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Abstract
This tutorial aims at presenting a wide range of geometric data structures, algorithms and techniques
from computational geometry to computer graphics practitioners. To achieve this goal we introduce
several data structures, discuss their complexity, point out construction schemes and the corresponding
performance and present standard applications in two and three dimensions.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Data Structures]: Computer Graph-
ics

1. Introduction

In recent years, methods from computational geome-
try have been widely adopted by the computer graph-
ics community. Many solutions draw their elegance
and efficiency from the mutually enriching combina-
tion of such geometrical data structures with computer
graphics algorithms.

With this tutorial we try to familiarize practitioners
in the computer graphics field with several geometric
data structures, algorithms and techniques from com-
putational geometry. This should enable the atten-
dants to select the most suitable data structure when
developing computer graphics algorithms. In particu-
lar, we want to enable them to readily recognize a sub-
problem if it can be solved by some method known in
computational geometry.

The general concept throughout the tutorial is to
present each geometric data structure as follows: the
data structure will be defined and described in detail;
its complexity and some of its fundamental properties
will be discussed; construction algorithms and their
time bounds are given; one or more simple computa-
tional geometry algorithms based upon the data struc-
ture will be presented; finally, a number of recent rep-
resentative and practically relevant algorithms from
computer graphics will be described in detail.

Our selection of data structures and algorithms con-
sists of well-known concepts, which are both, powerful
and easy to implement. However, we do not try to pro-
vide a survey over any of the topics touched upon here
— this would be far beyond the scope of this tutorial.
For the same reason, this tutorial does not provide
a comprehensive overview of all techniques and algo-
rithms from computational geometry that might be
of interest to computer graphics researchers and de-
velopers. However, we do feel that the techniques we
present here should be working knowledge of anybody
in this field.

The tutorial is organized as follows. The classical
quadtrees and k-d-trees are the topics of Section 2.
In Section 3 we discuss the concept of Voronoi di-
agrams and Delaunay triangulations. Furthermore,
BSP-trees are presented in Section 4. Section 5 is

about volume hierarchies, and finally, in Section 6 we
present a method for generic dynamization.

2. Quadtrees and K-d-Trees

Within this section we will present some fundamental
geometric data structures.

In section Section 2.1, we introduce the quadtree
structure, its definition and complexity, the recursive
construction scheme and a standard application are
presented. It has applications in mesh generation as
shown in Section 2.3, 2.4, 2.5.

A natural generalization of the one-dimensional
search tree to k dimensions is shown in Section 2.2.
The k-d-tree is efficient for axis-parallel rectangular
range queries.

The quadtree description was adapted from de Berg
et al. 13 and the k-d-tree introduction was taken
from 38.

2.1. Quadtrees and Octrees

2.1.1. Definition

A quadtree is a rooted tree so that every internal node
has four children. Every node in the tree correspond to
a square. If a node v has children, their corresponding
squares are the four quadrants, see Figure 1 for an
example.

Quadtrees can store many kind of data, we describe
the variant that stores a set of points. For the defini-
tion a simple recursive splitting of squares is continued
until there is only one point in a square. Let P be a
set of points.

The definition of a quadtree for a set of points in a
square Q = [x1Q : x2Q]× [y1Q : y2Q] is as follows:

• If |P | ≤ 1 then the quadtree is a single leaf where
Q and P are stored.

• Otherwise let QNE , QNW , QSW and QSE denote
the four quadrants. Let xmid := (x1Q +x2Q)/2 and
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SESWNWNE

Figure 1: An example of a quadtree.

ymid := (y1Q + y2Q)/2, and define

PNE := {p ∈ P : px > xmid and py > ymid},
PNW := {p ∈ P : px ≤ xmid and py > ymid},
PSW := {p ∈ P : px ≤ xmid and py ≤ ymid} and
PSE := {p ∈ P : px > xmid and py ≤ ymid}.

The quadtree consists of a root node v, Q is stored
at v. In the following, let Q(v) denote the square
stored at v. Furthermore v has four children: The
X-child is the root of the quadtree of the set PX for
X ∈ {NE, NW, SW, SE}.

2.1.2. Complexity and Construction

The recursive definition implies a recursive construc-
tion algorithm. Only the starting square has to be cho-
sen adequately. If the split operation cannot be per-
formed well the quadtree is unbalanced. Despite this
effect, the depth of the tree is related to the distance
between the points.

Theorem 1
The depth of a quadtree for a set P of points in the
plane is at most log(s/c) + 3

2
, where c is the smallest

distance between any to points in P and s is the side
length of the initial square.

The cost of the recursive construction and the com-
plexity of the quadtree depends on the depth of the
tree.

Theorem 2
A quadtree of depth d which stores a set of n points has
O((d + 1)n) nodes and can be constructed in O((d +
1)n) time.

Proof Due to the degree 4 of internal nodes, the total
number of leaves is one plus three times the number of
internal nodes. Hence it suffices to bound the number
of internal nodes.
Any internal node v has one or more points inside
Q(v). The squares of the node of a single depth cover
the initial square. So at every depth we have at most
n internal nodes which gives the node bound.
The most time-consuming task in one step of the re-
cursive approach is the distribution of the points. The
amount of time spent is only linear in the number of
points and the O((d + 1)n) time bound holds.

The 3D equivalent of quadtrees are octrees. The
quadtree construction can be easily extended to octrees
in 3D. The internal nodes of octrees have eight sons
and the sons correspond to boxes instead of squares.

2.1.3. Neighbor Finding

A simple application of the quadtree of a point set is
neighbor finding, i.e., given a node v and a direction,
north, east, south or west, find a node v′ so that Q(v) is
adjacent to Q(v′). Normally, v is a leaf and v′ should
be a leaf as well. The task is equivalent to finding
an adjacent square of a given square in the quadtree
subdivision.

Obviously one square may have many such neigh-
bors, see Figure 2.

q

Figure 2: The square q has many west neighbors.

For convenience, we extend the neighbor search. The
given node can also be internal, i.e., v and v′ should
be adjacent corresponding to the given direction and
should also have the same depth. If there is no such

© The Eurographics Association 2002.
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node, we want to find the deepest node whose square
is adjacent.

The algorithm works as follows. Suppose we want
to find the north neighbor of v. If v happens to be the
SE- or SW -child of its parent, then its north neighbor
is easy to find, it is the NE- or NW -child of its parent,
respectively. If v itself is the NE- or NW -child of its
parent, then we proceed as follows. Recursively find
the north neighbor of µ of the parent of v. If µ is an
internal node, then the north neighbor of v is a child
of µ; if µ is a leaf, the north neighbor we seek for is µ
itself.

This simple procedure runs in time O(d + 1).

Theorem 3
Let T be quadtree of depth d. The neighbor of a given
node v in T a given direction, as defined above, can
be found in O(d + 1) time.

Furthermore, there is also a simple procedure
that constructs a balanced quadtree out of a given
quadtree T , this can be done in time O(d + 1)m and
O(m) space if T has m nodes. For details see Berg
et al 13.

Similar results hold for octrees as well.
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Figure 3: A k-d-tree for k = 2 and a rectangular
range query. The nodes correspond to split lines.

2.2. K-d-Trees

The k-d-tree is a natural generalization of the one-
dimensional search tree.

Let D be a set of n points in Rk. For convenience let
k = 2 and let us assume that all X- and Y -coordinates
are different. First, we search for a split-value s of the
X-coordinates. Then we split D by the split-line X = s
into subsets

D<s = {(x, y) ∈ D; x < s} = D ∩ {X < s}
D>s = {(x, y) ∈ D; x > s} = D ∩ {X > s}.

For both sets we proceed with the Y -coordinate and
split-lines Y = t1 and Y = t2. We repeat the process
recursively with the constructed subsets. Thus, we ob-
tain a binary tree, namely the 2-d-tree of the point set
D, see Figure 3. Each internal node of the tree corre-
sponds to a split-line. For every node v of the 2-d-tree
we define the rectangle R(v), which is the intersection
of halfplanes corresponding to the path from the root
to v. For the root r, R(r) is the plane itself; for the
sons of r, say left and right, we produce to halfplanes
R(left) and R(right) and so on. The set of rectan-
gles {R(l) : l is a leaf} gives a partition of the plane
into rectangles. Every R(l) has exactly one point of D
inside.

This structure supports range queries of axis-
parallel rectangles, i.e., if Q is an axis-parallel rectan-
gle, the set of sites v ∈ D with v ∈ Q can be computed
efficiently. We simply have to compute all nodes v with

R(v) ∩Q 6= ?.

Additionally we have to test whether the points in-
side the subtree of v are inside Q.

The efficiency of the k-d-tree with respect to range
queries depends on the depth of the tree. A balanced
k-d-tree can be easily constructed. We sort the X- and
Y -coordinates. With this order we recursively split the
set into subsets of equal size in time O(log n). The
construction runs in time O(n log n). Altogether the
following theorem holds:

Theorem 4
A balanced k-d-tree for n points in the plane can be
constructed in O(n log n) and needs O(n) space. A
range query with an axis-parallel rectangle can be an-
swered in time O(

√
n+a), where a denotes the size of

the answer.

2.3. Height Field Visualization

A special area in 3D visualization is the rendering of
large terrains, or more generally, of height fields. A
height field is usually given as a uniformly-gridded
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Figure 4: A height field approximated by a grid 11. Figure 5: The same heigt field approximated by a
TIN.

T-vertices!

4 8

Figure 6: In order to use quadtres for defining a
height field mesh, it should be balanced.

Figure 7: A quadtree defines a recursive subdivision
scheme yielding a 4-8 mesh. The dots denote the newly
added vertices. Some vertices have degree 4, some 8
(hence the name).

square array h : [0, N − 1]2 → R, N ∈ I, of height
values, where N is typically in the order of 16,384 or
more (see Figure 4). In practice, such a raw height
field is often stored in some image file format, such as
GIF. A regular grid is, for instance, one of the stan-
dard forms in which the US Geological Survey pub-
lishes their data, known as the Digital Elevation Model
(DEM) 22.

Alternatively, height fields can be stored as trian-
gular irregular networks (TINs) (see Figure 5). They
can adapt much better to the detail and features (or
lack thereof) in the height field, so they can approxi-
mate any surface at any desired level of accuracy with
fewer polygons than any other representation.44 How-
ever, due to their much more complex structure, TINs
do not lend themselves as well as more regular repre-
sentations to interactive visualization.

The problem in terrain visualization is that if the
user looks at it from a low viewpoint directed at the
horizon, then there are a few parts of the terrain that
are very close while the majority of the visible ter-
rain is at a larger distance. Close parts of the ter-
rain should be rendered with high detail, while dis-
tant parts should be rendered with very little detail in
order to maintain a high frame rate.

In order to solve this problem, a data structure is
needed that allows to quickly determine the desired
level of detail in each part of the terrain. Quadtrees
are such a data structure, in particular, since they
seem to be a good compromise between the simplicity
of non-hierarchical grid representation and the good
adaptivity of TINs.

The general idea is to construct a quadtree over the
grid, and then traverse this quadtree top-down in or-
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Figure 8: The 4-8 subdivision can be generated by two
interleaved quadtrees. The solid lines connect siblings
that share a common father.

Figure 9: The white quadtree can be stored in the
unused “ghost” nodes of the black quadtree.

der to render it. At each node, we decide whether the
detail offered by rendering the two associated triangles
is enough, or if we have to go down further.

One problem with quadtrees is that nodes are not
quite independent of each other. Assume we have con-
structed a quadtree over some terrain as depicted in
Figure 6. If we render that as-is, then there will be
a gap (a.k.a. crack) between the top left square and
the fine detail squares inside the top right square. The
vertices causing this problem are called T-vertices. Tri-
angulating them would help in theory, but in practice
this leads to long and thin triangles which have prob-
lems on their own.

The solution is, of course, to use a balanced quadtree
and triangulate that (see Section 2). Thus, a quadtree
offers a recursive subdivision scheme to define a reg-
ular grid (see Figure 7): start with a square subdi-
vided into two right-angle triangles; with each recur-
sion step, subdivide the longest side of all triangles
(the hypothenuse) yielding two new right-angle trian-
gles each45 (hence this scheme is sometimes referred to
as “longest edge bisection”). This yields a mesh where
all vertices have degree 4 or 8 (except the border ver-
tices), which is why such a mesh is often called a 4-8
mesh.

This subdivision scheme induces a directed acyclic
graph (DAG) on the set of vertices: vertex j is a child
of i if it is created by a split of a right angle at ver-
tex i. This will be denoted by an edge (i, j). Note that
almost all vertices are created twice (see Figure 7), so
all nodes in the graph have 4 children and 2 parents
(except the border vertices).

During rendering, we will choose cells of the subdivi-
sion at different levels. Let M0 be the fully subdivided

mesh (which corresponds to the original grid) and M
be the current, incompletely subdivided mesh. M cor-
responds to a subset of the DAG of M0. The condition
of being crack-free can be reformulated in terms of the
DAGs associated with M0 and M :

M is crack-free ⇔
M does not have any T-vertices ⇔
∀j ∈ M : (i, j) ∈ M0 ⇒ (i, j) ∈ M (1)

In other words: you cannot subdivide one triangle
alone, you also have to subdivide the one on the other
side. During rendering, this means that if you render
a vertex, then you also have to render all its ancestors
(remember: a vertex has 2 parents).

Rendering such a mesh generates (conceptually) a
single, long list of vertices that are then fed into the
graphics pipeline as a single triangle strip. The pseudo-
code for the algorithm looks like this (simplified):

submesh(i,j)
if error(i) < τ then

return
end if
if Bi outside viewing frustum then

return
end if
submesh( j, cl )
V += pi

submesh( j, cr )

where error(i) is some error measure for vertex i, and
Bi is the sphere around vertex i that completely en-
closes all descendant triangles.

Note that this algorithm can produce the same ver-
tex multiple times consecutively; this is easy to check,
of course. In order to produce one strip, the algorithm
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Figure 10: A scalar field is often given in the form of
a curvilinear grid. By doing all calculations in compu-
tational space, we can usually save a lot of computa-
tional effort.

Figure 11: Cells straddling the isosurface are triangu-
lated accoring to a lookup table. In some cases, several
triangulations are possible, which must be resolved by
heuristics.

has to copy older vertices to the current front of the
list at places where it makes a “turn”; again, this is
easy to detect, and the interested reader is referred to
45.

One can speed up the culling a bit by noticing that
if Bi is completely inside the frustum, then we do not
need to test the child vertices any more.

We still need to think about the way we store our
terrain subdivision mesh. Eventually, we will want to
store it as a single linear array for two reasons:

1. The tree is complete, so it really would not make
sense to store it using pointers.

2. We want to map the file that holds the tree into
memory as-is (for instance, with Unix’ mmap func-
tion), so pointers would not work at all.

We should keep in mind, however, that with current
architectures, every memory access that can not be
satisfied by the cache is extremely expensive (this is
even more so with disk accesses, of course).

The simplest way to organize the terrain vertices
is a matrix layout. The disadvantage is that there is
no cache locality at all across the major index. In or-
der to improve this, people often introduce some kind
of blocking, where each block is stored in matrix and
all blocks are arranged in matrix order, too. Unfortu-
nately, Lindstrom and Pascucci45 report that this is,
at least for terrain visualization, worse than the simple
matrix layout by a factor 10!

Enter quadtrees. They offer the advantage that ver-
tices on the same level are stored fairly close in mem-
ory. The 4-8 subdivision scheme can be viewed as two
quadtrees which are interleaved (see Figure 8): we

start with the first level of the “white” quadtree that
contains just the one vertex in the middle of the grid,
which is the one that is generated by the 4-8 subdi-
vision with the first step. Next comes the first level
of the “black” quadtree that contains 4 vertices, which
are the vertices generated by the second step of the 4-8
subdivision scheme. Etc. Note that the black quadtree
is exactly like the white one, except it is rotated by 45°.
When you overlay the white and the black quadtree
you get exactly the 4-8 mesh.

Notice that the black quadtree contains nodes that
are outside the terrain grid; we will call these nodes
“ghost nodes”. The nice thing about them is that we
can store the white quadtree in place of these ghost
nodes (see Figure 9). This reduces the number of un-
used elements in the final linear array down to 33%.

During rendering we need to calculate the indices of
the child vertices, given the three vertices of a triangle.
It turns out that by cleverly choosing the indices of the
top-level vertices this can be done as efficiently as with
a matrix layout.

The interested reader can find more about this
topic in Lindstrom et al.44, Lindstrom and Pascucci45,
Balmelli et al.6, Balmelli et al.5, and many others.

2.4. Isosurface Generation

One technique (among many others) of visualizing a
3-dimensional volume is to extract isosurfaces and ren-
der those as a regular polygonal surface. It can be used
to extract the surfaces of bones or organs in medical
scans, such as MRI or CT.

Assume for the moment that we are given a scalar
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x
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x=0 m 0 m 0

y=0 1

Figure 12: Octrees offer a simple way to compute
isosurfaces efficiently.

Figure 13: Volume data layout should match the or-
der of traversal of the octree.

field f : R3 → R. Then the task of finding an isosur-
face would“just”be to find all solutions (i.e., all roots)
of the equation f(~x) = t.

Since we live in a discrete world (at least in com-
puter graphics), the scalar field is given usually in the
form of a curvilinear grid: the vertices of the cells are
called nodes, and we have one scalar and a 3D point
stored at each node (see Figure 10). Such a curvilinear
grid is usually stored as a 3D array, which can be con-
ceived as a regular 3D grid (here, the cells are often
called voxels).

The task of finding an isosurface for a given value
t in a curvilinear grid amounts to finding all cells
of which at least one node (i.e., corner) has a value
less than t and one node has a value greater than
t. Such cells are then triangulated according to a
lookup table (see Figure 11). So, a simple algorithm
works as follows 46: compute the sign for all nodes
(⊕ ,> t , ª ,< t); then consider each cell in turn,
use the eight signs as an index into the lookup table,
and triangulate it (if at all).

Notice that in this algorithm we have only used the
3D array — we have not made use at all of the infor-
mation exactly where in space the nodes are (except
when actually producing the triangles). We have, in
fact, made a transition from computational space (i.e.,
the curvilinear grid) to computational space (i.e., the
3D array). So in the following, we can, without loss of
generality, restrict ourselves to consider only regular
grids, i.e., 3D arrays.

The question is, how we can improve the exhaus-
tive algorithm. One problem is that we must not miss
any little part of the isosurface. So we need a data
structure that allows us to discard large parts of the
volume where the isosurface is guaranteed to not be.
This calls for octrees.

The idea is to construct a complete octree over the
cells of the grid 65 (for the sake of simplicity, we will
assume that the grid’s size is a power of two). The

leaves point to the lower left node of their associated
cell (see Figure 12). Each leaf ν stores the minimum
νmin and the maximum νmax of the 8 nodes of the
cell. Similarly, each inner node of the octree stores the
min/max of its 8 children.

Observe that an isosurface intersects the volume as-
sociated with a node ν (inner or leaf node) if and only
if νmin ≤ t ≤ νmax. This already suggests how the
algorithm works: start with the root and visit recur-
sively all the children where the condition holds. At
the leaves, construct the triangles as usual.

This can be accelerated further by noticing that if
the isosurface crosses an edge of a cell, then that edge
will be visited exactly four times during the complete
procedure. Therefore, when we visit an edge for the
first time, we compute the vertex of the isosurface on
that edge, and store the edge together with the vertex
in a hash table. So whenever we need a vertex on an
edge, we first try to look up that edge in the hash table.
Our observation also allows us to keep the size of the
hash table fairly low: when an edge has been visited
for the fourth time, then we know that it cannot be
visited any more; therefore, we remove it from the hash
table.

2.5. Ray Shooting

Ray shooting is an elementary task that frequently
arises in ray tracing, volume visualization, and in
games for collision detection or terrain following. The
task is, basically, to find the earliest hit of a given ray
when following that ray through a scene composed of
polygons or other objects.

A simple idea to avoid checking the ray against all
objects is to partition the universe into a regular grid
(see Figure 14). With each cell we store a list of objects
that occupy that cell (at least partially). Then, we just
walk along the ray from cell to cell, and check the ray
against all those objects that are stored with that cell.

© The Eurographics Association 2002.



Zachmann and Langetepe / Geometric Data Structures for CG

Figure 14: Ray shooting can be implemented effi-
ciently with an octree.

Figure 15: The same scenario utilizing an octree.

In this scheme (and others), we need a technique
called mailboxes that prevents us from checking the
ray twice against the same object 27: every ray gets a
unique ID (we just increment a global variable hold-
ing that ID whenever we start with a new ray); during
traversal, we store the ray’s ID with the object when-
ever we have performed an intersection test with it.
But before doing an intersection test with an object,
we look into its mailbox whether or not the current
ray’s ID is already there; if so, then we know that
we have already performed the intersection test in an
earlier cell.

In the following, we will present two methods which
both utilize octrees to further reduce the number of
objects considered.

2.5.1. 3D Octree

A canonical way to improve any grid-based method
is to construct an octree (see Figure 15). Here, the
octree leaves store lists of objects (or, rather, pointers
to objects). Since we are dealing now with polygons
and other graphical objects, the leaf rule for the octree
construction process must be changed slightly:

1. maximum depth reached; or,
2. only one polygon/object occupies the cell.

We can try to better approximate the geometry of the
scene by changing the rule to stop only when there
are no objects in the cell (or the maximum depth is
reached).

How do we traverse an octree along a given ray?
Like in the case of a grid, we have to make “horizon-
tal” steps, which actually advance along the ray. With
octrees, though, we also need to make “vertical” steps,
which traverse the octree up or down.

All algorithms for ray shooting with octrees can be
classified into two classes:

• Bottom-up: this method starts at that leaf in the
octree that contains the origin of the ray; from there
it tries to find that neighbor cell that is stabbed next
by the ray, etc.

• Top-down: this method starts at the root of the oc-
tree, and tries to recurse down into exactly those
nodes and leaves that are stabbed by the ray.

Here, we will describe a top-down method 56. The
idea is to work only with the ray parameter in order
to decide which children of a node must be visited.

Let the ray be given by

~x = ~p + t~d

and a voxel v by

[xl, xh]× [yl, yh]× [zl, zh]

In the following, we will describe the algorithm as-
suming that all di > 0; later, we will show that the
algorithm works also for all other cases.

First of all, observe that if we already have the line
parameters of the intersection of the ray with the bor-
ders of a cell, then it is trivial to compute the line
intervals half-way in between (see Figure 16):

tm
α =

1

2
(tl

α + th
α) , α ∈ {x, y, z} (2)

So, for 8 children of a cell, we need to compute only
three new line parameters. Clearly, the line intersects
a cell if and only if max{tl

i} < min{th
j }.

The algorithm can be outlined as follows:

traverse( v, tl, th )
compute tm

determine order in which sub-cells are hit by the ray
for all sub-cells vi that are hit do

traverse( vi, tl|tm, tm|th )
end for

© The Eurographics Association 2002.



Zachmann and Langetepe / Geometric Data Structures for CG

thx

tlx

tly

tmx
tmy

thy

tm
y > tl

x

tm
y < tl

x

Figure 16: Line parameters are trivial to compute for
children of a node.

Figure 17: The sub-cell that must be traversed first
can be found by simple comparisons. Here, only the
case tl

x > tl
y is depicted.

where tl|tm means that we construct the lower bound-
ary for the respective cell by passing the appropriate
components from tl and tm.

In order to determine the order in which sub-cells
should be traversed, we first need to determine which
sub-cell is being hit first by the ray. In 2D, this is ac-
complished by two comparisons (see Figure 17). Then,
the comparison of tm

x with tm
y tells us which cell is next.

In 3D, this takes a little bit more work, but is essen-
tially the same. First, we determine on which side the
ray has been entering the current cell by the following
table:

max{tl
i} Side

tl
x YZ

tl
y XZ

tl
z XY

Next, we determine the first sub-cell to be visited by
this table (see Figure 18 for the numbering scheme):

Side condition index bits

XY
tm
z < tl

x 0

tm
y < tl

x 1

XZ
tm
x < tl

y 0

tm
z < tl

y 2

YZ
tm
y < tl

x 1

tm
z < tl

x 2

The first column is the entering side determined in the
first step. The third column yields the index of the first
sub-cell to be visited: start with an index of zero; if one
or both of the conditions of the second column hold,
then the corresponding bit in the index as indicated
by the third column should be set. Finally, we can
traverse all sub-cells according to the following table:

0 4

6

3 7

5

2

x

y

z

Figure 18: Sub-cells are numbered according to this
scheme.

current exit side
sub-cell YZ XZ XY

0 4 2 1
1 5 3 ex
2 6 ex 3
3 7 ex ex
4 ex 6 5
5 ex 7 ex
6 ex ex 7
7 ex ex ex

where “exit side”means the exit side of the ray for the
current sub-cell.

If the ray direction contains a negative compo-
nent(s), then we just have to mirror all tables along
the respective axis (axes) conceptually. This can be
implemented efficiently by an XOR operation.

2.5.2. 5D Octree

In the previous, simple algorithm, we still walk along
a ray every time we shoot it into the scene. However,
rays are essentially static objects, just like the geome-
try of the scene! This is the basic observation behind
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Figure 19: With the direction cube, we can discretize
directions, and organize them with any hierarchical
partitioning scheme.

Figure 20: A uv interval on the direction cube plus a
xyz interval in 3-space yield a beam.

the following algorithm 1, 4. Again, it makes use of
octrees to adaptively decompose the problem.

The underlying technique is a discretization of rays,
which are 5-dimensional objects. Consider a cube en-
closing the unit sphere of all directions. We can iden-
tify any ray’s direction with a point on that cube,
hence it is called direction cube (see Figure 19). The
nice thing about it is that we can now perform any hi-
erarchical partitioning scheme that works in the plane,
such as an octree: we just apply the scheme individu-
ally on each side.

Using the direction cube, we can establish a one-to-
one mapping between direction vectors and points on
all 6 sides of the cube, i.e.,

S2 ↔ [−1, +1]2 × {+x,−x, +y,−y, +z,−z}
We will denote the coordinates on the cube’s side by
u and v.

Within a given universe B = [0, 1]3 (we assume it
is a box), we can represent all possibly occurring rays
by points in

R = B × [−1, +1]2 × {+x,−x, +y,−y, +z,−z} (3)

which can be implemented conveniently by 6 copies of
5-dimensional boxes.

Returning to our goal, we now build six 5-
dimensional octrees as follows. Associate (conceptu-
ally) all objects with the root. Partition a node in the
octree, if

1. there are too many objects associated with it; and
2. the node’s cell is too large.

If a node is partitioned, we must also partition its set
of objects and assign each subset to one of the children.

Observe that each node in the 5D octree defines
a beam in 3-space: the xyz-interval of the first three
coordinates of the cell define a box in 3-space, and the
remaining two uv-intervals define a cone in 3-space.

Together (more precisely, their Minkowski sum) they
define a beam in 3-space that starts at the cell’s box
and extends in the general direction of the cone (see
Figure 20).

Since we have now defined what a 5D cell of the
octree represents, it is almost trivial to define how ob-
jects are assigned to sub-cells: we just compare the
bounding volume of each object against the sub-cells
3D beam. Note that an object can be assigned to sev-
eral sub-cells (just like in regular 3D octrees). The
test whether or not an object intersects a beam could
be simplified further by enclosing a beam with a cone,
and then checking the objects bounding sphere against
that cone. This just increases the number of false pos-
itives a little bit.

Having computed the six 5D octrees for a given
scene, ray tracing through that octree is almost trivial:
map the ray onto a 5D point via the direction cube;
start with the root of that octree which is associated
to the side of the direction cube onto which the ray
was mapped; find the leaf in that octree that contains
the 5D point (i.e., the ray); check the ray against all
objects associated with that leaf.

By locating a leaf in one of the six 5D octrees, we
have discarded all objects that do not lie in the general
direction of the ray. But we can optimize the algorithm
even further.

First of all, we sort all objects associated with a leaf
along the dominant axis of the beam by their mini-
mum (see Figure 21). If the minimum coordinate of an
object along the dominant axis is greater than the cur-
rent intersection point, then we can stop — all other
possible intersection points are farther away.

Second, we can utilize ray coherence as follows. We
maintain a cache for each level in the ray tree that
stores the leaves of the 5D octrees that were visited
last time. When following a new ray, we first look into
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1 2 3 4

Figure 21: By sorting objects with in each 5D leaf, we
can often stop checking ray intersection quite early.

Figure 22: By truncating the beam (or rather, the list
of objects) we can save a lot of memory usage of a 5D
octree, while reducing performance only insignificantly.

the octree leaf in the cache whether it is contained
therein, before we start searching for it from the root.

Another trick (that works with other ray accelera-
tion schemes as well) is to exploit the fact that we do
not need to know the first occluder between a point
on a surface and a light source. Any occluder suffices
to assert that the point is in shadow. So we also keep
a cache with each light source which stores that object
(or a small set) which has been an occluder last time.

Finally, we would like to mention a memory opti-
mization technique for 5D octrees, because they can
occupy a lot of memory. It is based on the observa-
tion that within a beam defined by a leaf of the octree
the objects at the back (almost) never intersect with
a ray emanating from that cell (see Figure 22). So we
store objects with a cell only if they are within a cer-
tain distance. Should a ray not hit any object, then we
start a new intersection query with another ray that
has the same direction and a starting point just be-
hind that maximum distance. Obviously, we have to
make a trade-off between space and speed here, but
when chosen properly, the cut-off distance should not
reduce performance too much while still saving a sig-
nificant amount of memory.

3. Voronoi Diagrams

For a given set of sites inside an area the Voronoi di-
agram is a partition of the area into regions of the
same neighborship. The Voronoi diagram and its dual
have been used for solving numerous problems in many
fields of science.

We will concentrate on its application to geometric

problems in 2D and 3D. For an overview of the Voronoi
diagram and its dual in computational geometry one
may consult the surveys by Aurenhammer 2, Bernal 9,
Fortune 24 and Aurenhammer and Klein 3. Addition-
ally, chapters 5 and 6 of Preparata and Shamos 54 and
chapter 13 of Edelsbrunner 19 could be consulted.

We start in Section 3.1 with the simple case of the
Voronoi diagram and the Delaunay triangulation of n
points in the plane, under the Euclidean distance. Ad-
ditionally we mention some of the elementary struc-
tural properties that follow from the definitions.

In Section 3.2 different algorithmic schemes for com-
puting the structures are mentioned. We present a
simple incremental construction approach which can
easily be generalized to 3D, see Section 3.3.1.

Apart from the Euclidean 3D case some other inter-
esting generalizations are mentioned in Section 3.3.2.

In Section 3.4 the relevance of the Voronoi diagram
and the Delaunay triangulation in 3D are shown.

Note, that we can only sketch many of the subjects
here. For further details and further literature see one
of the surveys mentioned above. The figures are taken
from Aurenhammer and Klein 3.

3.1. Definitions and Elementary Properties

3.1.1. Voronoi Diagram

Let S a set of n ≥ 3 point sites p, q, r, . . . in the plane.
In the following we assume that the points are in gen-
eral position, i.e., no four of them lie on the same circle
and no three of them on the same line.
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For points p = (p1, p2) and x = (x1, x2) let d(p, x)
denote their Euclidean distance. By pq we denote the
line segment from p to q. The closure of a set A will
be denoted by A.

Definition 5
For p, q ∈ S let

B(p, q) = {x | d(p, x) = d(q, x)}
be the bisector of p and q. B(p, q) is the perpendicu-
lar line through the center of the line segment pq. It
separates the halfplane

D(p, q) = {x | d(p, x) < d(q, x)}
containing p from the halfplane D(q, p) containing q.
We call

VR(p, S) =
\

q∈S,q 6=p

D(p, q)

the Voronoi region of p with respect to S. Finally, the
Voronoi diagram of S is defined by

V (S) =
[

p,q∈S,p6=q

VR(p, S) ∩VR(q, S).

An illustration is given in Figure 23. It shows how
the plane is decomposed by V (S) into Voronoi regions.
Note that it is convenient to imagine a simple closed
curve Γ around the “interesting” part of the Voronoi
diagram.

Γ

Figure 23: A Voronoi diagram of points in the Eu-
clidean plane.

The common boundary of two Voronoi regions be-
longs to V (S) and is called a Voronoi edge, if it con-
tains more than one point. If the Voronoi edge e bor-
ders the regions of p and q then e ⊂ B(p, q) holds.

Endpoints of Voronoi edges are called Voronoi ver-
tices; they belong to the common boundary of three
or more Voronoi regions.

There is an intuitive way of looking at the Voronoi
diagram. For any point x in the plane we can expand
the circle C(r) with center x and radius r by increasing
r continuously. We detect three cases depending on
which event occurs first:

• If C(r) hits one of the n sites, say p, then x ∈
VR(p, S).

• If C(r) hits two sites p and q simultaneously x be-
longs to the Voronoi edge of p and q.

• If C(r) hits three sites p, q and r simultaneously x
is the Voronoi vertex of p, q and r.

We will enumerate some of the significant properties
of Voronoi diagrams.

1. Each Voronoi region VR(p, S) is the intersection of
at most n − 1 open halfplanes containing the site
p. Every VR(p, S) is open and convex. Different
Voronoi regions are disjoint.

2. A point p of S lies on the convex hull of S iff its
Voronoi region VR(p, S) is unbounded.

3. The Voronoi diagram V (S) has O(n) many edges
and vertices. The average number of edges in the
boundary of a Voronoi region is less than 6.

The Voronoi diagram is a simple linear structure
and provides for a partition of the plane into cells of
the same neighborship. We omit the proofs and refer
to the surveys mentioned in the beginning.

Note, that the Voronoi edges and vertices build a
graph. Therefore the diagram normally is represented
by a graph of linear size. For example the diagram can
be represented by a doubly connected edge list DCEL,
see de Berg et al. 13, or with the help of an adjacency
matrix.

3.1.2. Delaunay Triangulation

We consider the dual graph of the Voronoi diagram,
the so called Delaunay triangulation. In general, a tri-
angulation of S is a planar graph with vertex set S
and straight line edges, which is maximal in the sense
that no further straight line edge can be added with-
out crossing other edges. The triangulation of a point
set S has not more than O(|S|) triangles.

Definition 6
The Delaunay triangulation DT(S) is the dual Graph
of the Voronoi diagram. The edges of DT(S) are called
Delaunay edges.

Obviously, the Delaunay triangulation DT(S) is a
triangulation of S, an example is shown in Figure 24.
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We present two equivalent definitions of the Delau-
nay triangulation. They are applied for the computa-
tion of the diagram and give also rise to generaliza-
tion, for example if the dual of a Voronoi diagram is
no longer well-defined.

1. Two points p, q of S give rise to a Delaunay edge iff
a circle C exists that passes through p and q and
does not contain any other site of S in its interior
or boundary.

2. Three points of S give rise to a Delaunay triangle
iff their circumcircle does not contain a point of S
in its interior.

DT(S)

V(S)
w

p

s

v
r

q

Figure 24: Voronoi diagram and Delaunay triangu-
lation.

3.2. Computation

The construction of the Voronoi diagram has time
complexity Θ(n log n). The lower bound Ω(n log n) can
be achieved by the following reductions.

• A reduction to the convex hull problem is given by
Shamos 58.

• A reduction to the ε-closeness problem is given by
Djidjev and Lingas 16 and by Zhu and Mirzaian 68.

The well-known computation paradigms

• Incremental construction,
• Divide-and-Conquer and
• Sweep

are convenient for the construction of the Voronoi
diagram or the Delaunay triangulation, respectively.
They can also be generalized to other metrics and sites
other than points, for example line segments or polyg-
onal chains. The result of the algorithms is stored in
a graph of linear size, see above.

All these approaches run in deterministic O(n log n).
We explain a simple Incremental construction tech-
nique which runs in O(n log n) expected time and com-
putes the Delaunay triangulation. The presentation is
adapted from Klein and Aurenhammer 3. The tech-
nique can easily be generalized to the three dimen-
sional case as we will see in Section 3.3.1.

Simple incremental construction: The inser-
tion process is described as follows: We construct
DTi = DT({p1, . . . , pi−1, pi}) by inserting the site pi

into DTi−1. We follow Guibas and Stolfi 30 and con-
struct DTi by exchanging edges, using Lawson’s 41

original edge flipping procedure, until all edges invali-
dated by pi have been removed.

It is helpful to extend the notion of triangle to the
unbounded face of the Delaunay triangulation. If pq is
an edge of the convex hull of S we call the supporting
outer halfplane H not containing S an infinite triangle
with edge pq. Its circumcircle is H itself, the limit of
all circles through p and q whose center tend to infinity
within H. As a consequence, each edge of a Delaunay
triangulation is now adjacent to two triangles.

Those triangles of DTi−1 whose circumcircles con-
tain the new site, pi, are said to be in conflict with pi.
According to the (equivalent) definition of the DTi,
they will no longer be Delaunay triangles.

Let qr be an edge of DTi−1, and let T (q, r, t) be the
triangle adjacent to qr that lies on the other side of
qr than pi; see Figure 25. If its circumcircle C(q, r, t)
contains pi then each circle through q, r contains at
least one of pi, t. Consequently, qr cannot belong to
DTi, due to the (equivalent) definition. Instead, pit
will be a new Delaunay edge, because there exists a
circle contained in C(q, r, t) that contains only pi and
t in its interior or boundary. This process of replacing
edge qr by pit is called an edge flip.

pi

q

t

r

C(pi,t)

C(q,r,t)

Figure 25: If triangle T (q, r, t) is in conflict with pi

then former Delaunay edge qr must be replaced by pit.

The necessary edge flips can be carried out effi-
ciently if we know the triangle T (q, s, r) of DTi−1 that
contains pi, see fig. Figure 26. The line segments con-
necting pi to q, r, and s will be new Delaunay edges, by
the same argument from above. Next, we check if e. g.
edge qr must be flipped. If so, the edges qt and tr are
tested, and so on. We continue until no further edge
currently forming a triangle with, but not containing
pi, needs to be flipped, and obtain DTi.
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(i) (ii) (iii)

SF
s

q
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q
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Figure 26: Updating DTi−1 after inserting the new site pi. In (ii) the new De-
launay edges connecting pi to q, r, s have been added, and edge qr
has already been flipped. Two more flips are necessary before the fi-
nal state shown in (iii) is reached.

Two task have to be considered:

1. Find the triangle of DTi−1 that is in conflict
with pi.

2. Perform all flips starting from this triangle.

It can be shown that the second task is bounded by
the degree of pi in the new triangulation. If the triangle
of DTi−1 containing pi is known, the structural work
needed for computing DTi from DTi−1 is proportional
to the degree d of pi in DTi.

So we yield an obvious O(n2) time algorithm for
constructing the Delaunay triangulation of n points:
we can determine the triangle of DTi−1 containing pi

within linear time, by inspecting all candidates. More-
over, the degree of pi is trivially bounded by n.

The last argument is too crude. There can be single
vertices in DTi that do have a high degree, but their
average degree is bounded by 6.

With a special implementation using a directed
acyclic graph (DAG), also called Delaunay tree due to
Boissonnat and Teillaud 10, we can detect the trian-
gles of DTi−1 which are in conflict with pi in O(log i)
expected time.

Altogether we get the following result:

Theorem 7
The Delaunay triangulation of a set of n points in the
plane can be easily incrementally constructed incre-
mentally in expected time O(n log n), using expected
linear space. The average is taken over the different
orders of inserting the n sites.

3.3. Generalization of the Voronoi Diagram

3.3.1. Voronoi Diagram and Delaunay
Triangulation in 3D

We will see that incremental construction is also ap-
propriate for the 3D case. The following description
was adapted from Aurenhammer and Klein 3.

Let S be a set of n point sites in 3D. The bisec-
tor of two sites p, q ∈ S is the perpendicular plane
through the midpoint of the line segment pq. The
region VR(p, S) of a site p ∈ S is the intersection
of halfspaces bounded by bisectors, and thus is a
3-dimensional convex polyhedron. The boundary of
VR(p, S) consists of facets (maximal subsets within
the same bisector), of edges (maximal line segments
in the boundary of facets), and of vertices (endpoints
of edges). The regions, facets, edges, and vertices of
V (S) define a cell complex in 3D.

This cell complex is face-to-face: if two regions have
a non-empty intersection f , then f is a face (facet,
edge, or vertex) of both regions. As an appropriate
data structure for storing a 3-dimensional cell complex
we mention the facet-edge structure in Dobkin and
Laszlo 17.

Complexity: The number of facets of VR(p, S) is
at most n − 1, at most one for each site q ∈ S \ {p}.
Hence, by the Eulerian polyhedron formula, the num-
ber of edges and vertices of VR(p, S) is O(n), too.
This shows that the total number of components of
the diagram V (S) in 3D is O(n2). In fact, there are
configurations S that force each pair of regions of V (S)
to share a facet, thus achieving their maximum possi-
ble number of

�
n
2

�
; see, e.g., Dewdney and Vranch 15.

This fact sometimes makes Voronoi diagrams in 3D
less useful compared to 2-space. On the other hand,
Dwyer 18 showed that the expected size of V (S) in
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p
q p

q

Figure 27: The Voronoi diagram of a point set in L1

and L2. Note, that there are structural differences.
Figure 28: An Euclidean Voronoi diagram of line seg-
ments.

d-space is only O(n), provided S is drawn uniformly
at random in the unit ball. This result indicates that
high-dimensional Voronoi diagrams will be small in
many practical situations.

In analogy to the 2-dimensional case, the Delaunay
triangulation DT(S) in 3D is defined as the geometric
dual of V (S). It contains a tetrahedron for each vertex,
a triangle for each edge, and an edge for each facet,
of V (S). Equivalently, DT(S) may be defined using
the empty sphere property, by including a tetrahedron
spanned by S as Delaunay iff its circumsphere is empty
of sites in S. The circumcenters of these empty spheres
are just the vertices of V (S). DT(S) is a partition of
the convex hull of S into tetrahedra, provided S is in
general position. Note that the edges of DT(S) may
form the complete graph on S.

Simple incremental construction: Among the
various proposed methods for constructing V (S) in
3D, incremental insertion of sites (compare Sec-
tion 3.2) is most intuitive and easy to implement. Ba-
sically, two different techniques for integrating a new
site p into V (S) have been applied. The more obvious
method first determines all facets of the region of p
in the new diagram, V (S ∪ {p}), and then deletes the
parts of V (S) interior to this region; see e.g. Watson 62,
Field 23, and Tanemura et al. 59. Inagaki et al. 33 de-
scribe a robust implementation of this method.

In the dual environment, this amounts to detect-
ing and removing all tetrahedra of DT(S) whose cir-
cumspheres contain p, and then filling the ’hole’ with
empty-sphere tetrahedra with p as apex, to obtain
DT(S ∪ {p}). An example of an edge flip in 3D is
shown in Figure 29.

Joe 35, Rajan 55, and Edelsbrunner and Shah 20 fol-
low a different and numerically more stable approach.

Like in the planar case, after having added a site to the
current Delaunay triangulation, certain flips changing
the local tetrahedral structure are performed in or-
der to achieve local “Delaunayhood”. The existence of
such a sequence of flips is less trivial, however. Joe 34

demonstrated that no flipping sequence might exist
that turns an arbitrary tetrahedral triangulation for
S into DT(S).

A complete algorithm with run time O(n2) can be
found in Shah 20.

3.3.2. Other Types of Generalizations

We simply list some of the generalization schemes and
show examples of some intuitive ones.

• Different metrics

– L1, a comparison of L1 and L2 is shown in 27

– L∞
– Convex distance functions

• Different space

– On trees and graphs

– Higher dimensions

• Weights

• More general sites

– Line segments, see 28.

– Polygonal chains

• Farthest point Voronoi diagram

• K-th order Voronoi digram

• Colored objects
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Figure 29: Two–into–three tetrahedra flip for five sites.

3.4. Applications of the Voronoi Diagram

3.4.1. Nearest Neighbor or Post Office
Problem

We consider the famous post office problem. For a set
S of sites in the plane and an arbitrary query point x
we want to compute the point of S closest to x effi-
ciently.

In the field of computational geometry there is a
general technique for solving such query problems.
One tries to decompose the query set into classes so
that every class has the same answer. Now for a sin-
gle answer we only have to determine its class. This
technique is called locus approach.

The voronoi diagram represents the locus approach
for the post office problem. The classes correspond to
the regions of the sites. For a query point x we want
to determine its class/region and return its owner.

To solve this task a simple technique can be applied.
We draw a horizontal line through every vertex of the
diagram and sort the lines in O(n log n) time, see Fig-
ure 30. The lines decompose the diagram into slabs.
For every slab we sort the set of crossing edges of the
Voronoi diagram in linear time. Altogether we need
O(n2) time for the simple construction.

For a query point x we locate its slab in O(log n)
time and afterwards its region in O(log n) time by bi-
nary search.

Theorem 8
Given a set S of n point sites in the plane, one can,
within O(n2) time and storage, construct a data struc-
ture that supports nearest neighbor queries: for an ar-
bitrary query point x, its nearest neighbor in S can be
found in time O(log n).

The simple technique can be easily extended to 3D.
There are also more efficient approaches, i.e., Edels-
brunner 19 constructs a O(log n) search structure for

x

Figure 30: After constructing the slabs, a query point
x can be located quickly.

the Voronoi diagram in linear time and with linear
space.

3.4.2. Other Applications of the Voronoi
Diagram in 2D

There are many different geometrical applications of
the Voronoi diagram and its dual. Here we simply list
some of them, together with some performance results,
provided that the diagram is given:

• Closest Pair of sites, O(n)
• Nearest Neighbor Search

– O(n) for all nearest neighbors of the sites
– O(k log2 n) expected time for k-th nearest neigh-

bors of query point x

• Minimum Spanning Tree and TSP-
Heuristic, O(n log n)

• Largest empty circle, O(n)
• Smallest enclosing circle (square with fixed orienta-

tion), O(n)
• Smallest color spanning circle (square with fixed ori-

entation), O(nk), where k is the number of colors
• Localization problems, see Hamacher31

• Clustering of objects, see Dehne and Noltemeier 14
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Figure 31: The texture synthesis algorithm proceeds
in scan line order through the texture and consid-
ers only the neighborhood around the current pixel as
shown.

Figure 32: Using an image pyramid, the texture syn-
thesis process becomes fairly robust against different
scales of detail in the sample images.

All these results stem more or less from the linear
complexity of the diagram. As we have already men-
tioned the complexity of the diagrams in three dimen-
sion is also linear in many practical situations. Thus
many of the presented problems can be solved in three
dimensions with almost the same time bound. We will
present some special applications for 3D.

3.5. Texture Synthesis

Textures are visual detail of the rendered geometry,
which have become very important in the past few
years, because the cost of rendering with texture is
the same as the cost without texture. Virtually all
real-world objects have texture, so it is extremely im-
portant to render them in synthetic worlds, too.

Texture synthesis generally tries to synthesize new
textures, either from given images, from a mathemat-
ical description, or from a physical model. Mathemat-
ical descriptions can be as simple as a number of sine
waves to generate water ripples, while physical mod-
els try to describe the physical or biological effects
and phenomena that lead to some texture (such as
patina or fur). In all of these “model-based” methods,
the knowledge about the texture is in the model and
the algorithm. The other class of methods starts with
one or more images; then they try to find some statisti-
cal or stochastic description (explicitely or implicitely)
of these, and finally it generates a new texture from
the statistic.

Basically, textures are images with the following
properties:

1. Stationary: if a window with the proper size is
moved about the image, the portion inside the win-
dow always appears the same.

2. Local: each pixel’s color in the image depends only
on a relatively small neighborhood.

Of course, images not satisfying these criteria can be
used as textures as well (such as façades), but if you
want to synthesize such images, then a statistical or
stochastic approach is probably not feasible.

In the following, we will describe a stochastic al-
gorithm that is very simple, very efficient, and works
remarkably well 64. Given a sample image, it does not,
like most other methods, try to compute explicitly the
stochastic model. Instead, it uses the sample image it-
self, which implicitly contains that model already.

We will use the following terminology:

I = Original (sample) image

T = New texture image

pi = Pixel from I

p = Pixel from T to be generated next

N(p) = Neighborhood of p (see Figure 31)

Initially, T is cleared to black. The algorithm starts
by adding a suitably sized border at the left and the
top, filled with random pixels (this will be thrown
away again at the end). Then, it performs the follow-
ing simple loop in scan line order (see Figure 31):

for all p ∈ T do
find the pi ∈ I that minimizes |N(p)−N(pi)|2 {*}
p := pi

end for

Well, the search in the loop is exactly a nearest-
neighbor search! This can be performed efficiently with
the algorithm presented in Section 3.4.1: if N(p) con-
tains k pixels, then the points are just 3k-dimensional
vectors of RGB values, and the distance is just the
Euclidean distance.
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Figure 33: Some results of the texture synthesis algorithm 64. In each pair, the image on the left is the original
one, the one on the right is the (partly) synthesized one.

Obviously, all pixels of the new texture are deter-
ministically defined, once the random border has been
filled. The shape of the neighborhood N(p) can be
chosen arbitrarily, it must just be chosen such that all
but the current pixel are already computed. Likewise,
other “scans” of the texture are possible and sensible
(for instance a spiral scan order), they must just match
the shape of N(p).

The quality of the texture depends on the size of
the neighborhood N(p). However, the optimal size it-
self depends on the “granularity” in the sample image.
In order to make the algorithm independent, we can
synthesize an image pyramid (see Figure 32). First,
we generate a pyramid I0, I1, . . . , Id for the sample
image I0. Then, we synthesize the texture pyramid
T 0, T 1, . . . , T d level by level with the above algorithm,
starting at the coarsest level. The only difference is
that we extend the neighborhood N(p) of a pixel p
over k levels as depicted by Figure 32. Consequently,
we have to build a nearest-neighbor search structure
for each level, because as we proceed downwards in the
texture pyramid, the size of the neighborhood grows.

Of course, now we have replaced the parameter of
the best size of the neighborhood by the parameter of
the best size per level and the best number of levels to
consider for the neighborhood. However, as 64 report,
a neighborhood of 9 × 9 (at the finest level) across 2
levels seems to be sufficient in almost all cases.

Figure 33 shows two examples of the results that
can be achieved with this method.

3.6. Shape Matching

As the availability of 3D models on the net and in
databases increases, searching for such models be-
comes an interesting problem. Such a functionality
is needed, for instance, in medical image databases,
or CAD databases. One question is how to specify a
query. Usually, most researchers pursue the “query by
content” approach, where a query is specified by pro-
viding a (possibly crude) shape, for which the database
is to return best matches. (This idea seems to origi-
nate from image database retrieval, where it was called

QBIC = “query by image content”.) The fundamental
step here is the matching of shapes, i.e., the calcula-
tion of a similarity measure.

Almost all approaches perform the following steps:

1. Define a transformation function that takes a shape
and computes a so-called feature vector in some
high dimensional space, which (hopefully) captures
the shape in its essence. Naturally, those transfor-
mation functions are preferred that are invariant
under rotation and/or translation and tessellation.

2. Define a similarity measure d on the feature vec-
tors, such that if d(f1, f2) is large, then the asso-
ciated shapes s1, s2 do not look similar. Obviously,
this is (partly) a human factors issue. In almost all
algorithms, d is just the Euclidean distance.

3. Compute a feature vector for each shape in the
database and store them in a data structure that
allows for fast nearest-neighbor search.

4. Given a query, i.e., a shape, compute its feature
vector, and retrieve the nearest neighbor from the
database. Usually, the system also retrieves all k
nearest neighbors. Often times, you are not inter-
ested in the exact k nearest neighbors but only in
approximate nearest neighbors (because the feature
vector is an approximation of the shape anyway).

The main difference among most shape matching al-
gorithms is, therefore, the transformation from shape
to feature vector.

So, fast shape retrieval essentially requires a fast
(approximate) nearest neighbor search. We could stop
our discussion of shape matching here, but for sake of
completeness, we will describe a very simple algorithm
(from the plethora of others) to compute a feature
vector 50.

The general idea is to define some shape function
f(P1, . . . , Pn) → R, which computes some geometrical
property of a number of points, and then evaluate this
function for a large number of random points that lie
on the surface of the shape. The resulting distribution
of f is called a shape distribution.

For the shape function, there are a lot of possibilities
(your imagination is the limit). Examples are:
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Figure 34: The shape distribution of a number of dif-
ferent simple objects.

• f(P1, P2) = |P1 − P2|;
• f(P1) = |P1 − P0|, where P0 is a fixed point, such

as the bounding box center;
• f(P1, P2, P3) = \(P1P2, P1P3);
• f(P1, P2, P3, P4) = volume of the tetrahedron be-

tween the four points.

Figure 34 shows the shape distributions of a few simple
objects with the distance between two points as shape
function.

4. BSP Trees

BSP trees (short for binary space partitioning trees)
can be viewed as a generalization of k-d trees. like
k-d trees, BSP trees are binary trees, but now the
orientation and position of a splitting plane can be
chosen arbitrarily. To get a feeling for a BSP tree,
Figure 35 shows an example for a set of objects.

The definition of a BSP (short for BSP tree) is fairly
straight-forward. Here, we will present a recursive def-
inition. Let h denote a plane in Rd, h+ and h− denote
the positive and negative half-space, resp.

Definition 1 (BSP tree)
Let S be a set of objects (points, polygons, groups of
polygons, or other spatial objects), and let S(ν) denote
the set of objects associated with a node ν. Then the
BSP T (S) is defined by

1. If |S| ≤ 1, then T is a leaf ν which stores S(ν) := S.
2. If |S| > 1, then the root of T is a node ν; ν stores a

plane hν and a set S(ν) := {x ∈ S|x ⊆ hν} (this is
the set of objects that lie completely inside hν ; in
3D, these can only be polygons, edges, or points). ν
also has two children T− and T+; T− is the BSP for
the set of objects S− := {x∩h−ν |x ∈ S}, and T+ is
the BSP for the set of objects S+ := {x∩h+

ν |x ∈ S}.

h3

h4

h2

h1

h4

h2

h1

h3

Figure 35: An example BSP tree for a set of objects.

Figure 36: Left: an auto-partition. Right: an example
configuration of which any auto-partition must have
quadratic size.

This can readily be turned into a general algorithm
for constructing BSPs. Note that a splitting step (i.e.,
the construction of an inner node) requires us to split
each object into two disjoint fragments if it straddles
the splitting plane of that node. In some applications
though (such as ray shooting), this is not really neces-
sary; instead, we can just put those objects into both
subsets.

Note that with each node of the BSP a convex cell
is associated (which is possibly unbounded): the “cell”
associated with the root is the whole space, which is
convex; splitting a convex region into two parts yields
two convex regions. In Figure 35, the convex region of
one of the leaves has been highlighted as an example.

With BSPs, we have much more freedom to place
the splitting planes than with k-d trees. However, this
also makes that decision much harder (as almost al-
ways in life). If our input is a set of polygons, then a
very common approach is to choose one of the poly-
gons from the input set and use this as the splitting
plane. This is called an auto-partition (see Figure 36).

While an auto-partition can have Ω(n2) fragments,
it is possible to show the following in 2D 13, 53.

Lemma 1
Given a set S of n line segments in the plane, the
expected number of fragments in an auto-partition
T (S) is in O(n log n); it can be constructed in time
O(n2 log n).

In higher dimensions, it is not possible to show a
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Figure 37: BSP trees are an efficient data structure
encoding visibility order of a set of polygons.

similar result. In fact, one can construct sets of poly-
gons such that any BSP tree (not just auto-partitions)
must have Ω(n2) many fragments (see Figure 36 for a
“bad” example for auto-partitions).

However, all of these examples producing quadratic
BSPs violate the principle of locality : polygons are
small compared to the extent of the whole set. In
practice, no BSPs have been observed that exhibit the
worst-case quadratic behavior49.

4.1. Rendering Without a Z-Buffer

BSP trees were introduced to computer graphics by
Fuchs et al.25. At the time, hidden-surface removal
was still a major obstacle towards interactive com-
puter graphics, because a z-buffer was just too costly
in terms of memory.

In this section, we will describe how to solve this
problem, not so much because the application itself
is relevant today, but because it nicely exhibits one
of the fundamental “features” of BSP trees: they en-
able efficient enumeration of all polygons in visibility
order from any point in any direction. (Actually, the
first version of Doom used exactly this algorithm to
achieve its fantastic frame rate (at the time) on PCs
even without any graphics accelerator.)

A simple algorithm to render a set of polygons
with correct hidden-surface removal, and without a
z-buffer, is the painter’s algorithm: render the scene
from back to front as seen from the current viewpoint.
Front polygons will just overwrite the contents of the
frame buffer, thus effectively hiding the polygons in
the back. There are polygon configurations where this
kind of sorting is not always possible, but we will deal
with that later.

How can we efficiently obtain such a visibility order
of all polygons? Using BSP trees, this is almost triv-
ial: starting from the root, first traverse the branch
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Figure 38: Each leaf cell of BSP representation of an
object is completely inside or completely outside.

that does not contain the viewpoint, then render the
polygon stored with the node, then traverse the other
branch containing the viewpoint (see Figure 37).

For sake of completeness, we would like to mention
a few strategies to optimize this algorithm. First of
all, we should make use of the viewing direction by
skipping BSP branches that lie completely behind the
viewpoint.

Furthermore, we can perform back-face culling as
usual (which does not cause any extra costs). We can
also perform view-frustum culling by testing all ver-
tices of the frustum against the plane of a BSP node.

Another problem with the simple algorithm is that
a pixel is potentially written to many times (this is
exactly the pixel complexity), although only the last
write “survives”. To remedy this, we must traverse the
BSP from front to back. But in order to actually save
work, we also need to maintain a 2D BSP for the screen
that allows us to quickly discard those parts of a poly-
gon that fall onto a screen area that is already occu-
pied. In that 2D screen BSP, we mark all cells either
“free”or“occupied”. Initially, it consists only of a“free”
root node. When a new polygon is to be rendered, it
is first run through the screen BSP, splitting it into
smaller and smaller convex parts until it reaches the
leaves. If a part reaches a leaf that is already occu-
pied, nothing happens; if it reaches a free leaf, then it
is inserted beneath that leaf, and this part is drawn
on the screen.

4.2. Representing Objects with BSPs

BSPs offer a nice way to represent volumetric polyg-
onal objects, which are objects consisting of polygons
that are closed, i.e., they have an“inside” and an“out-
side”. Such a BSP representation of an object is just
like an ordinary BSP for the set of polygons (we can,

© The Eurographics Association 2002.



Zachmann and Langetepe / Geometric Data Structures for CG

A B

∩∪ \ ª

Figure 39: Using BSPs, we can efficiently compute
these boolean operations on solids.

H
T

Figure 40: The fundamental step of the construction
is this simple operation, which merges a BSP and a
plane.

for instance, build an auto-partition), except that here
we stop the construction process (see Definition 1)
only when the set is empty. These leaves represent
homogeneous convex cells of the space partition, i.e.,
they are completely “in” our “out”.

Figure 38 shows an example for such a BSP repre-
sentation. In this section, we will follow the convention
that normals point to the “outside”, and that the right
child of a BSP node lies in the positive half-space and
the left child in the negative half-space. So, in a real
implementation that adheres to these conventions, we
can still stop the construction when only one polygon
is left, because we know that the left child of such a
pseudo-leaf will be “in”and the right one will be “out”.

Given such a representation, it is very easy and effi-
cient, for instance, to determine whether or not a given
a point is inside an object. In the next section, we will
describe an algorithm for solving a slightly more diffi-
cult problem.

4.3. Boolean Operations

In solid modeling, a very frequent task is to compute
the intersection or union of a pair of objects. More gen-
erally, given two objects A and B, we want to compute
C := A op B, where op ∈ {∪,∩, \,ª} (see Figure 39).
This can be computed efficiently using the BSP repre-

R(T)

”leaf”

HT

H

pT

”anti-parallel on”

pT

”pos./pos.”

H

HTP

H

HT

”mixed”

Figure 41: The main building block of the algorithm
consists of these four cases (plus analogous ones).

+ →→

Figure 42: Computation of boolean operations is based
on a general merge operation.

sentation of objects 48, 49. Furthermore, the algorithm
is almost the same for all of these operations: only the
elementary step that processes two leaves of the BSPs
is different.

We will present the algorithm for boolean opera-
tions bottom-up in three steps. The first step is a
sub-procedure for computing the following simple op-
eration: given a BSP T and a plane H, construct
a new BSP T̂ whose root is H, such that T̂− ,
T ∩ H− , T̂+ , T ∩ H+ (see Figure 40). This basi-
cally splits a BSP tree by a plane and then puts that
plane at the root of the two halves. Since we will not
need the new tree T̂ explicitly, we will describe only
the splitting procedure (which is the bulk of the work
anyway).

First, we need to define some nomenclature:

T−, T+ = left and rigt child of T , resp.

R(T ) = region of the cell of node T (which is convex)

T⊕, Tª =portion of T on the positive/negative
side of H, resp.

Finally, we would like to define a node T by the tuple
(HT , pT , T−, T+), where H is the splitting plane, p is
the polygon associated with T (with p ⊂ H).

The pseudo-code below is organized into 8 cases (see
Figure 41):

split-tree( T , H, P ) → (Tª, T⊕)
{P = H ∩R(T )}
case T is a leaf :

return (Tª, T⊕) := (T, T )
case “anti-parallel” and “on” :

return (Tª, T⊕) := (T+, T−)
case “parallel” and “on” :

. . .
case “pos./pos.” :

(T+ª, T+⊕) := split-tree(T+, H)
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Tª := (HT , pT , T−, T+ª)
T⊕ := T+⊕

case “pos./neg.” :
. . .

case “neg./pos.” :
. . .

case “neg./neg.” :
. . .

case “mixed” :
(T+ª, T+⊕) := split-tree(T+, H, P ∩R(T+))
(T−ª, T−⊕) := split-tree(T−, H, P ∩R(T−))
Tª := (HT , pT ∩H−, T−ª, T+ª)
T⊕ := (HT , pT ∩H+, T−⊕, T+⊕)
return (Tª, T⊕)

end case

This might look a little bit confusing at first sight,
but it is really pretty simple. A few notes might be in
order.

The polygon P is only needed in order to find the
case applying at each recursion. Computing P∩R(T+)
might seem very expensive. However, it can be com-
puted quite efficiently by computing P ∩ H+

T , which
basically amounts to finding the two edges that inter-
sect with HT . Please see 12 for more details on how to
detect the correct case.

It seems surprising at first sight that function
split-tree does almost no work — it just traverses
the BSP tree, classifies the case found at each recur-
sion, and computes p ∩H+ and p ∩H−.

The previous algorithm is already the main build-
ing block of the overall boolean operation algorithm.
The next step towards that end is an algorithm that
performs a so-called merge operation on two BSP
trees T1 and T2. Let Ci denote the set of elemen-
tary cells of a BSP, i.e., all regions R(Lj) of tree
Ti where Lj are all the leaves. Then the merge of
T1, T2 yields a new BSP tree T3 such that C3 =
{c1 ∩ c2|c1 ∈ C1, c2 ∈ C2, c1 ∩ c2 6= ?} (see Figure 42).

This merge operation is performed by the following
pseudo-code:

merge( T1, T2 ) → T3

if T1 or T2 is a leaf then
perform the cell-op as required by the boolean oper-
ation to be constructed (see below)

else
(Tª2 , T⊕2 ) := split-tree(T2, H1, . . .)
T−3 := merge(T−1 , Tª2 )
T+
3 := merge(T+

1 , T⊕2 )
T3 := (H1, T−3 , T+

3 )
end if

The function cell-op is the only place where the se-
mantic of the general merge operation is specialized.
When we have reached that point, then we know that
one of the two cells is homogeneous, so we can just

replace it by the other node’s sub-tree suitably modi-
fied according to the boolean operation. The following
table lists the details of this function (assuming that
T1 is the leaf):

Operation T1 Result

∪ in T1

out T2

∩ in T2

out T1

\ in T c
2

out T1

ª in T c
2

out T2

Furthermore, we would like to point out that the
merge function is symmetric: it does not matter
whether we partition T2 with H1 or, the other way
round, T1 with H2 — the result will be the same.

5. Bounding Volume Hierarchies

Like the previous hierarchical data structures, bound-
ing volume (BV) hierarchies are mostly used to pre-
vent performing an operation exhaustively on all ob-
jects. Often times, bounding volume (BV) hierarchies
are described as the opposite of spatial partitioning
schemes, such as quadtrees or BSP trees: instead of
partitioning space, the idea is to partition the set of
objects recursively until some leaf criterion is met.
(However, we will argue at the end that BV hierar-
chies are just at the other end of a whole spectrum
of hierarchical data structures.) Here, objects can be
anything from points to complete graphical objects.
With BV hierarchies, almost all queries, which can be
implemented with space partitioning schemes, can also
be answered, too. Example queries and operations are
ray shooting, frustum culling, occlusion culling, point
location, nearest neighbor, collision detection.

Definition 2 (BV hierarchy)
Let O = {o1, . . . , on} be a set of elementary objects. A
bounding volume hierarchy for O, BVH(O), is defined
by

1. If |O| = e, then BVH(O) := a leaf node that stores
O and a BV of O;

2. If |O| > e, then BVH(O) := a node ν with n(ν)
children ν1, . . . , νn, where each child νi is a BV hi-
erarchy BVH(Oi) over a subset Oi ⊂ O, such thatS

Oi = O. In addition, ν stores a BV of O.

The definition mentions two parameters. The
threshold e is often set to 1, but depending on the
application, the optimal e can be much larger. Just
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Figure 43: Some of the most commonly used BVs, and
some less often used ones.

like sorting, when the set of objects is small, it is of-
ten cheaper to perform the operation on all of them,
because recursive algorithms always incur some over-
head.

Another parameter in the definition is the arity.
Mostly, BV hierarchies are constructed as binary trees,
but again, the optimum can be larger. And what is
more, as the definition suggests, the out-degree of
nodes in a BV hierarchy does not necessarily have to
be constant, although this often simplifies implemen-
tations considerably.

Effectively, these two parameters, e and n(ν),
control the balance between linear, exhaustive
search/operation, and a maximally recursive algo-
rithm.

There are more design choices possible according to
the definition. For inner nodes, it only requires thatS

Oi = O; this means, that the same object o ∈ O
could be associated with several children. Depending
on the application, the type of BVs, and the construc-
tion process, this may not always be avoidable. But
if possible, you should always split the set of objects
into disjoint subsets.

Finally, there is, at least, one more design choice:
the type of BV used at each node. Again, this does
not necessarily mean that each node uses the same
type of BV. Figure 43 shows a number of the most
commonly used BVs. The difference between OBBs 4

and AABBs is that OBBs can be oriented arbitrarily
(hence “oriented bounding boxes”). DOPs 67, 39, 37 are
a generalization of AABBs: basically, they are the in-
tersection of k slabs. Prisms and cylinders have been
proposed by 7, 63, but they seem to be too expensive
computationally. A spherical shell is the intersection of
a shell and a cone (the cone’s apex coincides with the
sphere’s center), and a shell is the space between two
concentric spheres. Finally, one can always take the
intersection of two or more different types of BVs 36.

There are three characteristic properties of BVs:

• tightness,
• memory usage,
• number of operations needed to test the query ob-

ject against a BV.

Often, one has to make a trade-off between these prop-
erties: generally, the type of BV that offers better
tightness also requires more operations per query and
more memory.

Regarding the tightness, one can establish a theo-
retical advantage of OBBs. But first, we need to define
tightness 29.

Definition 3 (Tightness by Hausdorff distance)
Let B be a BV, G some geometry bounded by B, i.e.,
g ⊂ B. Let

h(B, G) = max
b∈B

min
g∈G

d(b, g)

be the directed Hausdorff distance, i.e., the maximum
distance of B to the nearest point in G. (Here, d is any
metric, very often just the Euclidean distance.) Let

diam(G) = max
g,f∈G

d(g, f)

be the diameter of G.

Then we can define tightness

τ :=
h(B, G)

diam(G)
.

See Figure 44 for an illustration.

Since the Hausdorff distance is very sensitive to out-
liers, one could also think of other definitions such as
the following one:

Definition 4 (Tightness by volume)
Let C(ν) b the set of children of a node ν of the BV
hierarchy. Let Vol(ν) be the volume of the BV stored
with ν.

Then, we can define the tightness as

τ :=
Vol(ν)P

ν′∈C(ν) Vol(ν′)
.

Alternatively, we can define it as

τ :=
Vol(ν)P

ν′∈L(ν) Vol(ν′)
,

where L(ν) is the set of leaves beneath ν.

Getting back to the tightness definition based on
the Hausdorff distance, we observe a fundamental dif-
ference between AABBs and OBBs 29:
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Figure 44: One way to define
tightness is via the directed Haus-
dorff distance.

Figure 45: The tightness of an
AABB remains more or less con-
stant throughout the levels of a
AABB hierarchy for surfaces of
small curvature.

Figure 46: The tightness of an
OBB decreases for deeper levels in
a OBB hierarchy for small curva-
ture surfaces.

• The tightness of AABBs depends on the orientation
of the enclosed geometry. What is worse is that the
tightness of the children of an AABB enclosing a
surface of small curvature is almost the same as that
of the father.
The worst case is depicted in Figure 45. The tight-
ness of the father is τ = h/d , while the tightness of
a child is τ ′ = h′

d/2
= h/2

d/2
= τ .

• The tightness of OBBs does not depend on the ori-
entation of the enclosed geometry. Instead, it de-
pends on its curvature, and it decreases approxi-
mately linearly with the depth in the hierarchy.
Figure 46 depicts the situation for a sphere. The
Hausdorff distance from an OBB to an enclosed
spherical arc is h = r(1 − cos φ), while the diam-
eter of the arc is d = 2r sin φ. Thus, the tightness
for an OBB bounding a spherical arc of degree φ is
τ = 1−cos φ

2 sin φ
, which approaches 0 linearly as φ → 0.

This makes OBBs seem much more attractive than
AABBs. The price of the much improved tightness is,
of course, the higher computational effort needed for
most queries per node when traversing an OBB tree
with a query.

5.1. Construction of BV Hierarchies

Essentially, there are 3 strategies to build BV trees:

• bottom-up,
• top-down,
• insertion

From a theoretical point of view, one could pursue a
simple top-down strategy, which just splits the set of

objects into two equally sized parts, where the objects
are assigned randomly to either subset. Asymptoti-
cally, this yields usually the same query time as any
other strategy. However, in practice, the query times
offered by such a BV hierarchy are by a large factor
worse.

During construction of a BV hierarchy, it is conve-
nient to forget about the graphical objects or primi-
tives, and instead deal with their BVs and consider
those as the atoms. Sometimes, another simplifica-
tion is to just approximate each object by its center
(baryenter or bounding box center), and then deal only
with sets of points during the construction. Of course,
when the BVs are finally computed for the nodes, then
the true extents of the objects must be considered.

In the following we will describe algorithms for each
construction strategy.

5.1.1. Bottom-up

In this class, we will actually describe two algorithms.

Let B be the set of BVs on the top-most level of the
BV hierarchy that has been constructed so far 57. For
each bi ∈ B find the nearest neighbor b′i ∈ B; let di

be the distance between bi and b′i. Sort B with respect
to di. Then, combine the first k nodes in B under a
common father; do the same with the next k elements
from B, etc. This yields a new set B′, and the process
is repeated.

Note that this strategy does not necessarily produce
BVs with a small “dead space”: in Figure 47, the strat-
egy would choose to combine the left pair (distance =
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Figure 47: A simple greedy strategy can produce much
“dead space”.

Figure 48: A less greedy strategy combines BVs by
computing a “tiling”.

0), while choosing the right pair would result in much
less dead space.

The second strategy 42 is less greedy in that it com-
putes a tiling for each level. We will describe it first
in 2D. Again, let B be the set of BVs on the top-most
level so far constructed, with |B| = n. The algorithm
first computes the center ci for each bi ∈ B. Then, it
sorts B along the x-axis with respect to ci

x. Now, the
set B is split into

√
n/k vertical “slices” (again with

respect to ci
x). Now, each slice is sorted according to

ci
y and subsequently split into

√
n/k “tiles”, so that we

end up with k tiles (see Figure 48). Finally, all nodes
in a tile are combined under one common father, its
BV is combined, and the process repeats with a new
set B′.

In Rd it works quite similarly: we just split each slice
repeatedly by

d
√

n/k along all coordinate axes.

5.1.2. Insertion

This construction scheme starts with an empty tree.
Let B be the set of elementary BVs. The following
pseudo-code describes the general procedure:

1: while |B| > 0 do
2: choose next b ∈ B
3: ν := root
4: while ν 6= leaf do
5: choose child ν′,

so that insertion of b into ν′ causes minimal
increase in the costs of the total tree

6: ν := ν′

7: end while
8: end while

All insertion algorithms only vary step 2 and/or 5.
Step 2 is important because a “bad” choice in the be-
ginning can probably never be made right afterwards.
Step 5 depends on the type of query that is to be per-
formed on the BV tree. See below for a few criteria.

Usually, algorithms in this class have complexity
O(n log n).

5.1.3. Top-down

This scheme is the most popular one. It seems to pro-
duce very good hierarchies while still being very effi-
cient, and usually it can be implemented easily.

The general idea is to start with the complete set
of elementary BVs, split that into k parts, and create
a BV tree for each part recursively. The splitting is
guided by some heuristic or criterion that (hopefully)
produces good hierarchies.

5.1.4. Criteria

In the literature, there is a vast number of criteria
for guiding the splitting, insertion, or merging, during
BV tree construction. (Often, the authors endow the
thus constructed BV hierarchy with a new name, even
though the BVs utilized are well known.) Obviously,
the criterion depends on the application for which the
BV tree is to be used. In the following, we will present
a few of these criteria.

For ray tracing, if we can estimate the probability
that a ray will hit a child box when it has hit the father
box, then we know how likely it is, that we need to visit
the child node when we have visited the father node.
Let us assume that all rays emanate from the same
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ν

ν′

θν′

θν

Figure 49: The probability of a ray hitting a child box
can be extimated by the surface area.

origin (see Figure 49). Then, we can observe that the
probability that a ray s hits a child box ν′ under the
condition that it has hit the father box ν is

P (s hits ν′|s hits ν) =
θν′

θν
≈ Area(ν′)

Area(ν)
(4)

where Area denotes the surface area of the BV, and θ
denotes the solid angle subtended by the BV. This is
because for a convex object, the solid angle subtended
by it, when seen from large distances, is approximately
proportional to its surface area 28. So, a simple strat-
egy is to just minimize the surface area of the BVs
of the children that are produced by a split. (For the
insertion scheme, the strategy is to choose that child
node whose area is increased least 28.)

A more elaborate criterion tries to establish a cost
function for a split and minimize that. For ray tracing,
this cost function can be approximated by

C(ν1, ν2) =
Area(ν1)

Area(ν)
C(ν1) +

Area(ν2)

Area(ν)
C(ν2) (5)

where ν1, ν2 are the children of ν. The optimal split
B = B1 ∪B2 minimizes this cost function:

C(B1, B2) = min
B′∈P(B)

C(B′, B \B′)

where B1, B2 are the subsets of elementary BVs (or
objects) assigned to the children. Here, we have as-
sumed a binary tree, but this can be extended to other
arities analogously.

Of course, such a minimization is too expen-
sive in practice, in particular, because of the recur-
sive definition of the cost function. So, Fussell and
Subramanian26, Müller et al.47, and Beckmann et al.8

have proposed the following approximation algorithm:

for α = x, y, z do
sort B along axis α with respect to the BV centers

find

kα = min
j=0...n

�
Area(b1, . . . , bj)

Area(B)
j +

Area(bj+1, . . . , bn)

Area(B)
(n− j)

�
end for
choose the best kα

where Area(b1, . . . , bj) denotes the surface area of the
BV enclosing b1, . . . , bj .

If the query is a point location query (e.g., is a given
point inside or outside the object), then the volume
instead of the surface area should be used. This is
because the probability that a point is contained in a
child BV, under the condition that it is contained in
the father BV, is proportional to the ratio of the two
volumes.

For range queries, and for collision detection, the
volume seems to be a good probability estimation, too.

A quite different splitting algorithm does not (ex-
plicitely) try to estimate any probabilities. It just ap-
proximates each elementary BV/object by its center
point. It then proceeds as follows. For a given set
B of such points, compute its principal components
(the Eigenvectors of the covariance matrix); choose
the largest of them (i.e., the one exhibiting the largest
variance); place a plane orthogonal to that principal
axis and through the barycenter of all points in B;
finally, split B into two subsets according to the side
on which the point lies. (This description is a slightly
modified version of Gottschalk et al. 29.) Alternatively,
one can place the splitting plane through the median
of all points, instead of the barycenter. This would lead
to balanced trees, but not necessarily better ones.

5.2. Collision Detection

Fast and exact collision detection of polygonal objects
undergoing rigid motions is at the core of many sim-
ulation algorithms in computer graphics. In particu-
lar, all kinds of highly interactive applications such as
virtual prototyping need exact collision detection at
interactive speed for very complex, arbitrary “polygon
soups”. It is a fundamental problem of dynamic simu-
lation of rigid bodies, simulation of natural interaction
with objects, and haptic rendering.

Bounding volume trees seem to be a very efficient
data structure to tackle the problem of collision de-
tection for rigid bodies. All kinds of different types of
BVs have been explored in the past: sphere trees 32, 52,
OBB trees 29, DOP trees 39, 67, AABB trees 66, 60, 40,
and convex hull hierarchies 21, to name but a few.

Given two hierarchical BV volume data structures
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Figure 50: The recursion tree is induced by the simultaneous traversal of two BV trees.
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Figure 51: Hierarchical collision detection can discard
many pairs of polygons with one BV check. Here, all
pairs of polygons in A1 and B2 can be discarded.

for two objects A and B, almost all hierarchical colli-
sion detection algorithms implement the following gen-
eral algorithm scheme:

traverse(A,B)
if A and B do not overlap then

return
end if
if A and B are leaves then

return intersection of primitives
enclosed by A and B

else
for all children A[i] and B[j] do

traverse(A[i],B[j])
end for

end if

This algorithm quickly “zooms in” on pairs of close
polygons. The characteristics of different hierarchical
collision detection algorithms lie in the type of BV

used, the overlap test for a pair of nodes, and the al-
gorithm for construction of the BV trees.

The algorithm outlined above is essentially a simul-
taneous traversal of two hierarchies, which induces a
so-called recursion tree (see Figure 50). Each node in
this tree denotes a BV overlap test. Leaves in the re-
cursion tree denote an intersection test of the enclosed
primitives (polygons); whether or not a BV test is done
at the leaves depends on how expensive it is, compared
to the intersection test of primitives.

During collision detection, the simultaneous traver-
sal will stop at some nodes in the recursion tree. Let
us call the set of nodes, of which some children are not
visited (because their BVs do not overlap), the “bot-
tom slice” through the recursion tree (see the dashed
lines in Figure 50).

One idea is to save this set for a given pair of ob-
jects 43. When this pair is to be checked next time,
we can start from this set, going either up or down.
Hopefully, if the objects have moved only a little rel-
ative to each other, the number of nodes that need to
be added or removed from the bottom slice is small.
This scheme is called incremental hierarchical collision
detection.

6. Dynamization of Geometric Data
Structures

We present a generic approach for the dynamization
of an arbitrary static geometric data structure. Often
a simple static data structure is sufficient if the set of
represented geometric objects will have few changes
over time. Once created, the static structure mostly
has to cope with data queries due to its geometric
intention. If the set of objects varies very much over
time, there is need for more complex dynamic struc-
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tures which allow efficient insertion and deletion of
objects.

For example a one dimensional sorted array of a
fixed set M is sufficient for x is Element of M queries.
But if the set M has many changes over time, a dy-
namic AV L-tree would be more likely. The AV L-tree
implementation is more complex since rotations of the
tree has to be considered for insertion and deletion of
objects. Additionally, the AVL-tree dynamization was
invented for the special case of the one-dimensional
search. We want to show that it is possible to dy-
namize a simple static data structure indirectly but
also efficiently in a general setting. Once this generic
approach is implemented it can be used for many static
data structures.

The generic approaches presented here are not op-
timal against a dynamization adapted directly to a
single data structure, but they are easy to implement
and efficient for many applications.

In Section 6.1 we formalize the given problem and
define some requirements. In Section 6.2 we present
methods allowing insertion and deletion in amortized
efficient time. For many applications this is already
efficient enough. Within this section the dynamiza-
tion technique is explained in detail and the amortized
cost of the new operations are shown. Similar ideas for
the worst-case sensitive approach are sketched in Sec-
tion 6.3. The effort of the dynamization itself is amor-
tized over time. For details see Klein 38 or the work of
Overmars 51 and van Kreveld 61. We present a simple
example in Section 6.4.

6.1. Model of the Dynamization

Let us assume that TStat is a static abstract (geomet-
ric) data type. Since we have a geometric data struc-
ture, we assume that the essential motivation of TStat
is a query operation on the set of stored objects D.
i.e., for a query object q the answer is always a subset
of D which might be empty.

We want to define the generic dynamization by a
module that imports the following operations from
TStat:

build(V, D): Build the structure V of type TStat
with all data objects in the set D.

query(V, q): Gives the answer (objects of D) to
a query to V with query object q.

extract(V, D): Collects all data objects D of V in
a single set an returns a pointer to
this set.

erase(V ): Delete the complete data structure
V from the storage.

The dynamization module should export a dynamic
abstract (geometric) data type TDyn with the follow-
ing operations:

Build(W, D): Build the structure W of type
TDyn with data objects in
the set D.

Query(W, q): Gives the answer (objects of D) to
a query to W with query object q.

Extract(W, D): Collects all data objects D of W
in a single set and returns a
pointer this set.

Erase(W ): Delete the complete data
structure W from the storage.

Insert(W, d): Insert object d into W .

Delete(W, d): Delete d out of W .

Note, that the new operations Delete and Insert are
necessary since we have a dynamic data type now.

Additionally, we introduce some cost functions for
the operations of the abstract dynamic and the ab-
stract static data type. For example BV (n) denotes
the time function for the operation Build(V, D) of
TStat. The notations are fully presented in Figure 52.
The cost functions depend on the implementation of
TStat. Note, that the cost function of TDyn will de-
pend on the cost functions of TStat together with the
efficiency of the our general dynamization.

Modul
Dynamize

Comp.:

BW (n)
QW (n)
EW (n)
IW (n)

DW (n)

ADT TDyn

Build(W, D)
Query(W, q)
Extract(W, D)
Insert(W, d)
Delete(W, d)

ADT TStat

build(V, D)
query(V, q)
extract(V, D)

Comp.:

BV (n)
QV (n)
EV (n)

Space.: SW (n) Space: SV (n)

K
Import

®
Export

Figure 52: Dynamization in the generic sense.

In order to guarantee some bounds for the corre-
sponding cost functions of TDyn the cost functions of
TStat must not increase arbitrarily. On the other hand
for the proof of some time bounds we need some kind
of monotonic behavior in the functions, they should
not oscillate. Altogether we define the following re-
quirements which are fulfilled in many cases:
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1. QV (n) and EV (n) increase monotonically in n; ex-
amples: 1, log n,

√
n, n, n log n, n2, 2n.

2. BV (n)
n

and SV (n)
n

increase monotonically in n; ex-
amples n, n log n, n2, 2n.

3. For all f ∈ {QV , BV , EV , SV } there is a constant
C ≥ 1, so that f(2n) ≤ C f(n); examples: 1,

√
n,

n, n2, and also log n with n > 1, as well as the
products of this functions, but not 2n.

4. EV (n) ≤ 2 ·BV (n).

Moreover, we assume that the that the query op-
eration can be decomposed, i.e., for a decomposition
V = V1 ∪ V2 ∪ · · · ∪ Vj of the data set V the results of
the single operations query(Vi, d) lead to the solution
of query(V, d). This is true for many kinds of range
queries.

6.2. Amortized Insert and Delete

6.2.1. Amortized Insert: Binary Structure

The very first idea is to implement Insert(W, d) and
Delete(W, d) directly by

Insert(W, d) : Extract(W, D); Build(W, D ∪ {d})
Delete(W, d) : Extract(W, D); Build(W, D \ {d}).
This throw-away implementation is not very effi-

cient. Therefore we distribute the n data objects of
the static structure V among several structures Vi. If
a new element has to be inserted we hope that only a
single structure Vi may be concerned. Let

n = al2
l + al−12

l−1 + . . . + a12 + a0 mit ai ∈ {0, 1}.

Then alal−1 . . . a1a0 is the binary representation
of n. For every ai = 1 we build a structure Vi which
has 2i elements. The collection of these structures is a
representation of Wn which is called binary structure,
see Figure 53. To build up the binary structure Wn we
proceed as follows:

Build(W, D): Compute binary representation of
n = |D|.

Decompose D into sets Di with
|Di| = 2i w.r.t. the representation
of n.

Compute build(Vi, Di) for every Di.

In principle, the binary structure Wn can be con-
structed as quick as the corresponding structure V .

Lemma 9

BW (n) ∈ O(BV (n)).

Proof Computing the binary representation of n and
the decomposition into Di can be done in linear
time O(n).
The operation build(Vi, Di) needs BV (2i) time. We
have i ≤ l = blog nc and therefore we conclude:

blog ncX
i=0

BV (2i) =

blog ncX
i=0

2i BV (2i)

2i

≤
blog ncX

i=0

2i BV (n)

n

≤ 2log n BV (n)

n
∈ O(BV (n)).

We used the fact that BV (n)
n

increases monotonically.
Altogether we have

BW (n) ∈ O(n + BV (n)) = O(BV (n))

since BV (n) is at least linear.

Similar results hold for some other operations. We
can prove

EW (n) ≤ log n EV (n)

since we have to collect the results of extraxt(Vi) for
at most log n structures Vi.

Additionally,

QW (n) ≤ log n Qv(n)

holds if we assume that the query can be decompose
as well, see the requirements.

It is also easy to see that

SW (n) ≤
blog ncX

i=0

SV (2i) ∈ O(SV (n)).

Therefore it remains to analyse IW (n).

As we have seen from Figure 53 sometimes the whole
structure of Wn is destroyed when Wn+1 was build up.
In this example we had to perform the following tasks:

extract(V0, D0); extract(V1, D1); extract(V2, D2);
D := D0 ∪D1 ∪D2 ∪ {d};
build(V3, D);

In general we have to build up Vj and extract and
erase Vj−1, Vj−2, . . ., V0 only if ai = 1 holds for
i = 0, 1 . . . , j − 1 and aj = 0 holds (in the binary
representation of the current n).
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Figure 53: The binary structure Wn contains the structure Vi if ai = 1 holds for the binary
representation of n. For examples see n = 23 (left) and n = 24 (right).

In this special case we have

IW (n) ≤
 

j−1X
i=0

EV (2i)

!
+ Cj + BV (2j)

≤ EV (2j) + Cj + BV (2j)

∈ O
�
BV (2j)

�
.

For a long sequence of insertions many of them are
performed without extreme reconstructions. Thus the
effort for all Insert(W, d) is amortized over time.

Generally, let Work be an arbitrary operation with
cost function W . For a sequence of s different opera-
tions let Work be applied k times. If

total cost of k Work operationen

k
≤ W (s)

holds for a monotonically increasing cost function W ,
we say that the operation Work is performed in amor-
tized time W (s).

Note, that this is not an expected value and that
W is a function of s, i.e., the length of the operation
sequence. The current data set may have a number of
elements n ≤ s.

For the Insert(W, d) operation one can prove

IW (s) ∈ O

�
log s

s
BV (s)

�
.

Note, that except insertions there are only queries
in s. Queries do not change the size of the data set and
so we can also replace s by the number of insertions
here.

Altogether, the results are presented in the following
theorem.

Theorem 10
A static abstract data type as presented in Figure 52
can be dynamized by means of the binary structure
in a dynamic abstract data type TDyn so that the
operation Insert(W, d) is performed in amortized time

IW (s) ∈ O

�
log s

s
BV (s)

�
.

Let n be the size of the current data set. We have

SW (n) ∈ log n Sv(n)

BW (n) ∈ BV (n))

QW (n) ∈ log n Qv(n).

6.2.2. Amortized Delete: Occasional
Reconstruction

Assume that we did not have implemented the Insert
operation, yet.

If we have to delete an object we can not choose
its location beforehand. Therefore the deletion of an
objects is much more difficult than the insertion. Dele-
tion may cause fundamental reconstruction.

For many data structures it is easier to simply mark
an object as deleted. Physically the object remains in
the structure but does no longer belong to the data
set D. These objects have bad influence on the run-
ning time of all operations although they are no longer
necessary. Therefore from time to time we have to re-
construct the data structure for the actual data set.

First of all for TStat we introduce an additional op-
eration weak.delete(V, d) with cost function WDV (n).
We simply want to construct a strong delete function
with an acceptable amortized time bound for TDyn.

Therefore we use weak.delete(V, d) until D has only
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the half size of V . Then we erase V and build a new
structure V out of D. The cost of the occasional re-
construction is amortized over the preceeding delete-
operations. This gives the following result.

Theorem 11
A static abstract data type as presented in Figure 52
with an additional weak.delete(V, d) operation and
with additional cost function WDV (n) can be dy-
namized by means of occasional reconstruction in a
dynamic abstract data type TDyn so that

BW (r) = BV (r)

EW (r) ∈ O (EV (r))

QW (r) ∈ O (QV (r))

SW (r) ∈ O (SV (r))

DW (s) ∈ O

�
WDV (s) +

BV (s)

s

�
,

holds. The size of the current actual data set is de-
noted with r and s denotes the length of the operation
sequence.

We omit the proof here.

6.2.3. Amortized Insert and Amortized Delete

In the preceeding sections we have discussed Insert
and Delete separately. Now we want to show how to
combine the two approaches.

A static abstract data type with a weak delete
implementation is given. As in Section 6.2.1 we use
the binary structure for the insertion. The operation
weak.delete is only available for the structures Vi and
we have to extend it to W in order to apply the result
of Section 6.2.2. If Weak.Delete(W, d) is applied, d
should be marked as deleted in W . But we do not know
in which of the structures Vi the element d lies. There-
fore in addition to the binary structure we construct
a balanced searchtree T that stores this information.
For every d ∈ W there is a pointer to the structure Vi

with d ∈ Vi, see Figure 54 for an example.

The additional cost of the search tree T is cov-
ered as follows. Query operations are not involved. For
Weak.Delete(W, d) there is an additional O(log n) for
searching the corresponding Vi and for marking d as
deleted in Vi.

If an object d has to be inserted we have to update
T . The object d gets an entry for its structure Vj in
T , this is done in time O(log n) and it will not affect
the time bound for the insertion. But furthermore if
V0, . . . , Vj−1 has to be erased the corresponding ob-
jects should point to Vj afterwards. This can be effi-
ciently realized by collecting the pointers of T to Vi in
a list for every Vi. We collect the pointers and change

them to ”‘Vj”’. This operation is already covered by
time O(BV (2j)) for constructing Vj .

Altogether we conclude:

Theorem 12
A static abstract data type as presented in Figure 52
with an additional weak.delete(V, d) operation and
with additional cost function WDV (n) can be dy-
namized by means of binary structure, searchtree T
and occasional reconstruction in a dynamic abstract
data type TDyn so that the amortized time for inser-
tion reads

IW (s) ∈ O

�
log s

BV (s)

s

�
,

and the amortized time for deletion reads

DW (s) ∈ O

�
log s + WDV (s) +

BV (s)

s

�
.

For the rest of the operations we have

BW (r) = BV (r)

EW (r) ∈ O (log r EV (r))

QW (r) ∈ O (log r QV (r))

SW (r) ∈ O (SV (r)) .

The size of the current actual data set is denoted with
r and s denotes the length of the operation sequence.

6.3. Worst-Case sensitive Insert and Delete

In the last section we have seen that it is easy to amor-
tize the cost of Insert and Delete analytically over
time. The main idea for the construction of the dy-
namic data structure was given by the binary struc-
ture of Wn which has fundamental changes from time
to time but the corresponding costs were amortized.
Now we are looking for the worst-case cost of Insert
and Delete. The idea is to distribute the construction
of Vj itself over time, i.e., the structure Vj should be
finished if Vj−1, Vj−2, . . . V0 has to be erased.

We only refer to the result of this approach. The
ideas are very similar to the ideas of the preceeding
sections. Technically, a modified binary representation
is used in order to distribute the effort of the recon-
struction over time. For the interested reader we refer
to Klein 38 or van Kreveld 61 and Overmars 51.

Theorem 13
A static abstract data type as presented in Figure 52
with an additional weak.delete(V, d) operation and
with additional cost function WDV (n) can be dy-
namized in a dynamic abstract data type TDyn so
that
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Figure 54: A structure W15 with a searchtree T storing pointers to Vi for every d ∈ Vi.

Build(W, D) ∈ O(BV (n))
Query(W, q) ∈ O(log n ·QV (n))

Insert(W, d) ∈ O
�

log n
n

BV (n)
�

Delete(W, d) ∈ O
�
log n + WDV (n) + BV (n)

n

�
Space O(SV (n)).

Here n denotes the number of relevant, stored data
objects.

6.4. A Simple Example

For convenience, we take a simple example from Sec-
tion 2 and apply Theorem 13, thus implementing
worst-case sensitive insertion and deletion.

In Section 2.2 an easy implementation of the static
k-d-tree was presented with Sk-d(n) = O(n) and
query time Qk-d(n) = O(

√
n + a), where a repre-

sents the size of the answer, see Theorem 4. Obviously,
weak.delete(k-d, x) can be implemented in O(log n)
time, thus WDk-d(n) = O(log n). Additionally we
have Bk-d(n) = O(n log n).

Let Dyn(k-d) denote the dynamic variant based
upon the statically implemented k-d-tree.

Application of Theorem 13 results in:

Build(Dyn(k-d), D) ∈ O(n log n)
Query(Dyn(k-d), q) ∈ O(

√
n log n + a)

Insert(Dyn(k-d), d) ∈ O
�
log2 n

�
Delete(Dyn(k-d), d) ∈ O (log n)
Space O(n).
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