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Abstract

Many problems in computer graphics deal with complex 3D scenes where visibility, proximity,
collision detection queries have to be answered. Due to the complexity of these queries and the one of
the models they are applied to, data structures most often based on hierarchical decompositions have
been proposed to solve them. As a result of these involved algorithms/data structures, most of the
analysis have been carried out in the worst case and fail to report good average case performances in
a vast majority of cases.

The goal of this work is therefore to investigate geometric probability tools to characterize average
case properties of standard scenes such as architectural scenes, natural models, etc under some
standard visibility and proximity requests. In the �rst part we recall some fundamentals of integral
geometry and discuss the classical assumption of measures invariant under the group of motions in
the context of non uniform models. In the second one we present simple generalizations of results
describing the interactions between random lines and planes, and random bodies. And in the third
one we report experimental results obtained for �ve fairly complex real-world models. These results
exhibit a very good match between the theory and the practice, thus giving credit to the scene model
used all along.

1 Introduction

1.1 Non uniform distributions and global properties

To �gure out the kind of properties we are interested in we start by reviewing two problems arising in
the lightnings methods of radiosity and ray-tracing.

As is well known, the core computation of radiosity consists in computing the so-called form factors
between the patches discretizing the scene. This process is inherently quadratic in the number of patches
which motivated the development of hierarchical algorithms based on clustering techniques (see [SS96,
PDP96]). Illustrated on say a garden scene, the basic idea is that instead of computing form-factors for
all the pairs of leaves, one should not lose too much information by computing form factors for clusters

of leaves especially in the case of plants located pretty far from one another. But as a result, these
clusters |possibly nested| in
uence the form factors computations between other clusters surface areas
as depicted 1(a). And since computing the exact measure of lines leaving a surface area S1 and reaching
a surface area S2 in the occluded case does not have an exact solution, it would be interesting to have
clusters attenuation factors for standard con�gurations. Such a characterization would also be useful for
hierarchical representations of lights as investigated in [PDP96].

A somewhat di�erent problem arises in ray-tracing where the core of any method is the reduction of
the number of ray-polygons intersections tests. As observed in [JdL92, Hai96, CP97, CPD95] the best
solutions known so far are based on recursive grids and hierarchies of uniform grids. The key point is that
by �guring out densely populated areas of the scene (such as the bowl or teapot neighborhood on �gure
1(b)), these data structures succeed in partitioning the scene into voxels with low stabbing numbers. In
particular it has been shown in [CP97] that the latter data structure was particularly suitable to scenes
with natural clusters that is sets of polygons of the 'same' size and 'neighbors', but less appropriated
for scenes with more uniform distributions. Examples of such scenes are the kitchen and city depicted
on �gures 1(b)(c). But here again, it would useful to have a statistical criteria to recognize this kind of
scene.
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This paper goes in this direction and explores statistics describing the complexity of common scenes
used in computer graphics, geographical information systems, etc, and the natural tool to do so is Integral
Geometry. Our strategy consists in probing the scene with random entities paying special attention to
those statistics that depend on the spatial repartition of the scene objects. By random entities we refer to
random lines and planes in 3D. The reason for this choice is that a random line cutting a scene and split
into chords captures some global information on the relative position of the hit objects. The same holds
for planes and one could even expect planes to convey a more precise information since e.g. a line can
go through a cylinder while a plane cannot ! But as we shall see, for most of the statistics encompassed
only the mean is accessible in closed form. That's the reason why this paper devotes a special attention
to experiments in an attempt to get a glance of the underlying distribution.
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Figure 1: (a)Visibility problem (b)Kitchen model (c)City model

This paper is organized as follows. In the rest of this section we discuss the classical assumption of
measures invariant under translations and rotations in the context of non uniform models. In sections 2
and 3 we investigate several results on the intersection of a scene by random lines and planes. And in
section 6 we present experimental facts about the statistics considered in the two previous sections.

1.2 Integral geometry, uniform distributions and invariant measures

A major concern when dealing with geometric probability consists in precisely de�ning what is meant by
at random. We illustrate this by the Bertrand paradox which addresses the following question: what is
the probability for the length of a random chord of the circle of unit radius to exceed the length of the
side of the inscribed equilateral triangle which is

p
3 ([Gneon, KM63]) ?
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Figure 2: Bertrand's paradox

A �rst way to get a random chord consists in choosing uniformly at random a direction on the circle
and then uniformly at random a point on the corresponding radius: the chord is the line segment whose
endpoints are located on the circle and perpendicular to the radius (�gure 2(a)). Only the chords that
intersect this radius from half of its length to the center of the circle satisfy the condition sought, so that
the probability is 1=2. A second way to get a random chord consists in picking at random two points
on the circle (�gure 2(b)). Placing a vertex of the equilateral triangle at the �rst point picked, we can
conclude that the probability sought is 1=3 since the second point has to fall within the cone of measure
�=3 delimited by the triangle vertex. And a third way just consist of �xing the chord midpoint. In this
case, this point has to fall within the circle or radius 1=2 so that we get a probability of 1=4. We end up
with three di�erent values for the same quantity ... which is confusing !

To �gure out where the problem is, let a chord be characterized the angle � it makes with a �xed
direction and by the distance x to the center of the circle. The densities associated to the three random
schemes are as follows. In the �rst case, the direction and the point are chosen uniformly at random and
independently, so that

f1(x; �) =
dxd�

2�
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In the second one, if � and � are the angular coordinates of the chord endpoints, we have f2(�; �) =
d�d�=(2�)2. But � = � + arccos x and � = � � arccos x with � 2 [0; 2�) and x 2 [�1; 1]. From this
change of variables and by reducing the variation of x to [0; 1] we get

f2(x; �) =
dxd�

�2
p
1� x2

And in the third one, since the circle area is � and the probability for a point to fall in a region of area
A is A=�, we have

f3(x; �) =
xdxd�

�

It is easily checked that integrating these densities when � 2 [0; 2�) and x 2 [0; 1] gives one. As a
conclusion, the three results are correct but correspond to di�erent densities of chords, and this paradox
shows that the densities of objects considered must be de�ned carefully. For the applications we are
interested in, that is characterizing the complexity of scenes, we will follow the general guideline which
consists in using measures invariant by translations and rotations. (f1 in the example above.) More
precisely we will compute an interaction between two kinds of objects: a �xed set of items arbitrarily
distributed in 3D-space (the kitchen polygons in example of �gure 1) and a set of random points, lines,
planes or whatever ! From now on, by distribution we will refer to the distribution of the former data set
since the latter must be invariant under the group of rigid motions.

1.3 Notations and elementary results

1.3.1 Particle sets

We suppose the scene is speci�ed as an enumerable set K =
S
i=1::nKi of compact (closed and bounded)

subset of the Euclidean space E3, and by A(Ki) and V (Ki) we denote the surface area and volume of
the ith object |that we may also call body or particle. We will use an alternative description of the
scene as a set of particles similar to a reference particle within a ratio �. The volume and surface area of
such a �-object are denoted V� and A�. The reason for this choice is an interest in more precise statistics
for a subclass of objects |e.g., those whose length lies between � and � + d�, as well as reconstruction
purposes as usual in stereology (see [San76, Capter 16]).

We also assume the interiors of the Ki are pairwise of null intersection to make independent their
intersection with random �gures such as lines and planes. Lastly, we suppose the whole scene is contained
in a convex cavity W with surface area A(W ) and volume V (W ).

1.3.2 Densities of lines and planes in 3D

The unit sphere in 3D is denoted S2. Due to the invariance requirement under the group of rigid motions,
the densities of lines and planes we are interested in are the following ([San76, RPS51, Sol78]):

random direction ! on S2 is characterized by the pair (� 2 [0; 2�); � 2 [0; �]), and the corresponding
density is d! = sin �d�d� (4� steradian over S2);

random line is parameterized by its direction ! on S2 and by the coordinates (�; �) of the intersection
point between that line and the plane perpendicular to the direction ! and passing through the
origin. The measure is dG = d!d�d�;

random plane � in 3D is characterized by its normal vector which is a direction on S2 and its distance
p > 0 to the origin, so that the corresponding measure is d� = dpd!.

x

y

z

θ

φ

ω

y

z

ω

O

p

x
x

y

z

O

ζ

η
ω

Figure 3: (a)S2 (b)3D planes (c)3D lines
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1.3.3 Projected area of a planar restriction

Let K be a planar bounded set of area F in 3D. Its projection on a plane whose normal makes the
direction ! with the normal of its plane is another bounded set of area F! =j cos! j F . By taking
the z axis of S2 to be the normal to the plane containing the object and integrating over S2 we getR
S2
F!d! = 2�F .
The expected value of the projection area is therefore F=2. Applied to all the faces of a convex

polyhedra of surface area F , we get an expected value of F=4 | known as the Cauchy formula. For more
details, see [RPS51, Page 175], [San76, Page 218].

1.3.4 Measure of lines intersecting a body

In 3D, to compute
R
G\K 6=;

dG, observe that �rst �xing the direction !, the coordinates �; � can span the
area F! which is the projection of K on a plane perpendicular to the direction !. And since we do not
consider oriented lines, integrating over half S2 yields �G(K) =

R
S2=2 f!d!. If K is convex or planar, we

have �G(K) = �F=2 (see [RPS51, Page 201]). Otherwise a fast estimation of the average projected area
could be obtained using hardware z-bu�er.

1.3.5 Measure of planes intersecting a body, thickness

To compute the measure of planes intersecting a body K, that is ��(K) =
R
K\� 6=;

d�, by �rst keeping !

�xed, we get ��(K) =
R
S2
T (!)d! with T (!) =

R
! fixed

dp. The quantity T (!) is called the thickness for
the direction ! and measures the length of the projection of K along that direction. The integral over
all the directions is called the total thickness, or thickness for short. If K is convex, the total thickness
is actually equal to the integral of mean curvature, which we recall in the next section. The thickness is
also de�ned for a non connected body. For more details, see [KM63, Page 80], [Sol78, Page 63], [San76,
Page 222].
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Figure 4: (a)2D thickness (b)3D thickness

1.3.6 Gauss curvature, mean curvature, total curvature

We recall here some important results of di�erential geometry, and the reader is referred to [McC94,
Tho79, HE74, San76] for mode details. Let K be a set whose boundary @K is a surface S of class C2.
It is known that at each point p of S there are two principal directions and two principal curvatures
k1; k2. The product of the principal curvatures is the Gauss curvature | Gauss-Kronecker in higher
dimension | of the surface de�ned as follows

G = k1k2

Geometrically speaking, G is related to the so-called Gauss-Map de�ned by the surface area spanned on
the unit sphere S2 by the unit normal vectors to the surface S | see �g. 5(a)(b). More precisely, it can
be shown that for any elementary surface area ds of S, if d! denotes the corresponding surface of S2 we
have

G = d!=ds

For geometric reasons, one may use the values R1 = 1=k1 and R2 = 1=k2 called the principal radii of
curvature, in which case

R1R2 = 1=G = ds=d!

For example, it is easily checked that the Gauss curvatures of a sphere of radius R and of a plane are
respectively 1=R2 and 0.
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From these values, the mean curvatureM is de�ned by

M =
1

2

Z
S2
(R1 +R2)d! =

1

2

Z
S

(k1 + k2)ds

The computation of M values for simple surfaces can be found in [RPS51, pp.178-182], and we have in
particular

convex polygon of perimeter L M = �L=2
parallelepiped of width a, depth b, height c M = �(a+ b+ c)

Another interesting result we shall use in section 3 is that for a convex surface we have M =
R
S2
T (!)d!.

At last, a quantity of interest in section 4 is the total curvature Q de�ned by

Q =

Z
S

k1k2ds =

Z
S

1

R1R2
ds

This quantity is known to be a topological invariant of compact, orientable and without boundary surfaces,
related to the Euler characteristic �(S) and the genus g of the surface by

Q = 2��(S) = 4�(1� g)

Recalling that for any triangulation T of the surface S we have �T (S) = V � E + F with V;E; F the
numbers of vertices, edges and faces, it is easily seen that Q = 4� for a sphere | from �g. 5(c) we get
� = 6� 12 + 8, Q = 0 for a torus, etc.
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Figure 5: (a)2D Gauss Maps (b)3D Gauss Map (c)Euler characteristic

2 Intersections by lines

In this section, we study the intersection of our scene with random lines. The intersection between a Ki

and a line is called a chord, and the complement of all the chords for a given line is called the free path.

2.1 Intersections and chords

Let �G(K) be the measure of the lines intersecting K (that is, any of the Ki). Also let nGint be the average
number of intersections with K of a line which intersects W , and nG?int the average number of intersections
with K of a line which intersects K (for example, with a single convex body its value would be 2). Then
we have

Proposition 1 The average number of intersection points with K of a line intersecting W and inter-

secting K are respectively

nGint = 2
X

A(Ki)=A(W ) and nG?int = �
X

A(Ki)=�
G(K) (1)

Proposition 2 The average length of the sum of the chords per global line and the average length per

chord are given by

4
X
i

V (Ki)=A(W ) and 4
X
i

V (Ki)=
X
i

A(Ki)
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Proposition 3 The average mean free path is given by

4
�
V (W )�

X
i

V (Ki)
�
=
�
A(W ) +

X
i

A(Ki)
�

Proof: For prop. 1, each object i is intersected in �A(Ki) intersections | see [RPS51, p.201 and p.206],
and since the objects are non overlapping the intersections are independent. To complete the proof, it
su�ces to observe that the measure of lines intersecting W is �A(W )=2 since W is supposed convex.

For prop. 2 the sum of chords is given byZ
K\G

�d!d�d� =

Z
S2=2

d!

Z
K!

�d�d� = 2�
X
i

V (Ki)

because for each Ki the sum of parallel chords is its volume | [RPS51, p.210], and the measure of lines
intersecting W is �A(W )=2. Hence the �rst result. As for the second one, we observe that the number
of chords is given by half the number of intersections, that is �

P
iA(Ki)=2.

As for prop. 3, we want to know the mean free path of a ray, that is, the average length outside a body.
But for a ray, the total free length is the length of the ray minus the sum of chords, and since the average
of a di�erence is the di�erence of averages, we get

4(V (W ) �Pi V (Ki))

A(W )

The average length outside a body that is therefore 4 times the unoccupied volume divided by the area
of the cavity. To complete the proof it su�ces to divide the previous quantity by the average number of
chords plus one | to n chords correspond n+ 1 segments outside. �

The result on the number of intersections points was already in [Sbe93], and it should be noticed that
for planar objects, the number of objects hit is half of the number of intersection points exactly for convex
objects. As we shall see in section 6.1 the theoretical values are matching pretty well the experimentally
observed ones. As for the one on the mean free path, it generalizes the one from [San76, Page 42] where
the particles are supposed to be uniformly distributed at random. But the common characteristic of these
results is to be independent from the objects positions.

2.2 Lines in free space and upper bounds

As soon as the whole scene does not contain surfaces covering the cavity W |in which case a line
intersecting W also intersects K, an indicator on the relative position of the particles is the probability
for a random line to go through the set K. As observed more than a century ago by Sylvester in [Syl90],
getting the exact solution for that problem in dimension two for three bodies is already involved. And
as mentioned in 1.1, no exact solution is known in dimension three. In addition to the characterization
of section 1.3.4, it can also be shown that the following holds

Proposition 4 The probability of zero intersections with a random line is given by p(0) = 1� nGint=n
G?
int

Proof: From proposition 1 we have �G(K) = �A(K)=nG?int. But the probability for a line that intersects
W to intersect K is given by �G(K)=�G(W ). The probability p(0) for a line not to intersectK is therefore

p(0) = 1� �G(K)

�G(W )
= 1�

�A(K)
nG?
int

�
2A(W )

= 1� nGint
nG?int

(2)

�

An estimation of this value can be obtained using a z-bu�er. Also, getting the distribution of the
number of intersections seems to be hopeless ! But a tight upper bound for the probability of i intersections
is the following:

Proposition 5 The probability p(i) for a line to intersect i bodies in the scene is upper bounded by

A(K)=(iA(W ))
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Proof: By de�nition of the average number of intersections we have

2A(K) = A(W ) = nGint = 2 � p(2) + 4 � p(4) + � � �+ 2n � p(2n)
But since each term of the sum is greater or equal to zero, it is clear that p(2i) � 1

2i
2A(K)
A(W ) ; i = 1 : : :n �

These bounds are tight as can be shown by suitably arranging n degenerated objects. Consider for
example stacks of pairs or rectangles put side by side, each rectangle being considered as a degenerated
body of area A. The probability to have two objects intersected is A(K)=(2A(W )) and all the other
probabilities are zero.

2.3 The continuous case

We now switch to the second way of describing a scene, that is as a set of particles similar to a reference
particle within a ratio �. We start by the de�nition of a point density describing the objects present
anywhere in the scene:

De�nition 1 We de�ne the density H(�; x) as the number of objects of size � at point x of the scene.

The number of �-objects contained in a volume V is given by
R
V
H(�; x)dV (x), and N� refers to the

number of �-objects in the whole scene i.e.
R
V (W )

H(�; x)dV (x)

Since any �-particle adds one to the count of the number of particles, we have
R
V�
H(�; x)dV (x) = 1

independently of the location of that particle. A natural choice for H is therefore to set H(�; x) = 1=V�
within any object of size � and zero outside. In other words, V�H(�; x) = �� i.e. the characteristic
function for the union of all objects of size �. We proceed in the same way for the chords:

De�nition 2 We de�ne the density h(�; �; x;G) as the number of objects of size � intersected by a ray

G with a chord of length �.

The value of h(�; �; x;G)must equal 1=� for a point on a chord of length � on ray G on a body of size � and
zero otherwise. Indeed, when summing along the chord we have

R
G\V�

h(�; �; x;G)dl(G; x) = 1 whence

the value of h. The two densities just de�ned generalize the densities H(�), h(�), de�ned in [San76],
pp.289-290, which correspond to the number of �-particles per unit volume, and chords with length �
per unit length, respectively. Also, it is easily checked that

Proposition 6 For any � and any G we must have
R1
0 h(�; �; x;G)�d� = V�H(�; x)

These densities can be used to prove results equivalent to the propositions 1, 2 and 3. These results state
that the average number of intersections between global lines and the scene is given by

R
A�N�d�=Aw;

that the average length of the sum of the chords per ray and the average length of a chord per ray are
given by 4

R
V�N�d�=Aw and

R
V�N�d�=

R
A�N�d�; and that the average mean free path is given by

4(Vw � R V�N�d�)=(Aw +
R
A�N�d�).

But they can be re�ned to depend on the two parameters � and � as follows:

Proposition 7 The average number of � chords for �-objects over all rays G is given by

m(�; �) =
2

�A(W )

Z Z
h(�; �; x;G)dl(G; x)dG

The function �(�; �) de�ned as the proportion of � chords respective to the total of chords is

�(�; �) =
m(�; �)R
m(�; �)

=
2

�A�N�

Z Z
h(�; �; x;G)dl(G; x)dG

Another interesting property of these densities is that one can get information on H from h, that is on
the three-dimensional repartition of the set of particles from its section with random lines. To see how,
let �(�) = �(�; 1) be the proportion of chords on K1 which lie between � and � + d�, and let �m denote
the greatest chord cut on K1. The following proposition generalizes the one in [San76], pp.289-290:

Proposition 8Z 1

�=�=�m

Z
��(�=�)H(�; x)dV (x)d� = 1=(�A1)

Z Z Z
h(�; �; x;G)dl(G; x)dGd�

Proof: For K� we have �(�; �)d� = �(�=�; 1)d(��) = ��1�(�=�)d�. On the other hand, A� = �2A1.
Observing that N� =

R
V (W )

H(�; x)dV (x) completes the proof. �
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3 Intersections by planes

3.1 Intersections and sections

Consider the set K as in the previous section and let ��(K) be the measure of the planes which intersect
any of the Ki. Also let n�int be the average number of objects of K intersected with a plane which
intersects the cavity W , and n�?int the average number of intersections with K of a plane which intersects
K. We have:

Proposition 9 The average number of objects in K intersected by a plane intersecting W and intersect-

ing K are respectively

n�int =
X
i

T (Ki)=M (W ) and n�?int =
X
i

T (Ki)=T (K) (3)

Proposition 10 The average section and perimeter with K for a random plane intersecting W are given

by

2�
X
i

V (Ki)=M (W ) and �2
X
i

A(Ki)=2M (W ) (4)

Proposition 11 The average section and perimeter with an object of K for a random plane intersecting

W are given by

2�
P

i V (Ki)P
i T (Ki)

and
�2
P

iA(Ki)

2
P

i T (Ki)
(5)

Proof: For prop. 9, as recalled in section 1.3.5, each object i is intersected by T (Ki) planes, hence the
result.

For prop. 10, given any direction ! and any object Ki, the sum of the sections of all planes paral-
lel to that direction with Ki gives V (Ki). But we have 2� directions, hence the result. For the second
result, it is enough to follow the proof in [RPS51], pp.221-223, considering that

P
iA(Ki) is the area ofK.

As for prop. 11, it results from the division of the expression (4) by the value of n�int given by expression
(3). �

In particular, if all objects in K are convex one can replace T (Ki) by M (Ki). Exactly as with the
lines, the important fact with these statistics is to be independent of the objects distribution.

3.2 Planes in free space and upper bounds

The results are similar to the lines case. Indeed, since the world cavity W is supposed to be convex we
have ��(W ) = M (W ). Then, using the thickness T (K) of the set K we get

Proposition 12 The probability for a plane that, intersecting W , does not intersects K, is given by

p(0) = 1� T (K)=M (W ) = 1� n�int=n
�?
int (6)

Proof: The probability of intersection is simply the quotient of the measures of the planes intersecting
K and W , that is T (K)=M (W ) hence the result. �

The importance of this result is that we can have an estimation of p(0) with a repeated application
of a scan-line algorithm, which can be hardware implemented.
We now give without proof the following proposition analogous to the one in the previous section:

Proposition 13 The probability for a random plane to intersect i objects ofK is bounded by T (K)=(iM (W ))
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3.3 The continuous case

To re�ne the previous results as in the lines case, we �rst de�ne a discrete density characterizing the
sections of area s | also called s sections | between a plane and an object:

De�nition 3 We de�ne the density h�(s; �; x; �) as the number of objects of size � intersected by a plane

� with a section of area s.

The value of h�(s; �; x; �) must equal 1=s for a point on a section of area s on plane � on a body of size
� and zero otherwise. Indeed, when summing along the section we have

R
�\V�

h�(s; �; x; �)dA(�; x) = 1

whence the value of h. The density just de�ned generalizes the density h�(s), de�ned in [San76], pp.286-
287, which corresponds to the number of sections with area s per unit area. Exactly as with the lines
case one can get the results of the discrete case. We skip this discussion and present speci�c results to
�-objects and s-sections:

Proposition 14 For a given �, the average number of s sections over all planes � is given by

m�(s; �) =
1

Mw

Z Z
h�(s; �; x; �)dA(�; x)d�

The function ��(s; �) de�ned as the proportion of s sections respective to the total of sections is

��(s; �) =
m�(s; �)R
m�(s; �)ds

=
1

T�N�

Z Z
h�(s; �; x; �)dA(�; x)d�

Here again, the stereology purposes of [San76, pp.286-287] can also be generalized. To see how, let
��(s) = ��(s; 1) be the proportion of sections on K1 which lie between s and s + ds, and let sm refer to
the greatest section cut on K1. The following proposition generalizes the one in [San76], pp.286-287.

Proposition 15

Z 1

�=
p
s=sm

Z
��1��(

s

�2
)H(�; x)dV (x)d� =

1

T1

Z Z Z
h�(s; �; x; �)dA(�; x)d�d�

Proof: For K� we have ��(s; �)ds = ��(s=�2; 1)d(s=�2) = ��2��(s=�2)ds On the other hand, T� = �T1,
and observing that N� =

R
Vw

H(�; x)dV (x) completes the proof. �

3.4 Intermezzo: a thickness-related statistic

As observed in section 1.3.5, the thickness along a line of the set K is equal to the length of the objects'
projections along that line. Of course, the projection of two or several objects may overlap one-another,
and a question of interest is to know whether or not measuring this overlapping can give information on
the objects' overall distribution. More precisely:

De�nition 4 Let a one-dimensional arrangement of n line segments be a set of n line segments with

distinct extremities on some line L. We de�ne the overlap number of this arrangement as the sum over

all the endpoints, of the number of line segments interiors these endpoints are contained in

An example of arrangement of 3 line segments f(a1; a2); (b1; b2); (c1; c2)g is depicted on �g. 6, and the
corresponding overlap number is 0 + 1 + 2 + 2 + 1 + 0 = 6. From [Caz97], the following proposition is
straightforward:

Proposition 16 The average overlap number �n of a random arrangement of n line segments is given

by

�n =
4n3=3� 2n2 + 2n=3

2n� 1

So that a natural way to use this overlapping measure consists in comparing the theoretical value �n with
an experimental value "�n computed by averaging the overlap numbers of random arrangements obtained
by projecting the scene objects onto random lines. As we shall see in section 6.3, if the �ngerprint role
of this statistic is not obvious, a surprising property lies in its stability under uniform sampling.
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a1 c1 b1 a2 b2 c2
L

Figure 6: Arrangement of line segments

4 Intersections with a lattice of cubes

So far, we considered a �xed scene and probed it with random lines and planes. A dual formulation
of the problem consists in moving the scene over a �xed geometric �gure and computing statistics for
the con�gurations thus obtained. This is particularly interesting since choosing the �gure as a grid-
like lattice of side a and counting the number of intersections could intuitively give information about
densely populated areas called clusters in [CP97]. The di�culty we have to face here are double: �rst
how do we specify the way the Ki are moved around ? second, how do we deal with the non uniform
distribution of the Ki ? It actually turns out that much of the previous work ([San76, Chapters 6,12,15])
speci�es the motion of the objects by the so-called kinematic density relying on distance preserving a�ne
transformations. And the measures associated to that subgroup of the a�ne group are always invariant
di�erential forms. In other words, in order to characterize non uniform distributions of particles by
assigning a non uniform position and orientation to a reference particle, one has to reinvent the wheel!
We therefore present a result based on a transformation of the scene into a single object moved around
by the usual kinematic density:

Proposition 17 If all the Ki are topological balls, the expected number of intersection cells between a

cubic lattice of side a and the scene K is upper bounded by

E(N ) � 1 +

P
i V (Ki)

a3
+

1

4�

�
3�
P

iA(Ki)

a2
+
6(
P

iM (Ki) + �b)

a

�
(7)

where b is the cumulated length of n � 1 line segments connecting the Ki into a tree

Proof: For a topological ball B ([San76, p.274]), this number is bounded by

E(N ) � 1

4�

�
Q(B) +

4�V (B)

a3
+
3�A(B)

a2
+

6M (B)

a

�
(8)

with Q(B) the total curvature mentioned in 1.3.6. The trick therefore consists in changing K into a new
body K? which is a topological ball. To do so, we just have to �nd a spanning tree over the Ki and add
n � 1 rods of arbitrarily small diameter between the Ki thus connected |note that adding n or more
rods would result in a cycle so that we would not have a topological ball anymore. Let b the total length
of these rods. Plugging the following values into eq. (8) completes the proof

Q(K?) = 4�; V (K?) =
X
i

V (Ki); A(K?) =
X
i

A(Ki);M (K?) =
X
i

M (Ki) + �b

�

If the particles are located far away from one another, the previous expression will result in a too high
value. But observe that this can be detected by removing all the rods of length greater than a

p
3. The

previous formula is still valid but the �rst term has to be replaced by the the number of connected
components produced.

5 Test scenes

We refer the reader to [CP97].
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6 Experiments

For most of the statistics considered so far, we saw that the only closed form integral geometers had been
able to come up with was the expectation, which in many cases does not depend upon the objects' relative
positions. This already gives very interesting information, but two open questions of major interest are
related to the distributions associated to these expectations, and also to higher order moments.

As a �rst step in this direction and for selected statistics studied in sections 2 and 3, we present
thereafter two kinds of experimental results. Firstly, we compare the expected theoretical values with
experimentally observed ones, together with experimental standard deviations. Secondly, we plot the
random variables densities and cumulated distribution functions. For a given scene and a given variable,
these two functions are depicted on the same chart but are easily distinguished since the latter is increasing
and ends up with the value 1.

6.1 Random lines statistics

6.1.1 Random lines generation and statistics studied

The statistics we consider are the number of intersections, the probability p0 measuring the chances for a
line to miss all the objects, and a free path related statistic | see section 2. Before discussing them, we
�rst observe | as shown for example in [Sbe93, Sol78] | that generating a random line uniformly in S2

just requires two random points on the surface of the sphere. This result is kind of surprising since the
uniformity does not hold in dimension two according to the Bertrand's paradox. Generating uniformly
distributed random lines crossing a scene can therefore be done by generating such lines in the sphere
containing the scene bounding box and discarding those that do not hit this box.

For the number of intersection points statistic, the value nGint is given by prop. 1. Computing this
number for a polygonal scene is straightforward since the area of a polygon P with vertices (v0; : : : ; vn�1)
is given by

A(P ) = A(p; v0; v1) + A(p; v1; v2) + : : :+A(p; vn�1; v0) (9)

with p any point lying in the polygon plane and A(p; v0; v1) the area of the triangle (p; v0; v1) |see
[O'R94, p. 24]. As for the computation of the experimental expectation and standard deviation enGint
and �enGint, it is su�cient to test all the polygons for intersection with the query rays.

For the p0 statistic, we saw that the theoretical value derived in proposition 2 was not amenable to
an easy computation. On the other side, getting an experimental value for it just requires dividing the
number of rays missing all the scene objects by the total number of rays casted.

As for the free path related statistic, since for polygonal scenes the whole ray except the intersection
points lies in free space, we consider the length of the line segments delimited by the intersection points
with the objects and the scene bounding box. An example of ray split into four line segments of lengths
l1; l2; l3; l4 is depicted on �gure 7(b). Over a set of rays casted, each of these lengths is a�ected the same
weight i.e. 1, and to normalize the results all the lengths were divided by the largest length observed.
The experimentally observed expectation and standard deviation of this random variable CL are denoted
�CL and �CL in the sequel.

6.1.2 Results

All the tests were performed by casting 50,000 random lines on the scenes. Figure 7(a) shows 200 such
lines for the Berkeley Computer science building. Reporting all the hits for a given ray was done using
a uniform grid | see [CPD95]. A recursive one would have been more e�cient but the goal here is to
characterize scenes properties as a pre-processing. The results are presented on table 1 and �gures 8, 9,
10 and 12:
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Figure 7: Random lines and chords statistics

Scene #polys p0 nGint enGint �enGint �CL �CL

Kitchen 20947 0.4 3.66 3.7 4.7 0.2 0.1
CSB walls 32811 0.35 6.66 6.03 7.17 0.26 0.17
CSB 3rd 
oor 117605 0.15 3.5 3.2 3.6 0.09 0.1
City 52136 0.15 2.0 2.02 2.24 0.02 0.05
Garden 45293 0.83 0.31 0.3 0.96 0.3 0.19

Table 1: Statistics on random lines and chords
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Figure 8: Kitchen stats (a)Number of intersections (b)CL distribution
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Figure 9: CSB walls stats (a)Number of intersections (b)CL distribution
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Figure 10: CSB third 
oor stats (a)Number of intersections (b)CL distribution
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Figure 11: City stats (a)Number of intersections (b)CL distribution
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Figure 12: Garden stats (a)Number of intersections (b)CL distribution

For the only statistic where the theoretical and experimental values are available, that is the number
of intersections, a very satisfying observation is that the theory matches the practice pretty well. Indeed,
as shown on table 1, nGint and enGint are within a few percents. The discrepancy is a bit bigger for the
CSB scenes, and there are at least two candidates explanations. It could be that some polygons of the
models are not simple polygons in which case the surface area computation of eq. (9) does not hold. Or
it could be that the rate on convergence of the enGint estimator is more sensitive to these scenes. More
interesting are the other quantities, and we analyze them now in order of increasing di�culty.

For the city, things are pretty easy. Most of the lines hitting the scene bounding box also hit the
scene and the chords lengths are uniformly small which means that the scene objects are uniformly
placed and close from one another |otherwise more lines would miss the set K. Also the average
number of intersections with reference to the number of polygons in the scenes probably accounts for a
2; 5D distribution.

For the garden the situation is not more involved. Most of the lines are missing the set K which
means that the scene is made of small objects, and the high variability of the chord lengths means that
these objects are scattered all over the place.

But for the CSB 3rd 
oor, the CSB walls and the Kitchen, things get a little trickier. By �rst
observing the chords length diagrams we see that there are more shorter chords for the CSB 3rd 
oor than
for the two other scenes which means that the scene space probably exhibits a thinner subdivision. On the
other hand and with reference to the total number of polygons, the third 
oor has a low average number
of intersections. An explanation is that most of the objects are clustered in some dense areas and are not
hit very often. As for the CSB walls and the kitchen, they exhibit a similar behavior in terms of average
and standard deviation, excepted that the kitchen diagrams show some striking zigzags ! In particular
any ray has an even number of hits. This is due to the fact that all the scene polygons are arranged
to form closed surfaces. Instead of reporting the number of polygonal hits, we could have reported the
number of objects hits, but this would fail in giving any information on the spatial repartition of all these
polygons |a great number of tiny polygons arranged to form a non convex surface that would result in
a great number of hits would count for one! From the zizgag observation we can therefore deduce that
the independent number of polygons hit in the kitchen is smaller in a signi�cant factor to the one of the
CSB walls scene.
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6.2 Random planes statistics

6.2.1 Random planes generation and statistics studied

From the density of planes recalled in section 1.3.2, generating a random plane is straightforward: we need
a direction i.e. a point on S2, and a positive distance for the distance from the plane to the coordinate
system origin. Now, to have these planes uniformly distributed at random in the volume containing the
scene, it su�ces to generate planes in the sphere containing the scene bounding box and centered at the
center point of this box, and to discard those that do not cross the box. An arrangement of 10 such
planes for the kitchen scene is shown on �g. 13(a) | note that the planes have been clipped against the
scene bounding box.

Due to the di�culty of maintaining a polygonal map describing the scene objects projection on a
plane, we just report results related to the number of intersections between a random plane and the
scene. The theoretical expectation n�int has been computed in prop. 9. For the total thickness of object
Ki we used the corresponding mean curvature given in 1.3.6, as if Ki was convex. As we shall see with
the experiments, for our test scenes where more than 95% of polygons are triangles and squares, these
two approximations do not result in signi�cant errors. Before discussing the results, we should point out
that by en�int and �en�int we refer to the experimentally observed expectation and standard deviation of
the number of intersections of the scene with a random plane.

6.2.2 Results

All the tests were performed with 50,000 random planes. The results are displayed on table 2 and �gures
13(b), 14 and 15.

Scene p0 n�int en�int �en�int
Kitchen 0.17 152.909 153.528 188.117
CSB 3rd 
oor 0.04 332.738 332.039 332.556
CSB walls 0.18 524.739 522.565 531.268
City 0.03 291.584 291.802 172.092
Garden 0.26 145.542 147.003 161.073

Table 2: Statistics on 50000 random planes
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Figure 13: (a)Random planes crossing the kitchen (b)Kitchen stats
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Figure 15: (a)City (b)Garden

Exactly as for the lines case, a positive point is that the values of n�int and en�int are very close to
one another. Concerning the p0 statistic, the lower values are obtained for the city and CSB 3rd 
oor
scenes, which is not surprising since these two scenes are contained in an axis aligned parallelepiped so
that any plane crossing that box also intersect some object with high probability. Intermediate values are
obtained for the kitchen and the CSB walls. Since for these two scenes the surface of the scene convex
hull mainly consists of scene polygons | in particular those corresponding to the walls, this just means
that there is a noticeable discrepancy between the scene convex hull volume and the scene bounding box
volume. The highest value is obtained for the garden scene which is not very surprising.

Concerning the standard deviation �en�int, it should be noticed that the values of en�int and �en�int
are of the same order of magnitude for all the scenes but the city one. For that one, having a much lower
standard deviation probably captures some notion of uniformity. This is interesting especially since an
equivalent property does not hold for the lines statistics.

As for the distribution of the number of intersections, the interpretation is not that easy!

6.3 The thickness-related statistic

In section 3.4, we de�ned the average overlap number �n, and our concern in this section is to study the
ratio �n = �n="�n, with "�n the experimental value associated to �n.

The qualitative information sought is related to the objects' size as well as their relative placement.
Indeed, tiny objects scattered all over the place are unlikely to overlap one-another when projected on a
line. On the opposite, bigger objects evenly distributed in 3D are likely to overlap. Also, if this quantity
is a good �ngerprint of a given scene, one could expect its value to be stable under uniform sampling.
Indeed, when picking objects at random, one gets a 'picture' of the scene at di�erent levels of detail
because those highly populated areas of the scene are also those that receive the highest representation
in the sample. This is illustrated on �gures 16 and 17. In particular, with only 2% of objects one can
already guess that bowl, plates, teapot and tops of the chairs.

The ratios �n for 1%, 5%, 20%, 40%, 80% and 100% objects of the scene, as well as 50 and 500 random
rays are presented on table 3.

Figure 16: Uniformly sampling the kitchen scene: 2% and 5% of objects
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Figure 17: Uniformly sampling the kitchen scene: 20% and 80% of objects

Scene # rays %obj 0.01 0.05 0.1 0.2 0.4 0.8 1
Kitchen 50 0.0698 0.0652 0.0673 0.0709 0.0654 0.0688 0.0680

500 0.0615 0.0645 0.0692 0.0669 0.0685 0.0689 0.0687

CSB 3rd 
oor 50 0.0288 0.0240 0.0190 0.0212 0.0194 0.0203 0.0225
500 0.0214 0.0210 0.0217 0.0221 0.0214 0.0215 0.0219

CSB Walls 50 0.0922 0.1010 0.0916 0.0936 0.0996 0.0974 0.0984
500 0.0978 0.0996 0.1000 0.0948 0.0992 0.0980 0.098

City 50 0.0277 0.0270 0.0260 0.0243 0.0240 0.0242 0.0260
500 0.0265 0.0251 0.0263 0.0261 0.0255 0.0266 0.0263

Garden 50 0.0226 0.0219 0.0216 0.0212 0.0213 0.0213 0.0209
500 0.0209 0.0213 0.0227 0.0216 0.0220 0.0216 0.0218

Table 3: The �n = �n="�n statistic

The most striking observation is the stability of �n since we get values within 10% or so for the whole
scene and 1% of its objects. On the other hand, �n fails in giving obvious information of the objects'
spatial distribution since we have the ordering

�garden < �CSB 3rdfloor < �city < �kitchen < �CSB walls

and in terms of clustering ability one would expect

f�CSB 3rdfloor ; �kitchen; �gardeng < f�city; �CSB wallsg

7 Conclusion

In this paper we systematically studied the interaction between general three dimensional distributions
of non overlapping particles and random lines, random planes, and cubic lattices. The results obtained
generalise Integral Geometry results to non uniform distributions of objects and shed light on which
tools are of interest to investigate visibility problems as well as scenes classi�cation purposes in computer
graphics. An important contribution of this paper is to show through a careful experimental study, that
the theory and practice are in excellent correspondence. This legitimates the scene model we used and
should motivate future work.

In particular, the interest devoted to the distributions attached to the expectations gives pretty
disappointing results since it seems very di�cult to quantify them in terms of scenes classi�cation for
example. Major emphasis should therefore be put on devising more informative statistics. In doing so,
the stability of these statistics under sampling should also be carefully addressed since this is a major
issue when dealing with very big models.

Other questions of major interest and of more theoretical 
avor are the following. Firstly, how easily
can one perform average case analysis for the lattices with non invariant kinematic densities over the
subgroup of distance preserving a�ne transformations ? Secondly, which kind of results can one come
up with by getting rid of the non-overlapping hypothesis between the particles ? By doing so, we could
de�ne continuous densities equivalent to the discrete density H de�ned in this paper and probably get
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more analytical results. Thirdly, can any rate of convergence be stated for estimators of the statistics
studied in this paper? This question is of special interest in connection with the work of V. Vapnik and
A. Chervonenkis ([VC71]) which has already received a huge echo in the CG community.
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