Shadow Algorithms for
Walktrough Applications

Yiorgos Chrysanthou

University College London

Outline

Introduction
Sharp shadows
Soft shadows
Conclusion




Why Use Shadows

They add to the realism of a computer
generated image

— Our visual perception is very sensitive to
shadows

They provide information for the spatial
relationships between objects

Shadows are Complex

In the real world sources of light are not
points

The intensity within a shadow is not
constant

— umbra, the part that sees nothing of the source

— penumbra, part that receives some light

In computer graphics we simplify and cheat




Current shadow Methods

» There exist a very large number of methods

» We are interested in methods suitable for
interactive walkthroughs, speed is crucial

» We will classify them on complexity:

T

no shadows  Sharp shadows Soft shadows

Special effects

Sharp Shadows

» Source is assumed to be a point or direction

P

Fake Hardware Assisted

Fast but Use of specialized
often hardware to generate
inadequate  shadows
e projection e Shadow Z-buffer

¢ Shadow volumes

Pre-computed

Ray tracing

Shadows are
pre-computed
and stored for
repeated use

e SVBSP

e Shadow Tiling

It’s still
very slow
for large
scenes




Fake shadows: projection on ground

| + Objects are compressed
| using a matrix
transformation and
pasted to the ground
[Blinn 88]

* No inter-object shadows

| « Very fast

(image from openGL demo)

Shadow Z-buffer

» Compute a Z-buffer from the source
— use the light source as a view point and render the
objects to get the depth information (shadow Z-buffer)
* Run a normal Z-buffer with shadow calculation

— from the view point, each point in this buffer is mapped
to the shadow buffer, if the Z value is equal to that
stored there then the point is lit, otherwise is in shadow




Shadow Z-buffer with openGL

(4444 woxy udxe) saSewr)

Image from source Resulting shadows
» This technigue can be accelerated by using texture
mapping hardware [Segal 92]

Shadow Volume Method

» Shadow volume (SV) is the volume of

space below a polygon that cannot see the
source (a culled pyramid)

* During rendering of image, the line from a
point visible through a pixel to the eye is
intersected with all object SVs

The number of intersections indicates if the
point is in shadow or not [Crow 77]




Shadow Volumes with openGL

* Shadow volumes are
rendered at each frame

 The stencil buffer is
used for counting how

many SV are crossed
[Heidmann 91]

* Sometimes not all
objects are used for
casting shadows

(image from an SGI demo

~

Shadow Volume BSP tree

» A BSP tree is build incrementally using the
shadow planes
* Polygons are added to the tree

— if they fall in an IN region (behind a set of
shadow planes) they are shadowed

— otherwise they are lit and their shadow planes
are used to expand the tree

« [Chin 89]




SVBSP trees and Shadow Tiling

» Shadows are stored as detail polygons on top of
scene polygons

» Shadows just rendered at run time

» Everything is precomputed but small changes are
possible

(images taken from Chrysanthou 95)

Soft Shadows

» Source has a finite extend
» Images look a lot more realistic

(Image taken from Nishita and Nakamae)




Soft Shadows

7

Hardware Assisted

Pre-computed Radiosity Ray tracing

Mainly treat the
light source as a
collection of points
e Accumulation
buffer

e Shadow volumes
e Shadow textures

Mainly analytical This is also ® Distributed
computation on pre-computed T3y tracing
the geometry of e Hemi-cube © Cone Tracing
the source e Ray casing
e SVBSP
e Discontinuity

Meshing

Hardware assisted

» Most of these techniques are extensions of
sharp shadow methods

— [Haeberlei 90] Accumulation buffer for the
shadow Z-buffer

— [Brotman 84] uses shadow volumes

» These are mainly approximate solutions
treating the source as a collection of points




Shadow Textures

Shadows are quickly computed and stored
as textures on the receiving polygons

Displayed using hardware in real-time

Two example methods:

— [Heckbert 97] source is sampled and results
combined

— [Cyril 98] uses convolution

SVBSP Trees

Idea is similar to the SVBSP for point
sources

Two trees are built, one using the umbra
planes and one using the penumbra ones

Scene polygons are partitioned into lit,
umbra and penumbra pieces




Discontinuity Meshing

Light source L .
[lumination function

pe mbra\A

.occluder

rece{;’er E .. E sumbra\
* Subdivide at discontinuity points

* Compute illumination intensity at discontinuity
points

* Quadratic approximation on segments between
discontinuity points

Discontinuity Meshing

» Very high quality shadows

 Slow and prone to floating point errors

(images taken from Dretakis)




Radiosity

Scene polygons are subdivided into a mesh,
or the illumination is stored as a texture

Very realistic results

Good for static scenes but not for moving
objects

Conclusion

A very large number of shadow algorithms exist

Most of them are unsuitable for walkthroughs of
very complex scenes:

— with pre-computation methods scene cannot be
modified

— on-the-fly methods are not fast enough yet

Only very limited solutions are currently possible,
such as fake shadows




