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Abstract

Computing the visibility of out-door scenes is often much harder than of in-door scenes. A typical urban scene, for
example, is densely occluded, and it is effective to precompute its visibility space, since from a given point only a
small fraction of the scene is visible. The difficulty is that although the majority of objects are hidden, some parts
might be visible at a distance in an arbitrary location, and it is not clear how to detect them quickly. In this paper
we present a method to partition the viewspace into cells containing a conservative superset of the visible objects.
For a given cell the method tests the visibility of all the objects in the scene. For each object it searches for a
strong occluder which guarantees that the object is not visible from any point within the cell. We show analytically
that in a densely occluded scene, the vast majority of objects are strongly occluded, and the overhead of using
conservative visibility (rather than visibility) is small. These results are further supported by our experimental
results. We also analyze the cost of the method and discuss its effectiveness.

1. Introduction

Consider a scene consisting of a large number of poly-
hedral objects. Given a viewpoints, the answer to anε-
visibility query is the set of all polygons visible froms or
from an ε neighborhood ofs. The ε-visibility query is a
basic tool for viewspace partitioning which has many ap-
plications in computer graphics, including ray tracing and
Monte-Carlo based global illumination algorithms11, shaft-
culling for radiosity12 and interactive walkthroughs of com-
plex scenes1; 10; 16. In all these cases a precomputed views-
pace partition saves further processing of objects which are
not visible from a given point or region.

Visibility queries can be answered by constructing anas-
pect graph. Aspect graphs are tools to encode all the possi-
ble two-dimensional images of a three-dimensional scene13.
They enumerate all possible appearances of a polyhedral
scene, by partitioning the viewspace into qualitatively max-
imal regions in which the viewpoints have the same view
or aspect. The aspect graph is an extremely expensive data
structure; under perspective projection its size can beΩ(n9)
in the worst case for polyhedra with a total ofn vertices. In

their raw form, aspect graphs may require prohibitively large
storage space and preprocessing time.

Furthermore, the aspect graph contains more information
than is required for anε-visibility query. An efficient views-
pace partition should not necessarily be maximal, that is, the
space partition can be coarser witheach cell including sev-
eral aspect regions. Such a relaxation allows theε-visibility
set to be a conservative superset which includes at least all
the visible polygons from a given region, plus possibly some
occluded polygons.

Most previously developed methods for precomputing the
visibility of in-door scenes take advantage of the inherent
properties of such scenes. Computing the visibility of out-
door scenes is much harder. An urban scene (see Figure 1),
for example, is densely occluded, and it is quite tempting to
precompute its visibility space, since from a given point only
a small fraction of the scene is visible. The difficulty is that
although the majority of objects are hidden, some parts may
be visible at a distance in an arbitrary location, and it is not
clear how to detect them. Visibility problems are notoriously
complicated. This is reflected in the fact that a small change
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Figure 1: A densely occluded urban model.

in the viewpoint might cause large changes in the visibility.
Having the visibility solved at one point does not help much
in solving the visibility at a nearby view. This further justi-
fies the need for a precomputed viewspace partition.

In this paper we present a method to partition the views-
pace into cells, where each cell contains a conservative su-
perset of visible objects. For a given cell the method tests
the visibility of all the objects in the scene. Foreach ob-
ject it searches for astrong occluderwhich guarantees that
the object is not visible from any point within the cell. In
Section 3 we define the problem and outline the algorithm
which extends our preliminary work4. In Section 4 we de-
velop a probabilistic model to quantify the visibility and we
show that in a densely occluded scene, the vast majority of
objects is occluded and for most of them there is a strong
occluder. This is further supported by our experimental re-
sults, reported in Section 6. We also analyze the cost of the
method and present several optimizations.

2. Related Work

The aspect graph has been an ongoing theme in the com-
puter vision community, motivated by problems in object
recognition8; 13. Later, researchers in computational geom-
etry joined in to point out the existence of natural three-
dimensional scenes whose induced aspect graphs are more
compact than those induced by general three-dimensional
scenes2; 3. Recently, the computer graphics community
found the most interest in aspect graphs, with the goal of
using them to allow for fast interactive graphic visualization
on low-end graphics machines6 and over the net4.

Shimshoni and Ponce15 presented an approximation to the
aspect graph by generating afinite-resolutionaspect graph.
By ignoring edges whose visible portions project onto a seg-
ment of length smaller than some fixedε, the approximate
aspect graph has fewer nodes. However, the time complex-

ity for generating the finite-resolution aspect graph is even
higher than for a infinite-resolution aspect graph.

Coorg and Teller5 presented an algorithm to incrementally
maintain a conservative visibility set during a walkthrough
by detecting a subset of the changes in the aspect. However,
their visibility set is valid only for the current frame at a
given viewpoint and not necessarily for itsε-neighborhood.
Airey et al.1 and Teller9 described methods for interactive
walkthroughs of complex buildings that compute the poten-
tially visible set of surfaces for each room in a building.
These methods take advantage of the inherent property of in-
door scenes which partition the space into“cells” and “por-
tals”. Then the cell-to-cell visibility can be precomputed.
Such methods are very effective for building interiors, but
are not necessarily suited for other types of virtual worlds.

Plantinga14 presented a method for partitioning the views-
pace into 2D cells, each containing a conservative visibility
set. The method assumes the existence of an a priory set of
effective occluders, like the walls in the interior of buildings.
The method is based on the computation of all the visual
events among the occluders. This method is effective only if
a small set of occluders contributes the majority of the oc-
clusion.

The methods developed by Hudson et al.7 and by Coorg
and Teller5; 6 also assume the existence of a small set of ef-
fective occluders determined in a preprocessing stage. These
methods accelerate the rendering from a given viewpoint by
creating or updating a conservative visibility set. However,
the set is valid only for the current position of the viewpoint,
and not for a region.

Other related work deals with shadow algorithms17. Re-
garding the viewpoint and itsε-neighborhood as an area light
source, occlusion culling algorithms search for the primi-
tives which are in the umbra. However, shadow algorithms
are usually analytical and much too expensive to simply cull
away the primitives in the umbra.
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3. Strong Occluders and Conservative Visibility

Let’s assume an urban model consisting of a large number of
buildings. For simplicity we first assume that each building
is a single box. Later we will discuss the more general case.
Each box is made of a number of triangles.

The viewspace is partitioned intocells which are some-
times referred to asviewspace cells. Each cell defines aset
of visible triangles, that is, a set of triangles, each of which
is at leastpartially visible from some point in the cell. For
a given cell our method computes a conservative superset of
the visible triangles. Instead of looking for the visible trian-
gles we look for triangles which are guaranteed to be hidden
from any viewpoint within the cell.

Given a viewspace cellC and two objectsS andT, we
say thatT is astrong occluderof Swith respect toC, if T
fully occludesS from every viewpoint inC. Since the cellC
will be clear from the context we will simply say thatT is a
strong occluder forS. Given a polyhedral objectSour algo-
rithm looks for a convex strong occluder forS. If no strong
occluder forSis found , we say thatSis potentially visible. If
a potentially visible object is found to be occluded inside our
viewpoint cell, we call it aweakly occludedobject. We call
the set of potentially visible objects for a given viewspace
cell, aconservative visibility set.

We will show the effectiveness of our method for densely
occluded sets by showing that: (i) the number of weakly oc-
cluded objects in each of our conservative visibility sets is
relatively small, and (ii) we can construct the potentially vis-
ible sets efficiently (far more efficiently than it would have
taken to compute the visibility set precisely).

Given a viewpoints and a convex polyhedronP with ver-
ticesvi, if all the rays connectings andvi intersect a single
convex occluderO, thenO is a strong occluder ofP with
respect tos. That is, for the viewpoints, O is guaranteed
to occlude any pointv0 in P5. Now, given a viewspace cell
C defined by its verticessj , if O is a strong occluder ofP
with respect to allsj , thenO is easily verified to be a strong
occluder ofP with respect toC.

The definition of a strong occluder directly implies an al-
gorithm to detect the strong occluder of a given polyhedron
P with respect to a visibility cell4. A naive algorithm casts
rays from every vertex of the cell towards each vertex of the
polyhedronP. Each ray reports a list of potential occluders
which is the set of convex objects that have been intersected
by the ray. If the intersection of all these lists is not empty
thenP is reported as being strongly occluded. The conserva-
tive visibility set of a given cell is constructed by traversing
all the objects of the scene. Each object that is strongly oc-
cluded is culled away and not included in the conservative
visibility set.

We partition the viewspace into cubic cells for simplicity;
a tetrahedron may be advantageous for certain applications4

since it has less vertices. Note that the occludee can be either

the individual triangles or the entire object, or its bounding
box. One effective optimization is to try to find a strong oc-
cluder to the bounding box before processing the individual
triangles.

Remark: Even if O is non-convex, it may still be a strong
occluder. However, determining thatO is a strong occluder
becomes rather complicated. As we will show below, part
of the strength of our method comes from using only very
simple operations, which will no longer hold if we have to
carry out such tests. In the conclusions section we propose a
way to extend our method to non-convex occluders. Also the
shape of the cell need not be convex; convex shapes, how-
ever, can be handled more efficiently.

Figure 2: The distribution model; the number of spheres
contained in an arbitrary rectangle is proportional to its
size.

4. Visibility Analysis

The purpose of our algorithm is to find in a given scene the
visibility set Avis, which consists of all objects that are vis-
ible from a given viewspace cellCε. However, what our al-
gorithm can do efficiently is to eliminate all the strongly oc-
cluded objects. This leaves us with the conservative visibility
setAc�vis which consists of two subsets: (i)Avis and (ii) the
set of all weakly occluded objects. In this section we provide
an analytical support for this approach by proving that:

1. The overhead of computingAc�vis (rather thanAvis) is
small.

2. The probabilities of an object to belong toAc�vis or to
Avis decrease exponentially with its distance fromCε.

To simplify the presentation, we consider a scene con-
sisting of spheres distributed randomly in space. All spheres
have the same radiusR (0< R� 1) and are assumed to have
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Figure 3: A sphere is (partially) occluding the sphere on the right from Cε (the2ε segment on the left)() it intersects with
the smaller trapezoid() its center lies within the larger trapezoid. Here, only the left sphere is a strong occluder.

aminimum-distancePoisson distribution in which no pair of
spheres is closer than a fixed minimum distance (see Fig-
ure 2). In our simulations we generated their location by
jittering, that is, perturbing sample locations that are ini-
tially spaced on a regular grid. Each sphere can be associ-
ated with its initial source grid position, and is located within
the bounds of the cube centered around the grid point. In
terms of the visibility between two remote spheres, jittering
yields a distribution which approximates a Poisson distribu-
tion. The cubes have fixed dimensions of 2�2 in the 2D case
and 2�2�2 in the 3D case.

4.1. The 2D case

We first present results for the 2D case, for which the cal-
culations are simpler. In this case, the terms ‘spheres’ and
‘cubes’ correspond to circles and squares, respectively. Let
us consider a visibility cellCε of size 2ε�2ε and a (poten-
tially occluded) sphereS1 at a distanced from Cε. In the
following, we estimate the probabilities:

P1 = P(S1 2 Avis) ;

P2 = P(S1 2 Ac�vis) :

To do that, we construct the trapezoidT1 whose bases are the
two diameters 2ε and 2Rand whose height isd (Fig. 3). Let
K be the number of (partially) occluding spheres betweenCε
andS1, i.e. those that intersect withT1. To find K, we note
that it is equal to the number of sphere centers located within
T2, which is a larger trapezoid formed by extending the bases
of T1 by R in both directions (Figure 3). Since we have one
sphere per 2�2 square, on average, the number of sphere
centers within any volumeV is V=22. Therefore,

K � V(T2)

4
=

(3R+ ε)
4

d : (1)

Since we are interested in the case whered � R ; we can
approximate the trapezoidT1 with a rectangle with height
d and base 2b, whereε � b� R. The sphereS1 is visible
from Cε if the union of the projected images of theK po-
tentially occluding spheres on the basis of the rectangle does
not cover it completely (strictly speaking, the converse is not
true i.e. even if the basis is completely covered,S1 may still
be visible. However, ford�R the probabilities of these two
events are almost the same). In the appendix, we prove the
following Lemma:

Lemma 4.1Let K intervalsIk (k= 1; : : : ;K) of length 2Rbe
uniformly distributed in the interval[�2R�b 2R+b] and
let Ib be the interval[�b b]. Then

P̂1 := P(Ib 6� [kIk) = (K+1)

�
1

mb+1

�K

;

P̂2 := P(6 9k0; Ib � Ik0
) =

�
2

mb+1

�K

;

where

mb :=
R
b
� 1 :

From this lemma we see that the two key parameters for
visibility at a distance aremb andK. Although we did not
give an exact definition ofb, it is clear thatb is some aver-
age ofR andε and for our qualitative analysis we can take
b= (R+ ε)=2. SinceK is proportional tod (the constant of
proportionality, according to Equation (1), is(3R+ ε)=4�
δ1=2, whereδ is the area density of the spheres), visibil-
ity decreases exponentially with distance. However, there is
a marked difference between the decrease in visibility set
and in potential visibility set, since the bases of the expo-
nent for visibility and potential visibility are 1=(mb+1) and
2=(mb+1), respectively. Therefore, visibility decreaseswith
distance for allε, with faster decay for smallerε. How-
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ever, potential visibility decreases exponentially with dis-
tance only when the viewspace cell is smaller than the ob-
jects. The borderline case isε = R, whereb= Randmb = 1.
In this case, all cells are potentially visible (yet visibility still
decreases like 2�K). Since for our algorithm to work effi-
ciently, strong occlusion should be a close approximation to
being hidden, we see from Lemma 4.1 that the viewspace
cell should be truly smaller than the objects.

The analogy between thePi ’s and the P̂i ’s allows us
to draw the following conclusions: In a densely occluded
scene, like a city, if the visibility cell is truly smaller than
the objects:

� The vast majority of hidden objects are strongly occluded.
� The vast majority of all distant objects are strongly oc-

cluded.

We remark that the difference between the probability dis-
tribution used in Lemma 4.1 and the one used in the simu-
lations is insignificant with regard to these qualitative state-
ments.

We can also use the Lemma to calculate upper bounds for
the total number of spheres inAvis and inAc�vis, denoted by
Nvis andNc�vis, respectively. Let us assume that all spheres
whose distance fromCε is at mostr0 are visible. There are,
clearly, less thanπ(ε+ r0)

2=4 such spheres. In addition, the
number of spheres whose distance fromCε is betweenr and
r +dr is approximately 2πr dr=4, the average number of oc-
cluding spheres between this annulus andCε is

K = b̄r where b̄=
3R+ ε

4

(see Equation (1)), and the probabilities foreach of these
spheres to be inAvis and inAc�vis are given byP̂1 and byP̂2,
respectively. Thus,

Nvis�
π(ε+ r0)

2

4
+
Z ∞

r=r0

2πr dr
4

(b̄r+1)

�
1

mb+1

�b̄r

and

Nc�vis�
π(ε+ r0)

2

4
+
Z ∞

r=r0

2πr dr
4

�
2

mb+1

�b̄r

:

These integrals can be evaluated exactly, giving

Nvis�
π(ε+ r0)

2

4
+

π
2b̄2 ln3(mb+1)

�
1

mb+1

�r0b̄

�
2
42+(2b̄r0+1) ln(mb+1)+(r2

0b̄2+ r0b̄) ln2(mb+1)

3
5 ;

Nc�vis�

π(ε+ r0)
2

4
+

π
2

1+ r0b̄ln
mb+1

2

b̄2 ln
mb+1

2

�
2

mb+1

�r0b̄

for mb > 1, andNc�vis� ∞ for mb � 1. If necessary, these
bounds can be further lowered by finding the optimal value
of r0.

The last bound forNc�vis shows again that asε% R, the
number of potentially visible spheres becomes unbounded.
Note that asε& 0, the number of visible spheres, as well as
the number of potentially visible ones, goes down to a non-
zero constant, which is all spheres (potentially) visible from
a point. Therefore, there is no advantage in using viewspace
cells significantly smaller than the size of the objects.

4.2. Extension to 3D

The picture in the 3D case is qualitatively similar to the one
in the 2D case. The main difference is that for the algorithm
to be efficient,Cε should be relatively smaller than in the 2D
case, as we shall now see.

Let us estimate the probability 1� P̂2 for a sphereS1 in
3D to be strongly occluded fromCε which is at a distance
d. To do that, we construct a truncated coneH1 with small
base with radiusε, large base with radiusRand heightd. All
K occluding spheres betweenS1 andCε intersectH1, and
their centers lie within an extended truncated coneH2 of the
same height and with bases whose radii areε+R and 2R.
Therefore, the numberK is, on average,

K =
V(H2)

23 =
πd
24

(7R2+4εR+ ε2) :

As before, ford large, we can replaceH1 with a cylinder
with heightd and base with radiusb, whereε� b� R. The
probability for conservative visibility is given by the follow-
ing lemma (whose proof is given in the Appendix):

Lemma 4.2Let Br denote a circle with radiusr centered at
the origin. IfK circles of radiusR are uniformly distributed
in the circleB2R+ε, the probability thatnone of theK circles
completely covers the circleBb is:

P̂2 =

�
4mb

(1+mb)
2

�K

:

This result is qualitatively similar to the one in the 2D
case. However,ε should be much smaller than in the 2D case
for the algorithm to work efficiently. For example, if we want
P̂2 to decay like 2�K, thenmb = 3 in the 2D case butmb� 6
in the 3D case. In addition, the constant of proportionality
betweenK andd is approximatelyR2� δ2=3, whereδ is the
volume density of the spheres.

5. Cost Analysis and Optimizations

Assume for simplicity that then objects of the scene are
boxes, and we are constructing the set of conservative visible
bounding boxes, without refining them down to the triangle
level. For each one of then boxes the algorithm casts 8�8
rays, where each ray tests its intersection with all then�1
boxes. However, in a typical model, like an urban model,
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Figure 4: The 400� 400 green square for which we have computed the visibility.

where the objects are distributed rather uniformly, it is com-
mon to use some space subdivision techniques by which a
ray needs to test its intersection with only roughlyc

p
n ob-

jects. Thus, the cost of generating the conservative visible
set of a given cell is roughly 64nc

p
n. This estimate is for a

naive implementation. In the following we will discuss some
optimizations by which the cost in practice becomes linear
in n.

1. The first and most effective optimization tries to reduce
the number of objects each ray has to be intersected with.
Indeed, as will be shown later, in most cases, the strong
occluder is found within the first five objects or trials.
Thus, it would be better to test one occluder at a time.
One ray, theleading ray, is cast from one of the cell ver-
tices, and retrieves the first candidate encountered by the
ray. The rest of the rays test their intersection with the
candidate hoping to classify the candidate as a strong oc-
cluder. If one of the rays fails to intersect the candidate,
then the leading ray retrieves the next candidate, until ei-
ther a strong occluder is found or the leading ray reaches
the object.
For visible objects it would be better to first cast each
ray all the way through the occluders to quickly detect
a visible vertex. However, the cost of processing visible
objects is insignificant since the vast majority is occluded
and most of the visible objects are located very close to
the viewspace cell, and have few, if any, potential occlud-
ers.

2. An interesting observation is that a strongly occluded ob-
ject is a redundant occluder. By processing the objects
close to far, the population of candidate occluders can
be diluted, without losing the effective strong occluders.
Although this optimization sounds promising, in most
cases, the effectiveness of the first optimization domi-
nates it, since the effective strong occluders are tested
first. However, its implementation requires only to mark

strongly occluded objects and to skip their further pro-
cessing for a given cell.

3. Another optimization can reduce the number of rays cast
from the cell to the object. Instead of using all the rays
connecting all the vertices of the cell and all the vertices
of the candidate object, it is enough to use only the subset
of the rays, since rays which do not lie on the convex hull
defined by the vertices of the cell and the vertices of the
candidate are redundant.

4. A different type of optimization is to exploit the coher-
ence among the objects of the scene. One way is to test
the visibility of a group of objects together. The objects
can be organized in some hierarchical structure of bound-
ing boxes, so that a group of nearby objects can have a
common strong occluder. This is a common acceleration
technique in ray tracing. Indeed, in some sense our tech-
nique is an extension of ray tracing since here we test for
a simultaneous intersection of several rays.

5. Another possible way to exploit the coherence among the
objects is by maintaining a cache of “potential strong oc-
cluders”. This assumes that if an object has a strong oc-
cluder then the same occluder has a good chance of being
a strong occluder to its neighbor.

6. A different type of optimization is to exploit the coher-
ence among the cells. The visibility of the cells can be
generated by a top-down computation. First, large cells
from the top of the hierarchy are computed. Then these
coarse viewspace cells are refined. The smaller subcells
are computed with less effort, since most of the primi-
tives have already been removed. However, care should
be taken to avoid redundant computation. If a cell is too
wide then the overhead is too costly, and if the overhead
is small enough the cost of refining it might be too costly.

The effectiveness of these optimizations is model depen-
dent, and they can be ineffective for some cell sizes. More-
over, they are interdependent, namely using certain combi-
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nations of optimizations may yield unexpected results since
the overhead of some tests can dominate the process. There-
fore, in the following section we present our results imple-
mented with only the first optimization (1) above, so the cost
and effectiveness are better understood. We also report on
the effectiveness of the hierarchical scheme.

6. Experimental Results

The algorithm was tested on a city model consisting of 2500
textured buildings, 75% of them simple boxes, and the rest
made up of three boxes each. The base of each building is
a 100� 100 square, its height is a random value between
200 and 900. In total, there are 3324 boxes, each of which
consists of ten polygons, so the total number of polygons is
33240. In the center of the city we have removed four build-
ings and for this region we are computing the visibility space
(see the green square in Figure 4). The size of the viewspace
region is 400� 400 units.

Tables 1 and 2 report on the potentially visibility sets com-
puted for different cell sizes. Only ground level cells have
been computed (height of 50). Figure 6 visualizes the results
by rendering the city from a camera vertically above the city.
The strongly occluded buildings are colored in red, while the
potentially visible buildings are colored in green.

In the tables we distinguish between strongly occluded
boxes and strongly occluded buildings. The latter are build-
ings which are not occluded as a whole, but every piece (the
individual polygons) is strongly occluded so that their aggre-
gate defines the building as being strongly occluded. Note
that the number of ray/box intersections is linear to the num-
ber of tested boxes. In some cases a box can be determined as
being potentially visible by just one or two ray/box intersec-
tions and in others by over twenty. In our current implemen-
tation the strong occluder is determined by 64 intersections.
The tables also show that in smaller cells more boxes are
strongly occluded. This suggests that it might be effective to
use the upper levels just to cull boxes, and the finest level to
cull the polygons.

That is why we have separated the ray/box intersections
from the ray/polygon intersections. This is important be-
cause it is not clear how to estimate the cost of the cal-
culation. Using different optimizations can yield different
running times which are all scene dependent. In the follow-
ing we use the number of ray/box intersections as the cost
estimate for estimating the cost effectiveness of the tech-
nique. As we have seen above, the occlusion factor is a func-
tion of the ratio between the cell size and the occluder size.
In our tested scene, the occluders have a 1002 base; thus,
as expected, only cells smaller than 100 are cost effective.
According to Figure 5(a) the cost effectiveness gets higher
as the cell size decreases. However, we need to account
also for the size of the cell relative to the entire viewspace,
since small cells require more computation to cover the en-
tire viewspace. Figure 5(b) shows the results of dividing the

cost effectiveness by the relative cell size. We see that cells
smaller than 100 and larger than 50 are effective with a clear
preference for a cell size of around 80.

Another interesting statistics is the “distance” of the
strong occluder among the set of potential occluders. That
is, for a given cell and a given objectT, all the objects in-
tersected by at least one of the rays emanating from the cell
vertices towards theT ’s vertices are considered potential oc-
cluders. We have sorted the potential occluders and assigned
a distance rank to the strong occluder. Table 3 is a histogram
of the frequencies of the ranks with respect to a given cell
size. This reflects the probabilities developed in Section 4.
We can see that when the cell is small enough the strong oc-
cluder tends to be very close to the cell, and the probability
of not having a strong occluder drops exponentially.

From our experience with our models we learned that con-
structing the visibility with a hierarchy of two levels of re-
finement is most efficient. The results are, of course, model
dependent. However, from Figure 5(b) we know that com-
puting cells of size 80� 80 is most efficient for the given
buildings in the model. Assuming we are interested in par-
titioning the space into cells of size 20. First computing the
80�80 cells and then refining them down to 20�20 cells is
more cost effective than computing the 20�20 cells directly
from the entire model. The following experiment confirms
this (see Table 4). We have partitioned the above 400�400
playground into cells of size 20� 20 and 80� 80 directly
from the entire model, and we have also refined the visibil-
ity of the 80� 80 cells down to 20� 20 in a second step.
According to Table 4, the cost (in terms of ray/box inter-
sections) of the two-level computation, accounting the cells
relative size gives 400�57207+25�245076' 2:9�107;
three times better than a single level computation.

We have also tested the method over a 3D model of
spheres. A 3D array of 30�30�30 spheres was jittered to
form a model of 27000 spheres. The radius of the spheres is
50 units. In the center of the model we removed one sphere
and computed the visibility of different cells located in that
region. The results are shown in Table 5. Here the visibility
tests are applied to the bounding boxes of the spheres rather
than directly to the spheres, since the algorithm requires a set
of vertices for the ray shooting. On the other hand, the oc-
cluders are the exact spheres. Note that the depth complexity
of the sphere’s model is not as high as in the urban model. It
is expected that in a model with a higher depth complexity
the percentage of the strongly occluded spheres will increase
significantly.

7. Conclusions

We have presented an efficient method for constructing the
viewspace partition of densely occluded scenes. The result-
ing partition can be regarded as an approximation to the as-
pect graph in the following sense. When using aspect graphs
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Table 1: The visibility as a function of the cell size

cell size 200 150 125 100 50 10
potentially visible polygons 24534 20470 16995 11338 2540 1447
strongly occluded building 89 241 438 974 2947 3126
strongly occluded boxes 11 39 100 337 2918 3116
ray/box intersections 132703 171463 208280 273029 222611 211715
ray/polygons intersections 1175813 1346399 1385075 1204630 109210 48002

Table 2: The visibility as a function of the cell size (cont’d)

cell size 90 80 70 60 50 40 30 20
potentially visible polygons 7745 5464 4090 3128 2540 2115 1833 1615
strongly occluded building 1806 2329 2623 2829 2947 3019 3067 3102
strongly occluded boxes 1456 2120 2521 2778 2918 2994 3052 3088
ray/box intersections 255315 245076 234380 227892 222611 218785 215838 212943
ray/polygons intersections 707462 425117 259442 159599 109210 85313 64846 55621
time (sec) 47 33 25 18 16 15 14 13

for image synthesis we do not need to maintain the two-
dimensional view (aspect) in each cell, but rather the set
of visible objects from that cell. The actual construction of
the view can be efficiently carried out by a special purpose
mechanism (e.g., z-buffer). Exact aspect graphs are difficult
to construct and extremely costly in space and time. Our
viewspace partition could be used for the same purposes as
the aspect graph, but its construction is far more efficient and
requires considerably less storage and preprocessing time.
Since we are allowed to overestimate, we can use very sim-
ple operations, and in densely occluded scenes the overesti-
mation is relatively very small.

As mentioned above, our method requires the occluders
to be convex5; 6; 7. However, in practice most objects are not
convex, but one can decompose a general polyhedral into
convex parts. Since the decomposition need not be exact, we
are now investigating several techniques by which an object
can be represented as a union of convex shapes. The goal is
to automatically find the union of a small number of convex
bodies, which on the one hand can be intersected by rays eas-
ily, and on the other hand their union is as large as possible,
but still included in the interior of the original object.
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Table 5: The visibility of the 3D sphere scene.
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potentially visible spheres 26880 26188 24665 22388 19518 17830

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

epsilon − cell size

ef
fic

ie
nc

y

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

epsilon − cell size
gl

ob
al

 e
ffi

ci
en

cy
(a) (b)

Figure 5: (a) the cost effectiveness of a single cell size, and (b) the cost effectiveness of the aggregate of cells.

Appendix A: Proof of Lemma 4.1

To simplify the presentation, we normalize all lengths by
setting b = 1 and calculate the corresponding probabili-
ties for the intervalI1 := [�1 1] to be covered byK in-
tervals of length 2mb which are uniformly distributed in
[�2mb�1 2mb+1]. Let the k-th interval be[ak bk] where
k= 1; : : : ;K. ThenP̂1 can be broken into three disjoint com-
ponents:

1. All K intervals are to the left of 1. Since the distributions
of the intervals locations are uniform and independent,
the probability of this event is

P(maxbk < 1) = (P(b1< 1))K =

�
1

mb+1

�K

:

2. All K intervals are to the right of�1. The probability of
this event is

P(min
k

ak >�1) =

�
1

mb+1

�K

:

3. At least one interval is to the left of 1, another interval is
to the right of�1 andI1 is not fully covered. We note that
sincebk2 [�1 1+2mb], the probability density forbk0

to
be located atα is 1=(2mb+2). Therefore, the probability
of this event is

P

� 9 �1< α < β < 1;9k0 6= k1;

bk0
= α;ak1

= β;(α β)\ ([k[ak bk]) = /0

�
=

Z 1

�1
dβ

Z β

�1
dα
�

K
1

��
K�1

1

��
1

2mb+2

�2�2� (β�α)
2mb+2

�K�2

= (K�1)

�
1

mb+1

�K

:

Summing the above probabilities gives

P̂1 = (K+1)

�
1

mb+1

�K

:

The calculation of̂P2 is much simpler, as

P̂2 = [P(a1 >�1 or b1 < 1)]K =

�
4

2mb+2

�K

:

Appendix B: Proof of Lemma 4.2

As in the 2D case,

P̂2 = [P(first sphere does not fully coverBb )]K :

In addition, a circle with radiusRcompletely coversBb ()
its center is inside the circleBR�b. Since the center of the
circle is uniformly distributed inBb+R, the probability for it
not to fully coverBb is

1� π(R�b)2

π(R+b)2 = 1� (mb�1)2

(mb+1)2 =
4mb

(1+mb)2 :
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100x100 80x80

50x50 20x20

Figure 6: A top view of the city model. The potentially visible buildings are colored in green,and the strongly occluded buildings
are colored in red. See the replicated figures in the color section.
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