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1. Spatial discretisation

The modelling of physical systems often leads to partial or
directly to ordinary differential equations. The solution of
these equations usually is a dominant part of the total com-
putational costs for a simulation or animation, therefore be-
ing the main focus of this chapter. Before addressing the nu-
merical solution of ODEs - the temporal discretization or
(time) integration - we take a brief look at the numerical
techniques used for spatial discretization. Three techniques,
not entirely unrelated, dominate the field. They are normally
classified as particle systems, finite difference and finite ele-
ment methods.

1.1. Particle Systems

When using the particle system paradigm, the discretisation
is already a part of the physical modelling process, as the
continuous object is immediately represented as a set of dis-
crete points with finite masses. Physical properties are spec-
ified by directly defining forces between these mass points.
Typical representatives of this approach, that is very pop-
ular in cloth simulations, are mass-spring-damper systems
[Pro95, VSCO1] and particle systems with forces defined di-
rectly by measured curves[ EWS96] or low order polynomial
fits of this datal BHW94].

1.2. Finite Differences

Another physical modelling concept is to specify physical
behavior by minimizing some energy functionals defined on
a continuous solid. The arising equations normally contain
derivatives with respect to space and time variables. Replac-
ing the spatial derivatives with finite differences, e.g.
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leads to finite difference formulations. This replacement is
easily accomplished in 1-space or on structured grids in
any dimension. It becomes harder to define finite differ-
ence approximations on unstructured meshes[MDSBO02], of-
ten finite element techniques are used for deriving appropri-
ate schemes[Pol02]. An important trait of finite difference
schemes is, that the terms on the right hand side of the ODE
are given for a point and its neighbors, i.e. are specified on
the edges of the discretization. The resulting equations are
structured very similar to these from particle systems, indeed
finite difference techniques can be used to derive a particle
system from continuous equations[EGS03].

1.3. Finite Elements

Finite elements, in their beginning, were designed to over-
come the difficulties of finite differences with unstructured
meshes. They also start with a continuous model, usually
given as an integral equation in a weak form, e.g. resulting
form a variational ansatz. The functions are then replaced
by a piecewise polynomial approximation over the unstruc-
tured discretization of the domain. The number of nodes per
element and the polynomial degree of the shape functions
can be varied on a single grid. Curvilinear grids allow a
very good shape fitting. For visual simulations one usually
prefers piecewise linear approximations over triangle, quad-,
hexa- or tetrahedral meshes. The finite element method is the
preferred solution technique in numerical analysis and engi-
neering applications because of its versatility, sound deriva-
tion and superior convergence properties with respect to inte-
gral norms, often natural for the problem at hand. The arising
equations are given by terms formed over the area elements
of the mesh. Their drawback is that these improvements are
paid for by an increased computational effort, compared to
the previous techniques. Also the masses may not be con-
centrated on the points of the mesh, as in the previous cases,
leading to an implicit ODE
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with a non-diagonal and even singular mass matrix M. A
common technique is to use mass lumping, to make M diag-
onal and reduce computational costs| TPBF87, EDC96].

For the following discussion we assume that the ODE is
given in the general explicit form

X = f(x)or K= f(x,x/) 4)

2. Methods for Numerical Integration

As we have seen in the previous sections mechanical sys-
tems are often given as a second order ordinary differential
equation accompanied by initial values

X (t) = fi(t.x(0),X (1)),
x(to) = x0,% (t9) = vo. (5)

The differential equation can be transformed into a first order
system by introducing velocities as a separate variable:

(5] |- [281-(2]
vit) | L Ax@)v@) |7 [ vo) | [ v ]

(6)
For the next few sections it will be convenient to write this
ODE in the more abstract form

Y ()= £(t,y(), y(to)=yo, ©)

before we will come back to the special setting (6) for even-
tually gaining computational advantages.

Figure 1: Solutions of example 1 for A = 2 (dashed) and
A= —15 (solid)

Throughout the following discussion we will use the fol-
lowing examples:

1.y =Ly, y(0) = with A =2, —15 for ¢ € [0, 1] (figure 1).
2. The overdamped wave equation y”' = A/2y 4+ Ay’ with
A = —5 for r € [0,10] and starting values y(0) =
0,y/(0) = 1. It has the analytical solution y(r) =

1/15v/156 /2 (=5+VI5) 1 /15, /15¢~ /2 (5+VTS)r

(a) The mechanical system of example 3.

L L L L L L L L L
0.2 0.4 0.6 0.8 1 12 14 16 18 2

(b) Exact solution of example 3: z (solid), z’ (dashed)
and an implicit Euler solution (see below) for large
timesteps.

Figure 2: Example 3.

3. This example is based on a simple mechanical system
(figure 2(a)): A particle p with mass m connected to the
origin using a spring with stiftness k, damping d and rest
length [y, is pulled down by gravity. This setting is de-
scribed by the ODE

d’z  k(ly—z) ddz

a2 m md % ®

We set the parameters m = 0.1, k = 100, [y = —1,d =
1, g: = —10z9 = —1, vp; = —5 and simulate the interval
1 € 10,2] (figure 2(b)).

2.1. Explicit methods

The oldest and most simple method of integration is the so
called forward or explicit Euler method. Time is discretised
into slices of length /. To get a formula for advancing a time
step &, the differential quotient on the left hand side of (7) is
replaced by the forward difference quotient

y(e+h) —y(@)

Y ()= 1(y(0), ©
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Thus we get the integration formula for advancing a single
timestep

y(t+h) = y(0) +hf(1,3(1)). (10)

Iterating this method gives a sequence of numerical approxi-
mations Y, = y(tx) =: y(fo +nh). Geometrically this method
can be interpreted as straightly following the tangent of the
solution and then recalculating the slope for the next step.

There are several criteria for evaluating an integration
method:

convergence
accuracy
stability
efficiency

Convergence means that for # — O the numerical solutions
Y, meet the analytical. All useful methods must be conver-
gent, so we won’t discuss non-convergent methods or criteria
for convergence. More interesting is the accuracy or order of
a method. By this we mean how fast a method converges for
h — 0, or with other words how accurate the solution is for
a given h. By using a taylor expansion for the exact solution
after a single time step

Yt +h)=y(0)+hy' (1) +h7 /2" (1) +O() (1)

we find that for the numerical approximation Y; produced by
an explicit Euler step

(1)) =i = O(h?). (12)

If we continue the method using the numerical solution Y
as a starting value for the next time step we lose[HNW93] a
power of & for the global error

y(tn) —Yu = O(h). (13)

This means that the explicit Euler method converges linearly
or has order 1. We will analyze the stability and efficiency
of the method later.

As a next step we introduce methods of higher order. For
this a centered difference estimation for y'(t +1/2) (7) is
used

y(t+h) —y(t)

P ~y (t+h/2) = f(t+h/2,y(t+h/2)).

(14)
resulting in the iteration scheme

Yo :Yn+hf(l‘+h/2,y(1‘n+h/2))- (15)

But how do we find k| = y(#, + h/2)? For an estimation we
use an explicit Euler step to get

k= Yt lBfv) (16)
Yo+ hf(t+h/2,k), (17)

Yn+1

the so called explicit midpoint rule. The estimation by for-
ward Euler, although not very accurate, is good enough, as

(© The Eurographics Association 2004.

the function evaluation is multiplied by the timestep to ad-
vance to the next approximation. So by a taylor expansion
we find a local error of O(h*) leading to a global error of

Yo —y(ta) = O(H%) (18)
for the explicit midpoint rule.

Generalizing the idea of using function evaluations at s
intermediate points ¢ + ¢ ;A leads to Runge-Kutta methods.
They are defined by a Runge-Kutta matrix (a;;), weights b;,
abscissae c; and the equations

N
=Y.+ h 2 aijk;
j=1
with ki = f(ty +c;h, k) for i=1,...,s
5
Vo1 =Yu+hy biki (19)
i=1

The coefficient set can comfortably be specified as shown in
table 1. If the matrix (g;;) is strictly upper, all inner stages k;

(4] al ain ais
¢y (aip azxp - ag
Cs | As1  As2 "+ dss

by by - by

Table 1: General Runge—Kutta method

only depend on k; with j <7 and thus can be computed one
after the other.

The most famous scheme is the method by Runge and
Kutta given in table 2(b). Table 2(a) shows the explicit mid-
point rule interpreted as a Runge-Kutta method. The method
by Runge and Kutta possesses order 4.

0
0O 0 O 12 112
1 1
5 3 O 172 0 172
1 0 0 1
0 1
(a) Midpoint 1/6 2/6 2/6 1/6

(b) RK4

Table 2: Explicit midpoint and "the" Runge-Kutta method.

By using algebraic relations for the coefficients, it is pos-
sible to construct explicit Runge-Kutta methods of arbitrary
high order resulting in many inner stages with numerous
evaluations. For most practical applications order 4 is suf-
ficient.
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Figure 3: Work precision diagrams for the explicit Euler, explicit midpoint and RK4 methods.

Having constructed all these methods, we apply them to
our examples.

The plots in figure 3 were produced by solving the exam-
ples using different timesteps and measuring the number of
floating point operations needed for achieving the specified
accuracy when compared with the (analytical) reference so-
lution. In the work-precision diagram the y-axis shows the
error ||V, — ¥(fena)|| @s a function of the required number
of floating point operations. The first example with A = 2
(figure 3(a)) shows exactly the expected behavior: when re-
ducing the time step and thus investing more work, the nu-
merical solutions converge towards the reference solution.
Moreover the slope of the curves in the double logarithmic
plot exactly matches the order of the method. In all other
examples (figure 3(b)-3(d)) this behavior only shows up af-
ter an initial phase, where the solver produces completely
wrong results. This is the point where stability comes into

play. We will now analyze this by using the simplest exam-
ple where it occurs, i.e. example 1 with A < 0.

2.2. Stability

The equation for example 1 is called Dahlquist’s test equa-
tion

y =&, AecC. (20)

Its exact solution for an initial value y(0) = yq is given by

¥(1) =My @1

This equation is a tool for understanding and evaluating the
stability of integration methods. We have seen, that in the
damped case characterized by Re A < 0 convergence is only
achieved for very small time steps. In this case, since the
exponent is negative, the analytical solution is bounded for
t — oo. Therefore one expects from a meaningful numerical

(© The Eurographics Association 2004.
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method to deliver a bounded solution. An integration scheme
that yields a bounded solution is called stable.

If we apply the forward Euler method with a fixed step
size h to (20), the n-th point of the numerical solution is
given by:

Yy = (14+10)"yo (22)

It is bounded if and only if |1 + hA| < 1, i.e. for AX in the
unit ball around -1. A similar analysis can be carried out
for the other methods and also results in restrictions of the
admissible step size.

This analysis explains the sharp bend in figures 3(b)-3(d).
Only when the step size drops below a certain limit dictated
by A, i.e. by & < A~! in case of the forward Euler method,
the numerical solutions can converge. If the damping is in-
creased, i.e. ReA — —oo, then for the explicit Euler neces-
sarily & — 0O for the solution to be stable. This means the
step size is artificially limited and it cannot be increased be-
yond the stability limit. This limits the flexibility of balanc-
ing work against accuracy.

2.3. The implicit Euler method

To construct a method that better suits our needs we go back
to (7) and substitute the differential quotient by a backward
difference quotient for y(¢ + h)

y(t+h) —y(t)
h
This results in the integration formula

Yop1 =Ya+hf(t+h Y1), (24)

~Y (t+h) = ft+hy(+h). (23)

the so called backward or implicit Euler method. As its ex-
plicit variant this method can be shown to have order 1. Now
the numerical solution only is given implicitly by the solu-
tion of the possibly nonlinear equation

Yn+l_hf(t+huYn+l)_Yn:O- (25)

If we apply this method to the Dahlquist equation we get the
recurrence formula

Yo = (1—h0)"yy. (26)

The numerical solution Y, remains bounded for |(1 —
AN~ < 1. If we assume A < 0, this holds for arbitrary
h > 0. Thus there is no restriction on stepsize, the method
is unconditionally stable. Figure 5 shows the work-precision
diagrams for the implicit Euler method and our examples.
We observe that we never loose stability and we especially
do not miss the solution by several orders of magnitude com-
pared to the explicit methods. Of course the method looses
accuracy when the time steps become large.

As a useful tool for visualizing the stability properties of
a method we define the stability region S to be the set of pa-
rameters, for which the integration method yields a bounded

(© The Eurographics Association 2004.

solution:

S:={z:=hAh € C: the numerical integration
of equation (20) with step size & and
parameter A is stable}. 27

Methods that contain the complete left half-plane in S are
called A-stable or unconditionally stable. They are well
suited for the stable integration of stiff equations. Obvi-
ously, the implicit Euler scheme is A—stable, whereas its ex-
plicit counterpart is not. The stability regions of all presented
methods are shown in figure 4.

After reviewing the process that led us to the definition
of the stability region, we can outline a more general idea
that will allow us to determine the stability of more complex
methods. The idea for analysing both Euler methods applied
to (20) was to find a closed expression describing the stabil-
ity function R. This function maps the initial value y( to the
value Y1, performing a single step of the method

RZyQHYI. (28)

Thus Y, = R(hA)"yy. For the explicit Euler method we found
in (22)

R(z) =14z, (29)

for the implicit version in (26)

1
R(z) = 1—7 (30)
The definition for the stability region now reads
S={z€C :|R(z)| < 1}. 31)

2.4. Methods of higher order

To find a higher order method, we go back to equation (15)
and insert a linear interpolation term for y(r +h/2). The re-
sulting formula is taken as an implicit definition of y(z + h).
We get the implicit midpoint rule

Y1—0—Y0)7 32)

2

using a simplified notation for advancing one step, i.e. writ-
ing Yy and Y instead of ¥, and Y, 1.

Y, :Yo+hf<z+h/2,

Alternatively the midpoint rule can be derived as a col-
location method[HW96] with s = 1 internal nodes, i.e. by
constructing a polynomial interpolating the particle trajecto-
ries at a given, fixed set of s nodes[HW96]. This idea allows
for the construction of implicit Runge-Kutta methods with
arbitrary order. In contrast to explicit methods the matrix
(ajj) ceases to be strictly lower triangular. These methods
are computationally more expensive, so we just stick to the
midpoint rule. Its stability function is given by

1472
T 1-z/2°

(33)
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Figure 4: Stability regions (shaded) of the methods.

(d) RK methods
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(c) Example 2: y"/ = -5y’ — 5y (d) Example 3

Figure 5: Work precision diagrams for the implicit Euler, implicit midpoint, BDF(2) and Verlet (whenever possible) methods.

The results for Euler are for comparison and the same as in figure 3.

(© The Eurographics Association 2004.
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As R <1 for any Rez < 0 the implicit midpoint rule is A-
stable.

As another possible choice we now introduce multistep
methods. They are computationally inexpensive because
they have no inner stages and some of them are A-stable.
A multistep method with k steps is of the general form

k k

> oY i1 =h Y Bjifi—ji1; (34)

J=0 J=0
with foy; = f(tuyj,Ynyj). Here we also have ‘history
points’ with negative indices. The coefficient oy, is required
to be nonzero; for variable time step sizes the coefficients
depend on the last stepsizes, which we have omitted here for
the ease of demonstration. Important special cases are the

class of Adams methods where 0g = -+ = Ol _p = 0:
k
Y =Yo+h Y Bjfiji (35)
j=0
and the class of BDF-methods (backward differentiation
formulas) with o =--- =Bz = 0:
k
> oY i1 = hBrfi- (36)
j=0

If the formula involves the right-hand side f; at the new ap-
proximation point ¥ the method is said to be implicit. BDF-
methods are always implicit. The coefficients can again be
constructed by a collocation approach. BDF-methods exist
up to order 6, higher order methods loose consistency for
any choice of coefficientsl HW96].

The stability regions of implicit and explicit Adams methods
are bounded and located around the origin, thus they are not
interesting for large time steps.

BDF-methods were the first to be developed to deal with stiff
equations and possess an unbounded stability region cover-
ing a sector within the negative complex half-plane. There-
fore they are among the most widely used methods today.
For k+ 1 points, these methods possess order K+ 1 and only
one nonlinear system has to be solved, whereas s coupled
systems have to be solved for an s-stage implicit Runge-
Kutta method.

The BDF-method for &k = 1 is just the implicit Euler
method, for k=2 the method is given as

4 1 2
Y1=§Y0*§Y—1+§hf(f+h7Y1) (37

The coefficients for higher order methods are given in ta-
ble 3. The stability region of BDF(2) and the other implicit
methods are shown in figure 4.

2.5. The Verlet method

As a last method we will discuss a scheme commonly re-
ferred to as leapfrog or Stoermer-Verlet method. It is espe-

(© The Eurographics Association 2004.
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Table 3: BDF Methods

cially efficient if (5) is given as the second order system
(1) = fi(r. (1), (38)

ie. fi(t,x(t),x'(t)) = fu(t,x(r)). It is not applicable to gen-
eral first order systems of the form (7).

R T

v1/2 v3/2 V5/2 v7/2
A A A

Figure 6: Staggered grids for the Verlet method.

To derive it, we use centered differences at a staggered
grid (figure 6) i.e. we now approximate v at 7 + (2i + 1)h/2
and x at 7 4 ih by centered differences

Vnt+1/2 = Vn—1/2

h :f(xn) (39)
X, — X
% =Vnt1/2 (40)
thus
vn+1/2:vn71/2+hf(xn) 41
Xn+1 = Xn +hvn+1/2' 42)

The method possesses order 2 as one can see by substituting
(41) into (42) resulting in the second order centered differ-
ence

-2 _
)%2"4_)(”1 = f(xn). (43)
From this equation an alternative formulation of the Verlet
scheme as a multistep method can be derived

Vi —Vp—1 = hf(xn) (44)
Xpt1 —Xn = hvp, (45)

which omits the half steps and staggered grids from above.
Now for second order equations which do not possess the
form of (38) one may replace f(xn) by f(xn,v,—1) at the
expense of some stability. Correctly the replacement had to
be with f(xn,vs) but this would result in a implicit method.
Now we can apply the method to examples 2 and 3.
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—— explicit Euler
—<— implicit Euler
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—— Verlet

precision
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Figure 7: Work precision diagram for the explicit/implicit

Euler, implicit midpoint, BDF(2) and Verlet methods for the

wave equation y"' = —5y without damping.

Figure 5 shows the work precision diagrams for the im-
plicit methods. Even for large time steps these methods give
approximations to the exact solution. After a somewhat un-
even convergence phase all the implicit methods converge
smoothly for decreasing time step to the exact solution with
a slope given by their order.

Up to now we have omitted a discussion of the stability
properties of the leapfrog method. From the examples it can
be observed that the method cannot be unconditionally sta-
ble. Indeed some more delicate computations show that the
method only delivers a bounded solution for arbitrary z > 0
for purely oscillatoric equations, i.e. for second order ordi-
nary differential equations of the form (38) (with no damp-
ing term) and a contractive right hand side. Nevertheless the
method remains well behaved in the presence of low damp-
ing. This explains its importance in molecular and celestial
dynamics. In figure 7 we applied the Verlet method to the
undamped wave equation y”’ = 5y and it is clearly one of the
best choices over a wide range of accuracy requirements.

2.6. Methods used in clothing literature

Terzopoulos et. al.[TPBF87] used a finite element formula-
tion and a simple implicit Euler scheme to solve the aris-
ing ODE. Later publications focused on explicit integra-
tion methods, e.g. Eberhardt et al.[EWS96] preferred RK4
and the Burlisch-Stoer extrapolation method as suggested in
Press et al.[PTVF88]. Volino[CVT95] used an explicit mid-
point rule.

Implicit methods again became popular with the work of
Baraff and Witkin. They used a linearized implicit Euler
method and achieved simulations about an order of magni-
tude faster than explicit methods. Although nonlinear con-
straints are formulated in the model, they only use their lin-
ear approximation to obtain a linear system of equations.

This way the system to be solved in each time step also be-
comes linear and can be solved efficiently by a cg-method.
This method corresponds to the solution of a nonlinear sys-
tem with only one Newton iteration. Because the nonlin-
ear part is not integrated, with high stiffness one may en-
counter similar slow downs as observed by Volino[VMTO1]
and Eberhardt[EEHOO].

Provot[Pro95] proposed a simple model only incorporat-
ing linear springs, combining it with an explicit method. This
model was used by Desbrun et. al. [DSB99] who also use
only a linearized implicit method. But instead of linearizing
the whole system they split it in a linear and nonlinear part
and use a precomputed inverse of A for solving the linear
part of the equations. They don’t aim at solving the equation
completely, as they don’t integrate the nonlinear term explic-
itly. Instead the angular momentum is corrected to account
for the nonlinear part. With this algorithm one can neither
change the stepsize & nor deal with an A depending on 7.

Based on this work Kang et al.[KCC*00] did some further
simplification to avoid solving the linear system. In order to
update the solution vector in one step they divide by diagonal
entry of the matrix of the linear system. Therfore they just
do a single iteration of a Jacobi-like scheme for solving the
linear equations. Again this may lead to artificial slowdowns.

Recently more advanced methods gain importance. Hauth
et. al.[HEO1] used BDF and the implicit midpoint rule, and
Choi and Ko[CKO02] also used BDF, both combining it with
an iterative cg solver. In Hauth et. al. [?] there the complete
BDEF-2 algorithm, including variable step sizes, is presented
in pseudocode, derived in the presented framework.

2.7. Selecting an efficient method

Which method is best for a certain application? This ques-
tion is nearly impossible to answer a priori. The only choice
is to try a set of methods and to evaluate which one performs
best. Choosing the methods to try, though can be done based
on theoretical considerations and observations of the prob-
lem at hand. A possible strategy is shown in figure 8.

The same statement holds for predicting the efficiency of a
method. Generally, implicit methods require more work per
step. On the other hand one may be able to use time steps that
are several magnitudes larger than the ones explicit methods
would allow. Although accuracy will suffer, the integration
won’t be unstable (see figure 2(b) for example 3). If evalu-
ations of the right hand side function are cheap, a step with
RK(4) is faster than an implicit step with BDF(4). On the
other hand if it is cheap to compute a good sparse approxi-
mation to the jacobian, it may be more efficient to solve the
linear system with a few cg iterations than to perform 4 full
function evaluations.

(© The Eurographics Association 2004.
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explicit Euler for
evaluation of
correctness.

Does the solution
suddenly diverge for
h>h_,?
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Yes

System is supposed
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Are the solutions
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Yes No

No
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Is accuracy more
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computation times?
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Integrators: Numerical or
Verlet analytical Jacobian
needed.
Integrators:
Implicit Euler
Implicit Midpoint
BDF

Accurate Integrators:

Explicit Midpoint Explicit Euler
Adams Explicit Midpoint
RK4 Adams

Fast Integrators:

Figure 8: Selecting a method.

3. Solving nonlinear systems

In general, all implicit methods require the solution of a non-
linear system. The implicit Euler method for example re-
duces our integration problem to the solution of the nonlin-
ear system

Y —hf(Y1) Yo =0. (46)

The other methods yield a system of similar form, namely

N-hG+%) ~H=0 @)
2 4 1
Ylfgf(Yl)Jr(ngoJrgY_l) -0 (48)

for the midpoint and BDF(2) rule, respectively. This is a non-
linear system of dimension 6/N. It must be solved with New-
ton’s method to allow arbitrary step sizes independent of A.
Simpler methods for nonlinear systems would compensate
the advantage of A-stability because the number of iterations
would increase proportionally to the stiffness parameter |A|.
We now will work out an approach for implementing New-
ton’s method efficiently.

3.1. Newton’s method

For the nonlinear system G(Y) = 0 we compute a numerical
solution by the following algorithm:

Algorithm 1: Newton’s Method

(1) for k=1,2,... until convergence do
(2)  Compute G(Y"W).

(3) Compute J¥ = 2.G(y").

(4)  Solve JYs® = —G(Y®W).
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(5) y®h .— y® +s(k)
end

Applying Newton’s method reduces the problem to the
successive solution of linear systems. In a classical Newton
method this is achieved by Gaussian elimination. This intro-
duces a lot of non-zero elements into the factors. To cope
with this effect, specialised sparse solvers have to be used.
For a discussion we refer to [DER90].

The majority of authors[BW98, VMTO00, HEO1, CK02]
use iterative methods to solve the linear system. We will also
use the conjugate gradient method here to solve the linear
systems in each Newton step. Unfortunately this changes the
convergence behaviour of the outer Newton method, which
is referred to as an inexact Newton method[Rhe98], given by
algorithm 2.

Algorithm 2: Inexact Newton Method
(1) for k=1,2,... until convergence do
(2)  Compute G(Y™).
(3) Compute J¥ = 2 (Y®),
@) Find 5% with J¥s® = —G(YW)) +r%,
such that ||| < e[|G(Y™“)]].
(G)  YHU =YW 4
end

RS SS)

3.2. Residual control

The error of the iterative solution of the linear system is for-
mulated in terms of the residual, which is easily computa-
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tionally accessible, whereas the actual error cannot be com-
puted. The tolerance of the linear iteration is decreased pro-
portionally to the monotonically decreasing residual of the
nonlinear iteration.

An analysis of this method[Rhe98] shows that it converges
under rather weak additional assumptions. If the classical
Newton method converges and the scalar tolerances N are
uniformly bounded by an n < 1, the inexact method con-
verges. In literature the N are referred to as forcing terms.
Note that this additional assumption is also necessary: For
N = 1, s* = 0 would be admissible and the iteration would
stagnate.

The inexact method then at least converges linearly,
whereas Newton converges superlinearly. By choosing the
1y to converge to zero sufficiently fast{[Rhe98], the conver-
gence of the inexact Newton method can be forced to have
an order > 1. In a neighbourhood of the solution the conver-
gence usually speeds up. By extrapolating the solution of the
previous time step we obtain a good initial value for the new
solution and the method converges quickly using the con-
stant bound 1 = 0.02 without imposing a too strict tolerance
on the linear solver.

3.3. Inexact simplified Newton methods

The efficiency of the Newton method can be further im-
proved by another approximation. In the simplified version
of Newton’s method the Jacobian J® is approximated by J.
Such a scheme can be rewritten in the form of an inexact
Newton method, if the linear system is written as follows
and J is chosen as approximation to J®

Is" = —G(Y") + (7 —J9)s"Y + 7Y
—G(rY)+# (49)

The residual r* is replaced by the larger #*, which can
be bounded if J ~ J*. By choosing i’ appropriately, the
method still converges. In fact, we trade some accuracy ap-
proximating J* against accuracy in solving the linear sys-
tem and up to a certain limit the method still behaves as be-
fore.

This degree of freedom can be further exploited by even
not computing J but a sparser approximation of it. Hauth
et. al.[HEO1] exploit the idea previously used by Desbrun
et al.[DSB99] and approximate the Jacobian by the linear
expression

Fntn) = 3 | W) + Foiv| 60
JlGeE Lhij ij

This choice of the Jacobian has two major advantages over
the full Jacobian. First, J is inexpensive to compute and only
changes when either the material constants or the step size
changes. Second, we reduce the entries in the Jacobian to
approximately a third of the entries in the sparsity pattern
of the full Jacobian. Hence an iteration of the linear solver

only requires a third of the original time. Obviously this is
a major speed-up for the solver. The resulting algorithm is
surprisingly simple.

Algorithm 3: Inexact Simplified Newton’s Method

(1) Compute J =~ 5 G(Y™).

(2) fork=1,2,... until convergence do

(3)  Compute G(Y™).

(4)  Find s“ with Js% = —G(Y™)) +r©,
such that ||| < || G(Y @) ]].

(5)  Update Y™ :=y® 4 ¥

end

3.4. Adaptive time stepping

Newton’s method can also be used to control the step size of
the ODE solver. If the convergence of Newton’s method is
poor, the time step # is reduced such that the solution of the
previous time step is a better start value for the current time
step and achieves a faster convergence. On the other hand,
the number of Newton iterations necessary is a criteria for
the behaviour of the integrator and has already been used for
an order selection algorithm[HW99] of the Radau integra-
tor. In our implementation the number of Newton iterations
decides whether to increase or decrease the time step 4.

4. Linear Systems

In a last section we briefly present the last part of the puzzle,
the solution of the remaining nonlinear system. We restrict
the discussion to the most important iterative method used,
the method of conjugate gradients. A more profound discus-
sion can be found in the standard texts of Trefthen[TB0O],
Greenbaum[Gre97] or Saad[Saa96]. It uses only matrix-
vector multiplications to solve a symmetric system of the
form

Ax=b, 1)

with A € IRVN ,X,b € IRY. Thus the expenses for a matrix
inversion is reduced from O(N*) to a hopefully small num-
ber of multiplications with a complexity of O(Nz). In the
present application, A is the Jacobian arising in Newton’s
method,e.g. A=1—h a% f(Yp) for the implicit Euler method.

4.1. Preconditioning

What lets Krylov methods like cg fly, is the use of a cheaply
invertible preconditioner M ~ A and the solution of

M 'Ax=M""p, (52)

which is equivalent to (51). The most prominent precondi-
tioners in computer science literature are

(© The Eurographics Association 2004.
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e The diagonal preconditioner
M :=diag(A). (53)

This is the choice considered in the systems of
Baraff(BW98] and Volino[ VMTO00], also called diagonal
scaling. This preconditioner is easily available and inex-
pensive to apply, as each application is just a division of
each vector-component by the corresponding diagonal en-
try, resulting in N flops per application.

e The incomplete Cholesky factorisation (ICC) is computed
by carrying out an approximate Cholesky factorisation of
A, i.e. formally factorising A and dropping all intermedi-
ate values not fitting the sparsity pattern. It is more expen-
sive to compute and to apply, resulting in almost 2nnz(A)
flops per application, where nnz denotes the set entries of
A.

e The successive-symmetric over-relaxation preconditioner
(SSOR) is another iterative solving scheme for linear
equations. The matrix formulation of one SSOR-step is
given by the multiplication by

M:=(D-LDMD-L"), (54)

where A = D — L— LT and D = diag(A), L strictly lower
tridiagonal. Note that the inversion can be realised by in-
verting two triangular systems, as in practice one product
with D is precomputed. Thus the SSOR-preconditioner is
inexpensive to compute and the cost of an application is
about the same as for the ICC-preconditioner.

e The block diagonal preconditioner, a generalisation of di-
agonal scaling where typically 3 x 3 blocks of A are in-
verted.

4.2. Enforcing constraints for collision response

The incorporation of collisions distinguishes animation from
classical problems in numerical analysis. The effects cannot
be modelled a priori in the differential equation, since the
collision reaction depends on the collisions that are detected
in each time step. Therefore, the ODE solver has to incorpo-
rate a collision response according to the current collisions.
This requires the ODE to be modified during run time in each
time step.

A first and useful technique is to use constraints, i.e. to
constrain the motion of a particle p; during a time step in
the direction ¢;, e.g. to allow no movement in the (negative)
normal direction of a colliding surface.

Baraff and Witkin [BW98] presented a very efficient
method to enforce constraints inside a cg-method. The cg
method, like Newton’s method, is an update method. It starts
with an initial guess and adds scalar multiples of a search
direction. If we insure, that the initial guess obeys the con-
straints and each update is orthogonal to the constraint direc-
tions, then the final solution will also fulfill the constraints.
Therefore in each iteration of the cg-method the new direc-
tion is filtered such that the solution does not alter in a con-
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strained direction. We will give some theoretical background
to illuminate this method.

Constraining positions and particles is equivalent to
adding algebraic equations to the system. Therefore, a differ-
ential algebraic system has to be solved with different con-
straints (algebraic equations) in each step. Collision forces
are given implicitly, i.e. the predefined positions and veloci-
ties result in constraint forces, which can be computed after
each step.

The constraints can be implemented by multiplying the
linear system matrix with the rank-deficient projector matrix
P:=1-Y%; d,-diT. The vectors d; € IR*" are constructed by
inserting the constrained direction ¢; € IR to constrain parti-
cle j at the position 3 j. Thus we seek an admissible solution
of the system

PAPx = Pb. (55)

Here the multiplication on the right restricts the forces to ad-
missible forces, the left multiplication with P filters the ve-
locities, the multiplication with A is the linearized transfor-
mation to accelerations, which are again filtered by P. This
system ceases to be positive definite, in fact it is nonnegative
definite, but of course not of full rank. A unique solution
exists if the system is expanded by the equation

(I—P)x=0, (56)

which states that the solution is admissible, i.e. has no com-
ponents outside the nullspace ker(P). Effectively, the equal-
ity constrained least square problem

||PAPx — Pb|| — min, where (I —P)x=0 (57)

is solved. Since Pb € range(PAP) the minimum is 0 and the
cg method applied to PAP is able to find a solution of this
singular linear system[FH94].

Algorithm 4: Filtered cg

while 1l < ¢
[[o]l =

i=i+1
solve Mz =r
ifi =0
p=(rnz)
else
P
B_Pl
p=z+Pp

end
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