








Interactive computer games serve the benchmark application for 

camera control techniques. Most importantly, they impose the 

necessity for real-time camera control. A canonical camera 

control problem involves following one or more characters whilst 

simultaneously avoiding occlusions in a highly cluttered 

environment. Furthermore, narrative aspects of real-time games 

can be supported by judicious choice of shot edits both during 

and between periods of actual game play. The increasing 

geometric complexity of games means that most deployed 

camera control algorithms in real-time 3D games rely upon fast 

(but fundamentally limited) visibility checking techniques.

Camera control in games has received considerably less attention 

in computer games than visual realism, though as John Giors (a 

game developer at Pandemic Studios) noted, “the camera is the 

window through which the player interacts with the simulated 

world”. Recent console game releases demonstrate an increasing 



desire to enhance the portrayal of narrative aspects of games and 

furnish players with a more cinematic experience. This requires the 

operationalization of the rules and conventions of cinematography. This 

is particularly relevant in the case of games that are produced as a film 

spin-offs, where mirroring the choices of the director is an important 

means of relating the game play to the original cinematic experience.



This video can be found at 

https://www.youtube.com/watch?v=fMK6sTnMxBI.

Heavy Rain, as other similar games that are being 

increasingly developed, closely mimic the language of 

movies in presenting the virtual experience to the 

user, using editing and camera movements that 

follow a specific cinematographic style. However, all 

cameras in the game have been more or less 

manually designed for the range of actions and 

events that the game can display (and that have to be 

thus known in advance). 

https://www.youtube.com/watch?v=fMK6sTnMxBI


In three-dimensional modeling environments, virtual cameras are 

typically configured through the specification of the location of the 

camera and two vectors that represent the look-at and up 

directions of the camera. The specification of camera motion is 

usually undertaken through a combination of direct editing and 

interpolation, such as the use of splines with key frames and/or 

control points. Animation of the camera is realized by interpolating 

the camera location, up and look-at vectors across key frames. 

Fine control of camera speed is provided through the ability to 

manipulate the velocity graphs for each curve.

A set of complementary tools provides modelers with the ability to 

use the position of a unique static or dynamic target object to 

constrain the look-at vector. Modelers may also allow the use of 

offset parameters to shift the camera a small amount from the 

targeted object or path. Similarly, some tools allow constraints to 

be added to fix each component of the look-at vector individually. 



Physical metaphors are also used to aid tracking, such as virtual rods 

that link the camera to a target object. With the possibility to extend the 

functionality of modelers through scripting languages and plug-ins, new 

controllers for cameras can be readily implemented (e.g. using physics-

based systems). Furthermore, with the rise of image-based rendering, 

the creation of cam- era paths using imported sensor data from real 

cameras is increasingly popular.

In practice, the underlying camera control model (i.e. two spline curves) 

is not well suited to describing the behavioral characteristics of a real 

world cameraman, or the mechanical properties of real camera systems. 

Despite the fact that a number of proposals exist for describing 

cinematic practice in terms of camera position, orientation and 

movement, most modelers have not attempted to explicitly incorporate 

such notions in their tools. Even basic functionality,

such as automatically moving to an unoccluded view of a focal object, 

cannot be found in current commercial modeling environments.

This mismatch can in part be explained by the general utility that most 

modeling environments strive to achieve. Cinematic terminology is 

largely derived from character oriented shot compositions, such as over-

the-shoulder shots, close shots and mid shots. Operating in these terms 

would require the semantic (rather than just geometric) representation of 

objects. Furthermore, the problem of translating most cinematographic 

notions into controllers is non-trivial, for example, even the seemingly 

simple notion of a shot will encompass a large set of possible, and often 

distinct, solutions. However, providing users with high-level tools based 

on cinematic constructs for the specification of cameras and camera 

paths, would represent a significant advance over the existing key-frame 

and velocity graph-based controls.



In practice, even partially automated three-dimensional 

multimedia generation requires an interpretation and synthesis 

framework by which both the visuospatial properties of a 

viewpoint can be computed (i.e. the interpretive framework) and 

the viewpoint controlled according to the constraints arising from 

the semantics of the language used (i.e. the synthesis 

framework). Likewise, future scientific and information 

visualization systems will benefit greatly from intelligent camera 

control algorithms that are sensitive to both the underlying 

characteristics of the domain and the task that the user is 

engaged in. Such adaptive behavior presupposes the ability to 

evaluate the perceptual characteristics of a viewpoint on a scene 

and the capability to modify it in a manner that is beneficial to the 

user.

Beyond simple object references, the coordination of language 

and graphics poses a number of interesting problems for camera 



control. Indeed, such applications are a rich source of constraints on a 

camera, as the semantics of some spatial terms can only be interpreted 

by reference to an appropriate perspective. For example, descriptions 

involving spatial prepositions (e.g. in front of , left of ) and dimensional 

adjectives (e.g. big, wide) assume a particular vantage point. For 

projective prepositions the choice of a deictic or intrinsic reference 

frame, for example, for the interpretation of in front, directly depends on 

the viewpoint of a hypothetical viewer.



While big-budget CG movies can use professional camera 

animators and even real-cameras motion capture, low-budget CG 

movies are becoming more and more practical as the rendering 

capabilities of games engines (UE4, Unity) progress towards 

large scenes with realistic global lighting and cinema-level post 

process effects. In this context, it make also sense to develop 

camera control algorithms that can aid the user in quickly placing 

and moving cameras, as well as editing the final result. The same 

need is even more pressing in the context of previz tools, in which 

one should be able to quickly preview camerawork into a digital, 

simplified version of the film set. Sophisticated camera control 

and editing algorithms are thus key to the realisation of a new 

generation of storyboarding tools that allow the cinematographer 

to “prototype” a movie.







In this session we will see some foundations of virtual camera control and I will also
give some basic definitions for modelling key aspects.

But before talking about virtual cameras, let first see how a real camera is controlled.
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When considering a real camera, there is a great number of settings that can be
accounted for.

First, the camera is held by an operator or by a mechanical system such as a dolly or 
a crane.
The camera has a globally non-deformable shape and volume, it has a mass, and 
while manipulating the camera one should also account for the deformable shape
and the mass of the operator or the mechanical system.

In the same way, there are also a number of intrinsic aspects to consider. Indeed, the 
camera is capturing the world through a physical lens – which one can possibly
change between shooting sessions – which will provide a means to project the scene
content onto a sensor, which in turn will allow creating a 2D image of the captured
scene. The final projection depends on a set of parameters such the sensor size or 
aperture of the camera (which plays with the amount of light entering the camera). 
But this projection also come with some optical side-effects, namely an image 
distortion, due to the shape of the lens, and a blur effect which is called the « depth
of field » and is linked to the focal length, i.e. a distance defining how  the optical 
system converges or diverges light.
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These multiple complex aspects are currently addressed in as many fields as 
computer animation, computer vision, or robotics. In this tuttorial we will only
consider a subset of them, those which are commonly addressed in computer 
animation.
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In fact, to simply the problem of handling cameras a bit, in the animation community
what we use (and what can basically be found in any 3D modeler) is a pinhole
camera model. This is an « ideal » model in that it considers the camera does not 
have any lens and that the camera is reduced to a single point without a mass. What
it means is that the camera will be totally free to move in space and there will be no 
side-effect coming from the optical system while projecting the scene geometry
onto the screen.

So what we will handle is the 7 essential camera parameters : the 3D camera 
position, defined in cartesian space; the 3D camera orientation, though it is basically
described with three Euler angles (pan for the left-right rotation, tilt for the up-down 
rotation, and roll for the rotation around the camera axis), due to gimbal lock it is
often handled through quaternions in 3d modelers and rendering engines; another
way to fix the camera orientation is by providing a look-at direction or look-at point, 
from wich the camera orientation is computed, also ensuring that the roll angle of 
the camera is set to zero (assuming that we provided the camera with a proper up 
vector, i.e. pointing up, fopr instance here the up vector should be Z). The last 
camera parameter is the zoom factor, which is often handled as a field of view angle 
(the wider the more we capture scene geometry). And the aspect ratio (i.e. the ratio 
between the screen width and height) is considered as fixed (common values are 
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3:2, 4:3 or 16:9).

And these three elements defines the camera projection matrix which is simply
computed as the product of three matrices (one for zoom, one for rotation and one 
for translation).
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More practically, if we want to build a virtual camera system closer to a real one, or 
to build a virtual stereo camera it is now possible to rely on the scene graph. For
instance we can easily use successive nodes to handle the joints of an articulated
arm that reproduces a crane. Or in the same way, we can quite easily build a stereo
camera rig by linking two cameras together, which will then add two new 
parameters to the camera system (namely an inter-axis distance between both
cameras center of projection and a convergence angle which however need to be
artificially kept consistent).

As for depth of fields, it is also possible to handle this aspect by using a shader that
will blur out-of-focus objects, while keeping in-focus objects sharp.

But in this tutorial we will assume we are not handling such parameters, so now let’s
come back to our simple pinhole camera model, and see how we can manipulate the 
camera.
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The core problem in controlling cameras is the one of visual composition, i.e. 
deciding what parts of the scene geometry we would like to see and how would like 
to arrange them onto the screen.
We can for instance want some buildings to appear on the left of the screen, the 
woman to appear on the top-middle, and the man on the right. 

The main difficulty in controlling the camera come from the fact that such a visual 
composition is given as a set of 2D constraints (in the screen space) and we then 
need to determine all the 7 parameters of the camera so that the resulting 
viewpoint can satisfy the desired composition. This make the search problem 
strongly non-linear.
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If we want to move the camera, a first way to do is by directly letting teh user handle
the camera parameters.
The process relies on the use of an input device offering a number of degrees of 
freedom to the user, and by handling these degrees of freedom the input values will
be mapped (straighforwardly or not) onto output camera parameters.

There have been a large number of such mappings provided in the littérature. We
can divide them into two main categories: those relying on mouse/keyboard 
interfaces which have mainly been designed in mind for object inspection or scene
exploration tasks, and some more recent mappings relying on post-WIMP interface 
such as here a virtual camera device based on motion capture that enables the user 
to handle the camera as a real operator.

The question raised behind this interactive viewpoint computation is how can we
practically help users in their creative and technical tasks?
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Another way to move camera is by relying on an automated computation process to 
create camera paths.
The models for representing camera paths in 3D modelers are still strongly coupled 
with camera models (i.e. the data representation levels). The user has to define key 
camera configurations by putting keyframes in the timeline then use an interpolation 
algorithm. The classical interpolation approach is to rely on quaternions trajectories 
(Slerp) and linear or spline-based interpolations of the camera parameters (position, 
orientation and zoom)  as it is for animating any 3D object of the scene.

However, as we have seen a bit earlier, real cinemas commonly use tripods or 
articulated arms to create smooth trajectories such as pan, tilt, pedestal, dolly, track, 
crane, boom, etc. 
So, a question that raises here is how could we represent and generate such 
traditional camera motions? 
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A final concern in controlling cameras is how to handle the editing. Editing is the 
process of selecting shots and linking them by introducing cuts.

This first requires to choose a sequence shots which respect some continuity rules
and follows cinema conventions. For instance a classical rule is the one related to 
the line of interest (LoI) which can be represented as an imaginary line drawn
between two characters. Crossing this line would change the relative positions of 
characters on the screen so, in real films, directors rely on a set of cookbooks
providing practical rules on how to place cameras around characters and how to 
make cuts between such cameras. 
The editing process then requires to find the best moment to cut (i.e. decide when
to cut and above all why to cut to another camera).

This is thus a fairly high level process which raises question about how to model this
cinematic knowledge and how to interactively or automatically create good edits.
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« Interactive » here is taken in the sense that the user is interacting with the 

camera (ie manipulating features).

And there are two key questions:

-how is the mapping going to be performed between the user inputs and the 

camera parameters (which in turn asks the question of which camera model)?

This essentially depends on the type task to perform, the nature of the 

environment, the importance of precision and accuracy, but also aspects such 

as the cognitive load of the user (and how camera manipulation is critical in 

performing the task)

-what is the influence of external constraints on the camera parameters (object 

geometry, scene complexity, visibility etc)?

And how these constraints guide or counter the user, eg simple collision 

detection will block the camera (thus the user) from going through a wall but 

won’t prevent him from getting stuck against in front of these walls? So how 

can the geometry guide the user in his task?



In the domain of camera control, literature displays a large range of mappings 

between user inputs and camera parameters. Direct mapping techniques will 

associate inputs (mouse coordinates) directly to camera parameters, while 

indirect techniques will operate through specific interction widgets (e.g. I-

widgets [Singh06])  or spaces (screen-space [TTLCC] or application-specific 

space).



Techniques have rapidly introduced constraints to augment the usability by 

assisting the computation of  some degrees of freedom. This is typically 

addressed by reducing the dimensionality of the control problem, and/or the 

application of physics-based models, vector fields or path planning to constrain 

possible movement and avoid obstacles [HW97]. For example, the application 

of a physical model to camera motion control has been explored by Turner et 

al. [TBGT91]. User inputs are treated as forces acting on a weighted mass 

(the camera) and friction and inertia are incorporated to damp degrees of 

freedom that are not the user's primary concern.



This slide illustrates interactive approaches related to object (referred as 

proximal inspection) and environment exploration. A certain knowledge of the 

environment is utilized to assist the user in his navigation or exploration task. 

Such approaches are split according to their local or global awareness of the 

3D scene.

Khan et al. [KKS+05] propose an interaction technique for proximal object

inspection that automatically avoids collisions with scene objects and local 

environments. The hovercam tries to maintain the camera at both a fixed 

distance around the object and (relatively) normal to the surface, following a 

hovercraft metaphor. Thus the camera easily turns around corners and pans 

along at surfaces, while avoiding both collisions and occlusions. Specific 

techniques are devised to manage cavities and sharp turns.



Left, top and bottom: negociating bumps and holes in proximal inspection

Righ, top and bottom: negociating corners



This work can really be viewed as a generalization of the Hovercam, and 

removes a number of tweaks and limitations the technique had.

The idea consists in computing offset shells around the geometry and having 

the camera navigate on these shells, or traverse them.

The distance to the geometry defines the frequency of the offset shell 

(close=high frequency, so follows closely the details on the surface, far= low 

frequency so follows a smoothed representation of the surface).

Shells are dynamically computed in the vicinity of the camera (not as a 

precomputation), making the techniques adpatable in any 3D modeller



In more stylistic way compared to [KKS*05], Burtnyk et al. [BKF+02] propose 

an approach in which the camera is constrained to a surface defined around 

the object to explore (as in [HW97]). The surfaces are designed to constrain 

the camera to yield interesting viewpoints of the object that will guarantee a 

certain level of quality in the user's exploratory experience, and automated 

transitions are constructed between the edges of different surfaces in the 

scene. The user navigation freely in the bounds of the constraint surface, and 

on reaching an edge is guided to another constraint surface, or hand-built 

transition.



We now detail techniques that rely on the geometry of the whole environment 

to build constraints, that assist the users in either navigation or exploration 

tasks.



Environment-based assistance, for which applications are generally dedicated 

to the exploration of complex environments, requires specific approaches that 

are related to the more general problem of path-planning. Applications can be 

found both in navigation (searching for a precise target) and in exploration 

(gathering knowledge in the scene). Motion planning problems in computer 

graphics have mostly been inspired by robotics utilizing techniques such as 

potential fields, cell decomposition and roadmaps.



The low cost of implementation and evaluation of potential fields make them a 

candidate for applications in real-time contexts.

The efficiency of the method is however overshadowed by its limitations with 

respect to the management of local minima as well as difficulties incorporating 

highly dynamic environments. Nonetheless, some authors have proposed 

extensions such as Beckhaus [Bec02] who relies on dynamic potential fields to 

manage changing environments by discretizing the search space using a 

uniform rectangular grid and therefore only locally re-computing the potentials.



In [HW97], the constraint surface is defined by the user, together with a 

number of orientation key-points. Recent approaches consider automated 

computation of either scalar or vector fields to assist the users both in location 

and orientation [TC01, ETT07]. This requires to answer a number of key 

issues (handling bottlenecks such as narrow doorways, handling large open 

spaces, identifying essential landmarks that make this problem a difficult one).



Virtual endoscopy enables the exploration of the internal structures of a 

patient's anatomy. Difficulties arise in the interactive control of the camera 

within the complex internal structures. Ideally important anatomical features 

should be emphasized and significant occlusions and confined spaces 

avoided. The underlying techniques mostly rely on skeletonization of the 

structures and on path planning approaches such as potential fields. For 

example, [HMK97] and [CHL+98] report a technique that avoids collisions for 

guided navigation in the human colon. The surfaces of the colon and the 

center line of the colon are modeled with repulsive and attractive fields 

respectively. 

In [HMK97], the camera is guided by some repulsive forces from the colonic 

surface, attractive ones that push the camera towards a given target, and user 

inputs (when pointing an area on the surface). The process is however very 

specific to the problem (a more general geometry would lead to many cases of 

failure or inappropriate guidance).



In moving further away from the direct manipulation of camera parameters, 

through-the-lens techniques enable the control of the screen content









Visual servoing techniques relies on the regulation in the final image of a set of 

visual features (points, segments, lines). 

The image Jacobian (L) expresses the link between the motion of a visual 

features (P)  in the 2D screen and the motion of the camera (it's a linearization 

of the projection relation for the camera configuration). 

The key idea is then to invert the equation, in order to express the variation on 

camera parameters that correspond to a desired motion of the visual feature 

on the screen. For exemple, in order to constrain a mobile 3D point at a given 

location on screen, requires to solve Jq=0 at every frame.



The Jacobian matrix is generally non square (m x n): 

-m is the number dofs of the camera (7 for euler-based, 8 for quaternion-

based)

-n is the number of parameters of the visual features in 2D (2 for a point, 3 for 

a line, 4 for a segment)

The pseudo inverse of the matrix can be computed by Singular Value 

Decomposition which is in O(mn^2).

If all camera dofs are not constrained, one can perform secondary tasks (see 

details in next slide) through a minimization process.

Solving process is quite efficient (cost of Jacobian + SVD + minimization).

However:

•difficult to balance between primary and secondary tasks

•some tasks cannot be easily expressed as a minimization process 

(visibility/occlusion)



Toric space is a novel representation for manipulating two targets in a screen 

(and for other camera control tasks as we’ll see later).

The idea behind the toric space is a generalized model (in that the model 

encompasses constraints). These constraints are the on-screen locations of 

two targets.

3 angles are then defined in this space: alpha, representing the angle between 

the targets and the camera, theta, the horizontal angle, and phi the vertical 

angle.

By changing values of phi and theta, the camera moves, but the constraint 

remain satisfied (ie whatever value of phi, theta) the targets project at the 

same location on screen.

Code is available here: https://sourceforge.net/projects/toric-cam/









This is the classical form of the viewpoint computation 

problem as reported in several papers, e.g. [Olivier et al. 

1999, Bares et al. 2000, Christie and Normand 2005, 

Burelli et al 2008, Ranon and Urli 2014]. In some cases, 

the problem could be reduced in its dimensions, e.g. 

because some degrees of freedom, or the FOV of the 

camera are fixed in advance. 



This is an example solution to a viewpoint computation 

problem, where requirements about visibility, and angle 

between camera and houses, are fully satisfied: there are 

no objects between the camera and the houses, and we 

can see both houses from the front. However, since the 

houses are at quite different distances from the camera, 

it is impossible to fully satisfy both the angle and 

projected area requirements. Another solution could 

have instead framed the houses from a different angle, 

and try to instead make them have the same projected 

area. 



Algebraic approaches (e.g. [Blinn, 1988]) work only for 1-

2 targets and are not able to take into account some kind 

of requirements, most notably visibility, since it is a 

property which depends on the spatial layout of the 

whole scene. As such, they are of very limited use. 

Constrain-based and optimisation approaches do not 

exhibit such limitations and generally can work with an 

arbitrary number of targets and any kind of properties 

that can be expressed through constraints or satisfaction 

functions. We focus, in the following, on optimisation 

approaches since they have the nice ability to compute a 

solution even when the problem is over-constrained, i.e. 

when the visual properties cannot be all satisfied. This 



situation is far more common than one may think, since in a 

dynamic environment, targets can easily be in configurations 

that make a VC problem not perfectly solvable. 



We consider a basic set of visual composition 

requirements, however sufficient to express a wide range 

of application needs, to explain the process of turning 

them into satisfaction functions. Other types of 

requirements can be quite easily modelled, and can also 

include aesthetics features such as balance, rule of the 

thirds, and so on. For example, rule of the thirds has 

been used in [Abdullah et al 2011, Bares 2006], and 

balance has been modelled in [Abdullah et al 2011]. It is 

also possible, as shown e.g. in [Olivier et al. 1999] to 

model requirements that involve two or more targets, e.g. 

“target T1 should be seen to the right of target T2” or 

“target T1 should be smaller than target T2”.



In some papers, instead of a linear spline, a gaussian 

function is used, with the goal of smoothing the function 

around the desired value. In general, this is advisable, 

since we don’t need extreme precision with visual 

features: for example, it is very hard to distinguish from a 

projected target area of 0.95 the area of the screen, and 

a projected area of 0.97 the area of the screen.  



To measure area, it is common to use some kind of 

bounding volume (bounding sphere, AABB, …), which 

makes it much easier to perform geometrical 

calculations, and also works nicely with objects with 

holes (e.g. a grilled fence), where typically the perceived 

area on the frame is intended to include those holes. The 

typical considerations about bounding volume fitting 

apply (e.g. spheres are better for nearly spherical 

objects, …).

There are basically two alternatives to measure size: one 

is to render the target with a unique color, perhaps at low 

resolution, and then count the pixels after having moved 

the rendered image to main memory; the other one is to 



use some geometrical computation with the bounding volume. 

For example, [Ranon and Urli 2014] compute the area of a 

target t by taking the (oriented or axis-aligned) bounding box of 

t, finding the vertices of it that are visible from v, and projecting 

them, using the fast look-up table approach proposed in 

[Schmalstieg and Tobler, 1999]. The resulting 2D hull polygon 

is then clipped by the viewport through a standard Cohen-

Sutherland algorithm, and finally, as the resulting polygon is 

convex, a contour integral approach can be used to quickly 

compute its area.

The table reports average times in milliseconds needed to 

compute the size of a target in a scene, using rendering at 

various resolutions and the geometrical approach outlined 

above. As we can see, cost using rendering, even at very low 

resolutions, is orders of magnitude greater than a geometrical 

method, even considering that by using rendering methods, 

we can measure the size of all targets, instead of just one. The 

major cost of rendering methods is the transfer of the image to 

main memory. All technical details about the data reported in 

the table can be found in [Ranon and Urli, 2014].

For height and width, similar considerations apply.



To measure visibility of a target, there are basically two 

alternatives: one is to render the scene using a unique 

color for the target, another color for the scene, and 

turning on blending, and then count blended and 

coloured pixels after having moved the rendered image 

to main memory; the other one is to perform a number of 

ray casts, e.g. to selected points in the bounding volume 

of the target or to random mesh vertices. For example, 

[Ranon and Urli 2014] use 9 ray casts, to the center and 

corners of the bounding box of the target, and report 

visibility as the ratio of ray casts which do not cross other 

objects before reaching the target. Even 6 ray casts are 

sufficient in most situations.



The table reports average times in milliseconds needed to 

compute the visibility of a target in a scene, using rendering at 

various resolutions and ray casting with 9 rays. As we can see, 

cost using rendering, even at very low resolutions, is at least 

one order of magnitude greater than the ray casting method.



An angle requirement, being just the computation of an 

angle between two vectors, is very cheap to compute.



A weighted sum allows one to express the logical AND of 

all requirements, and weights allow one to control a 

requirement importance with respect to the others. 

However, this might not be expressive enough for some 

situations. Suppose, for example, that the satisfaction of 

a visibility requirement should be set to zero if the target 

is off screen, in order to penalise solutions where targets 

are off screen (recall that the ray casting method for 

measuring visibility does not check if the target is on 

screen or not). This cannot be expressed using weighted 

sums. A recent proposal by Lino [Lino 2015] introduces 

more sophisticated operators to build F from individual 

requirements functions, e.g. to cover situations like the 

one presented above.



Black-box optimization approaches are suitable when we 

can compute the objective function, but we have no 

analytical expression for it that can be used, e.g., to 

compute gradients. Combining this with the fact that our 

search space is quite large, there is the need to adopt 

stochastic techniques to promote exploration and 

escaping local minima. 

Population-based techniques add to this the usage of 

several candidates to explore search space. There are a 

lot of population-based optimization approaches that can 

be used in VC. Some authors have, fir example, used 

genetic algorithms, e.g. [Olivier et al. 1999]



The idea is that a camera will move both towards the 

leader camera (the one that found the best parameters 

so far) and towards its local best found parameters. r1

and r2 throw in a bit of randomisation, while c1 and c2 are 

parameters in [0,1] that can be used to balance the 

importance of the local optimum versus the global one. w

is an inertia weight which it establishes the influence of 

the search history on the current move. A common 

strategy is to use a decreasing inertia value, from a 

starting winit to an ending wend value. 

In this version of PSO, a single global leader is used; 

there are variants of PSO that use more leaders, e.g. 

according to distance from cameras. It is also worth 



noting that there are dozens of PSO variants that slightly 

change the equations by e.g. reducing the number of 

parameters. 



At the beginning, we can set each camera local optimum 

to the initial position in D, and any index as the global 

optimum g. 

The equations in the previous slide do NOT prevent a 

camera from exiting D. In the case it happens, we can 

simply set its satisfaction to zero, and it will return in D in 

successive steps; another option is to clamp the 

parameters to be inside D.



Various demos using our Unity Viewpoint Computation 

Library, available at 

https://github.com/robertoranon/Unity-

ViewpointComputation 



Even with the mentioned methods, there is no guarantee 

that a PSO run will find a good camera, i.e., from time to 

time, bad runs can happen. In such cases, a simple 

remedy is to restart the PSO.



The detailed description of the approach is in [Ranon and 

Urli, 2014]. Smart initialisation can be mixed with purely 

random initialisation to improve swarm diversity and thus 

coverage of D.



The last method is explained in detail in [Ranon and Urli, 

2014]. 



The influence of PSO parameters tuning is generally 

underestimated. [Ranon and Urli 2004] proves that, for 

VC problems, it can make a significant difference. In the 

following, we review the main steps of their parameter 

tuning process, which is based on the Friedman rank 

sum test, and Friedman post-hoc analysis



The parameters tuning considers three scenes (exterior, 

interior, mixed) with 5 problems for each scene, ranging 

from 1 to 5 targets. We consider a choice of PSO 

parameters from the literature, and, for each choice of 

parameters, and problem, we perform 20 runs of PSO. 

We repeat the procedure for 6 different time budgets. 

Our analysis then ranks the parameter combinations 

from the best to the worst, and prunes the ones that are 

statistically inferior.



The results show that parameter tuning has a significant 

effect (green vs pink box plots). The graph shows also 

the influence of smart initialisation (yellow vs pink box 

plots) and lazy evaluation (blue vs pink box plots). 

Generally, using 20-30 particles is best for time budgets 

under 50 milliseconds, and smart initialisation is 

especially effective when the time budget is very low.











Virtual endoscopy enables the exploration of the internal structures of a 

patient's anatomy. Difficulties arise in the interactive control of the camera 

within the complex internal structures. Ideally important anatomical features 

should be emphasized and significant occlusions and confined spaces 

avoided. The underlying techniques mostly rely on skeletonization of the 

structures and on path planning approaches such as potential fields. For 

example, [HMK97] and [CHL+98] report a technique that avoids collisions for 

guided navigation in the human colon. The surfaces of the colon and the 

center line of the colon are modeled with repulsive and attractive fields 

respectively. 

In [HMK97], the camera is guided by some repulsive forces from the colonic 

surface, attractive ones that push the camera towards a given target, and user 

inputs (when pointing an area on the surface). The process is however very 

specific to the problem (a more general geometry would lead to many cases of 

failure or inappropriate guidance).



Cell decomposition approaches split the environment into spatial regions 

(cells) and build a network that connects the regions. Navigation and 

exploration tasks utilize this cell connectivity while enforcing other properties 

on the camera. For example, [AVF04] proposed such a technique to ease the 

navigation process and achieve shots of important entities and locations. 

Using a cell-and portal decomposition of the scene together with an entropy-

based measure of the relevance of each cell, critical way-points for the path 

could be identified.



Following an idea similar to Andujar, yet in a more interactive context, 

Elmqvuist etal. [ETT07] propose to automate the construction of a navigation 

graph between user-defined landmarks. The environment is decomposed into 

voxels, each of which is evaluated for visibility against the landmarks. An 

adjacency graph is then built between voxels sharing the same landmarks, and 

explored with a TSP algorithm to compute the best path that visits all the 

landmarks. 



Roadmaps, and especially probabilistic roadmaps are a simple-to-implement 

and efficient technique to perform path planning tasks at the level of an 

environment. For transition planning (moving from on landmark to another), 

target tracking and cut-jumping (switching between viewpoints), the process 

needs to be augmented by visibility computation, either in a static way [NO03], 

on in a dynamic way [LC08].



In [NO03] visibility is guaranteed between connected nodes. Such PRMs can 

be used in an interactive approach by selecting the most appropriate given the 

current configuration and the user inputs. The main drawback lies in the cost 

of updating the data structure when considering dynamic elements.



Previous approaches generally suffer from their locality (searching for 

viewpoints in the local neighborhood of the current camera location). Chang 

and Li introduce a probabilistic roadmap technique that helps to reduce this 

locality:

•a roadmap is defined in the local basis of the camera target (the roadmap is 

built once, and then is only locally modified)

•paths are searched for in this roadmap by evaluating every configuration wrt. 

visibility of the target and possible collision of the path with the environment:

– occluded viewpoints and non reachable viewpoints are removed 

from the roadmap

– new viewpoints are added when necessary

•in critical situations,  cuts can be performed between viewpoints (cuts are 

represented as expensive edges in the roadmap)

Provides a reactive approach that is more global (lazy-evaluation of the 

knowledge in connected edges), and allows cuts between paths.



This approach is an attempt to retain “realistic” characteristics of “real” camera 

trajectories and re-use them in virtual environments.

Trajectories are expressed in a “caera motion graph” that is exploited in real-

time to determine the best trajectory, and best transitions between trajectories.

A camera motion graph consists of (i) pieces of original camera

trajectories attached to one or multiple targets, (ii) generated continuous 

transitions between camera trajectories

and (iii) transitions representing cuts between camera trajectories. Pieces of 

original camera trajectories are built

by extracting camera motions from real movies using vision-based techniques, 

or relying on motion capture tech-

niques using a virtual camera system. 

A retargeting is proposed to recompute all the camera trajectories in

a normalized representation, making camera paths easily adaptable to new 3D 

environments.

The camera motion graph is then constructed by sampling all pairs of camera 

trajectories

and evaluating the possibility and quality of continuous or cut transitions. 



Authors present a powerful, and simple to implement technique, that can be 

adapted to many situations. The algorithm first samples the free space with 

regularly placed overlapping spheres.

Portals (between two spheres) are created where spheres intersect, and a 

graph is built. Sphere-to-sphere visibility is precomputed (in the static scene) 

using a stochastic sample process (ie each sphere knows a probability of  

seeing another sphere. The roadmap is then created, and planning can be 

performed (eg, classical A*), from an initial given location to a final location, 

while maximizing visibility of a focus point.

A specific refinement is performed to smooth out the path and to maximize the 

real visibility of a focus point (the path computed with A* only has estimated 

visibility)

The roadmap can be locally and dynamically updated when changes in the 

scene geometry occur



Interpolating in the space of visual features … rather then in the space of 

camera parameters.

While viewpoint interpolation is generally based on spline techniques (one 

spline for the camera path, and one spline for the camera lookat point is a 

common representation), in many cases the interpolations fail to maintain 

visual properties, and animators generally need to tune the spline curves.

In the idea the process is the following:

-a first path is generated between v1 and v2 by maintaining the framing at v1.

-a second path is generated between v2 and v2 by maintaining the framing of 

v2

-a blending between both paths is then generated so that at the beginning, the 

camera maintains the framing at v1, and and the end maintains the framing v2, 

and between nicely interpolates the framings.



Visibility is a central challenge in camera control. Games, for example, require 

to maintain the visibility of the player and of secondary elements 

simultaneously (opponents, exits, items,...). Furthermore, games have been 

operating an important move these last years to a more cinematic experience.  

In scientific visualization, data may be hidden in a complex geometry setups 

that evolve over time. In navigation tasks, maintaining the visibility of multiple 

known landmarks avoids the users from getting lost or loosing time in re-

orientation.

However visibility is application dependent and has multiple interpretations, 

which means there is no generic solution to the problem. One can look at the 

overview proposed by [Elmquist08] who details techniques to handle occlusion 

in data and object visualization (however not on how to compute viewpoints 

that maintain visibility, but on how to alter the geometry or scene graph). This 

section only considers means to evaluate occlusion and to escape from 

occlusion.
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The complexity of handling visibility in camera control has many sources:

•first of all, the real-time nature of most applications require efficient evaluation 

AND anticipation of occlusion

•second, maintaining visibility in dynamic environements is computationaly 

expensive (as it is for occlusion culling in the field of visibility techniques for 

efficient rendering)

•third, the targets are generally complex-shaped objects, for which the 

estimation of the full visibility is an expensive process.

13M. Christie & P. Olivier

Siggraph Asia 2009 Courses: Camera Control in Computer Graphics



In this course, we will consider both: 

•the problem of visibility determination (ie estimating how much a target is 

occluded)

•the problem of occlusion-free viewpoints determination (ie computing 

viewpoints from which target  objects are visible)

For both problems, local and global techniques can be employed in similar 

ways:

•local techniques rely on a restricted knowledge of the environment (but can 

be easily updated)

•global techniques rely on a full knowledge of the visibility in the environment 

(that is expensive to update)
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In ray casting approaches the candidate position for the camera is evaluated 

by casting a ray in the direction of the target object. An incremental 

improvement on simple ray casting approaches can be achieved by casting 

from an array of candidate camera locations (at a linear increase in cost), and, 

where the visibility of multiple target objects is required, by repeating the 

process for each target object. Deciding how to move the camera based on 

such collections of single point estimates of visibility has a number of 

limitations, for example, it is not possible to maintain partial visibility of a target 

object as it moves behind a sparse occluder (such as a set of railings). 

Furthermore, using a single point to approximate the geometrical complexity of 

a target object fails to sufficiently characterize its visibility.
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Using bounding volumes for visibility detection is a rough and conservative -

yet rapid - way of estimating occlusion (i.e. can be used before more 

expensive techniques such as hardware rendering). Many libraries provide 

efficient means of detecting collision with primitives, and in most cases, the 

process only requires a boolean result from the test (ie. not the volume, depth 

or point of intersection). Courty & Marchand [CM01, MC02] avoid occlusion in 

a target tracking problem by computing an approximate bounding volume that 

encompasses both the camera and the target. Occluders (i.e. not the camera 

or the target objects) are prevented from entering the volume corresponding to 

target motion or camera motion. However, the approximate nature of the 

bounding volumes restricts both expressiveness (e.g. quantify partial 

occlusion) and practical application (e.g. over-estimation for complex shapes).

A study the evolution of the depth/volume of intersection is possible to get an 

idea of how occlusion is evolving. This can be used in a preventive way by 

proposing large volumes around the camera. However, these approximations 

are rough and the cost of computing the intersected volume may overshadow 

the lightweight advantages of the technique.

16M. Christie & P. Olivier

Siggraph Asia 2009 Courses: Camera Control in Computer Graphics



Degree of visibility of the target is determined by the ratio between the number 

of visible pixels of the target and the total number of pixels of the target.

Increasing the resolution of the rendered buffers obviously improves the 

precision in the visibility estimation (and rapidly converges to a good 

estimation)

Occluders and target objects can have specific geometries adapted to the 

rendering

•low resolution geometries, partial models (eg remove arms and legs, keep 

hands and feet)

• removal of sparse occluders, or alpha blended textures (e.g. fine fences, 

leaves etc...)

Important regions on the surface of the targets can be either manually or 

automatically (silhouette, saliency) computed and rendered on the surface of 
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the target. Visibility can then be weighted by this importance map. 



Only a small number of real-time approaches for occlusion-aware camera 

control have been proposed. Crucially, existing techniques (e.g [HO00]) cannot 

be easily extended to capture the full spatial extent of target objects (i.e. they 

model target objects as points). The computation of occlusion-free viewpoints 

is closely related to the well known problem of visibility determination 

[COCSD00, Dur00] which has a bearing on a range of sub-fields in computer 

graphics, from hidden surface removal and occlusion culling, to global 

illumination and image-based modeling and rendering.

Here we move from visibility estimation to the computation of occlusion-free 

viewpoints with hardware rendering techniques. The principle is close to the 

one of ray-casting: renderings are performed from the target object to the area 

where visibility should be checked, and most similar to the principles in 

shadow volume computation (studying the depth buffer to estimate whether 

the geometry is shadowed or not). 
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A clear parallel can be drawn between the problem of real-time soft shadow 

computation and real-time visibility computation of target objects. Target 

objects can be treated as light sources for which we need to compute the 

volumes outside of the shadow and penumbra (this is an inverse volume 

carving problem) in which to place a camera. One technique for real-time 

shadow computation relies on silhouette detection (e.g. penumbra wedges 

[AAM03]), that use the exact silhouette of objects to compute shadow 

volumes. However, the complexity of silhouette detection increases with the 

complexity the objects casting shadows and such approaches are also not 

readily applicable to rasterizable entities that use alpha-textures (which are 

increasingly used real-time 3D graphics). Another class of techniques that is 

used in camera control [CON08] relies on frame-buffer approaches that 

construct a depth map rendered from the location of light sources using 

graphics hardware. This shadow map is then sampled in relation to the world 

geometry and a simple depth comparison can be used the determine the 

status of a point in space (whether it is hidden by an occluder or not).
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In a given region, visibility for multiple targets (or multiple points on the target 

surface) is computed by performing one rendering per target. Depth 

information  is composed in a way similar to penumbra maps (see next slide): 

the area is sampled and each sample is expressed in the local basis of each 

rendering in order to access the appropriate depth value in the shadow map. A 

specific way of composing depth maps is proposed in [CON08], where 

asymmetric frustums are computed for rendering. This technique avoids the 

sampling of the area by using a trilinear basis to access visibility information.
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The methods we reviewed provide efficient and CPU-adaptive approaches to 

locally establish visibility or compute occlusion-free views. However their 

intrinsic local nature prevent them from performing transition planning (moving 

from one viewpoint to another while maximizing visibility), and may fail in some 

situations (no local visibility). Furthermore, when cuts between viewpoints 

must be computed (eg. reverse shots), many local regions need to be sampled 

(with no guarantee of finding an appropriate view).
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Visibility methods aim to calculate either the regions of a space which can be 

seen from a point (from-point visibility computation), or those that can be seem 

from a region (from-region visibility computation). In simple terms, visibility 

determination uses visual events - the boundary configurations for which

the visibility changes - to partition space. Such methods can be broadly 

categorized according to the space in which the partitioning is performed, that 

is, object space, image space, viewpoint space or line-space (for a detailed 

presentation see [Dur99]). Visibility methods in dynamic environments have 

mostly addressed the problem of updating these visibility representations for 

moving objects [SG99] and modeling moving occludees (e.g. motion volumes 

[DDTP00]).
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C&P visibility is restricted to architectural environments, though abstract 2D ½ 

representations can be used to handle more complex scenes [Lam09]. C&P 

techniques have been initially proposed to improve occlusion culling in 

complex urban scenes (ie removing  parts of the geometry that are hidden). 

The scene is decomposed into cells (or convex cells to ensure full visibility 

inside them – a constrained Delaunay triangulation helps to compute such a 

decomposition), and cells are connected by portals (which edges are the 

support for visibility). Inter-cell visibility propagation is then performed by 

constructing stabbing lines (lines that separate the visibility in space). Visible 

cells are connected together in an visible adjacency graph.
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Inter-cell visibility propagation is then performed by constructing stabbing lines 

(lines that separate the visibility in space). Visible cells are connected together 

in an visible adjacency graph.
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In this session we will adopt a more cinematographic view by studying how eding
techniques from the cinema can be formalized in computational models to 
interactively or automatically generate well edited sequences of shots.

Let first have a look at how real cinematographers deal with the editing of a movie.
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The work of the editor of real movie is a to take as input the rushes that have been 
shot, then to diligently cut and paste pieces of those rushes to create a whole 
storyline as output.
This is a tedious and technical task, and the cinema industry has thus been building a 
“visual grammar” (aka continuity-editing) of how to properly shoot and edit movies 
for more than a century.
One can find a number of well-known “cook-books”’ each providing a set of practical 
or theoretical rules that allow selecting well-composed shots that can properly 
convey movie actions and cuts that can enforce some continuity in actions through 
the sequence of shots.
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First, they provide a grammar of the shot. Selected shots where enough space is left 
to perform the action. For instance for a shot show a character walking, enough 
screen space should be left in his motion direction, if showing a character speaking 
or reacting after another character has been speaking, the shot should provide some 
look-room or head-room to the character (i.e. leave enough space in his gaze 
direction).
Then protagonists should be highlighted so as to best highlight the main actions that 
are unfolding at that moment in the story. 
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Then , they provide a grammar of the edit. Selected cuts between two shots should 
be invisible to viewers. And to do so, they need not to break the visual continuity of 
the actions.

Most important continuity rules are that a cut should not provide too much change 
on the on-screen position of a character that the viewer is looking at, as it will force 
the viewer’s eye to move to the new position after the cut (after a few cuts it can 
thus lead to some visual discomfort). The cut should also maintain relative positions 
of objects on the screen. It should enforce the continuity in the motions of 
characters (a character moving from left to right in one shot, should keep moving in 
that direction in the following shot), and it is the same for their gaze directions (a 
character looking to the right should keep looking to the right). Finally, a cut should 
be perceived as a cut, i.e. it should provide sufficient change on the characters on-
screen size and/or on their view angle (in other cases, it is known as a “jump-cut”,
which is perceived as fast camera motion instead of a cut).
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The durations of shots is an also important criteria for editing movies, as it will 
control the pace of the story. If the pace is too fast (i.e. shots are too short) it does 
not lets enough time to viewers to “read” the content of the shot. If the pace is too 
slow (i.e. shots are too long), it lets too much time to the viewer to “read” the whole 
content of the shots (comprising background actions or landscape) so it can become 
boring for viewers to watch a shot after a while. Obviously the editor instead has to 
make a compromise, depending on actions complexity (how much information the 
director would like to provide to viewers) and the rhythm of actions. This should 
therefore lead to “natural” distribution of shots durations (i.e. if cutting at regular 
intervals of time, the viewer would be able to perceive cuts).
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To account for such theoretical rules, some « cook-books » such as the one of Daniel 
Arijon (which is surely the more cited in the litterature), are providing more practical
rules on how to place camera to shoot the actions and how to cut between them
along time.

In his book, Arijon is providing rules on a case-by-case basis.
For instance, to shoot a single character moving, you can place two cameras in front 
of the character, at the start and end of his motion, ensuring that cameras are 
located on the same side of a line defining his motion.
To shoot two or three characters talking to each other one can position cameras on 
one side of the line of interest drawn through characters, then depending on the 
configuration and motions or characters in the story, it will require more or less
cameras to be placed around characters and their placements will be slighlty
different.
More generally, one can find a configuration of camera for each kind of action, and 
each number and configuration of characters.
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In handling the automated editing in 3D environments, one can easily encode 
continuity rules by following cookbook.
A “naive” approach proposed by He in his 1996 SIGGRAPH paper is to encode idioms 
(stereotypical ways of filming a given action, as provided by Arijon) as a finite state 
machine. In this FSM, a node will represent a single viewpoint, and an arc  will 
represent a possible transition between two given viewpoints (i.e. a cut or camera 
motion). Transitions can then be parametrized (i.e. cut when first character start 
speaking, or after 10 seconds spent in the shot).

Still following this way of implementing cook-books, one has to encode as many FSM 
as the number of different types of actions and number of characters. Then, one can 
also define a tree of those idioms which will handle the transitions between the 
multiple actions performed in the story.

The great advantage of this model is that it can be easily implemented and that it 
can run in real-time. Therefore it remains one of the preferred models in computer 
games today.
There have also been a large number of scientific papers build upon this idiom-based
idea to create more evolved editing systems.
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But, the big problem with this model it is hard to generalize it since it is a bit too 
rigid.

Today we will introduce a more general way of formulating and implmenting the 
editing process.
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Here we are targeting to better reproduce the editing process as it is done by a real 
editor.

We start from the set of input rushes and we want to provide the best edit possible 
as ouput.

Our automated process wil then be divided into two step: (i) provide a way to 
evaluate the quality of a given edit using these rushes, then (ii) explore the range of 
possible edits and choose the one which obtains the best evaluation.

In the first step (evaluating an edit) we split the overall quality of the edit into three 
components: the quality of shots (which is really important as poor shots will lead to 
a very bad edit), the quality of cuts (which should enforce continuity), and the 
quality of pace. And we will consider that a good edit is obtained when all three 
components are evaluated as good.

To do so, as previously, we can derive a cost function for each component, build an 
objective function aggregating these costs and try to minimize this objective 
function. We will see how to search for the best edit a bit later,, for now lets focus 
on each component separately.
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A first element in making a good shot is that it should convey enough of the relevant 
actions unfolding at that time in the story, and avoid distracting the viewer from the 
main story elements.

For example, to shoot a given action, this action should be fully visible in the frame. 
Which means that the protagonists of this actions should be visible on the screen, 
and more particularly their relevant body parts (those participating in the action). 
For instance here we have a character speaking so we would like his head to be
visible on the screen.

To evaluate how much this rule is enforced, we can compute the area covered by the 
face of the character and compare it to the area it would cover if it were not 
occluded at all.
Then, following that principle we can build a cost function that will sum up over all 
body parts of all targets that appear on the screen. And we can also weight each
character with regards to its importance in the  story (i.e. how much ihe is
participating to the unfolding actions) to penalize occlusions of protagonists more 
than secondary or background characters.
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In the same way, a rule which was followed by Hitchock and that we find really
practical is that the more an action or a character is important in the story, the more 
it should fill the screen space (e.g. if only one action is unfolding, then only this
action should be frame). Here we have a character talking to himself at one side of
the scene, so the character should ideally fill the frame, i.e. he should be alone on 
the screen. 

To evaluate how much this rule is enforced, we can compute the area covered by a 
character on the screen and compare it to the total area covered by all characters.
Then, we can build a cost function that will compare the relative importance of a 
each character at that moment to the relative amount of the screen it fills
(compared to other all characters).
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Now, if we look at the quality of a cut, we can consider a range of continuity-editing
rules and derive a cost function to evaluate how much each is respected.

For example, we sayed that one should enforce (as much as possible) the absolute
on-screen positions of characters. So, we can first compute the 2D screen position of 
a character before and after the cut, and compare both positions (the greater the 
on-screen distance, the greater the cost). We can then derive a cost function that
will sum up the change of on-screen position for all characters appearing both
before and after the cut.
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In the same way, one should also maintain relative position of characters on the 
screen. To encode this rule, we can use the computed 2D screen positions of each
character (before and after the cut), and compare the relative positions for each pair 
of character before and ater the cut (we penalize when positions are reversed). We
can finally derive a cost function that will sum up these penalties over all pairs of 
characters on the screen.
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Another rule is to enforce continuity on characters’ gaze. To encode this rule, we can
computed the projection of the gaze of a character (before and after the cut), and 
compare both directions (we penalize when gaze directing is changing, for instance if 
the character was looking left before the cut and is looking right after the cut). We
then derive a cost function that will sum up these penalties over all characters
appearing on the screen.
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A similar rule is to enforce continuity on the apparent motion of characters (when
they are in motion). To encode this rule, we can computed the projection of the 
character’s velocity vector (before and after the cut), and compare both vectors in 
the screen space (we penalize when motion directing is changing, for instance if the 
character was moving to the left before the cut and is moving to the right after the 
cut). We then derive a cost function that will sum up these penalties over all 
characters appearing on the screen.
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Finally, we want to avoid jump-cuts, i.e. provide either a sufficient change in the 
screen size of characters or a sufficient change in the characters’ view angle (or 
both). We could split this problem into two separate constraint that we could
enforce separately but this would lead to force the editing system to enforce both at 
the same time, which would prevent some « grammatically correct » edits (such as 
those on the left figure) to be considered as good.

To improve, we can instead compute the change on each feature separately then
combine them into a single cost function. 

We first compute the on-screen size before and after the cut, and build a delta-size 
function returning a satisfaction value corresponding to how much the size change is
sufficient.
In the way, we can build a delta-angle function returning a satisfaction value 
corresponding to how much the view angle change is sufficient.
Finally we can build a cost function taking these two delta functions and penalizing
cases where neither is sufficiently satisfied. We can finally sum up these penalties 
over all characters appearing on the screen both before and after the cut.
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In term of evaluation of the overall cutting rhythm, one can note that studies of the 
pace in real movies have shown that shots lengths tend to follow a log-normal 
distribution. Which means that most of the shots will have a duration close to a 
mean duration, some of them will be a bit shorter or longer, and very few of them
will be much longer.

Following that idea, what we have proposed is to rely on the provision of a given
pace by the user, through both parameters of a log-normal law (the mean shot
duration and the standard deviation of duration from the mean value).
The editing system should then build an edit that fits such a distribution as much as 
possible.

Here we evaluate how much a shot follows the log-normal law by computing the 
deviation of its duration to the expected mean duration and comparing the result
with the expected standard deviation.
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Well, we have shown how we can evaluate all three components, and rank the 
satisfaction of the related rules, separately.

Now, we consider evaluating a full edit, and searching for a good one. What is
important here is that a good edit should make as few errors as possible (we call it a 
« grammatically correct » movie). 
This means that the edit should convey as much as possible of the actions, avoid
discoutinuities when cutting, while following an appropriate cutting rhythm.

We formulate that problem through an objective function to minimize. This 
objective function is builr as a weighted sum of all three components costs, which in 
turn are made of all costs related to the rules we have presented.
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Now we can go into the process of searching the best edit.
If we consider we won’t make time ellipses, one can view this search as choosing
which camera to use at each time frame of the storyline.
We can thus represent the space of all possible edits as a directed graph (with arcs 
gioing from left to right) where a node represent the use of a given camer at a given
time frame, and an arc represent the transition from a camera at time t to a camera 
at time t+1. One can also consider that the graph is complete (i.e. one can continue 
using the current camera or cut to any other camera between each time frame).

This means that, taking one possible edit (i.e. a given path through this graph) from
the beginning to the end of the story, we can now evaluate the edit using the 
previous objective function.

Finding the best edit thus requires evaluating all the possible paths, but this is
however computationally too expensive.
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Indeed, if we consider that we have M rushes (cameras) over N time frames, this
leads to a huge complexity both in computation time and in required memory space; 
which for now makes solving our problem impracticable.

To reduce this complexity, what is important here is that we can make a strong
assumption on the editing process. 
Actually, deciding whether or not to cut to another shot is only dependent on the 
amount of time we have already spent in the current shot, which allows some
reduction on the search process.

Finally, building on this semi-Markov assumption, we have used a dynamic
programming algorithm. Dynamic programming is really well-suited to this type of 
cases, where one can decompoe a problem into a set of simpler sub-problems, that 
can in turn be solved separately from each other.
In our case, this allowed drastically reducing the complexity both in computation 
time and in memory space required (to endode the editing graph), making the 
search process more practicable.
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In the last years, we are witnessing the 

first applications of sophisticated 

camera control algorithms to real-world 

applications. For example, SolidFrame

(http://www.solid-frame.com) is a new 

tool designed for animators and 

cinematographer to interactively 

explore a large collection of shots over 

their 3D animation, and rapidly create 

and compare multiple edits of the 



same animation; VEX-CMS 

(http://hcilab.uniud.it/vex/) is an application 

that allows people with no expertise in 3D 

modeling to create 3D virtual exhibitions 

and virtual visits integrating objects and 

information into virtual environments. 

Another interesting trend is the exploitation 

of data from real-world movies, e.g. to 

generate better camera compositions and 

trajectories. Recent work done at INRIA 

France (only partly published) proposes 

methods to reproduce camera 

compositions taken from real movie shots, 

and to reuse camera trajectories taken 

from real movies (also explored in [Kurz et 

al 2010]), in an effort to provide more 

believable and natural camera 

movements. 



We are also seeing camera control 

research papers that challenge problems 

that are significantly more complex than 

the ”toy” problems that were addressed by 

earlier papers in the field. For example, 

[Ranon et al 2015] applies some of the 

camera control algorithms we have seeing 

in this course to the problem of visualize 

results from aviation safety simulation 

scenario that involve hundreds of 

characters and highly frequent events; 

[Galvane et al 2013] propose camera 

control algorithms to film scenes involving 

a crowd of characters. 



Visibility is actually on of the main 

issues in camera control, and has 

been quite neglected. With the advent 

of efficient dedicated graphical 

languages, such issues are currently 

re-explored.

Visibility is not only difficult from a 

technical point of view, it also is related 

to more fundamental aspects in 

perception that are critical to evaluate 



(recognizability, task-dependent, duration 

and extent of the occlusion).






