
A Tutorial on Binary Space Partitioning Trees

(part of EG tutorial on visibility�)

Yiorgos L. Chrysanthou

Department of Computer Science,

UCL University of London,

Gower Street, London WC1E 6BT, UK.

The Binary Space Partitioning (BSP) tree algorithm was initially developed

as an e�cient method for ordering a set of polygons in order to solve the visible

surface determination problem [12]. Based on Schumacher's work [24] on order-

ing linearly separable static sets, it uses an initial pre-processing step to give

a linear display algorithm. It was later shown that BSP trees can be used to

represent polyhedra and perform set operations upon them [25, 19]. Currently

they are widely used for applications ranging from motion planning [26] to image

representation [22] and shadow generation [6]. In this short tutorial we will just

concentrate on their use for solving visibility problems. We start with a descrip-

tion of what is a BSP tree, how to build one from a set of polygons and how to

use it for visibility ordering, for example to use with the painters algorithm. In

Section 4, we describe how two BSP trees can be merged into one. Tree merging

in an ingenious and elegant technique which can be put to a variety of uses such

as view volume culling, described in Section 5, and occlusion culling described in

Section 6. Section 7 touches on the issue of building good trees, while in Section

8 we give a short review of proposed solutions to the problem of using BSP trees

with non-static environments. Finally as an appendix we attach a recent paper

by Bittner et al that proposes a di�erent way of doing occlusion culling again

using BSP trees.

1 De�nitions

The BSP tree is a hierarchical subdivision of n-dimensional space into homoge-

neous regions, using (n-1)-dimensional hyperplanes.

A hyperplane h (line in 2-D and plane in 3-D) is de�ned by an expression of

the form fn = a1x1+ a2x2+ a3x3 + � � �+ anxn+ an+1. The set of points in space

�An updated version of this document can be found on the authors web page

http://www.cs.ucl.ac.uk/sta�/Y.Chrysanthou/

1

BSP Trees, a tutorial 2

that make fn > 0 de�ne the front (or positive) half-space of h (h+), while those

that make fn < 0 de�ne the back (or negative) half-space of h (h�). The points

fn = 0 are on the hyperplane.

The BSP tree is stored in a binary tree structure. Each node t on the tree

corresponds to a region in space (subspace), denoted by r(t). Each internal node

holds a hyperplane ht that partitions the region at that node into front and back

subspaces. The two subspaces are represented by the left (t:front) and right

(t:back) \children" of the node. A leaf node, in contrast to an internal node,

holds no hyperplane and corresponds to an unpartitioned region of space, which

is called a cell.

The root node of a tree corresponds to the whole of the n-dimensional space.

The region (r(t)) of each other node is de�ned by the intersection of the open

half-spaces determined by the hyperplanes associated with the previous nodes on

the path from the root to the node t. To be more precise, given a node ti at depth

i which lies along the path ft0,...,tig, where the subscripts denote depth, if i = 0

then r(t0) = <n, otherwise if ti is the front child of ti�1 then r(ti) = h
+

ti�1
\r(ti�1)

else r(ti) = h
�
ti�1

\ r(ti�1).

The intersection of the hyperplane ht of a node t with its region r(t), is called

the sub-hyperplane (shp(t)). Notice that since r(t0) is unbounded, so is shp(t0).

Also any other r(ti) and shp(ti) may only be partly bounded.

In most practical applications we use BSP trees in 2-D and 3-D spaces. The

following description on building and using the tree for various tasks is given

for 3-D environments (using polygons and planes) but as the concepts behind

the BSP trees are dimension independent the same ideas are also valid in any

other dimantion. (Note however that for simplicity in the �gures, polygons are

represented by line segments and planes by lines.)

2 Building a Tree

Given a set of polygons S = fs1; ::; sng, we can construct a BSP tree and partition

3-D space using the following simple recursive algorithm. A polygon is selected

from S; the plane de�ned by this polygon is used to make the root of the tree

and to partition space into front and back half-spaces. A reference to the polygon

is also stored on the node. The rest of the polygons are compared against this

plane and depending on which side they lie they are placed into two sets, front

and back.

Any polygon lying partly in both subspaces is split along the intersection

with the plane and the two fragments are placed in the corresponding sets. Any

polygon found to be coplanar with the root plane is stored at the root along with

the root polygon, Figure 1.

This procedure is repeated again recursively. A polygon is selected from each

BSP Trees, a tutorial 3

2a

2b

4

1
6

3 5
{1, 2b, 4}{2a, 5}

front set back set

co-planar with root
3,6

Figure 1: Partitioning space and the polygons with a polygon-plane

of the two sets and its plane forms the root of the corresponding subtree that

further subdivides space and the rest of the polygons. This is repeated until

all polygons have been used and the original space has been subdivided into

homogeneous regions (cells). In Figure 2 the cells are labelled (a to f) and shown

as leaves on the tree. In general we will not show the cells on the tree and we

may refer to the last internal nodes as leaves. Whether a 'leaf' is a cell or the last

internal node splitting into empty subspaces, will always be clear by the context.

a

b

c

d

e

f

g

4

1
6

53

2b
2a

a d f g

c

eb

3, 6

2a

5 2b 1

4

Figure 2: A complete subdivision

An alternative (incremental) approach for building a BSP tree from a set of

polygons was suggested by Thibault and Naylor [25]. Each polygon is inserted in

turn into the, initially empty, tree until it reaches a cell. The plane of the polygon

then de�nes a node that splits the cell in two. Inserting a polygon into the tree

is again a recursive procedure that compares the polygon against the root plane

and sends it into the appropriate subtree. As before polygons might be split by

the root plane or stored at the root if they are coplanar with it.

Both ways of building the tree have the same complexity. The advantage of

the latter is that it can be used to add polygons to the tree after it has been built.

This is useful for performing incremental changes to the tree (see [10]).

Selecting the appropriate root polygon at each iteration can be crucial for the

e�ciency of the resulting tree. Some e�ciency issues are discussed in Section 7.

BSP Trees, a tutorial 4

3 Visible Surface Determination

Given a BSP tree such as the one built above in Figures 1 and 2, we can use it to

solve the visible surface determination problem by traversing it from any given

viewpoint to get the back-to-front order of the polygons stored at the nodes. The

polygons can then be displayed in that order using over-painting to cover hidden

surfaces.

void displayTree(Tree node, 3DPoint viewpoint)

f
if (viewpoint in-front of node plane)

displayTree(back subtree, viewpoint);

draw polygons on the node;

displayTree(front subtree, viewpoint);

else

displayTree(front subtree, viewpoint);

draw polygons on the node;

displayTree(back subtree, viewpoint);

endif

g

Figure 3: Traversing the tree to get a back-to-front order

The traversal is based on the fact that given a viewpoint and two sets of

polygons separated by a plane, the polygons on the same (near) side as the

viewpoint can obstruct but cannot be obstructed by polygons on the other (far)

side. So to get the reverse, back-to-front, order from the tree the simple recursive

algorithm of Figure 3 can be used: compare the viewpoint against the root plane,

traverse the far subtree �rst then display the root polygon(s) and then traverse

near the subtree.

When the shading of the polygons is de�ned by a complex function, the multi-

ple over-painting of each pixel performed by the above algorithm could be costly.

This can be avoided by using the scan-line algorithm suggested by Gordon [13].

The tree in this method is traversed in front-to-back order. As the polygons are

displayed the �lled segments at each scan-line are recorded. These segments are

never overwritten and the algorithm terminates when the whole screen has been

covered, or when the tree is fully traversed. Similar techniques are sometimes

used in computer games [1].

4 Merging BSP Trees

The initial motivation of tree merging was for combining polyhedra in applica-

tions such as constructive solid geometry (CSG). In CSG this is usually done

by means of boolean set operations (union, intersection and di�erence) to form

more complex objects. The description of the polyhedra and objects is usually

by boundary representations (B-reps). The use of this representation has many

drawbacks such as being able to deal only with closed sets and requiring di�erent

BSP Trees, a tutorial 5

data structures or complex algorithms to perform the di�erent operations (spatial

search, model modi�cations, rendering).

Naylor and Thibault [25, 19] presented an alternative way of representing and

combining polyhedra that is simple and e�cient and also allows for open sets.

Thibault described how a BSP tree can be used to represent any arbitrary

polyhedron [25]. This is done by giving an IN or OUT value to each leaf node

depending on whether the corresponding cell is inside or outside the polyhedron.

A simple example can be seen in Figure 4. The grey area corresponds to the

inside of the polyhedron which is denoted by the IN cells of the tree on the right.

2

4

5

1
3

1

OUT 2

3

OUT 4

OUT IN

5

OUT IN

Figure 4: Representing a polyhedron by a BSP tree

Given two polyhedra P1 and P2 represented as BSP trees, T1 and T2, any

boolean set operation can be performed on them by merging their trees [19].

Merging the partitionings of space, induced by T1 and T2 produces a third par-

titioning, T3, that includes the two �rst. The values of the cells of the new par-

titioning depend on the operation used. The merging process however is always

the same.

Merging T1 and T2 can be seen as inserting T2 into T1. In principle this is

similar to the way we inserted the polygons in the tree during the incremental

construction: starting at the root of T1, T2 is inserted recursively into T1 until

it reaches the leaves (cells) of T1. At each step of the recursion, T2 is compared

against the plane ht1
of each node t1 of T1 and is split into T

+

2 and T
�
2 , where

T
+

2 is the intersection of T2 with the front half-space of ht1
and T

�
2 with the back

half-space. Then T
+

2 is inserted in t1:front and T
�
2 in t1:back. Once it reaches a

cell, an external routine is called that combines T2 and the cell.

The pseudo-code for the merging is given in Figure 5. Comparing and splitting

the tree by the plane of a node is performed by the function partitionTree which

we will explain shortly. Combining a tree and a cell is done by treeOpCell. This

depends on the set operation being performed. In general this routine will return

either the cell or the tree or the complement of the tree (denoted by �t). The

complement of the tree is found by reversing the attributes of its leaves, IN

becomes OUT and OUT becomes IN . In this thesis only the union operation is

used but the full table of the resulting values for all operations is given in Table

BSP Trees, a tutorial 6

Tree merge(Tree t1, Tree t2)

f
if (leaf(t1) or leaf(t2))

return treeOpCell(t1, t2);

endif

ft+
2
, t�

2
g = partitionTree(t2, shp(t1));

t1.front = merge(t1.front, t
+

2
);

t1.back = merge(t1.back, t
�

2
);

return t1;

g

Figure 5: Merging two trees

op Cell Tree Cell <op> Tree
T

IN t IN

OUT t t

S
IN t t

OUT t OUT

| IN t �t
OUT t OUT

Table 2.1: Combining a cell and a tree

2.1.

If there are other attributes involved such as colour, texture etc, then these

also have to be merged. How this is done depends on the application. An example

of trees augmented with additional values at the cells can be seen in [9]. There

each cell holds a list of the polygons that occlude it from the source. In the

treeOpCell function when the tree is retained, the list of occluders from the cell

is added to the cells of the tree.

4.1 Partitioning a Tree with a Plane

As T2 is inserted into T1, at each node t1 it is partitioned by the plane ht1
, into

T
+

2 and T
�
2 . This partitioning is a recursive procedure that involves inserting ht1

into T2. Here again we di�erentiate between leaf nodes and internal nodes. When

inserting ht1
into T2, if T2 is a cell then T

+

2 and T
�
2 are just copies of that cell. If

not then three steps are performed:

1. ht1
is compared against hT2

to �nd their relative positions,

2. the subtrees of T2 in which ht1
lies are partitioned,

3. the resulting subtrees of the above partition are combined to form T
+

2 and

T
�
2 .

For step 1 the important thing to notice is that ht1
and hT2

are not de�ned

over the whole of 3-D space but rather in the subspace formed by the intersection

of r(t1) and r(T2). So the relation of ht1
and hT2

that we need is with respect to

this region. Since ht1
and hT2

are in�nite planes we need to �nd their intersections

with the region in consideration. This intersection is what we earlier called the

sub-hyperplane (shp(t)). The sub-hyperplanes are represented as polygons and

their relative position is determined by comparing one against the plane of the

other.

BSP Trees, a tutorial 7

hT2

hT2

hT2

ht1
ht1

Infront/Infront Inback/InfrontInback/InbackInfront/Inback

Inboth/Inboth On/Parallel On/Anti-Parallel

hT2
hT2

hT2

hT2

h h h

h

ht t t t

t

1 1 1

1

1

Figure 6: The sub-hyperplane of t1 in respect to the sub-hyperplane of T2

One problem with this approach is that r(t1)
T
r(T2) may be open (if for

example t1 and T2 are near the root), then the sub-hyperplanes will be open.

The solution, as suggested by Thibault in [25], is to represent 3-D space as a

bounded set, for example, as a large enough bounding box containing the model.

Any hyperplane is �rst clipped against this box to form a polygon and then is

intersected against the node planes.

There are 7 possible classi�cations between the two sub-hyperplanes, which

can be grouped into three sets (in one subtree, in both, coplanar), shown in Figure

6.

Each classi�cation has two parts, the �rst is found by comparing shp(t1)

against hT2
and it shows the subtree of T2 in which shp(t1) lies, possibly in both

subtrees. The general idea is that only the subtrees in which shp(t1) lies will be

partitioned while the others will be left unchanged.

For example in the case where we have Infront/Inback (Figure 7(a)) the front

subtree of T2 is partitioned to give T2:front
+ and T2:front

� while T2:back remains

unpartitioned. In the Inboth/Inboth case of Figure 8, both subtrees of T2 are

partitioned. In the case where ht1
and hT2

are coplanar no subtree is partitioned.

The third step is to put the pieces resulting from the partitioning of T2 together

to make T+

2 and T
�
2 . For each of the three sets of classi�cations we proceed as

follows:

� shp(t1) falls entirely in one side hT2
. For this we also need the second part

of the classi�cation, shp(t2) against ht1
. For the case of Infront/Inback the

resulting trees are (Figure 7(b)):

T
�
2 :front = (T2:front)

�

T
�
2 :back = T2:back

BSP Trees, a tutorial 8

h
T2

T2.back

T2
h

T2.front

T2.front +

-

t1

(a)

-

T2-

T2 .front

T2
+

-
T2 .back

h

(b)

Figure 7: Infront/Inback (a) ht1
partitions T2:front into T2:front

+ and T2:front
�

and (b) T�
2 and T

+

2 after partitioning

and

T
+

2 = (T2:front)
+

the other three cases are analogous.

� for the Inboth/Inboth case the two new trees are (Figure 8(b)):

T
+

2 :front = (T2:front)
+

T
+

2 :back = (T2:back)
+

and

T
�
2 :front = (T2:front)

�

T
�
2 :back = (T2:back)

�

� when the two hyperplanes are coplanar:

if they are parallel and facing the same direction then

h
T2

T2.back
T2.back

-

T2.front -

T2

T2.front +

+

h
t1

(a)

T2 -

T2. back-

T2. front-

+
T2

T2. front

h

T2. back

+

+

hT2 - T2+

(b)

Figure 8: Inboth/Inboth (a) ht1
partitions both T2:front and T2:back and (b) T�

2

and T
+

2 after partitioning

BSP Trees, a tutorial 9

T
+

2 = T2:front

T
�
2 = T2:back

otherwise (anti-parallel)

T
+

2 = T2:back

T
�
2 = T2:front

As we said at the beginning of the section, BSP merging provides a fast and

simple way of combining polyhedra, open or closed. Some examples where this

could be employed are given in the next 2 sections. Merging has also been used for

shadow generation [4, 7, 9] and collision detection. Naylor in [17] describes how

a variety of other visual e�ects can be achieved using merging, such as blasting

holes in walls and using a transparent force �eld to slice through the environment.

5 View Volume Culling

Once we have the merging procedure and a BSP representation of the scene, it

is fairly straight forward to implement view volume culling [17]. First we need

to construct a BSP tree for the view volume, labelling the leaves as IN and OUT

depending on whether they correspond to the inside or outside regions. Then

we can use merging to perform an intersection operation with the scene tree. To

achieve that we need to set the treeOpCell function so that when we have a tree

and an OUT region it returns OUT and for a tree + an IN region it returns the

tree. All the polygons that are visible will be on parts of the scene tree that fall

in the IN regions. Note that since we use the general merging technique, the view

volume can have any polyhedral shape, it does not have to be rectangular.

For added performance the merging of the tree and the view volume can be

combined with a back to front traversal and instead of creating a new merge tree

we can just display the IN polygons as we �nd them.

6 Occlusion Culling

There are several ways in which BSP trees can be used to perform occlusion

culling. In this section we will brie
y describe the beam tracing method presented

by Naylor [?]. Another method can be found in the paper by Bittner appended

at the back of this document.

6.1 Beam Tracing

The idea resembles that used in the Shadow Volume BSP (SVBSP) trees, which

we describe later in the shadow section of the tutorial, but here the use of merging

BSP Trees, a tutorial 10

c

b

a

polygon

Figure 9: Beam from a single triangle

out

out

out c

a

b

in (occluded)

Figure 10: tree struc-

ture

makes it much more scalable. As for the SVBSP case, here the beams are also

de�ned by the edges of scene polygons. See for example Figure 10, where we have

a beam de�ned by one triangle and the eye.

Given a set of 3-D polygons represented as a BSP tree and a particular view-

point we want to build a beam that will represent all the occluded parts of the

image.

Initially we start with an empty beam, corresponding to no occlusion, and

we traverse the scene BSP tree in front-to-back order. We build the beam of

the nearest polygon and as we go further away, at each step we perform a union

operation between the beam and the model tree. Any subtree that is occluded

by the current beam will be discarded while the beam will be augmented with

the planes of the next nearest polygon. This process will stop if we have a beam

that covers the whole view or if it occludes all remaining polygons. Or of course

until we have processed the whole model.

7 E�ciency Considerations

The issue of creating trees that can be used e�ciently is a problematic one, this

is because there is no single notion of \e�ciency". There are two attributes of

the tree that need to be adjusted, size and shape, but they tend to have di�erent

importance depending on the application.

As shown by Paterson and Yao [20, 21] for a set of n initial polygons the upper

bound for space and time complexity for building a BSP tree is O(n2), although

the expected case is closer to O(nlogn). There can be great variation depending

on the partitioning polygon selected as the root at each iteration.

One method that is often used for controlling the size and shape of a tree is

to select a few candidate polygons at each iteration and �nd the best of these

to use as root. The evaluation is done by comparing them against the rest of

the polygons in the subspace and computing the weighted sum of two quantities,

size (number of resulting splits) and distribution (di�erence in the number of

BSP Trees, a tutorial 11

polygons in each of the resulting subsets).

The weights used depend on the application. For visible surface determination

the balance of the tree is not important, since every node is only visited once,

but the size is very important. On the other hand for ray tracing or algorithms

involving classi�cations (eg tree merging), balance is more important than size.

Also balanced trees are generally faster to build (if the number of splits created

is not overwhelming) even though this doesn't re
ect the run-time performance.

A di�erent measurement of e�ciency, based on expected cost of various oper-

ations given by probability models, is presented by Naylor [18]. In simple terms,

the idea is to keep the larger cells (with a great probability of being visited)

on shorter paths and the smaller ones on longer paths. In a sense this is a se-

quence of approximations similar to bounding volumes. This method builds trees

well suited for merging since in e�ect the objects are wrapped with the minimal

number of sub-hyperplanes extending outside.

Another problem with the existing algorithms for building e�cient trees is

that they are static in nature. For example, the method of sampling to select a

suitable root for each subtree assumes that we have all polygons already at our

disposal and also that once a selection is made it is permanent in the sense that

it cannot be changed when better knowledge is acquired, without rebuilding the

subtree involved [15].

When using BSP trees for visible surface determination a dot product oper-

ation needs to perfomed with the viewpoint and each partitioning plane of the

tree. This could potentially be a costly operation. In recent years a number of

\variations" of the BSP trees have been proposed which aim at minimizing this

cost [5, 14, 23]. In these methods there is always a sacri�ce to be made for the

added speed. This is usually in terms of memory and in the functionality of the

resulting tree (none of them can be used for merging for example).

8 BSP Trees in Dynamic Scenes

The problem of using BSP trees in dynamic scenes was something that researchers

from the very infancy of the algorithm have tried to solve. The earliest work, even

though not as yet on BSP trees, was that of Schumacker [24]. In his algorithm,

which is considered to be the predecessor of the modern BSP trees, the tree was

built using manually de�ned separating planes between objects. Each of these

objects would have its faces sorted into a visibility order valid from any viewpoint

(after back-face elimination). The ordering between the objects as seen from each

tree cell was pre-calculated and stored and so at run time locating the position of

the viewpoint was all that was needed, to get the priority order. In this structure

the objects were allowed to move, without any recalculation of the tree, as long

as they did not cross any of the separating planes.

The �rst partial solution for dynamic changes of BSP trees was given by Fuchs

BSP Trees, a tutorial 12

[11] and it was based on the same principle as that of Schumacker. If we know in

advance the objects that will be moving and the region in which they will do so

then a tree can be constructed such that the relevant region is enclosed in a tree

cell. Then the objects can move in that region independently with regard to the

rest of the tree.

Sudarsky and Gotsman [?] also place bounding volumes around the areas

where object might move but they use them even more e�ciently since they

don't add a moving object at all if it's corresponding movement volume is not in

view. However, this is probably more important for minimising message passing

in a distributed situation rather than for speeding up the tree modi�cation.

A di�erent method that again involves knowing the objects that will be moving

in advance but not their path, was used by Naylor [16, 17]. First a tree the static

objects are built into one tree, with this we merged the tree of the moving object

at each frame to produce a complete scene tree. No removal is ever necessary

since the original copy of the static tree is used for merging at each frame.

Torres [27] presented a BSP tree with several optimisations over the standard

structure. Each object has its own single BSP tree which is built by considering

the polygons of the object alone. These single trees form the leaves of the scene

BSP tree of which the internal nodes are separating planes between the objects.

If such separating planes cannot be found then user de�ned partitioning planes

are required. To make the single trees of convex objects more balanced and

speed up their construction, halving planes are sometimes used, which are planes

chosen to be parallel to as many object polygons as possible to minimise splits

and positioned so as to have an almost equal number of the polygons on each

side.

Also wrapping planes are sometimes used over complex objects in order to

minimise the splitting of objects that are not linearly separable. Speed ups are

obtained over the initial building of the tree and the moving of certain objects

but the general idea as far as interaction is concerned is not much di�erent from

that of Schumacker.

None of these algorithms is general enough. Chrysanthou and Slater in [10]

suggest a simple method which requires no prior knowledge of the moving objects.

Here the polygons of a moving object, and the nodes they de�ne, are removed

from the tree and re-inserted at their new position at each frame. This seems to

work well for small moving objects in the limited experiments they performed.

However the theoretical question of e�ciently removing nodes with no empty

sub-trees still remains. Some ideas on this are given in [8] but they haven't been

properly tested.

There has also been some work in Computational Geometry on dynamic BSP

trees [2, 3].

BSP Trees, a tutorial 13

References

[1] Michael Abrash. Zen of Graphics Programming. Coriolis Group Books,

second edition, 1996.

[2] P. Agarwal, L. Guibas, T. Murali, and J. Vitter. Cylindrical static and kinetic

binary space partitions. In Proceedings of the 13th International Annual

Symposium on Computational Geometry (SCG-97), pages 39{48, New York,

June 1997. ACM Press.

[3] Pankaj K. Agarwal, Je� Erickson, and Leonidas J. Guibas. Kinetic binary

space partitions for intersecting segments and disjoint triangles (extended

abstract). In Proceedings of the Ninth Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 107{116, San Francisco, California, 25{27 Jan-

uary 1998.

[4] A. T. Campbell. Modelling Global Di�use Illumination for Image Synthesis.

PhD thesis, Department of Computer Science, University of Texas at Austin,

December 1991.

[5] Han-Ming Chen and Wen-Teng Wang. The feudal priority algorithm on

hidden-surface removal. In Holly Rushmeier, editor, SIGGRAPH 96 Confer-

ence Proceedings, Annual Conference Series, pages 55{64. ACM SIGGRAPH,

Addison Wesley, August 1996. held in New Orleans, Louisiana, 04-09 August

1996.

[6] N. Chin and S. Feiner. Near real-time shadow generation using BSP trees.

ACM Computer Graphics, 23(3):99{106, 1989.

[7] N. Chin and S. Feiner. Fast object-precision shadow generation for area light

sources using BSP trees. In ACM Computer Graphics (Symp. on Interactive

3D Graphics), pages 21{30, 1992.

[8] Y. Chrysanthou. Shadow Computation for 3D Interaction and Animation.

PhD thesis, Queen Mary and West�eld College, University of London, Febru-

ary 1996.

[9] Y. Chrysanthou and Slater M. Incremental updates to scenes illuminated

by area light sources. In J. Dorsey and Ph. Slusallek, editors, Rendering

Techniques '97, pages 103{114. Springer Computer Science, 1997.

[10] Y. Chrysanthou and M. Slater. Dynamic changes to scenes represented as

BSP trees. Computer graphics Forum, (Eurographics 92), 11(3):321{332,

1992.

[11] H. Fuchs, G. D. Abram, and E. D. Grant. Near real-time shaded display of

rigid objects. ACM Computer Graphics, 17(3):65{72, 1983.

BSP Trees, a tutorial 14

[12] H. Fuchs, Z. M. Kedem, and B. F. Naylor. On visible surface generation by

a priori tree structures. ACM Computer Graphics, 14(3):124{133, 1980.

[13] D. Gordon and S. Chen. Front-to-back display of BSP trees. IEEE Computer

Graphics & Applications, 11(5):79 {85, 1991.

[14] A. James and A.M. Day. The priority face determination tree on hidden

surface removal. Computer Graphics Forum, 17(1):55{72, 1998.

[15] S. McPartlin. A foundation for BSP trees. Second year progress report.

Technical report, University of Edinborough, October 1994.

[16] B. F. Naylor. Sculpt: An interactive modeling tool. In Proceedings of the

Graphics Interface '90, pages 138{148, 1990.

[17] B. F. Naylor. Interactive solid geometry via partitioning trees. In Proceedings

of the Graphics Interface '92, pages 11{18, 1992.

[18] B. F. Naylor. Constructing good partitioning trees. In Proceedings of the

Graphics Interface '92, pages 181{191, 1993.

[19] B. F. Naylor, J. Amandatides, and W. Thibault. Merging BSP trees yields

polyhedral set operations. ACM Computer Graphics, 24(4):115{124, 1990.

[20] M. S. Paterson and F. F. Yao. Binary partitions with applications to hidden

surface removal and solid modeling. In Proceedings of the 5th Annual ACM

Symposium on Computational Geometry, pages 23{32, 1989.

[21] M. S. Paterson and F. F. Yao. Optimal binary space partitions for orthogonal

objects. Discrete Computational Geometry, 5:485{503, 1990.

[22] H. Radha, R. Leonardi, M. Vetterli, and B. Naylor. Binary space partitioning

tree representation of images. Journal of Visual Communication and Image

Representation, 2(3):201{221, 1991.

[23] Amela Sadagic. E�cient image display for head-slaved viewing of virtual

environments. PhD thesis, Department of Computer Science, University

College London, March 1999.

[24] R. Schumacker, B. Brand, M. Gilliland, and W. Sharp. Study for applying

computer-generated images to visual simulation. Technical Report AFHRL-

TR-69-14, NTIS AD700375, U.S. Air Force Human Resources Lab., Air Force

Systems Command, Brooks AFB, TX,, September 1969.

[25] W. C. Thibault and B. F. Naylor. Set operations on polyhedra using binary

space partition trees. ACM Computer Graphics, 21(4):153{162, 1987.

[26] A. O. Tokuta. Motion planning using Binary Space Partitioning. In IEEE

International Workshop on Intelligent Robots and Systems IROS '91, pages

86{90, Osaka, Japan, November 1994.

BSP Trees, a tutorial 15

[27] E. Torres. Optimization of the binary space partition algorithm (BSP) for

visualization of dynamic scenes. Computer graphics Forum, (Eurographics

90), 9(3):507{518, 1990. C.E. Vandoni and D.A. Duce (eds.), Elsevier Science

Publishers B.V. North-Holland.

