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The gradient describes the direction with the greatest rate of

increaseat P = (x,, ><2,><3)T
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3.1 Motivation for Differential Calculus

We know several important differential operators.
We begin with a Cl-mw.
0:0°- 0

[xl X, anT = 0 (Xy, X5, X3)

A related operator is the directional derivative. For our map ¢ itis
defined by
¢,:0° - O

r— lim 2o +eb)
e - 0OF
One aso finds the notation

¢, =0d+b

We know the gradient

gradq;:DaﬁEI3

.
T ldp dp do

with the short notation

grad ¢ =

¢,(r) describes the rate of change of ¢ in direction b.
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For avector field

V:D3->EI3

there are two important derivatives.
The divergenceis thefirst one.

divv:D3->EI
dov, O0v, Ov.
1,2, %3

ro——+_+ =
0X;  0X, O0Xg

It has the short notation

culv =0xv.

The vector curl v describes the
direction of arotation axis. This
axisis perpendicular to the plane
where theratio of circulation
around the boundary of an area
segment and the area of the
segment takes its maximum.

It has the short notation

divv=0ev

and measures the outflow of an

infinitesmal volume V centered =~ __»—"
at P per unit volume. “
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Goal : Wewant tounify all thisoperatorsinto
one which isindependent of any coor-
dinate system.

The other differential operator isthe curl.

curl v: o*-o®
0X, 0Xg
X3 0%,
ke J
X, 0%,

3.2 Differential Calculusin 3D
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For acoordinate invariant derivative we need the notation of reci-

procal vectorsin three dimensions. Let

3
{9;,9,,94 000G,

be abasis. Then one defines reciprocal vectors

1 2 3
{g"d" ¢} o UG,
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by the property
| |
99 =99 =8.

It holds
1 900, 2 9309, 3 9,005
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The following rules hold
Aﬁ1b1+[32b2(r) = BlAbl(r) +[32Ab1(r)
(AB)b(r) = Ab(r)B(r) +A(r) Bb(r)
17

Thefollowing picture shows the two sets together.
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The vector derivativeis defined by

aA(r) :0° - 6,

3
AN = 3 Ay (1)
k=1

where {g,,9,,04 isabasisand {gl, gz, gg’) isthe reciproca

basis. The element dA (r) hasthe geometric type of aproduct of a
vector with A(r) . It can be shown that 0A (r) isindependent of

the chosen basis {g,,9,, 93 -
18

We start our construction with taking derivatives with respect to a
direction. Let

.3
A:07 - Gy
be amultivector field. Then we call the limit

A(D) = EIiEnO%(A(r+sb)—A(r)), e00,bon’

the derivative of A with respect to b. It contains the same grades as
A.

16
Asexample, let uslook at ascalar field
o:0°.0
and asurface SO 0° with parametrization
r:0? - son®
(ug, up) — 1 (ug,uy)
19



Consider apoint P = (X, X,, X3) U 0% and let

_ 0% - 09
95, % 7oy
It holds
¢
00 =% g,
k=1 K
= gad|gtgaden
= grad ¢

3.3 Motivation for Integration

Besides differential operators, integration is essential in calculus.
A very important theorem is the diver gence theorem due to
Gauss.

Let VOO 3 be a compact volume with a piecewise smooth boun-
dary Sand n the unit outward normal on S. We look at a vector
field

v Da - D3 .
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All our operators in the motivation are special cases of the vector
derivative and its components. Let us ook at avector field

vio®.o?
vy ()
r-v(r) = vz(r)
V(1)
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We have the following relation

J;div vdv = J;n * vdA

It states that for an arbitrary
volume in an application the sum
of the divergencein the volumeis
the net outflow through the surface.
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We get

3
ov = zekve\
v, ov.
Ze“\_ﬁe eﬁKieQ +Te3
B v v v v 2N Lo,

€t~ Ce e+ ee3 &
de, ' de, ? de; ° [e, 06;\ r‘Be aelﬂ FB del]
’Lu

*’J‘

- 2. 08] [ 068 0 . \

de, Ode, Oe, e, de;\‘ e, 6&311‘\&2 [Pe,
= divv+icurlv

Another important relation is Stokes theorem.
It states

qurl vdV = In x vdS
S

with the same notations as before and relates the sum of the curl
inside the volume to the flow on the surface.
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It is better known in the following case.
Let SO D3 be a compact, orientable, piecewise smooth surface

with oriented boundary curve C. Further, let n 0 0 be the unit
normal in accordance with the right-hand rule. Then holds

£n- curl vdA = év- dr.
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Then we define the integral
J;A dX B
asthe limit of
n
lim > A (X AX(x) B (%)
e =]
where AX (x,) isacurve-, surface- or volume-segment centered at

X, with ameasure in the usual Riemannian sense.
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If v describes aforce acting on particles, the theorem will state that
the total work done on a particle traveling on C equalsthe integral
of the curl on the surface.

C
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In most practical casesthe set M is given by aparametrization. Let

r:ogJ-mon®
u-r(u)

be a smooth curve. Then we have

&AdXB = &A(r)drB(r) =J’A(r(u))du g(u)B(r(u)),
J

where g (u) = %(u).

3.4 Integration in 3D
We want to introduce now the integration of multivector fields. Let

moo®

be a smooth curve, surface or volume. Let
A:M-G; B:M-G,

be two piecewise continous multivector fields.
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For asmooth surface patch
L2 3
r:0°0J,xJ,-M00
(uy, Uy) = r(ug,uy)
we get
&A dSB = &A(r) ds(r)B(r)

= [ A (W) (duyg, (u) Oduyg, (W) B(r (u))

%3,

with
]
gy (Ug, Up) = == (uy, uy)
k\F1 52 du, T2
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Analogous we have for a volume patch
r:0%09,x3,x3, - Mmoo®
(uy, Uy ug) = U~ r(u) =r(uy Uy Ug)
the definition
&AdXB: & A(r)dv(r)B(r)
= J|‘ A(r(u)) (duyg, (u) O
312 3% 3y

du,g, (u) DOduggs (u)) B(r(u))
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We see by comparing the parts of different grades

JdVdivv = ,st (nev)
\

the diver gence theorem from Gauss and

{dv curl v = a[dS(n X V)
\%

the theorem of Stokes for volumes.
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Two important theorems show the relation of the vector derivative
and theintegral.

Levon® be a compact oriented volume with boundary 0V and

outer unit normal n, n2 = 1.Let A B betwo multivector fields

on V. Then we have the fundamental theorem for a compact
volume

J;WBDA:J dSBnA
A\

where the dots stand for taking the derivative of both fields.

If we start with a compact oriented surface SO O 3 with bound-

arydS and aunit normal n, n® = 1, we can prove the fundamen-
tal theorem for a compact surface

£dSB(n><b)A = 6[BdrA.
S
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Let us examine this for avector field

V:D3->D3

We have
J;dvav = J\'] dsnv

J;dV(a-wa Ov) = J’dS(n-v+an)
\2

J;dv(avv) +i€dv(axv) = J’dS(n-v) +inS(nxv)
\2 \2
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If we analyse it for the vector field v, we get
dS(nx9)v = [drv
{ k
dS(ne (dxV)) +[dS((nxd) *v) = [drev+ [drxv
{ { PR

which we may identify as the theorem of Stokes

dS(ne (9xV)) = [ved
£ n \) JSV Ir
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and the equation
gdS((nM')) ov) = JerV
s
which is not so well-known.

In this way we see that Clifford analysis also helps to unify impor-
tant theorems from integration theory for applications.
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