

Interactive computer games serve the benchmark application for

camera control techniques. Most importantly, they impose the

necessity for real-time camera control. A canonical camera

control problem involves following one or more characters whilst

simultaneously avoiding occlusions in a highly cluttered

environment. Furthermore, narrative aspects of real-time games

can be supported by judicious choice of shot edits both during

and between periods of actual game play. The increasing

geometric complexity of games means that most deployed

camera control algorithms in real-time 3D games rely upon fast

(but fundamentally limited) visibility checking techniques.

Camera control in games has received considerably less attention

in computer games than visual realism, though as John Giors (a

game developer at Pandemic Studios) noted, “the camera is the

window through which the player interacts with the simulated

world”. Recent console game releases demonstrate an increasing

desire to enhance the portrayal of narrative aspects of games and

furnish players with a more cinematic experience. This requires the

operationalization of the rules and conventions of cinematography. This

is particularly relevant in the case of games that are produced as a film

spin-offs, where mirroring the choices of the director is an important

means of relating the game play to the original cinematic experience.

This video can be found at

https://www.youtube.com/watch?v=fMK6sTnMxBI.

Heavy Rain, as other similar games that are being

increasingly developed, closely mimic the language of

movies in presenting the virtual experience to the

user, using editing and camera movements that

follow a specific cinematographic style. However, all

cameras in the game have been more or less

manually designed for the range of actions and

events that the game can display (and that have to be

thus known in advance).

https://www.youtube.com/watch?v=fMK6sTnMxBI

In three-dimensional modeling environments, virtual cameras are

typically configured through the specification of the location of the

camera and two vectors that represent the look-at and up

directions of the camera. The specification of camera motion is

usually undertaken through a combination of direct editing and

interpolation, such as the use of splines with key frames and/or

control points. Animation of the camera is realized by interpolating

the camera location, up and look-at vectors across key frames.

Fine control of camera speed is provided through the ability to

manipulate the velocity graphs for each curve.

A set of complementary tools provides modelers with the ability to

use the position of a unique static or dynamic target object to

constrain the look-at vector. Modelers may also allow the use of

offset parameters to shift the camera a small amount from the

targeted object or path. Similarly, some tools allow constraints to

be added to fix each component of the look-at vector individually.

Physical metaphors are also used to aid tracking, such as virtual rods

that link the camera to a target object. With the possibility to extend the

functionality of modelers through scripting languages and plug-ins, new

controllers for cameras can be readily implemented (e.g. using physics-

based systems). Furthermore, with the rise of image-based rendering,

the creation of cam- era paths using imported sensor data from real

cameras is increasingly popular.

In practice, the underlying camera control model (i.e. two spline curves)

is not well suited to describing the behavioral characteristics of a real

world cameraman, or the mechanical properties of real camera systems.

Despite the fact that a number of proposals exist for describing

cinematic practice in terms of camera position, orientation and

movement, most modelers have not attempted to explicitly incorporate

such notions in their tools. Even basic functionality,

such as automatically moving to an unoccluded view of a focal object,

cannot be found in current commercial modeling environments.

This mismatch can in part be explained by the general utility that most

modeling environments strive to achieve. Cinematic terminology is

largely derived from character oriented shot compositions, such as over-

the-shoulder shots, close shots and mid shots. Operating in these terms

would require the semantic (rather than just geometric) representation of

objects. Furthermore, the problem of translating most cinematographic

notions into controllers is non-trivial, for example, even the seemingly

simple notion of a shot will encompass a large set of possible, and often

distinct, solutions. However, providing users with high-level tools based

on cinematic constructs for the specification of cameras and camera

paths, would represent a significant advance over the existing key-frame

and velocity graph-based controls.

In practice, even partially automated three-dimensional

multimedia generation requires an interpretation and synthesis

framework by which both the visuospatial properties of a

viewpoint can be computed (i.e. the interpretive framework) and

the viewpoint controlled according to the constraints arising from

the semantics of the language used (i.e. the synthesis

framework). Likewise, future scientific and information

visualization systems will benefit greatly from intelligent camera

control algorithms that are sensitive to both the underlying

characteristics of the domain and the task that the user is

engaged in. Such adaptive behavior presupposes the ability to

evaluate the perceptual characteristics of a viewpoint on a scene

and the capability to modify it in a manner that is beneficial to the

user.

Beyond simple object references, the coordination of language

and graphics poses a number of interesting problems for camera

control. Indeed, such applications are a rich source of constraints on a

camera, as the semantics of some spatial terms can only be interpreted

by reference to an appropriate perspective. For example, descriptions

involving spatial prepositions (e.g. in front of , left of) and dimensional

adjectives (e.g. big, wide) assume a particular vantage point. For

projective prepositions the choice of a deictic or intrinsic reference

frame, for example, for the interpretation of in front, directly depends on

the viewpoint of a hypothetical viewer.

While big-budget CG movies can use professional camera

animators and even real-cameras motion capture, low-budget CG

movies are becoming more and more practical as the rendering

capabilities of games engines (UE4, Unity) progress towards

large scenes with realistic global lighting and cinema-level post

process effects. In this context, it make also sense to develop

camera control algorithms that can aid the user in quickly placing

and moving cameras, as well as editing the final result. The same

need is even more pressing in the context of previz tools, in which

one should be able to quickly preview camerawork into a digital,

simplified version of the film set. Sophisticated camera control

and editing algorithms are thus key to the realisation of a new

generation of storyboarding tools that allow the cinematographer

to “prototype” a movie.

In this session we will see some foundations of virtual camera control and I will also
give some basic definitions for modelling key aspects.

But before talking about virtual cameras, let first see how a real camera is controlled.

1

When considering a real camera, there is a great number of settings that can be
accounted for.

First, the camera is held by an operator or by a mechanical system such as a dolly or
a crane.
The camera has a globally non-deformable shape and volume, it has a mass, and
while manipulating the camera one should also account for the deformable shape
and the mass of the operator or the mechanical system.

In the same way, there are also a number of intrinsic aspects to consider. Indeed, the
camera is capturing the world through a physical lens – which one can possibly
change between shooting sessions – which will provide a means to project the scene
content onto a sensor, which in turn will allow creating a 2D image of the captured
scene. The final projection depends on a set of parameters such the sensor size or
aperture of the camera (which plays with the amount of light entering the camera).
But this projection also come with some optical side-effects, namely an image
distortion, due to the shape of the lens, and a blur effect which is called the « depth
of field » and is linked to the focal length, i.e. a distance defining how the optical
system converges or diverges light.

2

These multiple complex aspects are currently addressed in as many fields as
computer animation, computer vision, or robotics. In this tuttorial we will only
consider a subset of them, those which are commonly addressed in computer
animation.

2

In fact, to simply the problem of handling cameras a bit, in the animation community
what we use (and what can basically be found in any 3D modeler) is a pinhole
camera model. This is an « ideal » model in that it considers the camera does not
have any lens and that the camera is reduced to a single point without a mass. What
it means is that the camera will be totally free to move in space and there will be no
side-effect coming from the optical system while projecting the scene geometry
onto the screen.

So what we will handle is the 7 essential camera parameters : the 3D camera
position, defined in cartesian space; the 3D camera orientation, though it is basically
described with three Euler angles (pan for the left-right rotation, tilt for the up-down
rotation, and roll for the rotation around the camera axis), due to gimbal lock it is
often handled through quaternions in 3d modelers and rendering engines; another
way to fix the camera orientation is by providing a look-at direction or look-at point,
from wich the camera orientation is computed, also ensuring that the roll angle of
the camera is set to zero (assuming that we provided the camera with a proper up
vector, i.e. pointing up, fopr instance here the up vector should be Z). The last
camera parameter is the zoom factor, which is often handled as a field of view angle
(the wider the more we capture scene geometry). And the aspect ratio (i.e. the ratio
between the screen width and height) is considered as fixed (common values are

3

3:2, 4:3 or 16:9).

And these three elements defines the camera projection matrix which is simply
computed as the product of three matrices (one for zoom, one for rotation and one
for translation).

3

More practically, if we want to build a virtual camera system closer to a real one, or
to build a virtual stereo camera it is now possible to rely on the scene graph. For
instance we can easily use successive nodes to handle the joints of an articulated
arm that reproduces a crane. Or in the same way, we can quite easily build a stereo
camera rig by linking two cameras together, which will then add two new
parameters to the camera system (namely an inter-axis distance between both
cameras center of projection and a convergence angle which however need to be
artificially kept consistent).

As for depth of fields, it is also possible to handle this aspect by using a shader that
will blur out-of-focus objects, while keeping in-focus objects sharp.

But in this tutorial we will assume we are not handling such parameters, so now let’s
come back to our simple pinhole camera model, and see how we can manipulate the
camera.

4

The core problem in controlling cameras is the one of visual composition, i.e.
deciding what parts of the scene geometry we would like to see and how would like
to arrange them onto the screen.
We can for instance want some buildings to appear on the left of the screen, the
woman to appear on the top-middle, and the man on the right.

The main difficulty in controlling the camera come from the fact that such a visual
composition is given as a set of 2D constraints (in the screen space) and we then
need to determine all the 7 parameters of the camera so that the resulting
viewpoint can satisfy the desired composition. This make the search problem
strongly non-linear.

5

If we want to move the camera, a first way to do is by directly letting teh user handle
the camera parameters.
The process relies on the use of an input device offering a number of degrees of
freedom to the user, and by handling these degrees of freedom the input values will
be mapped (straighforwardly or not) onto output camera parameters.

There have been a large number of such mappings provided in the littérature. We
can divide them into two main categories: those relying on mouse/keyboard
interfaces which have mainly been designed in mind for object inspection or scene
exploration tasks, and some more recent mappings relying on post-WIMP interface
such as here a virtual camera device based on motion capture that enables the user
to handle the camera as a real operator.

The question raised behind this interactive viewpoint computation is how can we
practically help users in their creative and technical tasks?

6

Another way to move camera is by relying on an automated computation process to
create camera paths.
The models for representing camera paths in 3D modelers are still strongly coupled
with camera models (i.e. the data representation levels). The user has to define key
camera configurations by putting keyframes in the timeline then use an interpolation
algorithm. The classical interpolation approach is to rely on quaternions trajectories
(Slerp) and linear or spline-based interpolations of the camera parameters (position,
orientation and zoom) as it is for animating any 3D object of the scene.

However, as we have seen a bit earlier, real cinemas commonly use tripods or
articulated arms to create smooth trajectories such as pan, tilt, pedestal, dolly, track,
crane, boom, etc.
So, a question that raises here is how could we represent and generate such
traditional camera motions?

7

A final concern in controlling cameras is how to handle the editing. Editing is the
process of selecting shots and linking them by introducing cuts.

This first requires to choose a sequence shots which respect some continuity rules
and follows cinema conventions. For instance a classical rule is the one related to
the line of interest (LoI) which can be represented as an imaginary line drawn
between two characters. Crossing this line would change the relative positions of
characters on the screen so, in real films, directors rely on a set of cookbooks
providing practical rules on how to place cameras around characters and how to
make cuts between such cameras.
The editing process then requires to find the best moment to cut (i.e. decide when
to cut and above all why to cut to another camera).

This is thus a fairly high level process which raises question about how to model this
cinematic knowledge and how to interactively or automatically create good edits.

8

« Interactive » here is taken in the sense that the user is interacting with the

camera (ie manipulating features).

And there are two key questions:

-how is the mapping going to be performed between the user inputs and the

camera parameters (which in turn asks the question of which camera model)?

This essentially depends on the type task to perform, the nature of the

environment, the importance of precision and accuracy, but also aspects such

as the cognitive load of the user (and how camera manipulation is critical in

performing the task)

-what is the influence of external constraints on the camera parameters (object

geometry, scene complexity, visibility etc)?

And how these constraints guide or counter the user, eg simple collision

detection will block the camera (thus the user) from going through a wall but

won’t prevent him from getting stuck against in front of these walls? So how

can the geometry guide the user in his task?

In the domain of camera control, literature displays a large range of mappings

between user inputs and camera parameters. Direct mapping techniques will

associate inputs (mouse coordinates) directly to camera parameters, while

indirect techniques will operate through specific interction widgets (e.g. I-

widgets [Singh06]) or spaces (screen-space [TTLCC] or application-specific

space).

Techniques have rapidly introduced constraints to augment the usability by

assisting the computation of some degrees of freedom. This is typically

addressed by reducing the dimensionality of the control problem, and/or the

application of physics-based models, vector fields or path planning to constrain

possible movement and avoid obstacles [HW97]. For example, the application

of a physical model to camera motion control has been explored by Turner et

al. [TBGT91]. User inputs are treated as forces acting on a weighted mass

(the camera) and friction and inertia are incorporated to damp degrees of

freedom that are not the user's primary concern.

This slide illustrates interactive approaches related to object (referred as

proximal inspection) and environment exploration. A certain knowledge of the

environment is utilized to assist the user in his navigation or exploration task.

Such approaches are split according to their local or global awareness of the

3D scene.

Khan et al. [KKS+05] propose an interaction technique for proximal object

inspection that automatically avoids collisions with scene objects and local

environments. The hovercam tries to maintain the camera at both a fixed

distance around the object and (relatively) normal to the surface, following a

hovercraft metaphor. Thus the camera easily turns around corners and pans

along at surfaces, while avoiding both collisions and occlusions. Specific

techniques are devised to manage cavities and sharp turns.

Left, top and bottom: negociating bumps and holes in proximal inspection

Righ, top and bottom: negociating corners

This work can really be viewed as a generalization of the Hovercam, and

removes a number of tweaks and limitations the technique had.

The idea consists in computing offset shells around the geometry and having

the camera navigate on these shells, or traverse them.

The distance to the geometry defines the frequency of the offset shell

(close=high frequency, so follows closely the details on the surface, far= low

frequency so follows a smoothed representation of the surface).

Shells are dynamically computed in the vicinity of the camera (not as a

precomputation), making the techniques adpatable in any 3D modeller

In more stylistic way compared to [KKS*05], Burtnyk et al. [BKF+02] propose

an approach in which the camera is constrained to a surface defined around

the object to explore (as in [HW97]). The surfaces are designed to constrain

the camera to yield interesting viewpoints of the object that will guarantee a

certain level of quality in the user's exploratory experience, and automated

transitions are constructed between the edges of different surfaces in the

scene. The user navigation freely in the bounds of the constraint surface, and

on reaching an edge is guided to another constraint surface, or hand-built

transition.

We now detail techniques that rely on the geometry of the whole environment

to build constraints, that assist the users in either navigation or exploration

tasks.

Environment-based assistance, for which applications are generally dedicated

to the exploration of complex environments, requires specific approaches that

are related to the more general problem of path-planning. Applications can be

found both in navigation (searching for a precise target) and in exploration

(gathering knowledge in the scene). Motion planning problems in computer

graphics have mostly been inspired by robotics utilizing techniques such as

potential fields, cell decomposition and roadmaps.

The low cost of implementation and evaluation of potential fields make them a

candidate for applications in real-time contexts.

The efficiency of the method is however overshadowed by its limitations with

respect to the management of local minima as well as difficulties incorporating

highly dynamic environments. Nonetheless, some authors have proposed

extensions such as Beckhaus [Bec02] who relies on dynamic potential fields to

manage changing environments by discretizing the search space using a

uniform rectangular grid and therefore only locally re-computing the potentials.

In [HW97], the constraint surface is defined by the user, together with a

number of orientation key-points. Recent approaches consider automated

computation of either scalar or vector fields to assist the users both in location

and orientation [TC01, ETT07]. This requires to answer a number of key

issues (handling bottlenecks such as narrow doorways, handling large open

spaces, identifying essential landmarks that make this problem a difficult one).

Virtual endoscopy enables the exploration of the internal structures of a

patient's anatomy. Difficulties arise in the interactive control of the camera

within the complex internal structures. Ideally important anatomical features

should be emphasized and significant occlusions and confined spaces

avoided. The underlying techniques mostly rely on skeletonization of the

structures and on path planning approaches such as potential fields. For

example, [HMK97] and [CHL+98] report a technique that avoids collisions for

guided navigation in the human colon. The surfaces of the colon and the

center line of the colon are modeled with repulsive and attractive fields

respectively.

In [HMK97], the camera is guided by some repulsive forces from the colonic

surface, attractive ones that push the camera towards a given target, and user

inputs (when pointing an area on the surface). The process is however very

specific to the problem (a more general geometry would lead to many cases of

failure or inappropriate guidance).

In moving further away from the direct manipulation of camera parameters,

through-the-lens techniques enable the control of the screen content

Visual servoing techniques relies on the regulation in the final image of a set of

visual features (points, segments, lines).

The image Jacobian (L) expresses the link between the motion of a visual

features (P) in the 2D screen and the motion of the camera (it's a linearization

of the projection relation for the camera configuration).

The key idea is then to invert the equation, in order to express the variation on

camera parameters that correspond to a desired motion of the visual feature

on the screen. For exemple, in order to constrain a mobile 3D point at a given

location on screen, requires to solve Jq=0 at every frame.

The Jacobian matrix is generally non square (m x n):

-m is the number dofs of the camera (7 for euler-based, 8 for quaternion-

based)

-n is the number of parameters of the visual features in 2D (2 for a point, 3 for

a line, 4 for a segment)

The pseudo inverse of the matrix can be computed by Singular Value

Decomposition which is in O(mn^2).

If all camera dofs are not constrained, one can perform secondary tasks (see

details in next slide) through a minimization process.

Solving process is quite efficient (cost of Jacobian + SVD + minimization).

However:

•difficult to balance between primary and secondary tasks

•some tasks cannot be easily expressed as a minimization process

(visibility/occlusion)

Toric space is a novel representation for manipulating two targets in a screen

(and for other camera control tasks as we’ll see later).

The idea behind the toric space is a generalized model (in that the model

encompasses constraints). These constraints are the on-screen locations of

two targets.

3 angles are then defined in this space: alpha, representing the angle between

the targets and the camera, theta, the horizontal angle, and phi the vertical

angle.

By changing values of phi and theta, the camera moves, but the constraint

remain satisfied (ie whatever value of phi, theta) the targets project at the

same location on screen.

Code is available here: https://sourceforge.net/projects/toric-cam/

This is the classical form of the viewpoint computation

problem as reported in several papers, e.g. [Olivier et al.

1999, Bares et al. 2000, Christie and Normand 2005,

Burelli et al 2008, Ranon and Urli 2014]. In some cases,

the problem could be reduced in its dimensions, e.g.

because some degrees of freedom, or the FOV of the

camera are fixed in advance.

This is an example solution to a viewpoint computation

problem, where requirements about visibility, and angle

between camera and houses, are fully satisfied: there are

no objects between the camera and the houses, and we

can see both houses from the front. However, since the

houses are at quite different distances from the camera,

it is impossible to fully satisfy both the angle and

projected area requirements. Another solution could

have instead framed the houses from a different angle,

and try to instead make them have the same projected

area.

Algebraic approaches (e.g. [Blinn, 1988]) work only for 1-

2 targets and are not able to take into account some kind

of requirements, most notably visibility, since it is a

property which depends on the spatial layout of the

whole scene. As such, they are of very limited use.

Constrain-based and optimisation approaches do not

exhibit such limitations and generally can work with an

arbitrary number of targets and any kind of properties

that can be expressed through constraints or satisfaction

functions. We focus, in the following, on optimisation

approaches since they have the nice ability to compute a

solution even when the problem is over-constrained, i.e.

when the visual properties cannot be all satisfied. This

situation is far more common than one may think, since in a

dynamic environment, targets can easily be in configurations

that make a VC problem not perfectly solvable.

We consider a basic set of visual composition

requirements, however sufficient to express a wide range

of application needs, to explain the process of turning

them into satisfaction functions. Other types of

requirements can be quite easily modelled, and can also

include aesthetics features such as balance, rule of the

thirds, and so on. For example, rule of the thirds has

been used in [Abdullah et al 2011, Bares 2006], and

balance has been modelled in [Abdullah et al 2011]. It is

also possible, as shown e.g. in [Olivier et al. 1999] to

model requirements that involve two or more targets, e.g.

“target T1 should be seen to the right of target T2” or

“target T1 should be smaller than target T2”.

In some papers, instead of a linear spline, a gaussian

function is used, with the goal of smoothing the function

around the desired value. In general, this is advisable,

since we don’t need extreme precision with visual

features: for example, it is very hard to distinguish from a

projected target area of 0.95 the area of the screen, and

a projected area of 0.97 the area of the screen.

To measure area, it is common to use some kind of

bounding volume (bounding sphere, AABB, …), which

makes it much easier to perform geometrical

calculations, and also works nicely with objects with

holes (e.g. a grilled fence), where typically the perceived

area on the frame is intended to include those holes. The

typical considerations about bounding volume fitting

apply (e.g. spheres are better for nearly spherical

objects, …).

There are basically two alternatives to measure size: one

is to render the target with a unique color, perhaps at low

resolution, and then count the pixels after having moved

the rendered image to main memory; the other one is to

use some geometrical computation with the bounding volume.

For example, [Ranon and Urli 2014] compute the area of a

target t by taking the (oriented or axis-aligned) bounding box of

t, finding the vertices of it that are visible from v, and projecting

them, using the fast look-up table approach proposed in

[Schmalstieg and Tobler, 1999]. The resulting 2D hull polygon

is then clipped by the viewport through a standard Cohen-

Sutherland algorithm, and finally, as the resulting polygon is

convex, a contour integral approach can be used to quickly

compute its area.

The table reports average times in milliseconds needed to

compute the size of a target in a scene, using rendering at

various resolutions and the geometrical approach outlined

above. As we can see, cost using rendering, even at very low

resolutions, is orders of magnitude greater than a geometrical

method, even considering that by using rendering methods,

we can measure the size of all targets, instead of just one. The

major cost of rendering methods is the transfer of the image to

main memory. All technical details about the data reported in

the table can be found in [Ranon and Urli, 2014].

For height and width, similar considerations apply.

To measure visibility of a target, there are basically two

alternatives: one is to render the scene using a unique

color for the target, another color for the scene, and

turning on blending, and then count blended and

coloured pixels after having moved the rendered image

to main memory; the other one is to perform a number of

ray casts, e.g. to selected points in the bounding volume

of the target or to random mesh vertices. For example,

[Ranon and Urli 2014] use 9 ray casts, to the center and

corners of the bounding box of the target, and report

visibility as the ratio of ray casts which do not cross other

objects before reaching the target. Even 6 ray casts are

sufficient in most situations.

The table reports average times in milliseconds needed to

compute the visibility of a target in a scene, using rendering at

various resolutions and ray casting with 9 rays. As we can see,

cost using rendering, even at very low resolutions, is at least

one order of magnitude greater than the ray casting method.

An angle requirement, being just the computation of an

angle between two vectors, is very cheap to compute.

A weighted sum allows one to express the logical AND of

all requirements, and weights allow one to control a

requirement importance with respect to the others.

However, this might not be expressive enough for some

situations. Suppose, for example, that the satisfaction of

a visibility requirement should be set to zero if the target

is off screen, in order to penalise solutions where targets

are off screen (recall that the ray casting method for

measuring visibility does not check if the target is on

screen or not). This cannot be expressed using weighted

sums. A recent proposal by Lino [Lino 2015] introduces

more sophisticated operators to build F from individual

requirements functions, e.g. to cover situations like the

one presented above.

Black-box optimization approaches are suitable when we

can compute the objective function, but we have no

analytical expression for it that can be used, e.g., to

compute gradients. Combining this with the fact that our

search space is quite large, there is the need to adopt

stochastic techniques to promote exploration and

escaping local minima.

Population-based techniques add to this the usage of

several candidates to explore search space. There are a

lot of population-based optimization approaches that can

be used in VC. Some authors have, fir example, used

genetic algorithms, e.g. [Olivier et al. 1999]

The idea is that a camera will move both towards the

leader camera (the one that found the best parameters

so far) and towards its local best found parameters. r1

and r2 throw in a bit of randomisation, while c1 and c2 are

parameters in [0,1] that can be used to balance the

importance of the local optimum versus the global one. w

is an inertia weight which it establishes the influence of

the search history on the current move. A common

strategy is to use a decreasing inertia value, from a

starting winit to an ending wend value.

In this version of PSO, a single global leader is used;

there are variants of PSO that use more leaders, e.g.

according to distance from cameras. It is also worth

noting that there are dozens of PSO variants that slightly

change the equations by e.g. reducing the number of

parameters.

At the beginning, we can set each camera local optimum

to the initial position in D, and any index as the global

optimum g.

The equations in the previous slide do NOT prevent a

camera from exiting D. In the case it happens, we can

simply set its satisfaction to zero, and it will return in D in

successive steps; another option is to clamp the

parameters to be inside D.

Various demos using our Unity Viewpoint Computation

Library, available at

https://github.com/robertoranon/Unity-

ViewpointComputation

Even with the mentioned methods, there is no guarantee

that a PSO run will find a good camera, i.e., from time to

time, bad runs can happen. In such cases, a simple

remedy is to restart the PSO.

The detailed description of the approach is in [Ranon and

Urli, 2014]. Smart initialisation can be mixed with purely

random initialisation to improve swarm diversity and thus

coverage of D.

The last method is explained in detail in [Ranon and Urli,

2014].

The influence of PSO parameters tuning is generally

underestimated. [Ranon and Urli 2004] proves that, for

VC problems, it can make a significant difference. In the

following, we review the main steps of their parameter

tuning process, which is based on the Friedman rank

sum test, and Friedman post-hoc analysis

The parameters tuning considers three scenes (exterior,

interior, mixed) with 5 problems for each scene, ranging

from 1 to 5 targets. We consider a choice of PSO

parameters from the literature, and, for each choice of

parameters, and problem, we perform 20 runs of PSO.

We repeat the procedure for 6 different time budgets.

Our analysis then ranks the parameter combinations

from the best to the worst, and prunes the ones that are

statistically inferior.

The results show that parameter tuning has a significant

effect (green vs pink box plots). The graph shows also

the influence of smart initialisation (yellow vs pink box

plots) and lazy evaluation (blue vs pink box plots).

Generally, using 20-30 particles is best for time budgets

under 50 milliseconds, and smart initialisation is

especially effective when the time budget is very low.

Virtual endoscopy enables the exploration of the internal structures of a

patient's anatomy. Difficulties arise in the interactive control of the camera

within the complex internal structures. Ideally important anatomical features

should be emphasized and significant occlusions and confined spaces

avoided. The underlying techniques mostly rely on skeletonization of the

structures and on path planning approaches such as potential fields. For

example, [HMK97] and [CHL+98] report a technique that avoids collisions for

guided navigation in the human colon. The surfaces of the colon and the

center line of the colon are modeled with repulsive and attractive fields

respectively.

In [HMK97], the camera is guided by some repulsive forces from the colonic

surface, attractive ones that push the camera towards a given target, and user

inputs (when pointing an area on the surface). The process is however very

specific to the problem (a more general geometry would lead to many cases of

failure or inappropriate guidance).

Cell decomposition approaches split the environment into spatial regions

(cells) and build a network that connects the regions. Navigation and

exploration tasks utilize this cell connectivity while enforcing other properties

on the camera. For example, [AVF04] proposed such a technique to ease the

navigation process and achieve shots of important entities and locations.

Using a cell-and portal decomposition of the scene together with an entropy-

based measure of the relevance of each cell, critical way-points for the path

could be identified.

Following an idea similar to Andujar, yet in a more interactive context,

Elmqvuist etal. [ETT07] propose to automate the construction of a navigation

graph between user-defined landmarks. The environment is decomposed into

voxels, each of which is evaluated for visibility against the landmarks. An

adjacency graph is then built between voxels sharing the same landmarks, and

explored with a TSP algorithm to compute the best path that visits all the

landmarks.

Roadmaps, and especially probabilistic roadmaps are a simple-to-implement

and efficient technique to perform path planning tasks at the level of an

environment. For transition planning (moving from on landmark to another),

target tracking and cut-jumping (switching between viewpoints), the process

needs to be augmented by visibility computation, either in a static way [NO03],

on in a dynamic way [LC08].

In [NO03] visibility is guaranteed between connected nodes. Such PRMs can

be used in an interactive approach by selecting the most appropriate given the

current configuration and the user inputs. The main drawback lies in the cost

of updating the data structure when considering dynamic elements.

Previous approaches generally suffer from their locality (searching for

viewpoints in the local neighborhood of the current camera location). Chang

and Li introduce a probabilistic roadmap technique that helps to reduce this

locality:

•a roadmap is defined in the local basis of the camera target (the roadmap is

built once, and then is only locally modified)

•paths are searched for in this roadmap by evaluating every configuration wrt.

visibility of the target and possible collision of the path with the environment:

– occluded viewpoints and non reachable viewpoints are removed

from the roadmap

– new viewpoints are added when necessary

•in critical situations, cuts can be performed between viewpoints (cuts are

represented as expensive edges in the roadmap)

Provides a reactive approach that is more global (lazy-evaluation of the

knowledge in connected edges), and allows cuts between paths.

This approach is an attempt to retain “realistic” characteristics of “real” camera

trajectories and re-use them in virtual environments.

Trajectories are expressed in a “caera motion graph” that is exploited in real-

time to determine the best trajectory, and best transitions between trajectories.

A camera motion graph consists of (i) pieces of original camera

trajectories attached to one or multiple targets, (ii) generated continuous

transitions between camera trajectories

and (iii) transitions representing cuts between camera trajectories. Pieces of

original camera trajectories are built

by extracting camera motions from real movies using vision-based techniques,

or relying on motion capture tech-

niques using a virtual camera system.

A retargeting is proposed to recompute all the camera trajectories in

a normalized representation, making camera paths easily adaptable to new 3D

environments.

The camera motion graph is then constructed by sampling all pairs of camera

trajectories

and evaluating the possibility and quality of continuous or cut transitions.

Authors present a powerful, and simple to implement technique, that can be

adapted to many situations. The algorithm first samples the free space with

regularly placed overlapping spheres.

Portals (between two spheres) are created where spheres intersect, and a

graph is built. Sphere-to-sphere visibility is precomputed (in the static scene)

using a stochastic sample process (ie each sphere knows a probability of

seeing another sphere. The roadmap is then created, and planning can be

performed (eg, classical A*), from an initial given location to a final location,

while maximizing visibility of a focus point.

A specific refinement is performed to smooth out the path and to maximize the

real visibility of a focus point (the path computed with A* only has estimated

visibility)

The roadmap can be locally and dynamically updated when changes in the

scene geometry occur

Interpolating in the space of visual features … rather then in the space of

camera parameters.

While viewpoint interpolation is generally based on spline techniques (one

spline for the camera path, and one spline for the camera lookat point is a

common representation), in many cases the interpolations fail to maintain

visual properties, and animators generally need to tune the spline curves.

In the idea the process is the following:

-a first path is generated between v1 and v2 by maintaining the framing at v1.

-a second path is generated between v2 and v2 by maintaining the framing of

v2

-a blending between both paths is then generated so that at the beginning, the

camera maintains the framing at v1, and and the end maintains the framing v2,

and between nicely interpolates the framings.

Visibility is a central challenge in camera control. Games, for example, require

to maintain the visibility of the player and of secondary elements

simultaneously (opponents, exits, items,...). Furthermore, games have been

operating an important move these last years to a more cinematic experience.

In scientific visualization, data may be hidden in a complex geometry setups

that evolve over time. In navigation tasks, maintaining the visibility of multiple

known landmarks avoids the users from getting lost or loosing time in re-

orientation.

However visibility is application dependent and has multiple interpretations,

which means there is no generic solution to the problem. One can look at the

overview proposed by [Elmquist08] who details techniques to handle occlusion

in data and object visualization (however not on how to compute viewpoints

that maintain visibility, but on how to alter the geometry or scene graph). This

section only considers means to evaluate occlusion and to escape from

occlusion.

12M. Christie & P. Olivier

Siggraph Asia 2009 Courses: Camera Control in Computer Graphics

The complexity of handling visibility in camera control has many sources:

•first of all, the real-time nature of most applications require efficient evaluation

AND anticipation of occlusion

•second, maintaining visibility in dynamic environements is computationaly

expensive (as it is for occlusion culling in the field of visibility techniques for

efficient rendering)

•third, the targets are generally complex-shaped objects, for which the

estimation of the full visibility is an expensive process.

13M. Christie & P. Olivier

Siggraph Asia 2009 Courses: Camera Control in Computer Graphics

In this course, we will consider both:

•the problem of visibility determination (ie estimating how much a target is

occluded)

•the problem of occlusion-free viewpoints determination (ie computing

viewpoints from which target objects are visible)

For both problems, local and global techniques can be employed in similar

ways:

•local techniques rely on a restricted knowledge of the environment (but can

be easily updated)

•global techniques rely on a full knowledge of the visibility in the environment

(that is expensive to update)

14M. Christie & P. Olivier

Siggraph Asia 2009 Courses: Camera Control in Computer Graphics

In ray casting approaches the candidate position for the camera is evaluated

by casting a ray in the direction of the target object. An incremental

improvement on simple ray casting approaches can be achieved by casting

from an array of candidate camera locations (at a linear increase in cost), and,

where the visibility of multiple target objects is required, by repeating the

process for each target object. Deciding how to move the camera based on

such collections of single point estimates of visibility has a number of

limitations, for example, it is not possible to maintain partial visibility of a target

object as it moves behind a sparse occluder (such as a set of railings).

Furthermore, using a single point to approximate the geometrical complexity of

a target object fails to sufficiently characterize its visibility.

15M. Christie & P. Olivier

Siggraph Asia 2009 Courses: Camera Control in Computer Graphics

Using bounding volumes for visibility detection is a rough and conservative -

yet rapid - way of estimating occlusion (i.e. can be used before more

expensive techniques such as hardware rendering). Many libraries provide

efficient means of detecting collision with primitives, and in most cases, the

process only requires a boolean result from the test (ie. not the volume, depth

or point of intersection). Courty & Marchand [CM01, MC02] avoid occlusion in

a target tracking problem by computing an approximate bounding volume that

encompasses both the camera and the target. Occluders (i.e. not the camera

or the target objects) are prevented from entering the volume corresponding to

target motion or camera motion. However, the approximate nature of the

bounding volumes restricts both expressiveness (e.g. quantify partial

occlusion) and practical application (e.g. over-estimation for complex shapes).

A study the evolution of the depth/volume of intersection is possible to get an

idea of how occlusion is evolving. This can be used in a preventive way by

proposing large volumes around the camera. However, these approximations

are rough and the cost of computing the intersected volume may overshadow

the lightweight advantages of the technique.

16M. Christie & P. Olivier

Siggraph Asia 2009 Courses: Camera Control in Computer Graphics

Degree of visibility of the target is determined by the ratio between the number

of visible pixels of the target and the total number of pixels of the target.

Increasing the resolution of the rendered buffers obviously improves the

precision in the visibility estimation (and rapidly converges to a good

estimation)

Occluders and target objects can have specific geometries adapted to the

rendering

•low resolution geometries, partial models (eg remove arms and legs, keep

hands and feet)

• removal of sparse occluders, or alpha blended textures (e.g. fine fences,

leaves etc...)

Important regions on the surface of the targets can be either manually or

automatically (silhouette, saliency) computed and rendered on the surface of

17M. Christie & P. Olivier

Siggraph Asia 2009 Courses: Camera Control in Computer Graphics

the target. Visibility can then be weighted by this importance map.

Only a small number of real-time approaches for occlusion-aware camera

control have been proposed. Crucially, existing techniques (e.g [HO00]) cannot

be easily extended to capture the full spatial extent of target objects (i.e. they

model target objects as points). The computation of occlusion-free viewpoints

is closely related to the well known problem of visibility determination

[COCSD00, Dur00] which has a bearing on a range of sub-fields in computer

graphics, from hidden surface removal and occlusion culling, to global

illumination and image-based modeling and rendering.

Here we move from visibility estimation to the computation of occlusion-free

viewpoints with hardware rendering techniques. The principle is close to the

one of ray-casting: renderings are performed from the target object to the area

where visibility should be checked, and most similar to the principles in

shadow volume computation (studying the depth buffer to estimate whether

the geometry is shadowed or not).

18M. Christie & P. Olivier

Siggraph Asia 2009 Courses: Camera Control in Computer Graphics

A clear parallel can be drawn between the problem of real-time soft shadow

computation and real-time visibility computation of target objects. Target

objects can be treated as light sources for which we need to compute the

volumes outside of the shadow and penumbra (this is an inverse volume

carving problem) in which to place a camera. One technique for real-time

shadow computation relies on silhouette detection (e.g. penumbra wedges

[AAM03]), that use the exact silhouette of objects to compute shadow

volumes. However, the complexity of silhouette detection increases with the

complexity the objects casting shadows and such approaches are also not

readily applicable to rasterizable entities that use alpha-textures (which are

increasingly used real-time 3D graphics). Another class of techniques that is

used in camera control [CON08] relies on frame-buffer approaches that

construct a depth map rendered from the location of light sources using

graphics hardware. This shadow map is then sampled in relation to the world

geometry and a simple depth comparison can be used the determine the

status of a point in space (whether it is hidden by an occluder or not).

19M. Christie & P. Olivier

Siggraph Asia 2009 Courses: Camera Control in Computer Graphics

In a given region, visibility for multiple targets (or multiple points on the target

surface) is computed by performing one rendering per target. Depth

information is composed in a way similar to penumbra maps (see next slide):

the area is sampled and each sample is expressed in the local basis of each

rendering in order to access the appropriate depth value in the shadow map. A

specific way of composing depth maps is proposed in [CON08], where

asymmetric frustums are computed for rendering. This technique avoids the

sampling of the area by using a trilinear basis to access visibility information.

20M. Christie & P. Olivier

Siggraph Asia 2009 Courses: Camera Control in Computer Graphics

The methods we reviewed provide efficient and CPU-adaptive approaches to

locally establish visibility or compute occlusion-free views. However their

intrinsic local nature prevent them from performing transition planning (moving

from one viewpoint to another while maximizing visibility), and may fail in some

situations (no local visibility). Furthermore, when cuts between viewpoints

must be computed (eg. reverse shots), many local regions need to be sampled

(with no guarantee of finding an appropriate view).

21M. Christie & P. Olivier

Siggraph Asia 2009 Courses: Camera Control in Computer Graphics

Visibility methods aim to calculate either the regions of a space which can be

seen from a point (from-point visibility computation), or those that can be seem

from a region (from-region visibility computation). In simple terms, visibility

determination uses visual events - the boundary configurations for which

the visibility changes - to partition space. Such methods can be broadly

categorized according to the space in which the partitioning is performed, that

is, object space, image space, viewpoint space or line-space (for a detailed

presentation see [Dur99]). Visibility methods in dynamic environments have

mostly addressed the problem of updating these visibility representations for

moving objects [SG99] and modeling moving occludees (e.g. motion volumes

[DDTP00]).

22M. Christie & P. Olivier

Siggraph Asia 2009 Courses: Camera Control in Computer Graphics

C&P visibility is restricted to architectural environments, though abstract 2D ½

representations can be used to handle more complex scenes [Lam09]. C&P

techniques have been initially proposed to improve occlusion culling in

complex urban scenes (ie removing parts of the geometry that are hidden).

The scene is decomposed into cells (or convex cells to ensure full visibility

inside them – a constrained Delaunay triangulation helps to compute such a

decomposition), and cells are connected by portals (which edges are the

support for visibility). Inter-cell visibility propagation is then performed by

constructing stabbing lines (lines that separate the visibility in space). Visible

cells are connected together in an visible adjacency graph.

23M. Christie & P. Olivier

Siggraph Asia 2009 Courses: Camera Control in Computer Graphics

Inter-cell visibility propagation is then performed by constructing stabbing lines

(lines that separate the visibility in space). Visible cells are connected together

in an visible adjacency graph.

24M. Christie & P. Olivier

Siggraph Asia 2009 Courses: Camera Control in Computer Graphics

25M. Christie & P. Olivier

Siggraph Asia 2009 Courses: Camera Control in Computer Graphics

In this session we will adopt a more cinematographic view by studying how eding
techniques from the cinema can be formalized in computational models to
interactively or automatically generate well edited sequences of shots.

Let first have a look at how real cinematographers deal with the editing of a movie.

1

The work of the editor of real movie is a to take as input the rushes that have been
shot, then to diligently cut and paste pieces of those rushes to create a whole
storyline as output.
This is a tedious and technical task, and the cinema industry has thus been building a
“visual grammar” (aka continuity-editing) of how to properly shoot and edit movies
for more than a century.
One can find a number of well-known “cook-books”’ each providing a set of practical
or theoretical rules that allow selecting well-composed shots that can properly
convey movie actions and cuts that can enforce some continuity in actions through
the sequence of shots.

2

First, they provide a grammar of the shot. Selected shots where enough space is left
to perform the action. For instance for a shot show a character walking, enough
screen space should be left in his motion direction, if showing a character speaking
or reacting after another character has been speaking, the shot should provide some
look-room or head-room to the character (i.e. leave enough space in his gaze
direction).
Then protagonists should be highlighted so as to best highlight the main actions that
are unfolding at that moment in the story.

3

Then , they provide a grammar of the edit. Selected cuts between two shots should
be invisible to viewers. And to do so, they need not to break the visual continuity of
the actions.

Most important continuity rules are that a cut should not provide too much change
on the on-screen position of a character that the viewer is looking at, as it will force
the viewer’s eye to move to the new position after the cut (after a few cuts it can
thus lead to some visual discomfort). The cut should also maintain relative positions
of objects on the screen. It should enforce the continuity in the motions of
characters (a character moving from left to right in one shot, should keep moving in
that direction in the following shot), and it is the same for their gaze directions (a
character looking to the right should keep looking to the right). Finally, a cut should
be perceived as a cut, i.e. it should provide sufficient change on the characters on-
screen size and/or on their view angle (in other cases, it is known as a “jump-cut”,
which is perceived as fast camera motion instead of a cut).

4

The durations of shots is an also important criteria for editing movies, as it will
control the pace of the story. If the pace is too fast (i.e. shots are too short) it does
not lets enough time to viewers to “read” the content of the shot. If the pace is too
slow (i.e. shots are too long), it lets too much time to the viewer to “read” the whole
content of the shots (comprising background actions or landscape) so it can become
boring for viewers to watch a shot after a while. Obviously the editor instead has to
make a compromise, depending on actions complexity (how much information the
director would like to provide to viewers) and the rhythm of actions. This should
therefore lead to “natural” distribution of shots durations (i.e. if cutting at regular
intervals of time, the viewer would be able to perceive cuts).

5

To account for such theoretical rules, some « cook-books » such as the one of Daniel
Arijon (which is surely the more cited in the litterature), are providing more practical
rules on how to place camera to shoot the actions and how to cut between them
along time.

In his book, Arijon is providing rules on a case-by-case basis.
For instance, to shoot a single character moving, you can place two cameras in front
of the character, at the start and end of his motion, ensuring that cameras are
located on the same side of a line defining his motion.
To shoot two or three characters talking to each other one can position cameras on
one side of the line of interest drawn through characters, then depending on the
configuration and motions or characters in the story, it will require more or less
cameras to be placed around characters and their placements will be slighlty
different.
More generally, one can find a configuration of camera for each kind of action, and
each number and configuration of characters.

6

In handling the automated editing in 3D environments, one can easily encode
continuity rules by following cookbook.
A “naive” approach proposed by He in his 1996 SIGGRAPH paper is to encode idioms
(stereotypical ways of filming a given action, as provided by Arijon) as a finite state
machine. In this FSM, a node will represent a single viewpoint, and an arc will
represent a possible transition between two given viewpoints (i.e. a cut or camera
motion). Transitions can then be parametrized (i.e. cut when first character start
speaking, or after 10 seconds spent in the shot).

Still following this way of implementing cook-books, one has to encode as many FSM
as the number of different types of actions and number of characters. Then, one can
also define a tree of those idioms which will handle the transitions between the
multiple actions performed in the story.

The great advantage of this model is that it can be easily implemented and that it
can run in real-time. Therefore it remains one of the preferred models in computer
games today.
There have also been a large number of scientific papers build upon this idiom-based
idea to create more evolved editing systems.

7

But, the big problem with this model it is hard to generalize it since it is a bit too
rigid.

Today we will introduce a more general way of formulating and implmenting the
editing process.

7

Here we are targeting to better reproduce the editing process as it is done by a real
editor.

We start from the set of input rushes and we want to provide the best edit possible
as ouput.

Our automated process wil then be divided into two step: (i) provide a way to
evaluate the quality of a given edit using these rushes, then (ii) explore the range of
possible edits and choose the one which obtains the best evaluation.

In the first step (evaluating an edit) we split the overall quality of the edit into three
components: the quality of shots (which is really important as poor shots will lead to
a very bad edit), the quality of cuts (which should enforce continuity), and the
quality of pace. And we will consider that a good edit is obtained when all three
components are evaluated as good.

To do so, as previously, we can derive a cost function for each component, build an
objective function aggregating these costs and try to minimize this objective
function. We will see how to search for the best edit a bit later,, for now lets focus
on each component separately.

8

A first element in making a good shot is that it should convey enough of the relevant
actions unfolding at that time in the story, and avoid distracting the viewer from the
main story elements.

For example, to shoot a given action, this action should be fully visible in the frame.
Which means that the protagonists of this actions should be visible on the screen,
and more particularly their relevant body parts (those participating in the action).
For instance here we have a character speaking so we would like his head to be
visible on the screen.

To evaluate how much this rule is enforced, we can compute the area covered by the
face of the character and compare it to the area it would cover if it were not
occluded at all.
Then, following that principle we can build a cost function that will sum up over all
body parts of all targets that appear on the screen. And we can also weight each
character with regards to its importance in the story (i.e. how much ihe is
participating to the unfolding actions) to penalize occlusions of protagonists more
than secondary or background characters.

9

In the same way, a rule which was followed by Hitchock and that we find really
practical is that the more an action or a character is important in the story, the more
it should fill the screen space (e.g. if only one action is unfolding, then only this
action should be frame). Here we have a character talking to himself at one side of
the scene, so the character should ideally fill the frame, i.e. he should be alone on
the screen.

To evaluate how much this rule is enforced, we can compute the area covered by a
character on the screen and compare it to the total area covered by all characters.
Then, we can build a cost function that will compare the relative importance of a
each character at that moment to the relative amount of the screen it fills
(compared to other all characters).

10

Now, if we look at the quality of a cut, we can consider a range of continuity-editing
rules and derive a cost function to evaluate how much each is respected.

For example, we sayed that one should enforce (as much as possible) the absolute
on-screen positions of characters. So, we can first compute the 2D screen position of
a character before and after the cut, and compare both positions (the greater the
on-screen distance, the greater the cost). We can then derive a cost function that
will sum up the change of on-screen position for all characters appearing both
before and after the cut.

11

In the same way, one should also maintain relative position of characters on the
screen. To encode this rule, we can use the computed 2D screen positions of each
character (before and after the cut), and compare the relative positions for each pair
of character before and ater the cut (we penalize when positions are reversed). We
can finally derive a cost function that will sum up these penalties over all pairs of
characters on the screen.

12

Another rule is to enforce continuity on characters’ gaze. To encode this rule, we can
computed the projection of the gaze of a character (before and after the cut), and
compare both directions (we penalize when gaze directing is changing, for instance if
the character was looking left before the cut and is looking right after the cut). We
then derive a cost function that will sum up these penalties over all characters
appearing on the screen.

13

A similar rule is to enforce continuity on the apparent motion of characters (when
they are in motion). To encode this rule, we can computed the projection of the
character’s velocity vector (before and after the cut), and compare both vectors in
the screen space (we penalize when motion directing is changing, for instance if the
character was moving to the left before the cut and is moving to the right after the
cut). We then derive a cost function that will sum up these penalties over all
characters appearing on the screen.

14

Finally, we want to avoid jump-cuts, i.e. provide either a sufficient change in the
screen size of characters or a sufficient change in the characters’ view angle (or
both). We could split this problem into two separate constraint that we could
enforce separately but this would lead to force the editing system to enforce both at
the same time, which would prevent some « grammatically correct » edits (such as
those on the left figure) to be considered as good.

To improve, we can instead compute the change on each feature separately then
combine them into a single cost function.

We first compute the on-screen size before and after the cut, and build a delta-size
function returning a satisfaction value corresponding to how much the size change is
sufficient.
In the way, we can build a delta-angle function returning a satisfaction value
corresponding to how much the view angle change is sufficient.
Finally we can build a cost function taking these two delta functions and penalizing
cases where neither is sufficiently satisfied. We can finally sum up these penalties
over all characters appearing on the screen both before and after the cut.

15

In term of evaluation of the overall cutting rhythm, one can note that studies of the
pace in real movies have shown that shots lengths tend to follow a log-normal
distribution. Which means that most of the shots will have a duration close to a
mean duration, some of them will be a bit shorter or longer, and very few of them
will be much longer.

Following that idea, what we have proposed is to rely on the provision of a given
pace by the user, through both parameters of a log-normal law (the mean shot
duration and the standard deviation of duration from the mean value).
The editing system should then build an edit that fits such a distribution as much as
possible.

Here we evaluate how much a shot follows the log-normal law by computing the
deviation of its duration to the expected mean duration and comparing the result
with the expected standard deviation.

16

Well, we have shown how we can evaluate all three components, and rank the
satisfaction of the related rules, separately.

Now, we consider evaluating a full edit, and searching for a good one. What is
important here is that a good edit should make as few errors as possible (we call it a
« grammatically correct » movie).
This means that the edit should convey as much as possible of the actions, avoid
discoutinuities when cutting, while following an appropriate cutting rhythm.

We formulate that problem through an objective function to minimize. This
objective function is builr as a weighted sum of all three components costs, which in
turn are made of all costs related to the rules we have presented.

17

Now we can go into the process of searching the best edit.
If we consider we won’t make time ellipses, one can view this search as choosing
which camera to use at each time frame of the storyline.
We can thus represent the space of all possible edits as a directed graph (with arcs
gioing from left to right) where a node represent the use of a given camer at a given
time frame, and an arc represent the transition from a camera at time t to a camera
at time t+1. One can also consider that the graph is complete (i.e. one can continue
using the current camera or cut to any other camera between each time frame).

This means that, taking one possible edit (i.e. a given path through this graph) from
the beginning to the end of the story, we can now evaluate the edit using the
previous objective function.

Finding the best edit thus requires evaluating all the possible paths, but this is
however computationally too expensive.

18

Indeed, if we consider that we have M rushes (cameras) over N time frames, this
leads to a huge complexity both in computation time and in required memory space;
which for now makes solving our problem impracticable.

To reduce this complexity, what is important here is that we can make a strong
assumption on the editing process.
Actually, deciding whether or not to cut to another shot is only dependent on the
amount of time we have already spent in the current shot, which allows some
reduction on the search process.

Finally, building on this semi-Markov assumption, we have used a dynamic
programming algorithm. Dynamic programming is really well-suited to this type of
cases, where one can decompoe a problem into a set of simpler sub-problems, that
can in turn be solved separately from each other.
In our case, this allowed drastically reducing the complexity both in computation
time and in memory space required (to endode the editing graph), making the
search process more practicable.

19

20

21

In the last years, we are witnessing the

first applications of sophisticated

camera control algorithms to real-world

applications. For example, SolidFrame

(http://www.solid-frame.com) is a new

tool designed for animators and

cinematographer to interactively

explore a large collection of shots over

their 3D animation, and rapidly create

and compare multiple edits of the

same animation; VEX-CMS

(http://hcilab.uniud.it/vex/) is an application

that allows people with no expertise in 3D

modeling to create 3D virtual exhibitions

and virtual visits integrating objects and

information into virtual environments.

Another interesting trend is the exploitation

of data from real-world movies, e.g. to

generate better camera compositions and

trajectories. Recent work done at INRIA

France (only partly published) proposes

methods to reproduce camera

compositions taken from real movie shots,

and to reuse camera trajectories taken

from real movies (also explored in [Kurz et

al 2010]), in an effort to provide more

believable and natural camera

movements.

We are also seeing camera control

research papers that challenge problems

that are significantly more complex than

the ”toy” problems that were addressed by

earlier papers in the field. For example,

[Ranon et al 2015] applies some of the

camera control algorithms we have seeing

in this course to the problem of visualize

results from aviation safety simulation

scenario that involve hundreds of

characters and highly frequent events;

[Galvane et al 2013] propose camera

control algorithms to film scenes involving

a crowd of characters.

Visibility is actually on of the main

issues in camera control, and has

been quite neglected. With the advent

of efficient dedicated graphical

languages, such issues are currently

re-explored.

Visibility is not only difficult from a

technical point of view, it also is related

to more fundamental aspects in

perception that are critical to evaluate

(recognizability, task-dependent, duration

and extent of the occlusion).

