations:

1. select a region to explore around the current camera
2. perform the rendering
3. study the depth-map for visibility

s B ol

A clear parallel can be drawn between the problem of real-time soft shadow
computation and real-time visibility computation of target objects. Target
objects can be treated as light sources for which we need to compute the
volumes outside of the shadow and penumbra (this is an inverse volume
carving problem) in which to place a camera. One technique for real-time
shadow computation relies on silhouette detection (e.g. penumbra wedges
[AAMO3]), that use the exact silhouette of objects to compute shadow
volumes. However, the complexity of silhouette detection increases with the
complexity the objects casting shadows and such approaches are also not
readily applicable to rasterizable entities that use alpha-textures (which are
increasingly used real-time 3D graphics). Another class of techniques that is
used in camera control [CONO8] relies on frame-buffer approaches that
construct a depth map rendered from the location of light sources using
graphics hardware. This shadow map is then sampled in relation to the world
geometry and a simple depth comparison can be used the determine the
status of a point in space (whether it is hidden by an occluder or not).

M. Christie & P. Olivier 19
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Visibility of multiple targets

» For mulitple targets
« composing visibility information: a task similar to composing
multiple shadow maps (to form a penumbra map)
yet requires either a sampling process or the computation of
the union of shadow volumes

< < (\/ ’;;t!:,‘:‘: :

In a given region, visibility for multiple targets (or multiple points on the target
surface) is computed by performing one rendering per target. Depth
information is composed in a way similar to penumbra maps (see next slide):
the area is sampled and each sample is expressed in the local basis of each
rendering in order to access the appropriate depth value in the shadow map. A
specific way of composing depth maps is proposed in [CONO08], where
asymmetric frustums are computed for rendering. This technique avoids the
sampling of the area by using a trilinear basis to access visibility information.

M. Christie & P. Olivier 20
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Discussion over local visibility
techniques

+ simple to implement and efficient
+ CPU/GPU-adaptive (ray-casting or frame
rendering)

* adapted to dynamic environments

But: lacks global visibility
leads to issues in local minima areas
inappropriate for performing cuts between shots

s B ol

The methods we reviewed provide efficient and CPU-adaptive approaches to
locally establish visibility or compute occlusion-free views. However their
intrinsic local nature prevent them from performing transition planning (moving
from one viewpoint to another while maximizing visibility), and may fail in some
situations (no local visibility). Furthermore, when cuts between viewpoints
must be computed (eg. reverse shots), many local regions need to be sampled
(with no guarantee of finding an appropriate view).

M. Christie & P. Olivier 21
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Global visibility techniques

» provides a collection of techniques and structures to
represent the visibility in an environment:
grounded on the notion of visual events

@ 2]
>
a visual event separates the space into visible and non-visible areas

two classes of problems are considered in the literature
from-point visibility computation
from-region visibility computation

s B ool

Visibility methods aim to calculate either the regions of a space which can be
seen from a point (from-point visibility computation), or those that can be seem
from a region (from-region visibility computation). In simple terms, visibility
determination uses visual events - the boundary configurations for which

the visibility changes - to partition space. Such methods can be broadly
categorized according to the space in which the partitioning is performed, that
is, object space, image space, viewpoint space or line-space (for a detailed
presentation see [Dur99]). Visibility methods in dynamic environments have
mostly addressed the problem of updating these visibility representations for
moving objects [SG99] and modeling moving occludees (e.g. motion volumes
[DDTPO0O])).

M. Christie & P. Olivier 22
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Cell-and-portal Visibility

* based on architectural environments:
« scenes are subdivided into rooms (the cells)
 visibility occurs through openings (the portals)
+ the cells are connected in an adjacency graph
« each cell visibility is then established by propagating visibility
in the adjacency graph and checking the portal-to-portal
visibility

YL

C&P visibility is restricted to architectural environments, though abstract 2D %
representations can be used to handle more complex scenes [Lam09]. C&P
techniques have been initially proposed to improve occlusion culling in
complex urban scenes (ie removing parts of the geometry that are hidden).
The scene is decomposed into cells (or convex cells to ensure full visibility
inside them — a constrained Delaunay triangulation helps to compute such a
decomposition), and cells are connected by portals (which edges are the
support for visibility). Inter-cell visibility propagation is then performed by
constructing stabbing lines (lines that separate the visibility in space). Visible
cells are connected together in an visible adjacency graph.

M. Christie & P. Olivier 23
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C&P for Target Visibility

: . die 4= * giventhe location of a dynamic
vl \ 1 target:

» the adjacency graph is used to identify
possible visibility areas
o » wrt. from-point visibility, the visibility of
From-point visibility the target is established by using the
stabbing lines defined by the portals
c " « wrt. from-region visibility, the visibility
can be established by bounding the
region and using multiple stabbing
lines
* propagation is performed in the
adjacency graph

From-region visibility

Inter-cell visibility propagation is then performed by constructing stabbing lines
(lines that separate the visibility in space). Visible cells are connected together
in an visible adjacency graph.

M. Christie & P. Olivier 24
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Discussion

Handling visibility remains a complex topic:
« cost for precise/complete evaluation of visibility of
complex/multiple targets
« strong link with planning techniques
* necessity of coupling of local and global visibility techniques
« importance of anticipating actions/motions

» importance of studying the nature of the targets and
occluders

- B ool
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Algorithms and techniques for

virtual camera control
Session 6: Automated Editing
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In this session we will adopt a more cinematographic view by studying how eding
techniques from the cinema can be formalized in computational models to
interactively or automatically generate well edited sequences of shots.

Let first have a look at how real cinematographers deal with the editing of a movie.



Introduction

* Film editing process
* Shoot a set of rushes
* Cut/ paste pieces of rushes
* Create a whole storyline

* Tedious and skillfull process

L Grr;{mmar
. gy g2 of the o
Visual « grammar »: Continuity-editing =y Shot

* Grammar of the Film Language [Arijon 76]

* Grammar of the Shots [Thomson 98]
* Grammar of the Edit [Thomson 93]
* The five C’s of Cinematography [Mascelli 98]

B
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The work of the editor of real movie is a to take as input the rushes that have been
shot, then to diligently cut and paste pieces of those rushes to create a whole
storyline as output.

This is a tedious and technical task, and the cinema industry has thus been building a
“visual grammar” (aka continuity-editing) of how to properly shoot and edit movies
for more than a century.

One can find a number of well-known “cook-books”” each providing a set of practical
or theoretical rules that allow selecting well-composed shots that can properly
convey movie actions and cuts that can enforce some continuity in actions through
the sequence of shots.



Shots grammar: « action »

» Controls how viewers are focused on the relevant actions of the storyline
* Should be informative enough
» Should highlight important information (provide guidance to viewers)

and avoid distracting viewers

Walk action Speak / React action

Manipulate action

-
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Importance of characters over time

Actions unfolding over time
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First, they provide a grammar of the shot. Selected shots where enough space is left
to perform the action. For instance for a shot show a character walking, enough
screen space should be left in his motion direction, if showing a character speaking
or reacting after another character has been speaking, the shot should provide some
look-room or head-room to the character (i.e. leave enough space in his gaze
direction).

Then protagonists should be highlighted so as to best highlight the main actions that
are unfolding at that moment in the story.



Cuts grammar: « continuity » of actions

* Controls how storyline actions are perceived all together
* Make link between pieces of information
* Guide viewers’ attention (visual cues)
* Controls how a given action is perceived as continuous in time

* Do no break continuity (coherency)

. m ! ;
Jump Cut Jump Cut ﬂﬁ
J Bad cut

Continuity errors
* m - ! ------------- O Llne Of InteIESt

Current A/’ A Good cut
left-to-right screen gaze direction

-"Keeis continuity ! m ! ! E EE

¥

Jump Cuts
v 3
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Then, they provide a grammar of the edit. Selected cuts between two shots should
be invisible to viewers. And to do so, they need not to break the visual continuity of
the actions.

Most important continuity rules are that a cut should not provide too much change
on the on-screen position of a character that the viewer is looking at, as it will force
the viewer’s eye to move to the new position after the cut (after a few cuts it can
thus lead to some visual discomfort). The cut should also maintain relative positions
of objects on the screen. It should enforce the continuity in the motions of
characters (a character moving from left to right in one shot, should keep moving in
that direction in the following shot), and it is the same for their gaze directions (a
character looking to the right should keep looking to the right). Finally, a cut should
be perceived as a cut, i.e. it should provide sufficient change on the characters on-
screen size and/or on their view angle (in other cases, it is known as a “jump-cut”,
which is perceived as fast camera motion instead of a cut).



Overall pace of the story

* Controls how the story actions are perceived / understood
* Pace is too fast

* Not easy to understand what is occuring

* May introduce visual discomfort after a while !
* Pace is too slow

* Information redundancy

* May become boring to watch after a while !

* Requires a « natural » distribution of shots durations

Fast pace (durations around 2 seconds) Slow pace (durations around 10 seconds)
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The durations of shots is an also important criteria for editing movies, as it will
control the pace of the story. If the pace is too fast (i.e. shots are too short) it does
not lets enough time to viewers to “read” the content of the shot. If the pace is too
slow (i.e. shots are too long), it lets too much time to the viewer to “read” the whole
content of the shots (comprising background actions or landscape) so it can become
boring for viewers to watch a shot after a while. Obviously the editor instead has to
make a compromise, depending on actions complexity (how much information the
director would like to provide to viewers) and the rhythm of actions. This should
therefore lead to “natural” distribution of shots durations (i.e. if cutting at regular
intervals of time, the viewer would be able to perceive cuts).



Shooting and editing using « Cook-books »
* Exemple of Arijon’s film grammar — i?
* On a case-by-case basis
* Depends on the number of characters B
* And the type of action (static / moving characters) ‘

aanm® |m

1 g i

== Dialogue
@‘ 1 character / 2 characters facing
¥
)
i
[‘j @ Dialogue
_— J 2 characters / 1 character is turning
1 character running / stopping D»alogu;
3 characters / perpendicular
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To account for such theoretical rules, some « cook-books » such as the one of Daniel
Arijon (which is surely the more cited in the litterature), are providing more practical
rules on how to place camera to shoot the actions and how to cut between them
along time.

In his book, Arijon is providing rules on a case-by-case basis.

For instance, to shoot a single character moving, you can place two cameras in front
of the character, at the start and end of his motion, ensuring that cameras are
located on the same side of a line defining his motion.

To shoot two or three characters talking to each other one can position cameras on
one side of the line of interest drawn through characters, then depending on the
configuration and motions or characters in the story, it will require more or less
cameras to be placed around characters and their placements will be slighlty
different.

More generally, one can find a configuration of camera for each kind of action, and
each number and configuration of characters.



Naive approach to automated editing
[He et al. 96]

* Encode idioms

« Stereotypical way of shooting an action
* ldioms = finite state machines (FSM)

* New type of action = new FSM

* New number of targets = new FSM

@ Can run in real-time

® Requires as many FSM as cases

@ Not flexible (cannot provide variations)

@ Hard to generalize !

Camera Modules

Choosing an appropriate idiom
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In handling the automated editing in 3D environments, one can easily encode
continuity rules by following cookbook.

A “naive” approach proposed by He in his 1996 SIGGRAPH paper is to encode idioms
(stereotypical ways of filming a given action, as provided by Arijon) as a finite state
machine. In this FSM, a node will represent a single viewpoint, and an arc will
represent a possible transition between two given viewpoints (i.e. a cut or camera
motion). Transitions can then be parametrized (i.e. cut when first character start
speaking, or after 10 seconds spent in the shot).

Still following this way of implementing cook-books, one has to encode as many FSM
as the number of different types of actions and number of characters. Then, one can
also define a tree of those idioms which will handle the transitions between the
multiple actions performed in the story.

The great advantage of this model is that it can be easily implemented and that it
can run in real-time. Therefore it remains one of the preferred models in computer
games today.

There have also been a large number of scientific papers build upon this idiom-based
idea to create more evolved editing systems.



But, the big problem with this model it is hard to generalize it since it is a bit too
rigid.

Today we will introduce a more general way of formulating and implmenting the
editing process.



Better formulation for continuity-editing

Poor shot Poor shot

s
* Reproduce the editing process m

» Start from a set of rushes

Bad quality of shots
+ Good quality of cuts (no discontinuity)

> Vi l li dit
* Rank possible edits R I

* Quality of Shots
> Action cost

* Quality of Cuts
> Transition cost

Left-to-right d Gaze d

— —

Good quality of shots
* Quality of Pace + Bad quallty of cuts (some discontinuities)

> Rhythm cost Medium quality edit

* Choose the best edit
objective function to
Good quality of shots

+ Good quality of cuts (continuity)
> High quality edit
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minimize

Here we are targeting to better reproduce the editing process as it is done by a real
editor.

We start from the set of input rushes and we want to provide the best edit possible
as ouput.

Our automated process wil then be divided into two step: (i) provide a way to
evaluate the quality of a given edit using these rushes, then (ii) explore the range of
possible edits and choose the one which obtains the best evaluation.

In the first step (evaluating an edit) we split the overall quality of the edit into three
components: the quality of shots (which is really important as poor shots will lead to
a very bad edit), the quality of cuts (which should enforce continuity), and the
quality of pace. And we will consider that a good edit is obtained when all three
components are evaluated as good.

To do so, as previously, we can derive a cost function for each component, build an
objective function aggregating these costs and try to minimize this objective
function. We will see how to search for the best edit a bit later,, for now lets focus
on each component separately.



Action cost (Shot quality)

* Penalize shots that do not convey enough of the important actions
or distract viewers
« Visibility of actions

* Important characters

* « meaningful » body parts w.r.t. actions . o
' il yPp = Actions are visible
i —
c finet Convey
ostiunclion the actions
. Occl(Tyart f) ) ————
B = 3. Y [imar) Gl ==
i part pary 1 Distract =
from ‘ l

the actions g
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A first element in making a good shot is that it should convey enough of the relevant
actions unfolding at that time in the story, and avoid distracting the viewer from the
main story elements.

For example, to shoot a given action, this action should be fully visible in the frame.
Which means that the protagonists of this actions should be visible on the screen,
and more particularly their relevant body parts (those participating in the action).
For instance here we have a character speaking so we would like his head to be
visible on the screen.

To evaluate how much this rule is enforced, we can compute the area covered by the
face of the character and compare it to the area it would cover if it were not
occluded at all.

Then, following that principle we can build a cost function that will sum up over all
body parts of all targets that appear on the screen. And we can also weight each
character with regards to its importance in the story (i.e. how much ihe is
participating to the unfolding actions) to penalize occlusions of protagonists more
than secondary or background characters.



Action cost (Shot quality)

* Penalize shots that do not convey enough of the important actions
or distract viewers
» Hitchcock rule:
* the more important the character

« the more it should fill the frame
Actions fill the frame

Convey
» Cost function: the actions
i i 1
Plunlef) = Y [P e | :
L2k , K ’ Distract
from
the actions
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In the same way, a rule which was followed by Hitchock and that we find really
practical is that the more an action or a character is important in the story, the more
it should fill the screen space (e.g. if only one action is unfolding, then only this
action should be frame). Here we have a character talking to himself at one side of
the scene, so the character should ideally fill the frame, i.e. he should be alone on

the screen.

To evaluate how much this rule is enforced, we can compute the area covered by a
character on the screen and compare it to the total area covered by all characters.
Then, we can build a cost function that will compare the relative importance of a
each character at that moment to the relative amount of the screen it fills

(compared to other all characters).
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Transition cost (Cut quality)

* Penalize cuts breaking continuity
* On absolute screen positions

Discontinuity

» Cost function:

PST;'reen(C]t—I'C;t) = Z ¢S[P05(T('C]t—1) - POS(T‘,C;)]
i
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Now, if we look at the quality of a cut, we can consider a range of continuity-editing
rules and derive a cost function to evaluate how much each is respected.

For example, we sayed that one should enforce (as much as possible) the absolute
on-screen positions of characters. So, we can first compute the 2D screen position of
a character before and after the cut, and compare both positions (the greater the
on-screen distance, the greater the cost). We can then derive a cost function that
will sum up the change of on-screen position for all characters appearing both
before and after the cut.

11



Transition cost (Cut quality)

* Penalize cuts breaking continuity
* On relative screen positions

Continuity

Marty '. George ‘Gok;’
>
. 1M

-

Discontinuity

» Cost function:

Phraer(cf1cf) = ) dolOrder(TT,cf, ), 0rder(',T,f)]
ij
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In the same way, one should also maintain relative position of characters on the
screen. To encode this rule, we can use the computed 2D screen positions of each
character (before and after the cut), and compare the relative positions for each pair
of character before and ater the cut (we penalize when positions are reversed). We
can finally derive a cost function that will sum up these penalties over all pairs of
characters on the screen.

12



Transition cost (Cut quality)

* Penalize cuts breaking continuity

* On gaze directions

Discontinuity

* Cost function:

Plaze(cf06f) = ) dc[Gaze(T, cf ), Gaze(T" cf)]
i
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Another rule is to enforce continuity on characters’ gaze. To encode this rule, we can
computed the projection of the gaze of a character (before and after the cut), and
compare both directions (we penalize when gaze directing is changing, for instance if
the character was looking left before the cut and is looking right after the cut). We
then derive a cost function that will sum up these penalties over all characters
appearing on the screen.

13



Transition cost (Cut quality)

* Penalize cuts breaking continuity
* On apparent motions

Discontinuity

» Cost function:

Piotion(€f-1.¢f) = Z @u|[Motion(T',cf_,),Motion(T",cf)]
i
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A similar rule is to enforce continuity on the apparent motion of characters (when
they are in motion). To encode this rule, we can computed the projection of the
character’s velocity vector (before and after the cut), and compare both vectors in
the screen space (we penalize when motion directing is changing, for instance if the
character was moving to the left before the cut and is moving to the right after the
cut). We then derive a cost function that will sum up these penalties over all
characters appearing on the screen.
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Transition cost (Cut quality)

* Penalize cuts that do not look like cuts (visually, not enough change in size or view angle)

* Jump cuts

« Jump cut »

Sufficient change in view angle

* Cost function : Prs (CEqef) = Z¢>,[ASize(T',c}‘_l,c]‘),AAngle(T‘,cf_l,c]‘)]
i

TH S

Finally, we want to avoid jump-cuts, i.e. provide either a sufficient change in the
screen size of characters or a sufficient change in the characters’ view angle (or
both). We could split this problem into two separate constraint that we could
enforce separately but this would lead to force the editing system to enforce both at
the same time, which would prevent some « grammatically correct » edits (such as
those on the left figure) to be considered as good.

To improve, we can instead compute the change on each feature separately then
combine them into a single cost function.

We first compute the on-screen size before and after the cut, and build a delta-size
function returning a satisfaction value corresponding to how much the size change is
sufficient.

In the way, we can build a delta-angle function returning a satisfaction value
corresponding to how much the view angle change is sufficient.

Finally we can build a cost function taking these two delta functions and penalizing
cases where neither is sufficiently satisfied. We can finally sum up these penalties
over all characters appearing on the screen both before and after the cut.
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Rhythm cost (Pace quality)

* Film edits commonly follow a log-normal distribution of shots durations [Salt 03]
* Provide the parameters of the log-normal distribution: mean (u), stddev (o)
* Try to fit the durations d; of all shots j with this distribution

Seventh Heaven - dialogue titles cut out

* Cost function

2
logd; — logpu
PR(d]) - ( ]202 )

No. of shots in each interval

(~
8 0 % % % B 20 22 20 26 28 30 32 M 36 I8 40 42 4 46 B8 W

Class intervals in seconds
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In term of evaluation of the overall cutting rhythm, one can note that studies of the
pace in real movies have shown that shots lengths tend to follow a log-normal
distribution. Which means that most of the shots will have a duration close to a
mean duration, some of them will be a bit shorter or longer, and very few of them
will be much longer.

Following that idea, what we have proposed is to rely on the provision of a given
pace by the user, through both parameters of a log-normal law (the mean shot
duration and the standard deviation of duration from the mean value).

The editing system should then build an edit that fits such a distribution as much as
possible.

Here we evaluate how much a shot follows the log-normal law by computing the

deviation of its duration to the expected mean duration and comparing the result
with the expected standard deviation.
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Searching for a good edit

* Should minimize the amount of editing errors

» Find a « grammatically-correct » edit

* Means:
* Convey relevant actions
* Avoid discontinuities when cutting
* Apply an appropriate cutting rhythm

* Build an objective function to minimize

Algorithms and techniques for virtual camera control

Well, we have shown how we can evaluate all three components, and rank the

satisfaction of the related rules, separately.

Now, we consider evaluating a full edit, and searching for a good one. What is
important here is that a good edit should make as few errors as possible (we call it a

« grammatically correct » movie).

This means that the edit should convey as much as possible of the actions, avoid
discoutinuities when cutting, while following an appropriate cutting rhythm.

We formulate that problem through an objective function to minimize. This
objective function is builr as a weighted sum of all three components costs, which in

PO=WAD > PAH[+ W P ) wrD PR
j tiststj+d; 1<) J
Action cost Transition cost Rhythm cost
(Shot quality) (Cut quality) (Pace quality)

Where s = { 5,5y, ..., Sj-1,5), ..., Sn} iS @ sequence of shots (edit)

May 9, 2016

turn are made of all costs related to the rules we have presented.




Editing graph

» Automated editing can be viewed as planning a path through an oriented graph

* Node r‘": use camera (take) i at time ¢
« Arc ¢f — cf*1 1 do not cut (j = i) / cut to another camera (j # i)
— : Shot 3

take 2
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take 4
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take 5
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Now we can go into the process of searching the best edit.

If we consider we won’t make time ellipses, one can view this search as choosing
which camera to use at each time frame of the storyline.

We can thus represent the space of all possible edits as a directed graph (with arcs
gioing from left to right) where a node represent the use of a given camer at a given
time frame, and an arc represent the transition from a camera at time t to a camera
at time t+1. One can also consider that the graph is complete (i.e. one can continue
using the current camera or cut to any other camera between each time frame).

This means that, taking one possible edit (i.e. a given path through this graph) from
the beginning to the end of the story, we can now evaluate the edit using the
previous objective function.

Finding the best edit thus requires evaluating all the possible paths, but this is
however computationally too expensive.
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Dealing with computational complexity

* A huge amount of possible paths through the editing graph
» With M rushes and N frames = Requires to evaluate MV edits !

» Space complexity is also M’

* Semi-Markov assumption on the editing process
« Cut after ¢} : decision depends only on the current shot (from last cut)

» Rely on a dynamic programming algorithm

* With M rushes and N frames = complexity becomes M“N< in time (and MN in space)
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Indeed, if we consider that we have M rushes (cameras) over N time frames, this
leads to a huge complexity both in computation time and in required memory space;
which for now makes solving our problem impracticable.

A
I
'
I

To reduce this complexity, what is important here is that we can make a strong
assumption on the editing process.

Actually, deciding whether or not to cut to another shot is only dependent on the
amount of time we have already spent in the current shot, which allows some
reduction on the search process.

Finally, building on this semi-Markov assumption, we have used a dynamic
programming algorithm. Dynamic programming is really well-suited to this type of
cases, where one can decompoe a problem into a set of simpler sub-problems, that
can in turn be solved separately from each other.

In our case, this allowed drastically reducing the complexity both in computation
time and in memory space required (to endode the editing graph), making the
search process more practicable.
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Demos Galvane et al. (AAAI 2015)

Computed Editing
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Trends
« more practical impact of the research field

« data-driven camera control (taking inspiration from

real movies)
— camera trajectories
— movie style

» application to more complex problems
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In the last years, we are witnessing the
first applications of sophisticated
camera control algorithms to real-world
applications. For example, SolidFrame
(http://www.solid-frame.com) is a new
tool designed for animators and
cinematographer to interactively
explore a large collection of shots over
their 3D animation, and rapidly create
and compare multiple edits of the



same animation; VEX-CMS
(nttp://hcilab.uniud.it/vex/) is an application
that allows people with no expertise in 3D
modeling to create 3D virtual exhibitions
and virtual visits integrating objects and
iInformation into virtual environments.

Another interesting trend is the exploitation
of data from real-world movies, e.g. to
generate better camera compositions and
trajectories. Recent work done at INRIA
France (only partly published) proposes
methods to reproduce camera
compositions taken from real movie shots,
and to reuse camera trajectories taken
from real movies (also explored in [Kurz et
al 2010]), in an effort to provide more
believable and natural camera
movements.



We are also seeing camera control
research papers that challenge problems
that are significantly more complex than
the "toy” problems that were addressed by
earlier papers in the field. For example,
[Ranon et al 2015] applies some of the
camera control algorithms we have seeing
In this course to the problem of visualize
results from aviation safety simulation
scenario that involve hundreds of
characters and highly frequent events;
[Galvane et al 2013] propose camera
control algorithms to film scenes involving
a crowd of characters.



Issues

« computing visibility
— practical models to handle the full visual extend of
targets
— temporal vs spatial visibility
— visibility is related to perception, and ultimately to
recognition
— integration into planning techniques

« take lighting into consideration
— a fundamental information for proper composition in
photography and cinematography

I $ Algorithms and techniques for virtual camera control May 9, 2016

Visibility is actually on of the main
ISsues in camera control, and has
been quite neglected. With the advent
of efficient dedicated graphical
languages, such issues are currently
re-explored.

Visibility is not only difficult from a
technical point of view, it also is related
to more fundamental aspects in
perception that are critical to evaluate



(recognizability, task-dependent, duration
and extent of the occlusion).



Directions for research

more expressivity (requirements)

— especially considering aesthetics, cognitive
aspects, conveyance of narrative elements and
emotions

integration cognitive and perceptual models into
automated editing

coupling staging, lighting, and cameras

adapt camera control techniques to control real
cameras (drones, automated camera cranes, ...)

Algorithms and techniques for virtual camera control
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