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Abstract
The tutorial introduces a variety of ways of modelling branching biological structures. Methods for generating
plant like images, such as Diffusion Limited Aggregation and Iterated Function Systems are briefly discussed. The
main concentration is on two methods that can be used to model the growth of such structures. The powerful L-
systems method gains explanatory power by use of parameters, context and environmental sensitivity, enabling
natural features such as leaf drop, self-pruning and self-seeding. The method of Kaandorp for modelling marine
sessile organisms such as sponges and corals, in which geometric features are “grown” directly, is compared for
veracity with observed organisms in different physical environments.

1. Introduction

This tutorial is structured in three parts. Part one describes a
variety of methods for producing images of plant like forms.
This discusses the natures of various types of depiction, gives a
historical overview of specialised studies and examples of
Iterated Function Systems (IFS) and Diffusion Limited
Aggregation (DLA). Part two concentrates on L-systems.
Refinements to the basic method that enable modelling of
growing structures are described and the section ends with two
case studies of fungus and tree growth. References for parts 1
and 2 (by Jones) appear at the end of part 2. Finally, the
modelling of growing marine sessile organisms using geometric
transformation rules which relate to environmental factors is
described in part three (by Kaandorp). This technique is shown
to have close simularities with observations from nature.

Figure 1.1: Polygonal trees in an architectural drawing

1.1. Realism or not?

The style of depiction should depend on the potential use of
the image. In flight and driving simulators, movement may
mask inadequacies. Many systems use “billboarding” to
represent trees as one or more intersecting scanned planar
images rotated always to face the location of the observer (as
by Visual Environments Inc. 1). Architectural line drawings
may depict trees as simple polyhedral structures, to match the
complexity of other features (fig. 1.1) (by the late John
Lansdown 2). The rough cross-hatched texture of computer
generated trees by Campa 3 looks natural in particular types
of architectural illustration (fig. 1.2).

Poynter 4 developed a scheme for rapid production of
images as interpretations of cartographic data sets (fig. 1.3).
Terrain is depicted from height information. Individual fields
are delineated and texture mapped according to their crops,

Figure 1.2: Campa’s sketchy trees in an architectural
illustration
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Figure 1.3: Fields, trees, hedgerows and a forest

with hedgerows, trees and forests shown in a stylised way,
using level of detail variation,

Synthesised mages that directly model the appearance of
specific trees can achieve high levels of photo-realism, both
structurally and through the use of texture mapping. The maple
(fig. 1.4) created by Thum is an example. Thum also generated
models of other tree forms 5.

These examples from Middlesex University and other
methods discussed below show a wide range of styles of plant
depiction. By “plant” we implicitly include other branching
growing structures. The variety reflects different needs, from
quick spatial impressions to photo-realism, from simple shape
models to interpretation of underlying biological principles.
Each of the illustrations shown can be considered successful in
its own right. In all cases, fitness for purpose is a criterion in
deciding on a successful method.

Figure 1.4: A maple, modelled by Thum. The close up (lower
image) shows detailed bark, leaf texture and shape.

1.2. Some historical developments

Computer models of growing processes should be soundly
based in biology. Classics by Thompson 6 and Stephens 7 and
web sites 8, 9 are useful and readable. The Register of
Ecological Models 10 lists dowloadable ecological modellers.

Honda 11 gives a parametric description of tree skeletons.
He distinguishes monopodial branching (in which one sub-
branch continues in the same direction as the originating
branch) from dichotomous branching. He influenced the
work of Aono and Kunii 12, which preceded the
popularisation of and is similar to the well known L-systems
method, described in detail later. They model a variety of
genuses of tree, and give data that enables the results to be
duplicated. Smith 13 describes the method of “graftals”, also
an independently developed method related to L-systems.
The name he chose connects the near fractal structure of trees
to their graphic depiction. Trees are fractal 14 to the extent
that they display “statistical self similarity”, with branches
and sub-branches having scaled down structural likeness to
the tree as a whole. However, this is seen in nature to be
limited to about seven levels of sub-copies, rather than the
infinitesimal subdivision allowed in fractal theory. This
observation can be useful in limiting tree models based on
fractal methods. Estvanik 15 gives detailed information on
implementation of graftals.

Bloomenthal 16 models tree branches as generalised
cylinders whose axes follow spline curves. Control points for
branches are created by a recursive algorithm. A high degree
of realism is achieved by texture mapping of bark and leaves,
and level-of-detail features are included for viewing at
different distances.

Reeves and Blau 17 illustrate collections of trees using
particle systems to add leaves to an underlying branch
structure. The structure is generated recursively, with
separate algorithms applied to affect growth by features such
as gravity, prevailing wind and sunlight. A typical forest
image requires of the order of one million particles, which
are sorted and rendered with colours taking into account
sunlight and shade. The emphasis is on creating an effective
image rather than directly modelling botanical data.

De Reffye et al. 18 describe what is now known as the
AMAP method (Atelier de Modélisation de l’Architecture
des Plantes) 19. Françon and Lienhardt 20 describe its goal as:

the definition of a rigorous and faithful model of
plants and plant growth, for botanical and
agronomical purposes. The method is based on
botanical knowledge, and is validated through
observations and measures on natural plants (p 27).

The method takes account of whether growth is continuous
or not, how branches develop, whether branches have a
tendency to grow towards the horizontal (plagiotropy) or
vertical (orthotropy), and is based on tropical tree data
collected by Hallé, Oldeman and Tomlinson 21.

Holton 22 models a tree structure as a collection of
unbroken strands running from the tree base (or root) to
terminate at a leaf or branch. The thickness of a structural
element depends on the numbers of strands passing through
it. Gravity and nutrition supply are also taken into account.
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Weber and Penn 23 use curved and tapering cones for the trunk,
with branching structures defined recursively. They list 80
parameters used to control structure in their system for each of
four different tree types. These govern features such as overall
tree shape, size, levels of recursion, angles of branching and
number of leaves per shoot. They also list the following
features of a “good” tree modelling and rendering system,
which they claim are achieved by their method:

• an appropriate level of resolution and quality;
• three dimensional modelling to enable realistic animation;
• accurate branching structure;
• capability of modelling a wide variety of tree types;
• random variations;
• time-dependent variability due to natural forces;
• concise and easily understandable modelling structure;
• models of different resolution to be viewed at different

distances;
• stable and easy-to-use system.

Cellular automata, in which the contents of pre-defined cells
change at regular clock ticks using functional rules dependent
on the contents of neighbour cells, have been used in a number
of plant studies. Arvo and Kirk 24 and Greene 25 use them to
“train” climbing plants against existing structures. In particular,
Greene uses strands, as Holton did later, to give varying
thickness in roots negotiating their way around rocks. Colasanti
and Hunt 26 create a 2D growing environment through cellular
automata, in which the contents of cells change at regular clock
ticks depending on the contents of neighbouring cells. The
above ground cells are initially loaded with a parameter
representing sunlight energy, which subsequently “seeps” down
through cells, with cells in shade when growing structures cells
above them absorb light. Below ground cells are loaded with
soil nutrient levels, which are absorbed by growing roots, to be
replenished in a simulation of natural processes. Branching
Benes uses location information and the equivalent of a shadow
buffer algorithm to assess the amount of light received
structures grow to seek appropriate resources. Stuart uses
cellular automata to model the spread of forest fires 27, cells are
defined to contain trees, shrubs, rock or bare soil with given
levels of moisture. Fire affects these levels and spreads in a way
controlled by local terrain slope and strength and direction of
the wind.

Figure 1.5: Stills from animations of wind-blown trees, in a
light breeze, medium and strong wind (clockwise from the left)

Benes uses location information and a shadow buffer to
assess the amount of light received by growing parts of an L-
system structure 28. This is applied to structures after the
method of de Reffye et al. 18 to influence growth rates and to
bend structures towards sources of light 29.

The movement of plants affects the realism of a display,
even in still images, where distortion due to wind affects
plant geometry. Stösser et al. 30 show animations of weeping
willows in the wind. Jones and Aitken 31 use a wind-tree
model to animate simple stick and leaf representations of
trees (fig. 1.5). Their model uses pseudo physics to allow
elastic recoil and twisting of branches, fluttering of leaves,
wind attenuation for segments in the lee of others and
varying wind forces. Wu et al. 32 build their models of trees
by user interaction to create outlines of and give three
dimensional depth to selected branches of a photographic
image, which is then animated. Ono 33 animates deformation
and destruction of trees under severe wind forces. Although
the method is simplified, there is no branch twisting, wind
attenuation nor collision detection, Ono states, “visually
satisfying results do not depend on physical accuracy”. The
results were shown to be “perceptually realistic” in the 1996
film Twister 34. The Tree Storm system 35 animates trees at
varying levels of wind stress.

This is a selective choice of important or original work in
the modelling and rendering of plant growth. Other papers
worthy of note cannot be discussed in detail due to
limitations of space. They include the work of Honda et al. 36,
the pioneering work of Kawaguchi 37, Erickson 38 on the
geometry of phyllotaxis, Gardner 39 on textured quadric
surface representation of trees and later 40 fractal ellipsoids in
a paper that concentrates mainly on representation of smoke,
Viennot et al. 41 on ramifying patterns, Sakai 42, Castéra and
Morlier 43 on structural influences, de Leon’s branching
structures 44, Fournier et al. 45, Takenaka’s consideration of
light sensitivity 46, Farnsworth and van Gardingen’s study of
the Sikta spruce 47. Deussen et al. 48 give an important review
of the state of the art in plant modelling, discussing ways of
achieving memory and time efficiency.  Products, such as
Tree Professional 35, Virtual Forest 49, PlantStudio 50 and
xfrog 51 offer high quality tree modelling, with tree features
input and controlled interactively. Before considering the two
main themes of this tutorial in detail, we first look at two
other methods used for depiction of plant like forms.

1.3. Iterated Function Systems

Iterated Function Systems (IFS) are described here as they
are commonly used to depict plant like forms. These are
images without any descriptive power in terms of growth, so
only a brief description is given. IFS were largely developed
and publicised by Barnsley 52 and his collaborators as a
technique for generating fractal forms and for image
compression 53, 54. There are two main methods for generating
an image of an IFS.

An IFS is defined by a set of contractive transformations,
{T1, T2, … Tn}, often affine transformations that may be
constructed by combinations of the translations, scalings and
rotations familiar to computer graphics experts 55. These
result in simple linear equations. If all scale factors lie
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between -1 and 1, the transformation is contractive in that
distinct points will be moved closer to each other under
transformation. There are two methods for generating images or
objects of an IFS. The first involves applying the
transformations to a raster image, starting with an arbitrary
neutral image I.

Given arbitrary images I, J
Repeat
  Copy I into J and clear I
  Loop for k = 1 to n
    Draw Tk(J) into I
  End k loop
Until I and J are similar
Display I

The sequence of composited images stabilises after some
iterations to the ‘attractor’ of the IFS, regardless of the form of
the neutral starting image, just as the “steady state” solution of
a differential equation can eliminate the memory of the “initial
conditions”.

Figure 1.6: A simple IFS example after four iterations

Figure 1.6 shows how a simple IFS can be related to the image
or attractor, which has become relatively stable after four
iterations from an initially all black image. The left part of fig.
1.6 shows an image region (outer square) and four affine
transformations as interior rectangles. The transformed image is
created by overlaying the scaled, translated and rotated versions
of the original image that fill these four regions. Comparison
with the IFS attractor identifies transformations corresponding
to the lower trunk, lower left branch, lower right branch and
upper part, each a contracted copy of the whole “tree”.

Generating an image from an IFS is easy, the inverse
problem of finding the IFS that represents an image is not so
simple. Although the process can be automated, its relative
slowness due to complexity has been one of the major
drawbacks of IFS as an image compression system. The
‘collage theorem’ is useful in identifying component
transformations. If the image can be recreated by overlaying
copies of itself, each of these copies represents a component
transformation of the IFS. Figure 1.6 illustrates this, the
location of sub-copies of the object itself relating to the
positions of transformed rectangles.

The alternative image generation method is known as the
‘chaos game’.

Given arbitrary point P0
Loop for k = 1 to a large number
  Select Tk at random from T1, … Tn
  Find point Pk = Tk(Pk-1)
  Plot point Pk
End k loop

A Markov chain 56 of points eventually fills the attractor that
comprises the image, provided enough iterations are allowed.
The image is more evenly filled if transformations are
selected with probability proportional to their area
contraction ratios, thus generating more points in large
compared to small regions. This merely affects the speed of
achieving a steady solution, in any case a deterministic object
results from a random process. The fundamental theorem of
IFS is that one and only one image is generated from this
algorithm. By looping enough times, both algorithms
produce identical images of the same IFS.

The illustration of fig. 1.6 is based in two dimensions,
tree like objects occupying 3D space can be created by three
dimensional transformations (fig. 1.7). Clearly, this method
mimics appearance and has no information on growth
characteristics. Local changes to an image or object are
difficult to achieve, as the result of a change to one of the
transformations will be distributed throughout the whole
structure due to the fractal self-similar property of the IFS.

Colour as well as position may be transformed, and can
be made dependent on the transformation selected, for
example, brown for a ‘trunk’ transform, green for a ‘foliage’
tranform. In ‘distributed IFS’, the probability of selection of
transformations is dependent on the previous selection.

Several authors use non-affine transformations to extend
modelling options. Gröller 57 adds tapering and twisting
functions, Frame and Angers 58 use higher level polynomials,
Jones and Campa 59 use randomised functions and Jones and
Moar 60 use functions involving moduli (fig. 1.7). Branches
are flattened and folded by a modulus function to mimic the
features of a naturally occurring tree. 3D rendering of
random points uses z-buffer and shadow buffer. Hart 61 states
that, ‘even the contractivity condition can be weakened to so
called eventual contractivity’.

Figure 1.7: A 3D IFS using non-affine transformations

1.4. Diffusion Limited Aggregation

Diffusion Limited aggregation (DLA) generates branching
structures using a stochastic algorithm 62, 63, 64. This represents
structures that grow by accumulating particles, which “stick”
to parts of the existing structure. Aharony 65 gives
electrodeposition, growth in aqueous solutions, dielectric
breakdown and viscous fingering in porous media as
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Figure 1.8: Examples of diffusion limited aggregation with
different walk and aggregation rules

examples. These non-botanical features are mentioned here as
physically growing branching structures. Guyon and Stanley 66

give several illustrations of natural and synthetic examples.

A starting structure (often a single pixel) is defined as
occupied. A particle is set off in a random walk from a
randomly specified origin, typically at a set radial distance from
the original particle, If the particle moves too far from start
pixels, it is discarded and a new one created. If the particle lies
adjacent to an occupied pixel, it is aggregated to the structure,
and its pixel is labelled as occupied. The process continues until
the structure reaches a given size, often defined by a maximum
distance from the original particle (the diffusion limitation).
The process produces branched clusters (fig. 1.8).

In the three top illustrations of fig. 1.8, the aggregation rule is
four-connected, a pixel is only absorbed to the structure if it lies
alongside an edge of an occupied pixel. The lower row uses an
eight-connected aggregation rule, allowing edge and corner
connections. The columns have different walk characteristics,
the leftmost has a four-connected walk, with equal probabilities
for up, down, left or right moves. The middle column uses an
equal probability eight-connected walk, with diagonal moves
also allowed. Noting that diagonal steps are longer by a factor
of √2, the rightmost column “weights” the probability of a
diagonal step by 1/√2 to make the expected length (probability
times distance) of a step in any direction the same. This
attempts to compensate for grid dependency, which is visible in
the general vertical/horizontal or diagonal tendency of growth

Figure 1.9: Line attracted DLAs. From top to bottom, particles
are accumulated after one, five and ten visits

directions in some images. It would be useful to test this
compensation statistically rather than visually.

Rules can be varied in several ways. Objects may be
grown outwards from inside the occupied cells. If the initial
attractor is a row of cells with the start of the random walk at
another parallel row, plant like growths from the “ground”
attractor are achieved. Figure 1.9 shows this effect in the
upper illustration, where lower growths appear stunted by
overshadowing of more successful structures. The other
images are similarly set up with aggregation inhibited until a
particle has been in an “aggregating position” five (middle)
or ten (lower) times, as though it is accumulating stickiness.
Increasing the number of required visits gives greater bulk to
the aggregation.

Batty and Longhurst 67, 68 model the growth of cities using
a “dielectric breakdown model”, in which walk probabilities
are affected by a field function which takes account of terrain
slopes and natural barriers such as rivers, and accumulation is
delayed until receptor sites have achieved a number of visits.
Stanley shows how the field itself can be affected by the
current state of the aggregate 69. Roberg and Abbess use DLA
within a Manhattan grid road layout to model the accretive
growth of traffic jams 70. Figure 1.10 shows a large traffic
jam simulation created by a blockage at one intersection of a
Manhattan grid road layout, which shows oddly plant like
growth features.

Figure 1.10: A large traffic jam simulation

1.5. Summary
This concludes a brief review of various methods of
modelling the appearance and growth characteristics of
growing objects. The main methods of L-systems and the
modelling of marine sessile organisms are explored in greater
depth in the two following parts.

2. L-Systems

Lindenmayer devised L-systems as a set of mathematical
construction rules for describing plant forms as character
strings 71. They may also be used to construct regular fractal
forms. Levy 72 describes how two of Lindenmayer’s students,
Hogeweg and Hesper 73, generated computed images of L-
systems which Lindenmayer considered ‘charming but
inconsequential’. Smith, stimulated by a Lindenmayer talk at
a conference in Holland, subsequently developed his related
method of graftals 13. Lindenmayer was convinced of the
value of visual interpretation of L-systems through his
collaboration with Prusinkiewicz from the mid 1980s 74.
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Their influential and beautifully illustrated book 75 was
published shortly after Lindenmayer’s death in 1989. Readers
who wish to develop L-systems for themselves are
recommended to use this book as an essential reference (a soft
cover version was published in 1996). The method has
subsequently been considerably developed by Prusinkiewicz
and others 76, 77, 78, 79, 80, 48.

The three essential features of L-systems are an alphabet,
an axiom and a set of productions. The alphabet is the set of
characters allowed within the specific system. The axiom is a
starting string that is recursively converted by productions,
rules for converting single characters to other characters or
strings. At a sequence of finite clock ticks, productions are
applied to all characters of the existing string, enabling
“growth”. The method is similar to Chomsky’s transformational
grammars 81 but L-systems apply productions simultaneously to
all characters at each clock tick, rather than serially.

An L-systems string can be illustrated by relating the
alphabet to the turtle graphics commands of the Logo language
82. The position of a “turtle” that moves around the drawing
surface is controlled by string characters. The postion of a turtle
is given by its location and the direction it faces, (x, y, θ) and
moves are made relative to this position. The command “F” for
“move forward” is enabled by changing the turtle definition to

(x + d cos(θ), y + d sin(θ), θ),

where d is a set distance for the move — d may be associated
with F as a parameter, F(d). Logo also includes the commands
“pen down” and “pen up” to enable drawing of lines or position
change without drawing, some systems use “f” for the “pen up”
version of “F”. Direction change is created by “+” for turn left,
“–” for turn right (many authors use these in the opposite
sense). These may be defined to have a set angle, or may be
parameterised, so +(α) and –(θ) change the turtle definition to
(x, y, θ + α) and (x, y, θ – α) respectively.

Characters “[“ and “]” mean “start a branch” and “end a
branch”. When the string is interpreted as a drawing, the
character “[” does not affect the turtle, but pushes its current
state onto a stack data structure. Drawing continues until the
corresponding “]” is reached, the turtle is moved in “pen up”
mode to the location popped from the stack, then it is returned
to “pen down” mode to continue drawing from the location
where the branch emanated. The stack ensures proper nesting of
branches, so sub-branching is achieved to the required level.

Suppose the alphabet consists of characters:

F: forward drawing step,
+: left turn of 45˚,
–: right turn of 45˚,
<: left turn of 30˚,
[: initiate a branch,
]: end a branch.

Let the axiom be “F” and establish the single production

F → F [ + F ] [ < F ] F [ – F ] F,

which means that character “F” is changed to the string to the
right of the arrow. By convention, when a character has no
defined production, it is left unchanged, it is subject to the
production * → *.

Figure 2.1: A simple L-systems construction

A little thought should give some sense of the structure
described. Assume the axiom ‘F’ is drawn vertically
upwards. The structure then has three main stem ‘F’
segments, as seen by eliminating all bracketed branch parts.
After the first stem segment, there are one segment branches
45˚ to the left ([ + F ]) and 30˚ to the right ([ < F ]), with a
similar one segment branch 45˚ to the right ([ – F ]) after the
second stem segment. The first two iterations create strings
from the axiom as:

0 F

1 F [ + F ] [ < F ] F [ – F ] F

2 F [ + F ] [ < F ] F [ – F ] F [ + F [ + F ] [ < F ] F [ – F ] F
] [ < F [ + F ] [ < F ] F [ – F ] F ] F [ + F ] [ < F ] F [ – F ]
F [ – F [ + F ] [ < F ] F [ – F ] F ] F

This illustrates the string generation process as far as stage 2.
The string gets very complex after relatively few iterations,
so no more are written down. However, fig. 2.1 shows the
drawn interpretation of this process after six levels of
recursion, the original overall branching structure as
described above still being apparent.

There are at least two ways of interpreting this developing
string as a drawing. Each stage of iteration can be considered
to add finer detail to the structure of an established plant. For
this interpretation, the length of each drawing stage should be
reduced by a factor of one third in this particular case. We
have noted that the overall structure has three main stem
parts at the first iteration, so these three will each be replaced
by three at the second and so on. Adjusting the length of a
drawing step by a factor of one third keeps the overall
structure the same size, each iteration adding extra detail.
Alternatively the created object can be considered to be
growing with the drawing step kept the same length. The
‘growing’ object then increases in length by a factor of three
at each clock tick. This unrealistic feature can be overcome
using parametric L-systems as discussed later.

Prusinkiewicz and Lindenmayer call ‘the simplest class of
L-systems, those which are deterministic and context free’
DOL-systems’  75. Tree generation systems, as that of fig.
2.1, are known by them as ‘bracketed OL-systems’.

This simple example has some characteristics of natural
plants, greater realism can be achieved by including specific
characters to represent leaves and flowers. We note some
other un-plant like features:
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• all lines are straight,
• there is exact self similarity in structural terms,
• the ‘object’ is two dimensional,
• the level of detail in each section is the same,
• plant structure and geometry are independent.

Specialist features can be added to the basic system to
overcome the problems identified above. These include
stochastic drawing and productions, context sensitivity, query
modules, parametric L-systems and three dimensional L-
systems.

2.1. Stochastic drawing and productions

Randomness is used to give natural irregularity to physical
location and structures, to geometry and topology. The former
is achieved by subjecting the turtle state to random change,
affecting length and angle of drawing elements, giving the kind
of variability created by natural causes in real plants.

This is not straightforward in implementation. Suppose we
want to draw the ‘tree’ of fig. 2.1 with increasing levels of
detail by reducing the drawing length by one third at each stage,
but also to include some stochastic angle variation. At stages 1
and 2, the string to be drawn is

1 F [ + F ] [ < F ] F [ – F ] F

2 F [ + F ] [ < F ] F [ – F ] F [ + F [ + F ] [ < F ] F [ – F ] F ] [
< F [ + F ] [ < F ] F [ – F ] F ] F [ + F ] [ < F ] F [ – F ] F [ –
F [ + F ] [ < F ] F [ – F ] F ] F

The bracket before the second branching section is italicised, it
is at string position 6 at stage 1, at position 32 in stage 2. When
the branch angle is implemented, it will be given some random
deviation from 30˚. If successive stages are to look like the
same plant with increasing levels of detail, the angle of this
branch should not change from. At subsequent stages, the same
sequence of random numbers can be generated by seeding the
random number generator with the same value 83. However, the
identification of the same structural object to receive this
random deviation, when its location in the list is varied, is not
straightforward. The random value allocated can be stored as a
parameter pointed at from the character when it is first
generated in the list. However, the starting location (turtle
position) of this branch will be changed when subsequent
intermediate random values are allocated. We content ourselves
here with noting the complexity of the issue, the method is
adequate for producing one off images that have more plant-
like features than the deterministic method.

It is relatively easier to implement topological or structural
change. Not all oak trees are identical, although they are
recognisably of the same genus. Structures of the same type
should have some identifiable physical similarities, but allow
variability between examples. This is achieved by applying
stochastic production rules, where different rules are applied
with given probabilities. Still based on the example of fig. 2.1,
we can apply the transformation

F  
  [  ]  [  ]  [  ]  

  %

.

.

0 5

0 5

F F F F F F9

0

→
→

+ < −




,

Figure 2.2: Seven examples of stochastic L-systems

meaning that with probability 0.95, F is transformed in the
same way as previously, but with probability 0.05, F is
replaced by a null segment, which terminates drawing of the
particular branch and subsequent segments, as discussed
later. Figure 2.2 shows seven examples of this effect, allied
to random angle deviations for each F stage of -2˚, 0˚ and 2˚
applied with equal probability. The ‘plants’ now have
irregularity both in location and form.

This was the first run of the programme, readers may
believe there are only six examples shown. The small speck
to the left is the first example, killed off by random chance,
the L-systems equivalent of a late frost. This effect has never
subsequently occurred in any run of the programme. Figure
2.3 shows instances from a similar L-system, the left/right
turn directions are selected at random and there is a slight
tendency for branches to turn towards the upward vertical,
simulating the orthotropic growth of some plants (those that
tend to the horizontal are plagiotropic) 21. The effect is to
produce plant like images that differ from each other but
could be from the same genus. These examples show more
natural features than the deterministic methods of fig. 2.2.

2.2. L-systems in three dimensions

Simple extensions of the alphabet and its interpretation
allow generaton of L-systems in 3D, allowing a greater
degree of realism. For a 3D turtle, location is given by
position vector r = (x, y, z) in a 3D Cartesian space.
Orientation is given by three mutually orthogonal unit
vectors, h defining heading, u for the “up” direction and l for
the “left” direction fig. 2.4). When you sit in an aircraft, your
location is (x, y, z), you face the direction h with the top of
your head pointing towards u  and the craft’s left wing
pointing towards l. (For those not familiar with vectors, a 3D
Cartesian vector v = (vx, vy, vz) represents displacements vx,
vy, vz respectively in the x, y and z directions. A unit vector
represents a displacement of overall unit length, which

 Figure  2.3: L-systems plants with orthotropic tendency and
other random features
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Figure 2.4: The components of a 3D turtle

occurs when √{vx
2 + vy

2 + vz
2} = 1.) A forward drawing step

‘F’ of length d (like the craft leaving a smoke trail in the sky) is
performed by changing the position vector r to r' = r + dh, and
joining the points r and r'. To create solid objects, the join can
be created as a cylinder, conical frustum or other solid form
with axis along the line of generation from r to r'.

After the method of Prusinkiewicz and Lindenmayer 7 5 ,
control of direction uses three operations of roll (represented by
string symbols ‘/’ for a positive rotation and ‘~’ for a negative
rotation), pitch (‘&’ for a positive rotation, ‘^’ for a negative
rotation) and yaw (‘+’ for a positive rotation, ‘–’ for a negative
rotation), with rotations implemented by standard computer
graphics matrix methods 55. The use of h, u and l to define the
turtle orientation has considerable redundancy, as it could be
defined by the three “Euler” angles, representing the rotation
operations required to rearrange the coordinate axes in the turtle
orientation (Euler was a prolific 18th Century Swiss
mathematician). However, by holding this extra information,
redirection of the turtle is simplified, so this is one of the many
examples in computer graphics when memory is traded for
speed and simplicity of operation.

Suppose matrix Mv represents a composite rotation aligning
a general unit vector v with the z-axis, Iv is the inverse of this
(realigning the z-direction with v) and Rz is a rotation of given
angle about the z-axis. We are already using a Cartesian
coordinate system to represent position (x, y, z), so the z-axis is
properly defined. These standard operations are easily
implemented in a 3D computer graphics system, and can be
concatenated, or combined to make a single operation 55. For
example, to rotate of a vector w  by a given angle about a
general vector direction v, the sequence

• use Mv to align v with the z-axis,
• use Rz to rotate by the required angle about the z-axis,
• use Iv to realign the z-axis with the direction of v

is applied to w . Using the standard methods of matrix
operation, the order of application is important. Thus, applying
Mv to w is done by the matrix multiple Mvw. Applying Rz to
the vector result of this, we get RzMvw. Finally, the application
of Iv gives the final direction as vector IvRzMvw.

Combinations of matrices, such as IvRzM v can be pre-
computed, so that only one standard operation needs to be
applied to all features of an object to be reoriented. Using them

Figure 2.5: The roll operation in four stages

as building blocks, the required direction changes of roll,
pitch and yaw can be performed as follows.

Roll rotates by a given angle about the heading h, resetting
left vector l and up vector u to

l' = IhRzMhl  and  u' = h x l'.

Figure 2.5 illustrates the four stages starting with the original
location, subsequently applying rotations Mh, Rz and Ih in
turn. Note that in this case it is slightly less efficient to apply
the matrix rotation method for u'

u' =  IhRzMhu,

as even after pre-computation of IhRzMh used for l' this takes
9 multiplications, whereas the cross product u' = h x l' takes
6 multiplications. Cross multiplication also ensures that u'
and l' are orthogonal, avoiding possible drift due to rounding
error after repeated calculations. However, we note that the
levels of branching in trees seldom exceeds seven, so the
rounding errors are unlikely to accumulate significantly.

The operations of pitch and yaw are achieved in
equivalent ways.

Pitch (tilting the aircraft nose downward from a normal
flight position) rotates by the given angle about the left
vector l, resetting h and u to

h' = IlRzMlh  and  u' = h' x l.

Yaw (turning to the left) rotates by the given angle about the
up vector u, resetting h and l to

h' = IuRzMuh  and  l' = u x h'.

Repeated applications of such sequences could cause
rounding errors in lengths of the ‘unit’ vectors, as well as the
angle drift mentioned above. However, this is unlikely to
cause significant problems if the level of branching is no
greater than 7.

Combinations of roll, pitch and yaw can orient tree
branches in any desired direction. The symbols representing
these can be included in the L-systems alphabet, and
appropriately used in productions to mimic the characteristics
of existing trees, for example the numbers of branches
emanating at each branching point and the angles at which
these branches occur.
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Figure 2.6: A 3D tree structure generated by Briggs

Figure 2.6 shows an example of a 3D tree generated by Briggs
84, using conic frusta to represent forward ‘drawing’ steps. This
has growth simulation features to be discussed later.

2.3. Context sensitivity

Further modelling complexity is introduced by context sensitive
L-systems. Productions are applied dependent on the string
characters that occur to the left or right of the subject. The
‘context’ here is restricted to the character string, effects of the
larger geometric context in which the structure is situated are
discussed later.

Representation of a context sensitive production is in the
form

L < C > R → Word.

The character ‘C’ is changed to ‘Word’ if ‘L’ appears to its left
in a string and ‘R’ appears to its right. Prusinkiewicz and
Lindenmayer 75 call this a 2L-system. Systems which use only
one sided context sensitive productions, of form

L < C → Word

or

C > R → Word,

are called 1L-systems, and the concept can be widened further
to IL-systems, in which the left and right contexts can be strings
of defined length rather than just single characters.

Care must be taken in defining the left and right contexts in
the case of bracketed L-systems. If a closing bracket
immediately precedes the subject character or an opening
bracket  immediately succeeds it, the bracket and its possibly
nested contents, are ignored in determining the right  or left
context. This associates the character with the main branch of
which it is a part or from which it emanates. Thus, in the string

A B [ C D [ E ] ] F [ G H ] I J,

the character ‘F’ has left context ‘B’ and right context ‘I’. ‘C’,
also, has left context B. This technique is used by
Prusinkiewicz and Lindenmayer to propagate signals along the
structure, from root to tips (acropetally) using the left context,
from tip to roots (basipetally) using the right context. As a
simple example, suppose we have an alphabet of two
characters, • and –. With one axiom

• • • • • • –,

and productions

• > – → –,

–    → •,

The dash character is passed along the row of symbols from
right to left in the sequence,

• • • • • • –,
• • • • • – •,
• • • • – • •,
• • • – • • •,

and so on. A dash is always changed to a dot, a dot is
changed to a dash whenever it has a dash to its right. Some
examples given below combine context sensitivity with other
features.

2.4. Parametric L-systems
Since Lindenmayer proposed the association of numerical
parameters  with alphabetic characters 85, the method has
been highly developed. In most computer languages, it is
relatively easy to create structures that define each character
with one or more parameters. At the simplest level, these can
represent obvious characteristics of the structural segment,
such as its age (by incrementing time steps) or its length
(perhaps scaled depending on the level of recursion at which
it is generated). This is a possible method to increase realism.
Lansdown 2 urges caution, discussing a study 86 which
suggests internodes (distances between successive branching
sections) are ‘more or less of fixed length’. Lansdown also
cites a rule of McMahon, that the widths of a branch is
proportional to its length to the power 3/2 87. Many such
empirical studies are useful in relating models to real
structures.

Productions now take two forms. Some affect parameters
without changing the structure of the character string and
thus the object structure. Structural change is made
dependent on the values of certain parameters, for example a
leaf may be discarded if its age reaches a threshold, a branch
may be formed if the accumulation of nutrient in its parent
branch is adequate to trigger new growth.

Several examples are discussed in more detail later, just
one simple illustrative case is shown here. Suppose a leaf
with character L is to disappear after 20 developmental
stages, and that it is created with initial ‘age’ 0, represented
as L(0). A composite production to generate this effect is

L(t) : t = 20 → null,

L(t) : t < 20 → L(t-1).

The condition appears after the colon and before the arrow.
Age can be used to affect size for growing features and to
affect colour for decaying features, leaves give an example in
both cases.

2.5. Environmental sensitivity

Now we look at the final bullet point of section 3, the
separation of topological structure from geometric
information. The simple L-system method is: “create a string,
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Figure 2.7: Side and top view of L-systems pruned against a
surrounding cube (programmed by Briggs 84 after the method of
Prusinkiewicz et al. 77)

then draw it”. There is a systematic driving set of rules that
creates the object regardless of its location. This is clearly
unrealistic in terms of growing plants, where environmental
considerations can have considerable influence from the major
effects of climate to the localised effects of the plant’s
geometry itself. For increased explanatory power, the
topological structure has to be made responsive to the location
of plant elements.

Use of “query modules” was explained by Prusinkiewicz et
al 77 in an elegant paper describing synthetic topiary.

… the generated string is interpreted after each
derivation step, and turtle attributes found during the
interpretation are returned as parameters to reserved
query modules in the string. Each derivation step is
performed as in parametric L-systems, except that the
parameters associated with the query modules remain
undefined. During the interpretation, these modules are
assigned values that depend on the turtle’s position and
orientation in space. (p 352).

The locations of structural elements are made available via
query modules as parameters at the time productions are
applied, and thus may be used to affect the production as do
other parameters. Similar results can be achieved by making the
location values direct parameters of the structural element itself.
Note that it is not necessary to ‘draw’ each developmental
stage, recursion can continue for the required number of stages
before drawing is performed, but locations are evaluated at at
each stage.

In their 1994 paper, Prusinkiewicz et al. 77 use the query
module to simulate topiary. One or more tree growths are
initiated inside the reference structure of a geometric model,
either a simple shape such as a cube (fig 2.7) or cylinder or an
isosurface model 88 of a more complex shape such as a
dinosaur. The latter method creates a particular function of

position φ(x, y, z), defining the surface as the implicit
solution of the equation

φ(x, y, z) = constant.

 The apical or growing tip of each branch is queried at each
stage of development to identify its position. This is then
tested

against the reference structure to determine if it lies inside or
outside. In the case of an isosurface model this is simply
done by evaluating the field function at the point and
comparing it with the field constant. When the tip lies outside
the structure, its branch is pruned and grows no more. The
structure grows until it reaches or just passes the object’s
surface, gradually filling the structure in a simulation of
topiary. By making the growth sensitive to an environmental
feature, the plant structure is affected by location.

In a subsequent development, Mëch and Prusinkiewicz 78

use the query module to affect growth dependent on plants’
own structures and the structures of other objects in the
neighbourhood. Again, a query module is used at growing
parts of branches. This time the location is tested against
shadows cast by the tree itself and other neighbouring trees
that are themselves growing. Rays are cast in general sun
directions through the growing object and its environment to
estimate part or full shadow volumes. The method is similar
to that used independently by Aitken 31, 89 to identify
branches in the lee of the wind from others in animating wind
blown trees. If a branch section is not in total shadow, a
signal is propagated back down the branch using context
sensitivite productions. Any branch section that does not
receive such light energy for a given number of time periods
is deemed to have died out, and is removed or culled from
the structure — a counting parameter is used to determine the
time since energy was received. The effect is to thin out
overshadowed parts of the structure by self-pruning while
allowing those that receive full sunlight to grow unhindered.
This is a natural feature observed in forests, where interior
trees develop into ‘canopy’ growths with the remains of
stunted branches seen on otherwise bare trunks, full foliage
only achieved where the canopy reaches clear sunlight. At
the edge of the forest, individual trees have asymmetric
growths, with leaves proliferating on the unshaded side.

2.6. Continuous time methods: Differential L-systems

Prusinkiewicz et al. 76 defined differential L-systems (dL-
systems) to cope with continuous and discrete developmental
aspects of growth. Leaves and new branches lengthen and
thicken in continuous time, the development of a bud into a
flower or branch is a discrete action. In discussing parametric
L-systems above, it was noted that some productions change
parameters such as lengths, others affect structure. Three
points are made in favour of this new method.

• In principle, the time interval can be made arbitrarily
small, but once chosen it is part of the model and cannot
easily be changed. From the viewpoint of computer
animation, it is preferable to specify the time interval as
an easy to control parameter that is not implicit in the
underlying model.
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• The continuity criteria for the smooth progression of
shapes during animation can be specified more easily in a
continuous time domain.

• It is conceptually elegant to separate this model of
development in the continuous domain from its
observation, which takes place at discrete times.

In dL-systems, productions affect discrete changes to structures,
with continuous change controlled by differential equations.
Elements grow according to the continuous time differential
equations until a threshold is achieved. At the precise time this
occurs, it triggers a production to cause a structural change.
Thus, the productions do not all occur at regular clock ticks, but
are controlled by a continuous growth process. The discrete
time method effectively approximates differential equations by
their discrete time equivalent difference equations.

Lindenmayer’s botanical/mathematical theory, its visual
interpretation as well as further development by Prusinkiewicz
and others has been most fruitful (the word is apt) in generating
a rich set of models of developmental phenomena. For this
tutorial, the extensive work of Prusinkeiwcz and his
collaborators is left now, but readers are encouraged to explore
references for themselves. Further information can be obtained
from extensive web sites maintained at the University of
Calgary 90, the University of Queensland 91 and California State
University 92.

As with the IFS method discussed earlier, L-systems
provide very compact rule sets for generating complex objects.
Unlike IFS, they have considerable potential for describing
developmental or growing forms, a particular method for this is
presented in the remainder of this section. Given the
fundamental elements of an L-system, methods for depicting
the generated structure are relatively straightforward. As for
IFS, the inverse problem is the difficulty, that of devising rules
that will generate specific plant like forms. Considerable
ingenuity is used in matching rule sets to observed structures.
Some help may be available from interactive methods, such as
those of Lintermann and Deussen 93. They show an interactive
method for creation of geometric replacement rules in an L-
systems type environment with structures subject to free form
deformations, and demonstrate the modelling of a dandelion
and animations of growth. Kaandorp 94 also uses geometric
construction rules, his work is described in considerable detail
later in this tutorial.

2.7. Modelling of Nutrient Distribution in a fungus
The remainder of this section describes two case studies in
modelling of developmental growth by simulating features of
natural development. Tunbridge and Jones 95 used the method
of parametric L-systems to model a specific form of fungal
growth, Aspergillus Nidulans, which develops as a set of
filaments or growing tubes.

Their “bio-mechanistic” method involves direct modelling
of the biological processes underlying the growth of the plant,
showing that methods already used to model flowering plants,
sponges and algae can be extended and adapted to the
modelling of fungal growth.

Prosser and Trinci 96 contains a comprehensive review of
early work on mathematical models describing the growth of
filamentous fungi or moulds, but there have been few computer

Figure 2.8: Close up of a small mycelium (above) and a
larger one (below)

graphics simulations of such growths. Two examples are
based on empirical models. The fungus Mucor hiemalis is
modelled by Hutchinson et al 97 using a frequency
distribution approach to model branching frequencies, angles
and lengths. A computer model realistically determines
colony morphology, but images produced use straight lines to
represent curvedfilaments. Quinn and Fujimoto 98 use a
similar method for the fungus Erysiphe polygonii, giving
more realistic images through randomly determined angle
changes in filaments. Liddell and Hanson 99 use an L-systems
like model to produce images of growth of a fungus using an
empirical ‘environmental diffusion rule’. This controls a
diffusion limited aggregation growth taking nutrient levels in
the surrounding medium into account.

There are few realistic computer graphics simulations
based on a mechanistic model of fungal growth, one based on
the underlying biological growth processes. Other
mechanistic models include those of DeCosta and
Lindenmayer, modelling growth of blue-green algae using
rules based on the biological processes of cell division and
the internal movement of metabolites 100, Jansen and
Lindenmayer for flowering plants 101. Prusinkiewicz and
others also model growing cellular structures 75, including the
structures of sea shells 102. Meinhardt 103 models growth of
patterns on the surfaces of sea shells using differential
equations for the distribution of pigments, effectively
reducing them to cellular automata by the discretisation of
continuous spatial variables to a growing front of cells.

Many fungi grow through their propagating medium in
the form of moulds as branching networks of fine threads.
These are 3 dimensional but can be visualised as overlapping
curves. A whole network is called a mycelium with individual
threads called hyphae (fig. 2.8). A simple model of a hypha is
of a fine tube filled with a liquid (the cytoplasm), comprising
all the chemicals and structures needed to sustain and
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develop the fungus. Such microscopic structures include nuclei,
important ‘control centres’  for growth processes. Hyphae
extend by growing at their tips. Branch hyphae are usually
originated some way behind the tip. Hyphal tubes are divided,
in some types of fungus, by walls called septa. A septum may
form a complete barrier or may allow some cytoplasm to flow
through a septal pore.

A new mycelium typically starts with the germination of a
spore to form a single hypha or germ-tube. By a process of
elongation and branching a colony is formed, generally lying
roughly within a circle. Radial colony extension rate is
approximately constant, whilst the total length of the mycelium
increases exponentially.

The comprehensive mathematical model of fungal growth
developed by Prosser and Trinci 96 fits well into the formalism
of context sensitive parametric L-systems. It is based on the
underlying biological processes that support growth. This
mechanistic model is summarised below and is used to develop
the L-systems implementation of this study.

2.7.1. Cytoplasm formation and distribution

The cytoplasm contains vesicles, cytoplasmic structures
containing nutrients necessary for extension of the hyphal or
axial tip, which can be considered as tiny spheres suspended in
the cytoplasm. They are produced throughout the hypha and
flow towards the hyphal tip. It is believed that vesicles fuse
with the hyphal tip when they reach it, their contents being used
to fuel the extension of the tip. There are alternative theories 104,
but the method used here still holds as a valid model of the
distribution of ‘nutrients’ within the cytoplasm.

Trinci 105 describes the formation of new septa (cross walls).
The apical compartment, that portion of hypha that lies
between the tip and the next septum, contains four nuclei. As
the tip extends, the volume of cytoplasm contained in this
compartment increases. When the volume of cytoplasm per
nucleus in an apical compartment reaches a critical value, the
four nuclei divide to form eight nuclei. When this division is
complete, a new septum is formed across the apical
compartment, separating the nuclei into two clusters of four.
The septum gradually grows to its maximum size, giving
increased resistance to the flow of vesicles.

2.7.2. Branching

When the number of vesicles in part of a hypha between two
septa reaches a critical concentration, vesicles fuse with part of
a side-wall of the hypha causing it to swell and eventually
branch at that point. Septa have a constraining effect on the
flow of vesicles, so this usually occurs in the part of a hypha
just behind a septum. Flow of vesicles through the hypha before
the branch is divided so that some flow into the branch, the
remainder flowing in the original direction.

2.7.3. Spore germination

The growth of a colony in this model starts from a spore. The
spore produces vesicles at a constant rate until their
concentration reaches a critical level, when the spore
germinates by producing a hyphal tip. In the model, only one
hyphal tip is produced by an individual spore, but this can be
modified to suit different circumstances.

2.7.4. The mathematical model

This has two main elements, to control production of hypha
and vesicles and to control the hyphal extension through
absorption of vesicles. The former considers the hypha as
consisting of tips and segments. Segments have no biological
analogue, being used purely for modelling purposes except in
the case of apical segments, which are collectively equivalent
to an apical compartment. General hyphal segments have
constant length Lh and produce vesicles at a constant rate Rp.

Tips increase in length as they absorb vesicles, being
initially of negligible length. When the tip length reaches that
of a hyphal segment, a new hyphal segment is created behind
it, reducing the tip to negligible length. Vesicles, produced at
a constant rate by each hyphal segment, flow at a constant
rate towards the tip. The presence of a septum inhibits flow.
The number of vesicles absorbed by a tip in one standard
time interval is functionally dependent on the number of
vesicles in the tip, as well as the preset saturation constant for
absorption and maximum rate of absorption. Elongation of
the tip in the time interval is proportional to the number of
vesicles absorbed

Values of relevant constants are taken from observations
by Prosser and Trinci 96 as specified in 95, which contains
detailed descriptions of the L-systems productions, only
qualitative descriptions are given below to describe the
nature of the processes involved.

2.7.5. L-systems implementation

The L-systems representation of Aspergillus Nidulans has
sixteen context sensitive parametric productions (five of
which affect structural change, the other eleven affect
parameter values) on an alphabet containing nine characters,
listed below.

• P : ungerminated spore,
• G: germinated spore,
• T: tip,
• A: apical segment,
• S: normal segment,
• M: segment with a septum
• B: segment from which a branch is produced,
• [: branch start,
• ]: branch end.

Figure 2.9 shows a small part of a mycelium represented as

… S S B [ S S B [ A A A T ] M A T ] M A A T.

All characters except brackets ‘[’ and ‘]’ have associated
parameters, from one for P up to six for T.

P(0) is the axiom, an ungerminated spore with no
vesicles. A parametric production increases vesicle level at a
constant rate up to a threshold, when P is changed to a
germinated spore G and a growing tip with appropriate
parameters. P takes no further role, G continues to generate
and export vesicles.

None of the parameter changing productions is stochastic,
the model could be improved by allowing some random
variation in vesicle production. Most characters have
parameters representing their current vesicle content and the
number of vesicles to be exported to the right context (T does
not have the latter). The character list is scanned from the
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Figure 2.9: A small part of a mycelium represented by
L-systems characters

left, imports from the left context being added to the current
content by context sensitive productions, calculating the
amount to be exported as a fraction of the current content. This
simulates the motion of vesicles towards the growing tips
according to Prosser and Trinci’s model 96. For a branch base B,
the export is divided proportionately into two parts, one to pass
into the right context septum (M), the other to continue into the
branch (S or A). It should be clear that context sensitivity is an
important aspect. Structure affecting productions are (ignoring
parameters for simplicity):
• P → GT

an ungerminated spore germinates and grows a tip when its
vesicle content achieves a threshold;

• T → AT
a tip grows, leaving an apical segment behind it when it
achieves a certain size;

• A → M
an apical segment becomes a septum on a signal that its
right context has achieved a certain size;

• A → S
an apical segment becomes a normal segment when its
right context has changed to a septum;

• S → B[T]
a normal segment becomes a branch segment with a
growing tip when its parameter value achieves a threshold.

The model was checked against the experimental
observations of Prosser and Trinci 96, and gave a high level of
agreement with the number of growing tips and the overall
length of hypha generated over a range of growing times. both
differed by less than 10% from observed values up to 16 hours
simulated growth 95.

2.7.6. The drawing stage

The method is of the limited form in which the character string
is created independently of the geometric location of the
structure. This is unrealistic, in that the growth probably
develops to seek nutrient in, for example, a Petri dish. An
enhancement of the method would be to ‘grow’ the mycelium
in a culture of nutrient, possibly represented as cellular
automata with nutrient content being diminished by the

Figure 2.10: Simulated growth of Aspergillus Nidulans

presence of hypha in a cell. The mycelium could then be
given a tendency to grow towards levels of higher nutrient,
and vesicle production could be made environmentally
sensitive. This should achieve the relatively circular nature of
such structures in reality. In the absence of this, a number of
pragmatic random drawing rules are adopted to give a
reasonable visual interpretation.

A spore, P or G, is drawn as a small circle. Structural
characters representing hyphal segments are drawn as
forward turtle lines. A, S, M and B, have fixed length, T has
length proportional to its vesicle content, which is held as
one of its parameters. Stochastic drawing elements include

• random branching direction (right or left);
• Normally distributed branching angle;
• randomly deviated turtle direction for segment drawing,

with a bias towards the radially outward direction.

The last condition is a pragmatic attempt to simulate the
outward search for nutrient, that is only partly successful as
can be seen in fig. 2.10. However, the model is successful in
simulating many of the features of a natural form of growth
using parametric and context sensitive L-systems.

2.8. A tree growth simulation

The work developed by Tunbridge is extended by Briggs, 84,

106, 107 to the modelling of growing trees using context and
environmentally sensitive L-systems. This study does not
attempt to generate a particular genus of tree, but creates a
general tree-like growth, with many naturalistic features.
Further work is needed to fine-tune the model to specific tree
types.

A fungus grows by outward distribution of cytoplasm. A
growing tree distributes nutrient absorbed from the soil by its
roots. This depends on soil water saturation and chemical
content. It also generates and distributes energy in the form
of sugars and starches formed by photosynthesis. This is
dependent on the time span and intensity of sunlight received
at leaves and, to a lesser extent, the trunk and branches.
Growth is powered by nutrients and energy. Leaves, when
they age, discolour and fall. New trees are propagated from
seeds that fall from the original plant. All these features are
included in the model, in which trunk and branch segments

S S B M A A T

S

S

B
A

A

A

T

M

A

T



Jones and Kaandorp / Modelling Growing Forms

  The Eurographics Association 2000

grow thicker by absorbing nutrients and energy distributed
about the structure. (fig 2.11).

Figure 2.11: Conceptual illustration of nutrient and energy
flow in the L-system model

2.8.1. The L-systems specification

Branching and direction changes are enabled by the usual
symbols. Other characters (listed below) represent root R, stem
S, apical (or growing) bud A, leaf L (fig 2.11), G (ground), p
(query module) and % (prune). Their parameters and associated
productions are given below, all structural changes are triggered
at a parameter threshold 84, 106. The axiom is essentially

R S [ L ] A,

a root and one stem segment with an apical bud above them and
a leaf emanating from the top of the stem segment. The full
specification is

R(1) S(1, 0, 0, 0) [ — L(1, 0, 0)p(0, 0, 0) ] A(0).

Each leaf has a query module p associated with it. This is
loaded with the (x, y, z) location of the leaf’s base when the
system develops, but is initiated with a zero value.

• Root    R(export nutrient)

The root could be the base of a second L-system representing
root structure, but this has not been implemented. The root
exports nutrients to its right context, which must be a stem
segment S. The thickness of a stem segment is related to
Holton’s strands 22, its first parameter being the number of
“strands”. The number of strands (like a bundle of strings) is
proportional to the cross sectional area, so S has diameter
proportional to the root of its strand number. The amount of
nutrient passed is proportional to the number of strands in the S
segment at the root’s right context. There is just one production,

R(n)>S(s, …, …, …) → R(W*s),

where W is a constant of proportionality, often set to 1.

• Stem   S(strand, nutrient, export nutrient, export energy)

A stem segment imports nutrient from its left context (root or
stem), imports energy from its right context (when it is a
stem) and any subsequent branch section (leaf or stem),
exports nutrients to its right context (apical bud or stem) and
to any existing branch segment (leaf or stem) and exports
energy to its left context (stem or root). It has no structure
changing productions; once created, it remains in place. The
simplified production

S(s, n, en, ee) →  S(s + n,
importNutr*N + importEnergy*E,
(1 – N)*importNutr + D*importEnergy,
(1 – D – E)*importEnergy)

represents twelve context sensitive productions which
evaluate the effects of nutrient imported from the left context
(importNutr) and energy imported from the right context
(importEnergy) for all combinations of left and right contexts
of character S. Parameters n, en and ee represent the nutrient
store, nutrient for export and energy for export.

Proportions N of imported nutrient and E of imported
energy are absorbed, enabling thickening. Parameters E, D (a
fraction of imported energy converted into nutrient for
development) and N affect the general tree shape. Each stem
section is depicted as a frustum of a cone, base radius
proportional to the square root of its number of strands, upper
radius equal to the base radius of the right context. At
branches, the passage of nutrients is divided in proportion to
the number of strands in the main stem and branch section.

Figure 2.12: An apical bud converts to this structure

• Apical Bud    A(nutrient)

An apical bud is the growing tip of a branch or trunk. It is
depicted as a cone whose height is proportional to its nutrient
content, with base width of one strand. It accumulates
imported nutrients from the left context until a threshold, g,
required for growth is achieved.

S(s, n, en, ee) < A(v): (v≤g) → A(v+en).

When g is passed, the apical bud is converts to the structure
of fig. 2.12, creating a new branch and two leaves. It is
depicted as a cone whose height is proportional to its nutrient
content, with base width of one strand. When v>g, the
production is essentially (ignoring parameters)

A →  [ S [ L ] A ] S [ L ] A,

adding one forward stem segment with branching leaf and
apical bud, with an equivalent side branch structure.

S(s, n, en, ee) < A(v): (v>g) → /(90) [ +(24) S(1, 0, 0, 0)
[ –(90) L(0.5, 0, 0)p(x, y, z) ] A(0) ] –(20)
S(1, 0, 0, 0) [ –(90) L(0.5, 0, 0)p(x, y, z) ]
A(v+en-g),

Apical bud

Nutrient flow

Energy flow

Nutrient store
Root

Apical
   bud

Leaf

Nutrient
store

Stem

Stem

Nutrient

S

L

L

A

A
S
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Is the full rule for this production, showing angle change and
initial parameter values allocated in the 3D model, showing that
new stems have one strand.

This production can be changed to match characteristics of
specific tree types to model particular species, it is the “engine”
that drives the tree’s topological structure.

• Leaf   L(scale, age, export energy)

The leaf is the important photosynthetic element, importing
nutrient from and exporting energy to its left context. Exported
energy is the product of imported nutrient and a sun factor H,
which can be dependent on time, leaf age and on the location
given in the leaf’s query module for shading effects. In practice,
the energy produced diminishes with age of a leaf, and apical
buds and other features of growing plants have a relatively
minor photosynthetic effect. These features are not
implemented, but the data structure allows for such
developments in future implementations. The leaf is aged by a
set amount D each stage. When the age of the leaf reaches 70%
of its optimum, it falls to the ground. This is implemented by
replacing string element L by GL, where G is a “ground”
character, reducing the y-coordinate of the turtle location to
zero for drawing of the next leaf element. When the leaf
reaches twice its optimum age (by this stage, it is lying on the
ground and coloured black), it is pruned from the string. The
character ‘%’ indicates that the character G to which it is
applied and all subsequent characters up to the end of the
current branch level (which can only be a leaf structure in this
case) are eliminated. The leaf could be scaled dependent on a
size parameter s (variation of s is not shown below) and its
colour varies with age. The current implementation ranges
through light to dark greens, browns, then red and black after
falling to the ground. The following four productions create
these effects.

S(…, …, en, …) < L(s, a, n): (a ≤ 0.7 – D) →
L(s, a+D, en*H);

L(s, a, n): (0.7 – D < a ≤ 0.7) → G L(s, a+D, 0),

L(s, a, n): (0.7 < a < 2) → L(s, a+D, 0),

G > L(s, a, n): (a ≥ 2) → %

A basic leaf is pre-defined as a simple closed shaded kite. Size
change for growing leaves has not been implemented, but
would not be difficult. With symbol F(d) depicting a forward
drawing edge of length d, the leaf boundary is

{–(40) F(0.25) +(60) F(0.47) +(320) F(0.47) +(60) F(0.25)}.

2.8.2. Examples of modelled trees

The OpenGL 108 ancillary library is used to depict trunk
sections as interpenetrating truncated cones with base radius
and upper radii related to the strand parameter as described
above.

Figure 2.13 shows two views of a tree that has grown for 100
cycles, with the constant settings  N = 0.02, E = 0.01, D = 0.01,
H = 1, W = 1 (these are defined within section 2.8.1).

Branching angles are subject to stochastic variation to give
naturally irregular appearance. No clash detection has been
implemented, so some branches may be seen to pass through

Figure 2.13: View of a modelled tree from the side (top) and
below (bottom)

each other on close scrutiny. It is worth reiterating that this
feasibility study does not attempt to model a particular type
of tree and that structural, as opposed to visual, effect is of
major importance.

Different effects are produced by changing constants.
With nutrient flow parameter N increased from 0.02 to 0.05,
more nutrient is absorbed within stem segments, which grow
more thickly. Less nutrient is available for leaf development,
so the photosynthetic effect is diminished, producing a
structure with thicker trunk and less foliage (fig. 2.14), which
has parameters as for fig. 2.13 except for the change of N and
the number of growth stages set to 120.

E, representing energy absorption within stem sections, is
increased from 0.01 to 0.04 in fig. 2.15, giving increased
thickening of stems compared to fig. 2.13, this occurring
more evenly from the leaves down in comparison with the
‘root up’ effect of fig. 2.14. In fig. 2.15, the number of stages
is 120 and other parameters except E are as for fig. 2.13. This
includes drawing parameters, such as lengths of cylinder
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Figure 2.14: A tree with increased nutrient absorption

Figure 2.15: A tree with increased energy absorption

sections and random angle variations, so it is clear that N and E
have a considerable influence on tree shape.

By associating a query module 77 with each leaf, the effect
of having part of the structure in shade can be simulated. In fig.
2.16, the sun energy factor H for leaves to the left of the tree
trunk (where x < -1) is diminished to one tenth of the used for
leaves to the right. The structural effect is clearly visible, with
the left side being less well developed with thinner branches.
Real tree branches in shade may develop to be long and thin in
a “search” for light. Figure 2.16 does not show this
characteristic, but it does show how growth is affected by
environmental factors. This could be fine tuned to make length
as well as thickness dependent on energy content. Leaf colours
change with age and those older than 70% of the optimum age
detach from the tree using the ‘ground’ symbol G. Real plants
re-seed through the germination of fallen seeds. Flower, fruit
and seed characters have been implemented in an incomplete
study, but to simulate the effect of plant redevelopment, a

Figure 2.16: A tree shaded on the left side, showing leaf
drop and colouring with age

Figure 2.17: Re-seeding is also shown in this image

randomly selected small proportion of the fallen leaves have
been allowed to behave as seeds, generating new plant
growths. Several leaves close to the trunk in fig. 2.17 have
re-seeded. Figures 2.16 and 2.17 are developed over 90
stages, with parameters as for fig 2.13.

2.9. Summary

These case studies demonstrates the potential of parametric
L-systems for modelling nutrient and energy flows in plant
growth. There is potential for further development of the
model. It would be relatively easily to include stochastic
variation of growing parameters and use of observed day by
day rainfall and sunshine data to simulate changing nutrient
uptake from the soil and photosynthetic energy production.
Other environmental data could be used to affect
productions, adjusting formulae to take account of seasonal
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factors, the age of the plant, and features such as temperature
and wind speed to affect leaf fall rate and parameter passing
rates, for example. No attempt has yet been made to model
realistic trees, but a study to ‘fine tune’ parameters and
productions to match real tree observations is needed. There is
no clash detection between branches, and no attempt is made to
create realistic impressions of tree bark and leaf structure. The
“self-pruning” system of Mech and Prusinkiewicz 78, allowing
branches constantly shaded by other features of the structure to
wither and die, could be implemented using the ‘G’ ground
character, with self shading also affecting rate of structural
growth through the photosynthetic effect. The effect of self-
shading could be made more realistic by allowing energy intake
to affect the length of new segments as well as the thickness of
developing segments. A flower/fruit/seed character should be
developed — the potential for this has been demonstrated by
subverting the characteristics of leaves to allow self-seeding in
section 2.8.2.

In spite of these limitations, the result demonstrates the
potential of the method; a simplistic interpretation of the
mechanisms of nutrient and energy flow through the structure
produces controllable life like features. The discrete time model
should be adequate to model long term tree variations across a
cycle of seasons and years, relating the number of generation
steps to the season and year. The effects of leaf aging and
detachment and the potential for flower, fruit and seed
generation within a more complex model have been shown. By
combining studies such as the root modelling, self shading and
pruning methods of Prusinkiewicz et al. 77 and Mech and
Prusinkiewicz 78, the phototropism of Benech 29, the tree-wind
animation of Jones and Aitken 3 1 and the realistic tree
interpretations of others with parametric L-systems, convincing
models and depictions of plant growths could be achieved. The
ultimate would be a garden modelling system, where a variety
of plants could be allowed to “grow” together under varying
climatic and environmental conditions.
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