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Abstract

We present a technique for optimizing the rendering of high-
depth complexity scenes. Prioritized-Layered Projection
(PLP) does this by rendering an estimation of the visible set
for each frame. The novelty in our work lies in the fact that
we do not explicitly compute visible sets. Instead, our work is
based on computingon demanda priority order for the poly-
gons that maximizes the likelihood of rendering visible poly-
gons before occluded ones for any given scene. Given a fixed
budget,e.g. time or number of triangles, our rendering algo-
rithm makes sure to render geometry respecting the computed
priority.

There are two main steps to our technique: (1) an
occupancy-based tessellation of space; and (2) a solidity-
based traversal algorithm. PLP works by first computing an
occupancy-based tessellation of space, which tends to have
more cells where there are more geometric primitives. In this
spatial tessellation, each cell is assigned asolidityvalue, which
is directly proportional to its likelihood of occluding other
cells. In its simplest form, a cell’s solidity value is directly
proportional to the number of polygons contained within it.
During our traversal algorithm cells are marked for projec-
tion, and the geometric primitives contained within them actu-
ally rendered. The traversal algorithm makes use of the cells’
solidity, and other view-dependent information to determine
the ordering in which to project cells. By carefully tailoring
the traversal algorithm to the occupancy-based tessellation, we
can achieve very good frame rates with low preprocessing and
rendering costs.

In this paper, we describe our technique and its implemen-
tation in detail. Also, we provide experimental evidence of its
performance. We also briefly discuss extensions of our algo-
rithm.

Key Words and Phrases:Polygon rendering, visibility order-
ing, occlusion culling.

1 Introduction

Recent advances in graphics hardware have not been able to
keep up with the increase in scene complexity. In order to sup-
port a new set of demanding applications, a multitude of ren-
dering algorithms have been developed to both augment and
optimize the use of the hardware. An effective way to speed up
rendering is to avoid rendering geometry that cannot be seen
from the given viewpoint, such as geometry that is outside the
view frustum, faces away from the viewer, or is obscured by

�Visual Technologies, IBM T. J. Watson Research Center, PO Box
704, Yorktown Heights, NY 10598; jklosow@watson.ibm.com.

†Visual Technologies, IBM T. J. Watson Research Center, PO Box
704, Yorktown Heights, NY 10598; csilva@watson.ibm.com.

Figure 1: The Prioritized-Layered Projection Algorithm. PLP
attempts to prioritize the rendering of geometry along lay-
ers of occlusion. The input geometry, line segments in two-
dimension, is drawn in white and the spatial tessellation, a De-
launay Triangulation, is drawn in blue. Cells that have been
projected by the PLP algorithm are highlighted in green and
rendered geometry is drawn in red. The view frustum is also
highlighted as red line segments. In this particular example,
a budget of 500 line segments was used. The 2D prototype
implementation does not enforce star-shaped constraints (or
penalties) on the front.

some previously rendered geometry. Quite possibly, the hard-
est part of the visibility-culling problem is to avoid rendering
geometry that can not be seen due to its being obscured by
previous rendered geometry. In this paper, we propose a new
algorithm for solving the visibility culling problem. Our tech-
nique is an effective way to cull geometry with a very simple
and general algorithm.

Our technique optimizes for rendering by estimating the
visible set for a given frame, and only rendering those poly-
gons. It is based on computingon demanda priority order
for the polygons that maximizes the likelihood of projecting
visible polygons before occluded ones for any given scene.
It does so in two steps: (1) as a preprocessing step, it com-
putes an occupancy-based tessellation of space, which tends
to have more spatial cells where there are more geometric
primitives; (2) in real-time, rendering is performed by travers-
ing the cells in an order determined by their intrinsic solidity
and some other view-dependent information. As cells are pro-



jected, their geometry is scheduled for rendering (see Fig. 1).
Actual rendering is constrained by a user-defined budget,e.g.
time or number of triangles.

Some highlights of our technique:

– Budget-based rendering. Our algorithm generates a
projection ordering for the geometric primitives that
mimics a “depth-layered” projection ordering, where
primitives directly visible from the viewpoint are pro-
jected earlier in the rendering process. The ordering
and rendering algorithms strictly adhere to a user-defined
budget, making the PLP approach time-critical.

– Low-complexity preprocessing. Our algorithm re-
quires inexpensive preprocessing, that basically amounts
to computing an Octree and a Delaunay triangulation on
a subset of the vertices of the original geometry.

– No need to choose occluders beforehand.Contrary to
other techniques, we do not require that occluders be
found before geometry is rendered.

– Object-space occluder fusion.All of the occluders are
found automatically during a space traversal that is part
of the normal rendering loop without resorting to image-
space representation.

– Simple and fast to implement.Our technique amounts
to a small modification of a well-known rendering loop
used in volume rendering of unstructured grids. It only
requires negligible overhead on top of view-frustum
culling techniques.

Our paper is organized as follows. In Section 2, we give
some preliminary definitions, and briefly discuss relevant re-
lated work. In Section 3, we propose our novel visibility-
culling algorithm. In Section 4, we give some details on our
prototype implementation. In Section 5, we provide experi-
mental evidence of the effectiveness of our algorithm. In Sec-
tion 6, we conclude the paper with some final remarks and
future work.

2 Preliminaries and Related Work

The visibility problem is defined in [9] as follows. Let the
scene,S , be composed of modeling primitives (e.g., trian-
gles, or spheres)S = fP0;P1; . . . , Png, and a viewing frus-
tum defining an eye position, a view direction, and a field of
view. The visibility problem encompasses finding the points
or fragments within the scene which are visible, that is, con-
nected to the eyepoint by a line segment that meets the clo-
sure of no other primitive. For a scene withn= O(jS j) prim-
itives, the complexity of the set of visible fragments might be
as high asO(n2), but by exploiting the discrete nature of the
screen, the Z-buffer algorithm [2] solves the visibility prob-
lem in timeO(n), since it only touches each primitive once.
The Z-buffer algorithm solves the visibility problem by keep-
ing a depth value for each pixel, and only updating the pixels
when geometry closer to the eyepoint is rendered. In the case
of high-depth complexity scenes, the Z-buffer might overdraw
each pixel a considerable number of times. Despite this po-
tential inefficiency, the Z-buffer is a popular algorithm, widely
implemented in hardware.

In light of the Z-buffer being widely available, and exact
visibility computations being potentially too costly, one idea

is to use the Z-buffer as filter, and design algorithms that lower
the amount of overdraw by computing an approximation of the
visible set. In more precise terms, define the visible setV � S
to be the set of modeling primitives which contribute to at least
one pixel of the screen.

In computer graphics, visibility-culling research mainly fo-
cussed on algorithms for computing (hopefully tight) esti-
mations ofV , then using the Z-buffer to obtain correct im-
ages. The simplest example of visibility-culling algorithms
are backface and view-frustum culling [11]. Backface-culling
algorithms avoid rendering geometry that face away from the
viewer, while viewing-frustum culling algorithms avoid ren-
dering geometry that is outside of the viewing frustum. Even
though both of these techniques are very effective at culling
geometry, more complex techniques can lead to substantial
improvements in rendering time. These techniques for tighter
estimation ofV do not come easily. In fact, most techniques
proposed are quite involved and ingenious, and usually require
the computation of complex object hierarchies in both 3- and
2-space.

Here again the discrete nature of the screen, and screen-
space coverage tests, play a central whole in literally all
occlusion-culling algorithms, since it paves the way for the
use of screen occupancy to cull 3D geometry that projects into
already occupied areas. In general, algorithms exploit this fact
by (1) projectingPi in front-to-back order, and (2) keeping
screen coverage information. Several efficiency issues are im-
portant for occlusion-culling algorithms:

(a) They must operate under great time and space con-
straints, since large amounts of geometry must be ren-
dered in 1/30th of a second for real-time display.

(b) It is imperative that primitives that will not be rendered
be discarded as early as possible, and (hopefully) not be
touched at all. Global operations, such as computing a
full front-to-back ordering ofPi , should be avoided.

(b) The more geometry that gets projected, the less likely
the Z-buffer gets changed. In order to effectively use this
fact, it must be possible to merge the effect of multiple
occluders. That is, it must be possible to account for
the case that neitherP0 nor P1 obscureP2 by itself, but
together they do coverP2. Algorithms that do not ex-
ploit occluder-fusion, are likely to rely on the presence
of large occluders in the scene.

A great amount of work has been done in visibility culling
in both computer graphics and computational geometry. For
those interested in the computational geometry literature, see
[9, 8, 10]. For a survey of computer graphics work, see [20].

We very briefly survey some of the recent work more
directly related to our technique. Hierarchical occlusion
maps [21] solve the visibility problem by using two hierar-
chies, an object-space bounding volume hierarchy and another
hierarchy of image space occlusion maps. For each frame, a
set of objects from a pre-computed database is chosen to be
occluders, and used to cull geometry that cannot be seen. A
closely related technique is the hierarchical Z-buffer [13]. In
[1], an extension of graphics hardware for occlusion-culling
queries is proposed.

It is possible to perform object-space visibility culling. One
such technique, described in [18], divides space into cells,



which are then preprocessed for potential visibility. This tech-
nique works particularly well for architectural models. Addi-
tional object-space techniques are described in [6, 7]. These
techniques mostly exploit the presence of large occluders, and
keep track of spatial extents over time. In [4], a technique that
precomputes visibility in densely occluded scenes is proposed.
They show it is possible to achieve very high-occlusion rates
in dense environments by pre-computing simple ray-shooting
checks.

In [12], a constant-frame rendering system is described.
This work uses the visibility-culling from [18]. It is related
to our approach in the sense that it also uses a (polygon) bud-
get for limiting the overall rendering time. Other notable ref-
erences include [3], for its level-of-detail management ideas;
and [16], where a scalable rendering architecture is proposed.

3 The PLP Algorithm

In this paper we propose thePrioritized-Layered Projection
algorithm, a simple and effective technique for optimizing the
rendering of geometric primitives. The guts of our algorithm
consists of a space-traversal algorithm, which prioritizes the
projection of the geometric primitives in such a way as to avoid
(actually delay) projecting cells that have a small likelihood
of being visible. Instead of explicitly overestimatingV , our
algorithm works on a budget. At each frame, the user can
provide a maximum number of primitives to be rendered, a
polygon budget (also available is aρ-budget, to be explained
below), and our algorithm, in its single-pass traversal over the
data, will deliver what it considers to be the set of primitives
which maximizes the image quality, (using a solidity-based
metric).

Our projection strategy is completely object-space based,
and resembles cell-projection algorithms used in volume ren-
dering unstructured grids.�

In a nutshell, our algorithm is composed of two parts:

Preprocessing. Here, we tessellate the space that contains
the original input geometry with convex cells in the way spec-
ified in Section 3.1. During this one-time preprocessing, a col-
lection of tetrahedron is generated in such a way as to roughly
keep an uniform density of primitives per tetrahedron. Our
sampling leads to large tetrahedra in unpopulated areas, and
small tetrahedra in areas that contain a lot of geometry.

In another similarity to volume rendering, using the number
of modeling primitives assigned to a given cell (e.g., tetrahe-
dron) we define itssolidity value ρ, which is similar to the
opacity used in volume rendering. In fact, we use a different
name to avoid confusion since the accumulated solidity value
used throughout our priority-driven traversal algorithm can be
larger than one. Our traversal algorithm prioritizes cells based
on their solidity value.

Generating such a space tessellation is not a very expensive
step,e.g. taking only two minutes for a scene composed of
one million triangles, and for several large dataset can even
be performed as part of the data input process. Of course,

�Our cell-projection algorithm is different than the ones used in
volume rendering in the following ways: (1) in volume rendering
cells are usually projected in back-to-front order, while in our case,
we project cells inroughly front-to-back order; (2) more importantly,
we do not keep a strict depth-ordering of the cells during projection.
This would be too restrictive – and expensive – for our purposes.

Figure 2: A snapshot of the PLP algorithm. Rendered geome-
try is shown in red. The cells of the spatial tessellation that are
in the front are drawn in blue. The next cell to be projected is
the (blue) one with the lowest solidity value.

for truly large datasets, we highly recommend generating this
view-independent data structure beforehand, and saving it with
the original data.

Rendering Loop. Our rendering algorithm traverses the
cells in roughly front-to-back order. Starting from the seed
cell, which in general contains the eye position, it keeps carv-
ing cells out of the tessellation. The basic idea of our algorithm
is to carve the tessellation alonglayers of polygons. We define
the layering numberζ 2 ℵ of a modeling primitiveP in the
following intuitive way. If we order each modeling primitive
along each pixel by their positive† distance to the eye point,
we defineζ(P ) to be the smallest rank ofP over all of the pix-
els to which it contributes. Clearly,ζ(P ) = 1, if, and only if,
P is visible.

Finding the rank 1 primitives is equivalent to solving the
visibility problem. Instead of solving this hard problem, the
PLP algorithm uses simple heuristics. Our traversal algorithm
attempts to project the modeling primitives by layers, that is,
all primitives of rank 1, then 2 and so on. We do this by al-
ways projecting the cell in the frontF (we call the front, the
collection of cells that are immediate candidates for projec-
tion) which is least likely to be occluded according to their
solidity values. Initially, the front is empty, and as cells are
inserted, we estimate its accumulated solidity value to reflect
its position during the traversal. (Cell solidity is defined below
in Section 3.2). Every time a cell in the front is projected, all
of the geometry assigned to it is rendered.

In Fig. 2, we can see a snapshot of our algorithm as it carves
its way into space. The rendered geometry is shown in red and
the cells in the front are shown in blue. Note how the algorithm
has carved space around the body of the automobile.

There are several types of budgeting that can be applied to
our technique, for example, a triangle count budget that can be

†Without loss of generality, assumeP is in the view frustum.
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Figure 3: Occupancy-based spatial tessellation algorithm. The input geometry, a car with an engine composed of over 160K
triangles, is shown in (a). Using the vertices of the input geometry, we build an error-bounded octree, shown in (b). The centers of
the leaf-nodes of the octree, shown in yellow in (c), are used as the vertices of our Delaunay Triangulation.

used to make it time-critical, and aρ-budget, that, assumingρ
is (in some way) related toζ leads to a more scene-independent
budgeting scheme. For a given budget ofk modeling prim-
itives, let Tk be the set of primitives our traversal algorithm
projects; we can also defineTρ as the set of primitives pro-
jected for a particularρ number. These sets, together withS ,
the set of all primitives, andV , the set of visible primitives,
can be used to define several statistics that measure the overall
effectiveness of our technique. The most relevant is thevisi-
ble coverage ratiofor a budget ofk primitives,εk. This is the
number of primitives in the visible set that we actually ren-

der, that is,εk =
jV\Tkj
jV j

. If εk < 1, we missed rendering some

visible primitives. (ερ can be defined analogously.)
PLP does not attempt to computed the visible set exactly.

Instead, it combines a budget with its solidity-based polygon
ordering. For a polygon budget ofk, the best case scenario
would be to haveεk = 1. Of course, this would mean that for
any view, PLP finds all of the visible polygons.

3.1 Occupancy-Based Spatial Tessellations

The underlying data structure used in our technique is a de-
composition of the 3-space covered by the scene into disjoint
cells. The characteristics we required in our spatial decompo-
sition were:

(a) Simple traversal characteristics - must be easy and
computationally inexpensive to walk from cell to cell.

(b) Good projection properties - depth-orderable from any
viewpoint (with efficient, hopefully linear-time projec-
tion algorithms available); easy to estimate screen-space
coverage.

(c) Efficient space filler - given an arbitrary set of geome-
try, it should be possible to “sample” the geometry adap-
tively, that is, with large cells in sparse areas, and smaller
cells in dense areas.

(d) Easy to build and efficient to store.

We could have used any of a number of different spatial
data structures, such as kd-trees or octrees, but we settled on
a Delaunay triangulation, since it seems to most closely fill
our needs. In making this decision, we were influenced by
the work of Heldet al. [14] on computing low-stabbing trian-
gulations for collision detection; and Williams’ MPVO [19],
a linear-time algorithm for visibility ordering meshes mainly
used for volume rendering.

In order to compute a spatial decompositionM , which
adaptively samples the sceneS , we use a very simple proce-
dure that in effect just samplesS with points; then constructs
M as the Delaunay triangulation of the sample points; and fi-
nally assigns individual primitives inS to M . Fig. 3 shows
our overall triangulation algorithm. Instead of accurately sam-
pling the actual primitives (Fig. 3a), such as is done in [15],
we simply construct an octree using only the original vertices
(Fig. 3b); we limit thedepthof the octree, which gives us a
bound on the maximum complexity of our mesh; then we use
the (randomly perturbed) center of the octree leaves as the ver-
tices of our Delaunay triangulation(Fig. 3c). AfterM is built,
we use a naive assignment of the primitives inS to M , by basi-
cally “scan-converting” the geometry into the mesh. Each cell
ci 2 M , has a list of the primitives fromS assigned to it. Each
of these primitives is either completely contained inci , or it
intersects one of its boundary faces. We usejci j, the number
of primitives in cell i, in the algorithm that determine its so-
lidity value. In a final pass over the data during preprocessing,
we compute the maximum number of primitives in any cell,
ρmax= maxi2[1:::jM j] jci j, to be used later as a scaling factor.

Remarks: (1) The resolution of the octree we use is very
low. By default no leaf node has a side longer than 5% of the
bounding box ofS . This has shown to be quite satisfactory
for all the experiments we have performed this far. (2) Even
though primitives might be assigned to multiple cells ofM
(we use pointers to the actual primitives), the memory over-
head has been negligible.



Algorithm RenderingLoop()
1. while (empty(F ) != true)
2. c = min(F )
3. project(c)
4. if ((reachedbudget() == true)
5. break;
6. foreach n; n = cell adjacentto(c)
7. if ((projected(n) == true)
8. continue;
9. ρ = updatesolidity(n, c)
10. enqueue(n, ρ)

Figure 5: Skeleton of theRenderingLoopalgorithm. Function
min() returns the minimum element in the priority queueF .
Functionproject(c) renders all the elements assigned toc; it
also keeps counts on the number of primitives actually ren-
dered. Functionreachedbudget() returnstrue if the we have
already renderedk primitives. Functioncell adjacentto(c)
lists the cells adjacent toc. Function projected(c) re-
turns true if cell c has already been projected. Function
updatesolidity(n, c) computes the updated solidity of celln,
based on the fact thatc is one of its neighbors, and has just
been projected. Functionenqueue(n, ρ) placesn in the queue
with an solidityρ. If n was already in the queue, this function
will first remove it, and re-insert it with the updated solidity
value. See text for more details onupdatesolidity().

3.2 Priority-Based Traversal Algorithm

Cell-projection algorithms [19, 17, 5] are implemented us-
ing queues or stacks, depending on the type of traversal (i.e.,
depth-first versus breadth-first), and use some form of restric-
tive dependency among cells to ensure properties of the order
of projection (e.g., strict back-to-front).

Unfortunately such limited and strict projection strategies
do not seem general enough to capture the notion of polygon
layering, which we are using for visibility culling. In order for
this to be feasible, we must be able to selectively stop (or at
least delay) cell-projection around some areas, while continu-
ing in others. In effect, we would like to project cells fromM
using a layering defined by the primitives inS . The intuitive
notion we are trying to capture is as follows: if a cellci has
been projected, andjci j= ρmax, then the cells “behind” should
wait until (at least) a corresponding “layer” of polygons in all
other cells have been projected. Furthermore, in order to avoid
any expensive image-based tests, we would prefer to achieve
such a goal using only object-space tests.

In order to achieve this goal of capturing global solidity, we
extend the cell-projection framework by replacing the fixed
insertion/deletion strategy queue, with a metric-based queue
(i.e., a priority queue), so that we can control how elements
get pushed and popped based on a metric we can define. We
call this priority queue,F , the front. The complete traversal
algorithm is shown in Fig. 5. In order to completely describe
it, we need to provide details on solidity metrics and its update
strategies.

Solidity. The notion of a cell solidity is the at the heart of
our rendering algorithm shown in Fig. 5. At any given mo-
ment, cells are removed from the front (i.e., priority queueF )
in “solidity order”, that is, the cells with the smallest solidity

float function updatesolidity(B, A)
/* refer to Fig. 7 */

1. ρacc = jAj
ρmax

+ (~v � ~nB) * ρA

2. if ((star shaped(~v, B) == false)
3. ρacc = apply penaltyfactor(ρacc)
4. return ρacc

Figure 6: Functionupdatesolidity(). This function works as if
transferring accumulated solidity from cellA into cell B. The
maximum transfer happens if the new cell is well-aligned with
the view direction, and in star-shaped position. If this is not
the case, penalties will be incurred to the transfer as shown.

are projected before the ones with larger solidity. The solidity
of a cell c used in the rendering algorithm is not an intrinsic
property of the cell by itself. Instead we use a set of condi-
tions to roughly estimate the visibility likelihood of a cell, and
make sure that cells more likely to be visible get projected be-
fore less likely cells.

The notion of solidity is related to how difficult it is for
the viewer to see a particular cell. The actual solidity value
of a cell c is defined in terms of the solidity of the cells that
intersect the closure of a segment from the cellc to the eye
point. The heuristic we have chosen to define the solidity value
of our cells is shown in Fig. 6.

We use several parameters in computing the solidity value.

– The normalized number of primitives insidec. This

number, which is necessarily between 0 and 1, isjcj
ρmax

.
The rationale is that the more primitives a cell owns, the
more likely it is to obscure the cells behind it.

– Its position with respect to the viewpoint. We transfer a
cell’s solidity to a neighboring cell based on how orthog-
onal the face that it shared between cells is to the view
direction (see Fig. 7).

We also give preference to cells whose interiors are vis-
ible from the viewpoint. Here, we attempt to force the
cells in the front to be as “star-shaped” as possible. The
reason for this is to avoid projecting cells (with low so-
lidity values) that are occluded by cells in the front (with
high solidity values) which have not been projected yet.
This is likely to happen as the front expands away from a
bottleneck. See Fig. 1 and 4d. Actually,forcing the front
to be star-shaped at every step of the way is too limiting
a rule. This would basically produce a visibility order-
ing for the cells (such as the one computed in [17, 5]).
Instead, we simplypenalizethe cells in the front that do
not maintain this star-shaped quality.‡

4 Implementation Details

We have implemented a system to experiment with the ideas
presented in this paper. The code is a mix of Tcl/Tk and C++,
and OpenGL for visualization. In all, we have about 6,000

‡Even without this constraint, the algorithm seems to work fine, as
can be seen in Figures 1 and 4 and in our 2D demo shown in the video.
Our 2D prototype does not make any use of star-shape constraints.
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Figure 7: Solidity Transfer. After projecting cellA, the traver-
sal algorithm will add cellsB andC to the front. Based upon
the current viewing direction, cellB will accumulate more so-
lidity from A than will cellC, however,C will likely incur the
non-star-shaped penalty. Refer to Fig. 6 for the transfer calcu-
lation.

lines of code. We briefly discuss the implementation of some
of the main features of the code.

Data Structures. We need very simple data structures.
Our current system only supports triangles for geometric prim-
itives. Each triangle has pointers to its vertices, and a few flags,
one of which is used to mark whether it has been rendered in
the current scan. For the spatial tessellation, we represent each
tetrahedron by pointer to its vertices, adjacency information is
also required, as are a few flags used rendering purposes.

We keep the cells in the front in a priority queue. In our
current implementation, we use an STLset to actually im-
plement this data structure. Although simple and general, STL
can add considerable overhead to an implementation. In our
case, the number of cells in the front has been kept relatively
small, and we have not noticed substantial slowdown due to
STL.

Space Tessellation Code. We implemented our space
tessellation code as three separate phases. First, vertices are in-
serted into a standard octree. We put a hard limit on the height
of the octree based upon a user-defined error bound. Second,
we compute a Delaunay triangulation of the (randomly per-
turbed) centers of the leaves of the bounding boxes. For this,
we usedqhull , software written at the Geometry Center,
University of Minnesota. Even though our highly constrained
input is bound to have several nasty degeneracies since all the
points come from nodes of an octree,qhull had no problems
handling it. Finally, we map triangles into the tetrahedra that
contain them.

Rendering Loop Code. The rendering loop is basically
a straightforward translation of the code in Fig. 5 into C++.
Triangles are rendered very naively, one by one. We mark
triangles as they are rendered, in order to avoid overdrawing
triangles that get mapped to multiple cells. We also perform
simple backface culling as well as view-frustum culling. We
take no advantage of triangle-strips, vertex arrays, or other so-
phisticated OpenGL features.

Computing the “Exact” Visible Set. A number of
benchmarking features are currently included in our imple-
mentation. One of the most useful is the computation of the

actual “exact” visible set. We estimateV by using the well-
know item buffer technique. In a nutshell, we color all the tri-
angles with different colors, render them, and read the frame
buffer back, recording which triangles contributed to the im-
age rendered. After projection, all the rank-1 triangles have
their “colors” imprinted into the frame buffer.

Centroid-Ordered Rendering. In order to have a basis
for comparison, we implemented a simple ordering scheme
based on sorting the polygons with respect to their centroid,
and rendering them in that order up to the specified budget.
Our implementation of this feature is naive, and tends to be
slow, since it needs to touch every single triangle inS .

5 Experimental Results

We performed a series of experiments in order to determine
the effectiveness of PLP’s visibility estimation. Our experi-
ments typically consist of recording a “flight path” consisting
of several frames for a given dataset, then playback the path
while varying the rendering algorithm used. We have three
different strategies for rendering: (1) rendering every triangle
in the scene at each frame, (2) centroid-based budgeting, or
(3) PLP. During path playback, we also change the parameters
when appropriate (e.g., varying the polygon budget for PLP).
Our primary benchmark machine is an IBM RS/6000 595 with
a GXT800 graphics adapter. In all our experiments, rendering
was performed using OpenGL with Z-buffer and lighting cal-
culations turned on.

We report experimental results on two datasets:

City Model (CITY) The city model is composed of over
500K triangles (Fig. 8c). Each house has furniture in-
side, and while the number of triangles is large, the ac-
tual number of visible triangles per frame is quite small.

5 Car Body/Engine Model (5CBEM) This model has over
810K triangles (Fig. 9c). It is composed of five copies of
a body and engine combination.

5.1 Preprocessing

Preprocessing involves computing an octree of the model, then
computing a Delaunay triangulation of points defined by the
octree (which is performed by callingqhull ), and finally as-
signing the model geometric primitives to the spatial tessella-
tion generated byqhull .

For the CITY model, preprocessing takes 70 seconds, and
generated 25K tetrahedra. Representing each tetrahedron re-
quires less than 100 bytes (assuming the cost of representing
the vertices is amortized among several tetrahedra), leading to
a memory overhead for the spatial tessellation on the order of
2.5MB. Another source of overhead comes from the fact that
some triangles might be multiply assigned to tetrahedra. The
average number of times a triangle is referenced is 1.80, cost-
ing 3.6 MB of memory (used for triangle pointers). The total
memory overhead (on top of the original triangle lists) is 6.1
MB, while storing all the triangles alone (the minimal amount
of memory necessary to render them) already costs 50 MB.
So, PLP costs an extra 12% in memory overhead.

For the 5CBEM model, preprocessing took 135 seconds
(also including theqhull time), and generated 60K tetrahe-
dra. The average number of tetrahedra that points to a triangle



is 2.13, costing 14.7 MB of memory. The total memory over-
head is 20 MB, and storing the triangles takes approximately
82 MB. So, PLP costs an extra 24% in memory overhead.

Since PLP’s preprocessing only takes a few minutes, the
preprocessing is performed online, when the user requests a
given dataset. We also support offline preprocessing, by sim-
ply writing the spatial tessellation and the triangle assignment
to a file.

5.2 Rendering

We performed several rendering experiments. During these
experiments, the flight path used for the 5CBEM is composed
of 200 frames. The flight path for the CITY has 160 frames.
For each frame of the flight path, we computed the following
statistics:

(1) the “exact” number of visible triangles in the frame.

(2) the number of visible triangles PLP was able to find for
a given triangle budget. We varied the budget as follows:
1%, 2%, 5% and 10% of the number of triangles in the
dataset.

(3) the number of visible triangles the centroid-based bud-
geting was able to find under a 10% budget.

(4) the number of “wrong” pixels generated by PLP.

(5) time (all times are reported in seconds) to render the
whole scene.

(6) time PLP took to render a given frame.

(7) time the centroid-based budgeting took to render a given
frame.

Several of the results (in particular, (1), (2), (3), (5), and
(6)) are shown in Table 1, and Figs. 8a and 9a. The centroid
rendering time (7) is mostly frame-independent, since the time
is dominated by the sorting, which takes 6–7 seconds for the
5CBEM model, and 4–5 seconds for the CITY model. We
collected the number of “wrong” pixels on a frame-by-frame
basis. We report worst-case numbers. For the CITY model,
PLP gets as many as 4% of the pixels wrong; for the 5CBEM
model, this number goes up, and PLP misses as many as 12%
of the pixels, in any given frame.

PLP seems to do quite a good job at finding visible trian-
gles. In fact, looking at 8a, and 9a, we see a remarkable re-
semblance between the shape of the curve plotting the “exact”
visible set, and the PLP’s estimations. In fact, as the budget
increases, the PLP curves seem to smoothly converge to the
“exact” visible set curve. It is important to see that this is not
a random phenomena. Notice how the centroid-based budget-
ing curve does not resemble the visible set curves. Clearly,
there seems to be some relation between our heuristic visi-
bility measure (captured by the solidity-based traversal), and
actual visibility, which can not be captured by a technique that
relies on distance alone.

Still, we would like PLP to do a better job at approximating
the visible set. For this, it is interesting to see where it fails.
In Figs 8d and 9d, we have 10%-budget images. Notice how
PLP looses triangles in the back of the cars, (in Fig. 9d) since
it estimates them to be occluded.

With respect to speed, PLP has very low overhead. For
5CBEM, at 1% we can render useful images at over 10 times

Dataset/Budget 1% 2% 5 % 10%
City Model 51% 66% 80% 90%

5 Car Body/Engine Model 44% 55% 67% 76%

Table 1: Visible Coverage Ratio. The table summarizesεk
for several budgets on two large models. The city model has
500K polygons, and the five car body/engine model has 810K
polygons. For a budget of 1%, PLP is able to find over 40% of
the visible polygons in either model.

the rate of the completely correct image, and for CITY, at 5%
we can get 80% of the visible set, and still have four times
faster rendering times.

Overall our experiments have shown that: (1) PLP can be
applied to large data, without requiring large amounts of pre-
processing; (2) PLP is able to find a large amount of visible
geometry with a very low budget; (3) PLP is useful in prac-
tice, making it easier to inspect large objects, and in culling
geometry that cannot be seen.

5.3 Video

The accompanying video shows the functionality of PLP on
different datasets, and highlights both the occupancy-based
spatial tessellation algorithm and solidity-based traversal algo-
rithm. Video recording was performed live on an IBM Intel-
listation Z Pro running Microsoft Windows NT. In summary,
video footage contains: (1) A demonstration of the 2D ver-
sion of the PLP software on a set of line segments of varying
depth complexity. The footage shows rendering animations
for a budget of 500 line segments, as the user changes the eye-
point, and view direction. It is useful in understanding the be-
havior of PLP’s traversal, and how it skips rendering occluded
geometry. (2) A demonstration of the 3D version of the PLP
software on the city model.

6 Conclusion and Future Work

In this paper, we proposed the Prioritized-Layered Projection
algorithm. PLP renders geometry by carving out space along
layers, while keeping track of the solidity of these layers as
it goes along. PLP is very simple, requiring only a suitable
tessellation of space where solidity can be computed (and is
meaningful). The PLP rendering loop is a priority-based ex-
tension of the traversal used in depth-ordering cell projection
algorithms developed originally for volume rendering.

We use PLP as our primary visibility-culling algorithm.
Two things are most important to us. First, there is no of-
fline preprocessing involved, that is, no need to simplify ob-
jects, pre-generate occluders, and so on. Second, its flexibil-
ity to adapt to multiple machines. In essence, in our applica-
tion we were mostly interested in obtaining good image accu-
racy across a large number of machines with minimal time and
space overheads. For several datasets, we can use PLP to ren-
der only 5% of a scene, and still be able to visualize over 80%
of the visible polygons; if this is not enough, it is simple to
adjust the budget for the desirable accuracy. A nice feature of
PLP is that the visible set is stable, that is, the algorithm does
not have major popping artifacts as it estimates the visible set
from nearby viewpoints.



We see several other uses of PLP’s rendering framework.
A particularly intriguing one is to exploit PLP’s ability to de-
termine a large number of the visible polygons at low cost in
terms of projected triangles (e.g., PLP can find over 40% of
the visible polygons while only projecting 1% of the origi-
nal geometry) to improve the performance of other occlusion-
culling techniques. For instance, at each frame, HOM [21]
projects geometry to create occlusion maps. Instead of rely-
ing on preprocessed simplified geometry, HOM could rely on
PLP’s output for its set of occluders.

Although PLP’s budget-based framework is useful as is,
there are several interesting avenues for new research. We
would like to understand better the relation of the solidity mea-
sure to the actual set of rendered polygons. Possibly, changing
our solidity value computation can lead to even better perfor-
mance. For example, accounting for front facing triangles in
a given cell by considering their normals with respect to the
view direction. The same is true for the mesh generation. An-
other class of open problems are related to further extensions
in the front-update strategies. At this time, a single cell is
placed in the front, after which the PLP traversal generates
an ordering for all cells. We cut this tree by using a budget. It
would be interesting to exploit the use of multiple initial seeds.
Clearly, the best initial guess of what’s visible, the easier it is
to continue projecting visible polygons.
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(a) (b)

(c) (d)

Figure 4: Priority-based traversal algorithm. In (a), the first cell, shown in green, gets projected. The algorithm continues to project
cells based upon the solidity values. Note that the traversal, in going from (b) to (c), has delayed projecting those cells with a higher
solidity value (i.e. a larger number of primitives) in the lower-left region of the view frustum. In (d), as the traversal continues,
a higher priority is given to cells likely to have visible geometry, instead of projecting the ones inside of high-depth complexity
regions. Note that the star-shaped criterion was not included in our 2D implementation.
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Figure 8: CITY results. (a) The top curve is the number of visible triangles for each given frame. The four bottom curves are the
number of the visible triangles PLP finds with a given budget. Budgets of 1%, 2%, 5% and 10% are reported. (b) Rendering times
in seconds for each curve shown in (a). (c) Image of all the visible triangles. (d) Image of the 10% PLP visible set.
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Figure 9: 5CBEM results. (a) The top curve is the number of visible triangles for each given frame. The four bottom curves are the
number of the visible triangles PLP finds with a given budget. Budgets of 1%, 2%, 5% and 10% are reported. (b) Rendering times
in seconds for each curve shown in (a). (c) Image of all the visible triangles. (d) Image of the 10% PLP visible set.


