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With a suitable choice of the remaining basis matrices we get
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here* and [ denotetheinner and outer products of Grassmann.

this case we know them as scalar product and vector product in
o dimensions.

onclusion : We get amultiplication of vectors unifying the scalar
oduct and the vector product in two dimensions.

1.1 Motivation

We start our considerationsin the euclidean plane.

In an orthonormal basis { e,, e} , we may describe a vector

2
vOO" as
V = Vi€ +V,e,

With the standard description as column vectors we get
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In euclidean 3-space, we may use as description

0001 0010
0010 000-1
e = e, = e, =
1 10100 2 11000 3
1000 0-10 0

V3 0 v, v

0 vy v, —v.
V= Ve Ve, t Ve, = 3 12
181 Vo8 + Va8 0

Vo V1 V3
ViV, 0 -v,

If we would use square matrices, we could take

v, V.
v:v101+v210= 2 1
10 0 - vy -V,

This allows amultiplication of vectors

Vv, V. W, Ww. V,W, +V,W.
ww = V2 Vi|[W2 Wil _ VWt VoW,
Vy Vo[ [Wy W, VaWa = VoW
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For the matrix product of two vectors, we get
100 0 VAW, VW, Vg (W) (VW = VW)
010 0 w = ViW, = VoW VW + VoW VaWy  VaWy — Vi Wy
Vo Wa = VW, = (VagWy —V;Wa)  VyW, + VoW, + VoW,
g 8’01 ol (VW) (VW V)
- and with
0-100 0001
1000 0010
e, = L €38 = L €8, =
2 looo0-1 ** |o-100 *3
0010 -1000
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V2W1 - VlW

VW * VoW,

=(V3W, = vwy)
ViW, = VaWy VoW VoW, + VoW

VaWy =ViWy

VaWa = VaWy
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thisgives
VW = (Va Wy + VoW, + VaWa) 14+ (VoWa —VaW,) €585
+ (VaWy =V, W) 858 + (VW —V,W,) €8,

We will see that this corresponds to

vw = vew+vOw

with Grassmanns inner and outer products and that it combines the
scalar and the vector product of conventional vector algebra.

We will see adifferent interpretation in alater section.
The 2D-vectors are modeled by :

a=ae +ae, a;,a, oo

aswe could see from the right figure. A general element called
multivector contains also ascalar and a bivector part.

A= agl+ (a8 +a5e,) +aj
A=A + A + A,
A, describesthe scalar part, A, the vector part and A, the bivector
part.
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1.2 Clifford algebrain 2D

The relation between the different products in the motivation holds
for different matrix representations. For ageneral definitionin 2D
we use a set of matrices { e, e} with thefollowing properties:

ee+ee =0
eJ2 =1 forj=1,2

ee,#tl

where 1 notes the identity matrix and i = ee, iscalled abivec-
tor.

The following grade projectors alow to deal with this partsin
applications.
O Gy G, - 00G,
A~ Aj=agl
0.0:6G,-0°06,
A~ A =ae tae,
O 0:G,-0i0G,

A->A2=a3i

Thealgebra G, isbuilt by real linear combinations of the basis ele-

ments{1,e,e,i} .

a8

Thei isinterpreted as positive oriented area segment with area 1.
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Theinner and outer products of Grassmann can now be defined
from the matrix (Clifford) product of two vectors.

_1 _
alb = 5(ab-ba) = (At

1
ashb = é(ab+ba) = [ab)
and are extended to the other grades by setting
A OA = INAD
A A= INAL

so that general inner and outer products can be defined by linear
combination of the products of the parts with pure grade.
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The geometric interpretation of this productsis shown in the
following figures:
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14

1.3 Clifford algebrain 3D

Geometry in three dimensions has to deal with real ratios (scalars),
directed line segments (vectors), directed areasegments (bivectors)
and directed volumes (trivectors).

G; isconstructed by any set of matrices { e}, e,, e} satisfying
818, +€)8) = €38 T €8 = e85+ 58, = 0
€=1 forj=123

€,6,6;% 1
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It isimportant to see that the inner product is not always the con-
ventional scalar product. If, for example, one takes the inner prod-
uct of avector with a bivector, onewill get avector. To introduce a
scalar product one defines the rever sion operation.

Al = At A —-A,
Then one defines the scalar product of multivectors A, B by
A* B = [AB') = agb, +a,b, +a,b, +ash,
which gives for vectors the usual scalar product.
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and contains all real linear combinations of

{1 e e, 8508658 ,085, = €884
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The magnitude of amultivector is defined as usual.
|Al = +JA* A= a§+ai+a§+a§

Again, we have the conventional meaning for vectors.
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A geometric interpretation is given by the following figures:

e1 e
€,e, describesan areasegment with positive orientation and area 1
inthe e, e,-plane.
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€,€, standsfor apositive oriented areasegment in the e,, e,-plane
and e,e, for apositive oriented area segment in the e,, e;-plane.

Thei isinterpreted as an oriented volume segment with volume 1
and positive orientation.
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for vectorsa, b O oo Gs.
One has again the formula

asb+alb=ab.
The cross product isrelated to this productsin the following way
axb =i(a0db)

and a comparison with the motivation shows that it is really the
conventional cross product.
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The Hodge-duality
e, = ie; €€ = e, e,e; = ig
allows to describe a general multivector as
A=a+a+i(B+b)
where

a,p00, aboo’ne,
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The next figure illustrates the relation between the outer and the
cross product.

ax<b
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Again, it is useful to define grade projectors to describe the part of
amultivector with pure dimension.

A =a A =a A, = ib A = B
Theinner and outer products of Grassmann are defined as
1
alb = i(ab—ba) = [abh,

1
ashb E(ab+ba) = [aby

22

For inner and outer products of avector aand abivector B, we set

a*B = %(aB—Ba) s

alB = %(aB+Ba) .

The general inner and outer products are defined by
A DA = IARAL
A A= INAL

for elements of pure grade r and s and extended by linear composi-
tion exactly asin the 2D-case.

25



Thereversion
Al = a+a—-i(B+b)

allows the definition of the scalar product.
The scalar product of two multivectors

A=a+a+i(B+b),B=y+c+i(d+d)
is defined by

A*B = [ABTHh = ay+asc+Bd+b-d
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For the magnitude one sets
|Al = +JA* A= 0(2+az+[;2+b2

and thisis again the usual length if A isavector.

27



