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Abstract
The scope of this full-day tutorial is the use of low and medium-cost parallel environments (less than US $ 60K)
for high-speed rendering and visualization. In particular, our focus is on the parallel graphics programming of
multi-processor PCs or workstations, and networks of both.
The current technology push in the consumer market for graphics hardware, small multiprocessor machines, and
fast networks is bound to make all of these components less expensive. In this tutorial, attendees will learn how to
leverage these advances in consumer hardware to achieve faster rendering by using parallel rendering algorithms,
and off-the-shelf software systems.
This course will briefly touch the necessary tools to make basic use of this technology: parallel programming
paradigms (shared memory, message passing) and parallel rendering algorithms (including image-, object-, and
time- space parallelism). Advantages and issues of the different methods will be discussed on several examples of
polygonal graphics and volume rendering.

Preliminary Tutorial Schedule

Part One: Foundations

Introduction (Bartz/15 minutes)

Personal Workstations (Schneider/45 minutes)

Parallel Architectures (Bartz/30 minutes)

Parallel Programming (Bartz/60 minutes)

† Email: bartz@gris.uni-tuebingen.de
‡ Email: csilva@watson.ibm.com
§ Email: bosch@us.ibm.com

Part Two: Rendering

Parallel Polygonal Rendering (Schneider/45 minutes)

Parallel Volume Rendering (Silva/45 minutes)

Part Three: Case Studies

The PVR System (Silva/30 minutes)

Building a Linux-based Parallel Machine (Schneider,
Silva/30 minutes)

Q+A (15 minutes)
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PART ONE

Foundations

1. Introduction

This tutorial gives an introduction into the programming of a
variety of affordable parallel environments for parallel ren-
dering and scientific visualization. In our case, we define af-
fordable as less than US$ 60,000. PCs are covered as well as
workstations; polygonal rendering as well as direct volume
rendering.

Overall, the tutorial is organized in three parts. The first
part discusses foundations of parallel environments. We dis-
cuss Personal Workstations - based on a PC architecture,
architectures of multi-processor workstations, and paral-
lel programming using the message-passing and the thread
paradigm. The second part introduces into parallel rendering
techniques. Specifically, we cover parallel polygonal render-
ing and parallel direct volume rendering.

In the last part of our tutorial two case studies will be pre-
sented. The first case study describes PVR, a parallel ren-
dering system exploiting the message-passing programming
paradigm. In the second case study, we discuss a LINUX-
based parallel graphics environment. However, the material
of the last case study could not be included at press deadline
please check the following URL for recent updates of our
tutorial:

http://www.gris.uni-tuebingen.de/~bartz/
EG_Tutorial/

Our Eurographics’98 tutorial concludes with a question
and answer session.

2. Personal Workstations

The advent of powerful processors and robust operating sys-
tems for PCs has sparked the creation of a new type of
compute platform, the Personal Workstation (PWS). Sev-
eral vendors, including Compaq, HP, and IBM, sell systems
that are targeted at market segments and applications that till
only a few years ago were almost exclusively the domain
of UNIX-based technical workstations102. Such applications
include mechanical and electrical CAD, engineering simu-
lation and analysis, financial analysis, and digital content
creation (DCC). PWSs are rapidly adopting many features
from UNIX workstations, such as high-performance subsys-
tems for graphics, memory, and storage, as well as support
for fast and reliable networking. This development creates
the opportunity to leverage the lower cost of PWSs to at-
tack problems that were traditionally in the domain of high-
end workstations and supercomputers. We will start with an
overview of the state of the technology in PWSs and their
utility for building parallel rendering systems. Then we will
discuss how to improve parallel rendering performance by

enhancing PWS subsystems like disks or network connec-
tions like disks or

2.1. Architecture

In accordance with the intended application set, PWSs con-
stitute the high-end of the PC system space. Figure 1 shows
the architecture of a typical Personal Workstation.

PCI

Memory
Chipset

Peripherals

Graphics

CPU (Frontside) Bus

L2$

CPU 0 L2$

CPU 1

AGP

Figure 1: Architecture of a PWS.

The system contains one or two Pentium II processors,
large L2 caches (up to 512 kBytes) and main memory (32
MBytes up to several GBytes). If configured with multi-
ple CPUs, the system acts as a symmetric multiprocessor
(SMP) with shared memory. As is well known, shared mem-
ory architectures have only limited scalability due to finite
access bandwidth to memory. Current PWSs only support
dual-processor configurations.

The chipset connects the main processor(s) with other
essential subsystems, including memory and peripherals.
Among the techniques employed to improve the band-
width for memory accesses are parallel paths into memory2

and faster memory technologies, e.g. Synchronous DRAM
(SDRAM)58. Intel has announced that its next generation
processor will use Rambus (RDRAM) technology to in-
crease the available memory bandwidth.

The graphics adapter is given a special role among the pe-
ripherals due to the high bandwidth demands created by 3D
graphics. The Accelerated Graphics Port (AGP)3 provides
a high-bandwidth path from the graphics adapter into main
memory. The AGP extends the basic PCI bus protocol with
higher clock rate and special transfer modes that are aimed at
supporting the storage of textures and possibly z-buffers in
main memory, thus reducing the requirements for dedicated
graphics memory.

The graphics adapter itself supports at least the OpenGL
functionality for triangle setup, rasterization, fragment
processing13 as well as the standard set of 2D functions
supported by Windows. Currently, most low-end and mid-
range graphics adapters rely on the CPU to perform the
geometric processing functions, i.e. tessellation of higher-
order primitives, vertex transformations, lighting and clip-
ping. However, a new class of high-end PC graphics adapters
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Integer performance: 570 MIPS
Floating point performance: 220 MFLOPS
Memory bandwidth: 140 MBytes/sec
Disk bandwidth: 13 MBytes/sec

Table 1: Approximate peak performance data for a Personal
Workstation.

is emerging that implement the geometry pipeline in hard-
ware. Hardware-supported geometry operations are impor-
tant because rasterizers reach performance levels (several
million triangles/sec and several 10 million pixels/sec) that
cannot be matched by the system processor(s). Also, geom-
etry accelerators can usually provide acceleration more eco-
nomically than the CPU, i.e. lower $/MFlops, while freeing
the CPU for running applications. However, geometry ac-
celerators will only deliver significant improvements to ap-
plication performance if the application workload contains a
large portion of graphics operations. Many applications (and
application-level benchmarks) contain only short bursts of
graphics-intensive operations.

Balancing the system architecture requires fast disk, e.g.
10,000 rpm SCSI disk drives, and networking subsystems,
e.g. 100 Mbit/sec or 1Gbit/sec Ethernet.

2.2. Parallel Configurations

For the purposes of parallel rendering we will be consider-
ing two forms of parallelism: tightly coupled processors in
a SMP configuration (as shown in Figure 1) and a cluster
of workstations connected over networks. While in a single-
processor machine CPU performance is often the most im-
portant factor in determining rendering performance, paral-
lel configurations add specific constraints to the performance
of parallel rendering algorithms. For SMP workstations, the
performance is affected by memory and disk bandwidth. For
workstation clusters, the disk and network bandwidth are the
most important parameters influencing the rendering perfor-
mance. The next section provides concrete values for these
parameters.

2.3. Performance

To illustrate the performance that can be expected from a
PWS we provide approximate performance data in Table 1.

These data were measured with an in-house tool on a pre-
production workstation configured with a Pentium II pro-
cessor running at 400 MHz, 512 KBytes of L2 cache, Intel
440BX chipset, 256 MBytes of 100 MHz SDRAM system
memory and a 9 GByte IDE disk. The system ran Windows
NT 4.0 with Service Pack 3. Note that many factors affect
the actual performance of workstations, amongst them BIOS
level, memory architecture and core logic chipset.

Token Ring 16 Mbit/sec: 14-15 Mbit/sec
Ethernet 10 Mbit/sec: 7-8 Mbit/sec
Ethernet 100 Mbit/sec: 90 Mbit/sec
Ethernet 1 Gbit/sec: 120 Mbit/sec

Table 2: Peak bandwidth between Personal Workstations for
different LAN technologies.

We have also conducted measurements of networking per-
formance using various local area network technologies (Ta-
ble 2). These measurements consisted of transferring large
data packets and used the TCP/IP stack that is part of Win-
dows NT 4.0. Note that the observed bandwidth for Gigabit-
Ethernet is far below the expected value. A likely source for
this shortfall is inefficiencies in the implementation of the
TCP/IP stack and the resulting high CPU loads. It is well
known that such inefficiencies can result in severe perfor-
mance degradations30 and we expect that a better TCP/IP
stack would raise the transfer rate.

2.4. PWS Market Trends

So far we have reviewed technical characteristics of PWSs.
When selecting a workstation platform technical issues are
but one factor.

The developments in the PWS market reflect the PWS’s
dual-inheritance from Unix workstations and PCs.

As the NT workstation markets matures the price gap be-
tween the best performing systems and the systems with best
price-performance appears to be closing. This is a known
trend know from the desktop PC market which has turned
into a commodity market. The PWS market is assuming
characteristics of a commodity market with surprising speed,
i.e. most products are very similar and have to compete
through pricing, marketing and support offerings.

At the same time, PWSs remain different from desktop
PCs – and are similar to Unix workstations – in that ap-
plication performance (in contrast to servicability and man-
ageability) is the primary design and deployment objective.
Most purchasing decisions are heavily based on the results
in standard and customer-specific application benchmarks.

A particularly interesting question is whether PWSs of-
fer inherently better price-performance than traditional Unix
workstations. Over the period that both workstation types
participated in the market (1996-1998), NT workstations as a
whole have consistently delivered better price-performance
than Unix workstations for standard benchmarks. Only re-
cently (mid 1998) Unix workstation are beginning to reach
the same price-performance levels. It is unclear whether this
constitutes a reversal of the earlier trend or whether the
gap will be restored when Intel delivers its next genera-
tion processors. Another explanation for the narrowing of
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this gap is that NT workstations are starting to include high-
performance subsystems that are required for balanced sys-
tems (see below).

2.5. Building Parallel Renderers from Personal
Workstations

Parallel rendering algorithms can be implemented on a vari-
ety of platforms. The capabilities of the target platform in-
fluence the choice of rendering algorithms. For instance the
availability of hardware acceleration for certain rendering
operations affects both performance and scalability of the
rendering algorithm.

Several approaches to implementing parallel polygon ren-
dering on PWSs with graphics accelerators have been inves-
tigated by Schneider104. It should be noted that this analysis
does not consider pure software implementations of the ren-
dering pipeline; rasterization was assumed to be performed
by a graphics adapter.

This is in contrast to software-only graphics pipelines.
Such approaches lead to more scaleable rendering sys-
tems, even though both absolute performance and price-
performance are likely to be worse than the hardware-
accelerated implementation. In a paper by Whitman125, par-
allel software renderers have shown close to linear speedup
up to 100 processors in a BBN Butterfly TC2000 even
though the absolute performance (up to 100,000 poly-
gons/sec) does not match the performance available from
graphics workstations of equal or lower cost. However, soft-
ware renderers offer more flexibility in the choice of render-
ing algorithms, e.g. advanced lighting models, and the option
to integrate application and renderer more tightly.

Following the conclusions from Schneider104 we will now
look at the various subsystems in a PWS that may become a
bottleneck for parallel rendering. In part, PWSs have inher-
ited these bottlenecks from their desktop PC ancestors. For
example, both memory and disk subsystems are less sophis-
ticated than those of traditional workstations. We will also
discuss the merit of possible improvements to various sub-
systems with respect to parallel rendering performance.

Applications and Geometry Pipeline.As pointed out
above, CPU portion of the overall rendering time scales well
with the number of processors. Therefore, it is desirable to
parallelize rendering solutions with a large computational
component. Advance rendering algorithms such as advanced
lighting algorithms or ray-tracing will lead to implementa-
tions that scale to larger numbers of processors.

Processor.Contrary to initial intuition, the performance
of CPU and rasterizer does not significantly influence the
overall rendering performance. Therefore, parallel rendering
does not benefit from enhancements to the CPU, such as by
higher clock frequency, more internal pipelines or special
instructions to accelerate certain portions of the geometry

pipeline. However as stated earlier, faster CPUs may benefit
the applicationŠs performance.

Memory Subsystem.Currently, memory bandwidth does
not limit rendering performance as much as disk and net-
work performance. We expect that memory subsystems will
keep increasing their performance over time and retain
their relative performance compared to disks and networks.
Therefore, more sophisticated memory subsystems, like2,
will not improve parallel rendering performance.

Disk Subsystem.The disk subsystem offers ample op-
portunity for improvements over the standard IDE or SCSI
found in todayŠs PWSs. Faster disk subsystems, e.g. SSA1

or RAID 0 (disk striping), can be used to alleviate this prob-
lem.

Graphics Subsystem.In workstation clusters the use of
graphics accelerators with geometry accelerators can be ben-
eficial. For applications with mostly static scenes, e.g. walk-
throughs or assembly inspections, the use of retained data
structures like display lists can reduce the bandwidth de-
mands on system memory as geometry and lighting calcula-
tions are performed locally on the adapter. In SMP machines
or for single-frame rendering faster graphics hardware will
not provide large rendering speed-ups.

Network.In clusters, a slow network interconnect can be-
come the dominant bottleneck. Increasing the network band-
width by an order of magnitude will alleviate that problem.
As stated above, current shortcomings of the protocol imple-
mentations prevent full realization of the benefits of Gigabit-
Ethernet under Windows NT. Alternative technologies, like
Myrinet36 promise higher sustained bandwidth than Ether-
net. However, these technologies are either not available un-
der Windows NT or have not yet been developed into a prod-
uct. Prototype implementations under Unix (Linux) have
demonstrated the advantages of such networks.

2.6. Conclusion

As Personal Workstations are emerging as an alternative to
traditional workstations for technical applications they are
frequently considered as building blocks for affordable par-
allel rendering.

Even though PWS are used for parallel rendering in at
least one commercial rendering package53, its actual imple-
mentation is hampered by the lack of efficient networking
technologies and insufficient disk performance. Improving
these subsystems is possible but will result in more expen-
sive systems, eliminating some of the perceived cost advan-
tage of PWS over traditional workstation.

3. Parallel Architectures

In this Section, we discuss general aspects of parallel en-
vironments. Although our tutorial covers PCs and work-
stations, we will focus in this Section only on workstation
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environments. However, most of the information on soft-
ware aspects (message passing, process communication, and
threads) is applicable to all UNIX environments (e.g. Linux).

The following Sections will discuss the different parallel
approaches, architectures, and programming models for par-
allel environments.

3.1. Parallel Approaches

Three basic approaches are available for parallel environ-
ments. The first approach connects different computers via
a network into a cluster of workstations (or PCs). On each
individual computer processes are started to perform a set
of tasks, while communication is organized by exchanging
messages via UNIX sockets, message passing (e.g. PVM),
or - more recently - via the Internet. We call this type a loose
coupled system, sometimes referred as a distributed process-
ing system.

The second approach consists of a single computer, which
contains multiple processing elements (PE which actually
are processors). These processing elements are communi-
cating via message passing on an internal high-speed inter-
connect, or via memory. This type is called a tight coupled
system. In contrast to the first approach, communication is
faster, usually more reliable, and - in the case of a shared
memory system - much easier to handle. However, depend-
ing of the interconnection system, the number of processing
elements is limited.

The third basic approach is a fusion of the first two ap-
proaches. We generally can combine tight or loose coupled
systems into a hyprid coupled system. However, in most
cases we will loose the advantages of a tight coupled sys-
tem.

3.2. Taxonomy

Flynn developed a taxonomy to classify the parallel aspects
of the different (more or less) parallel systems. However, this
taxonomy actually only applies to tight coupled systems.

Flynn distinguishes two basic features of a system, the in-
struction stream (I) - which is code execution - and the data
stream (D) - which is the data flow. These features are di-
vided into a single (S) or multiple stream (M). In a single
instruction stream, only one instruction can be individually
performed by a set of processors, while a multiple instruc-
tion stream can perform different instructions at the same
time. If we have a single data stream, only this data can be
computed or modified at the same time. With a multiple data
stream, more than one data element can be processed.

Overall, we have four different types of parallel process-
ing:

� SISD - is the standard workstation/PC type. A single in-
struction stream of a single processor is performing a task
on a single data stream.

� SIMD - is the massively-parallel, or array computer type.
The same instruction stream is performed on different
data. Although a number of problems can easily mapped
to this architecture (e.g. matrix operations), some prob-
lems are difficult to solve with SIMD systems.
Usually, these systems cost hundreds of thousands of US$
one of the reasons these machines are not covered by this
tutorial.

� MISD - is not a useful system. If multiple instructions are
executed on a single data stream, it will end up in a big
mess. Consequently, there are no computer systems using
the MISD scheme.

� MIMD - is the standard type of a parallel computer. Mul-
tiple instruction streams perform their task on their indi-
vidual data stream.

3.3. Memory Models

Many aspects of parallel programming depend on the mem-
ory architecture of a system, and many problems arise from
a choosen memory architecture. The basic question is if the
memory is assigned to the processor level, or if the memory
is assigned on system level. This information is important
for the distribution of a problem to the system. If all mem-
ory - except caches - is accessible from each part of the sys-
tem - memory is assigned on system level, we are talking
of a shared memory system. In case the individual process-
ing elements can only access their own private memory -
memory is assigned on processor level, we are talking of a
distruted memory system. Shared memory systems are fur-
ther divided into UMA (Uniform Memory Access) systems
(not interchangeable with Uniform Memory Architecture),
and into NUMA (Non-Uniform Memory Access) systems.

3.3.1. Distributed Memory Systems

In distributed memory systems, the memory is assigned to
each individual processor. At the beginning of the process-
ing, the system is distributing the tasks and the data through
the network to processing elements. These processing ele-
ments receive the data and their task and start to process
the data. At some point, the processors need to communi-
cate with other processors, in order to exchange results, to
synchronize for periphery devices, and so forth. Finally, the
computed results are sent back to the appropriate receiver
and the processing element waits for a new task. Workstation
clusters fit into this category, because each computer has its
individual memory, which is not accessible from its partner
workstations within the cluster. Furthermore, each worksta-
tion can distribute data via the network.

Overall, it is important to note that communication in a
distributed memory system is expensive. Therefore, it should
be reduced to a minimum.
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3.3.2. Shared Memory Systems

UMA systems contain all memory† in a more or less mono-
lithic block. All processors of the system access this memory
via the same interconnect, which can be a crossbar or a bus
(Figure 2). In contrast, NUMA systems are combined of two
or more UMA levels which are connected via another in-
terconnect (Figure 3). This interconnect can be slower than
the interconnect on the UMA level. However, communica-
tion from one UMA sub-system to another UMA sub-system
travels through more than one interconnection stage and
therefore, takes more time than communication within one
UMA sub-system.

CPU MemoryCPU.........

Interconnect

Figure 2: Uniform Memory Access

If UMA systems have a better communication, why
should we use NUMA systems? The answer is that the pos-
sibilities to extend UMA systems are limited. At some point
the complexity of the interconnect will rise into infinity, or
the interconnect will not be powerfull enough to provide
sufficient performance. Therefore, a hierarchy of UMA sub-
systems was introduced.
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Figure 3: Non-Uniform Memory Access

3.4. Programming Models

So far, we jave introduced different approaches of paral-
lelization (loose coupled or distributed processing, tight-
coupled processing, and hyprid models of loose- or tight-
coupled processing) and different memory access architec-
tures. In this Section, we add two different paradigms for the
programming of parallel environments.

† We are talking of main memory. Processor registers, caches, or
harddiscs are not considered as main memory.

3.4.1. Message-Passing

This programming paradigm connects processing entities to
perform a joined task. As a matter of principle, each pro-
cessing entity is an individual process running on a com-
puter. However, different processes can run on the very same
computer, especially, if this computer is a multi-processor
system. The underlying interconnection topology is trans-
parent from the users point of view. Therefore, it does not
make a difference in programming, if the parallel program
which communicates using a message-passing library runs
on a cluster of workstations, on a distributed memory sys-
tem(e.g. the Intel Paragon), or on a shared-memory system
(e.g. the HP Convex/SPP).

For the general process of using a message-passing sys-
tem for concurrent programming it is essential to manually
split the problem to be solved into different more or less
independant sub-tasks. These sub-tasks and their data are
distributed via the interconnect to the individual processes.
During processing, intermediary results are sent using the
explicit communication scheme of message-passing.

Considering the high costs using the network, communi-
cation must be reduced to a minimum. Therefore, the data
must be explicitly partitioned. Finally, the terminal results
of the processing entities are collected by a parent process
which returns the result to the user.

Their are several message-passing libraries around. How-
ever, most applications are based on two standards, which
are explained in Section 4.2 and Section 4.1; the PVM3 li-
brary (Parallel Virtual Machine) and the MPI standard (Mes-
sage Passing Interface).

3.4.2. Threading

A more recent parallel programming paradigm is the thread
model. A thread is a control flow entity in a process. Typi-
cally, a sequential process consists of one thread; more than
one thread enable a concurrent (parallel) control flow. While
the process provides the environment for one or more threads
- creating a common address space, a synchronization and
execution context - the individual threads only build a private
stack and program counters. The different threads of a single
process communicate via synchronization mechanisms and
via the shared memory.

Sometimes the concept of light-weight processes (LWP)
is used as a synonym for threads. However, a LWP actually
is a physical scheduling entity of the operating system, in
a way the physical incarnation of the logical concept of a
thread.

In contrast to message passing, threading is only possible
on multi-processor systems‡ Moreover, multi-processor sys-
tems need a shared-memory architecture, in order to provide
the same virtual address space.

‡ There are some thread models which run on distributed mem-
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Besides easy communication and data exchange using the
shared memory, switching between different threads is much
cheaper/faster than switching between individual processes.
This is due to the shared address space, which is not changed
during a thread switch.

Basically, there are three different kinds of implementa-
tions for threads. There is a user thread model, a kernel
thread model, and a mixed model. The user thread model
is usually a very early implementation of a thread package.
All thread management is handled by the thread library; the
UNIX kernal only knows the process, which might contain
more than one thread. This results in the situation that only
one thread of a process is executed at any particular time. If
you are using threads on a single processor workstation, or
your threads are not compute-bound, this is not a problem.
However, on a multi-processor system, we do not really get a
concurrent execution of multiple threads of one process. On
the other hand, this implementation model does not require
a modification of the operating system kernel. Furthermore,
the management of the threads does not require any kernel
overhead. In Pthread terminology, this model is called all-to-
one-scheduling.

In contrast to user threads, each kernel thread (on Solaris
systems a kernel thread is called a light-weight process, on
SGI systems a sproc) is known to the operating system ker-
nel. Consequently, each kernel thread is individually schedu-
lable. This results in a real concurrent execution on a multi-
processor, which is especially important for compute-bound
threads. However, allocation and management of a kernel
thread introduces significant overhead to the kernel, which
eventually might lead to a bad scaling behaviour. Pthread ter-
minology denotes this model to be one-to-one-scheduling.

As usual, the best solution is probably a mixed model
of user and kernel threads. The threads are first scheduled
by the thread library (user thread scheduling). Thereafter,
the threads scheduled by the library are scheduled as ker-
nel threads. Threads that are not compute-bound (e.g. per-
forming I/O) are preempted by the scheduling mechanism
of the library, while only compute-bound threads are sched-
uled by the kernel, thus enabling high-performance concur-
rent execution. In Pthread terminology, this model is called
the many-to-one or some-to-one scheduling.

3.5. Example Architectures

In Table 3, we present an overview of different systems
which cost about or less than US$ 60,000. Please note that
all price information is selected from the different web sites
of the different companies. Therefore, discounts and sales
tax are not included.

ory systems, or even on workstation clusters. However, there is usu-
ally no access to a shared memory, thus limiting communication
severely.

More or less, we always tried to configure a standard sys-
tem with a four GB harddisc and 128 MB of main memory.
(This may appear not enough memory, but who buys mem-
ory from the system vendor anyway?). Prices are in US$
(considering an exchange rate DEM 1.8/US$ 1).

Sun Enterprise 450

Figure 4 gives an overview of the Sun Ultra Enterprise 450
architecture. Up to four processors are connected via a cross-
bar to the UMA memory system and to the I/O system. The
processors are managed via the system controler. On Sun
workstations/servers, pthreads are available as mixed model
implementation (Solaris 2.5 and above).

Crossbar

Memory

I/O

System
Controller

CPU

CPU

CPU

CPU

Figure 4: Basic Sun Enterprise 450 architecture

Hewlett-Packard D-class/J-class architecture

In Figure 5, the basic architecture of D-class and J-class ar-
chiture of Hewlett-Packard is shown. Up to two processors
are connected via the memory bus to the UMA memory sys-
tem and the I/O system. Similar to this architecture, the K-
class servers can connect up to four processors. On HP-UX
10.30, pthreads are available as a kernel model. Older ver-
sions implement a user model.

CPU CPU

I/O

Memory

Memory Bus @ 960 MB/s

Figure 5: Basic HP D-class/J-class architecture
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Silicon Graphics Octane architecture

The processor boards of the SGI Octane architecture contain
up to two processors and the UMA memory system. These
boards are connected via a crossbar with the Graphics sys-
tem and the I/O system (Figure 6). Pthreads are available for
IRIX 6.3 and above, where pthreads are available as patch
set for IRIX 6.2. On all implementations, a mixed model is
used.

Crossbar

Graphics

I/O

C
P

U

C
P

U

Memory

Figure 6: Basic SGI Octane architecture

Silicon Graphics Origin200 architecture

In contrast to the SGI Octane, no crossbar is used for the
Origin200 architecture. The single tower configuration (up
to two processors) connects the processors with the UMA
memory system and the I/O system via a hub interconnect.
For the four processors configuration, a “Craylink” inter-
connect links two two processors towers system to a Non-
Uniform Memory Access (NUMA) system (Figure 7). In the
case of the Origin200, a cache-coherent NUMA scheme is
implemented, in order to provide a consistant memory view
for all processors. Pthreads are available for IRIX 6.3 and
above, where pthreads are available as patch set for IRIX
6.2. On all implementations, a mixed model is used.

Hub I/O

Memory

CPUCPU

Hub

CPUCPU

Memory

I/O

Figure 7: Basic SGI Origin 200 architecture
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Vendor/Model CPU(s) [N]UMA Interconnect Memory Price

Sun/Enterprise 450 1 @250 MHz UMA crossbar @1.6 GB/s <4 GB 19K

2 @250 MHz UMA crossbar @1.6 GB/s <4 GB 27K

4 @250 MHz UMA crossbar @1.6 GB/s <4 GB 42K

1 @300 MHz UMA crossbar @1.6 GB/s <4 GB 25K

2 @300 MHz UMA crossbar @1.6 GB/s <4 GB 39K

4 @300 MHz UMA crossbar @1.6 GB/s <4 GB 66K

HP/J Class J2240 2 @236 MHz UMA bus @960 MB/s <1 GB 32K

HP/D Class D370 1 @160 MHz UMA bus @960 MB/s <1 GB 29K

2 @160 MHz UMA bus @960 MB/s <1 GB 39K

HP/D Class D380 1 @180 MHz UMA bus @960 MB/s <1 GB 31K

2 @180 MHz UMA bus @960 MB/s <1 GB 44K

SGI/Octane SE 1 @225 MHz UMA crossbar @1.6 GB/s <2 GB 24K

2 @225 MHz UMA crossbar @1.6 GB/s <2 GB 30K

1 @250 MHz UMA crossbar @1.6 GB/s <2 GB 30K

2 @250 MHz UMA crossbar @1.6 GB/s <2 GB 42K

SGI/Origin 200 1 @180 MHz UMA hub @1.28 GB/s <2 GB 16K

2 @180 MHz UMA hub @1.28 GB/s <2 GB 22K

4 @180 MHz ccNUMA hub/craylink @1.28 GB/s <4 GB 42K

Table 3: Systems overview.
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4. Parallel Programming

A. Message Passing

In this part of the tutorial, we briefly introduce two message-
passing libraries. First we discuss the Message-Passing In-
terface library - MPI39; 40, followed by the Parallel Virtual
Machine library - PVM42; 10. A comparison of these libraries
can be found in an article by G. Geist et al.43. All these pa-
pers can be found on the web, either at netlib, or at the re-
spective homepages of the libraries.

4.1. Message Passing Interface - MPI

MPI 1 (1994) (and later MPI 2 (1997)) is designed as a com-
munication API for multi-processor computers. Usually, the
functionality of MPI is implemented using a communication
library of the vendor of the machine. Naturally, this vendor
library is not portable to other machines. Therefore, MPI
adds an abstraction level between the user and this vendor
library, in order to guarantee the portability of the program
code of the user.

Although MPI does work on heterogeneous workstation
clusters, its focus is on high-performance communication
on large multi-processors43. This results in a rich variety of
communication mechanisms. However, the MPI API lacks
dynamic resource management, which is necessary for fault
tolerant applications.

In the following Sections, we introduce the main compo-
nents of MPI. Furthermore, we briefly explain some MPI
functions, which are used in Section 7.

4.1.1. Process Topology and Session Management

To tell the truth, their is no real session management in MPI.
Each process of a MPI application is started independent
from the others. At some point, the individual processes are
exchanging messages, or are synchronized at a barrier. Fi-
nally, they shut-down, thus terminating the application. The
distribution of the individual processes to the different pro-
cessing entities (e.g. processors of a multi-processor) is han-
dled by the underlying vendor library.

� int MPI_Init(int *argc, char ***argv); - inializes pro-
cess for MPI.

� int MPI_Finalize(void); - releases process from MPI.

Furthermore, the user can specify the process topology
within a group (see Section 4.1.2). Besides creating a conve-
nient name space, the specification can be used by the run-
time system to optimize communication along the physical
interconnection between the nodes39.

4.1.2. Grouping Mechanisms

A special feature of MPI is support for implementing parallel
libraries. Many functions are provided to encapsulate com-
munication within parallel libraries. These functions define a

group scope for communication, synchronization, and other
related operations of a library. This is done by introducing
the concepts of communicators, contexts, and groups.

Communicators are the containers of all communication
operations within MPI. They consist of participants (mem-
bers of groups) and a communication context. Commu-
nication is either between members of one group (intra-
communication), or between members of different groups
(inter-communication). While the first kind of commu-
nication provides point-to-point communication and col-
lective communication (such as broadcasts), the second
kind only allows point-to-point communication. After ini-
tializing MPI for a process, two communicators are pre-
defined. The MPI_COMM_WORLD communicator in-
cludes all processes which can communicate with the lo-
cal process (including the local process). In contrast, the
MPI_COMM_SELF communicator only includes the local
process.

A group defines the participants of communication or
synchronization operations. They define a unique order on
their members, thus associating a rank (identifier of member
within the group) to each member process. The predefined
group MPI_GROUP_EMPTY defines an empty group.

The following functions provide information on a group
or its members.

� int MPI_Comm_size(MPI_Comm com, int* npro-
cess);- returns the number of participating processes of
communicator com.

� int MPI_Comm_rank(MPI_Comm com, int* rank); -
returns rank of calling process.

A context defines the “universe” of a communicator.
For intra-communicators, they guarantee that point-to-point
communication does not interfere with collective commu-
nication. For inter-communicators, a context only insulates
point-to-point communication, because collective operations
are not defined.

4.1.3. Communication

There are two different communication methods. Group
members can be either communicate pairwise, or they can
communicate with all members of the group. The first
method is called point-to-point communication, the second
method is called collective communication. Furthermore, a
communication operation can be blocking (it waits until the
operation is done) or non-blocking (it does not wait).

Point-To-Point Communication

This class of communication operation defines communica-
tion between two processes. These processes can be either
members of the same group (intra-communication), or they
are members of two different groups (inter-communication).
However, we only describe systems with one group (all pro-
cesses). Therefore, we only use intra-communication.
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Usually, a message is attached to a message envelope.
This envelope identifies the message and consist of the
source or destination rank (process identifier), the message
tag, and the communicator.

For blocking communication, the following functions are
available:

� int MPI_Send(void *buf, int n, MPI_Datatype dt, int
dest, int tg, MPI_Comm com); - sends the buffer buf,
containing n items of datatype dt to process dest of com-
municator com. The message has the tag tg.

� int MPI_Recv(void *buf, int n, MPI_Datatype dt, int
source, int tg, MPI_Comm com);- receives the message
tagged with tg from process source of communicator com.
The used buffer buf consist of n items of the datatype dt.

These functions are specifying thestandard blocking
communication mode, where MPI decides if the message is
buffered. If the message is buffered by MPI, the send call
returns without waiting for the receive post. If the message
is not buffered, send waits until the message is successfully
received by the respective receive call. Besides thisstandard
mode, there arebuffered, synchronous, and ready modes.
More information on these modes can be found in the MPI
specification papers39; 40.

For non-blocking communication MPI_Isend and
MPI_Irecv are provided forintermediate(I) communica-
tion. For buffered, synchronous, or ready communication
modes, please refer to the MPI papers. After calling these
functions, the buffers are send (or set while receiving).
However, they should not be modified until the message is
completely received.

� int MPI_Isend(void *buf, int n, MPI_Datatype dt, int
dest, int tg, MPI_Comm com, MPI_Request* req); -
sends the buffer buf, contain n items of datatype dt to pro-
cess dest of communicator com. The message has the tag
tg.

� int MPI_Irecv(void *buf, int n, MPI_Datatype dt, int
source, int tg, MPI_Comm com, MPI_Request* req);
- receives the message tagged with tg from process source
of communicator com. The used buffer buf consist of n
items of the datatype dt.

In addition to the blocking send and receive, the request
handle req is returned. This handle is associated with a com-
munication request object - which is allocated by these calls
- and can be used to query this request using MPI_Wait.

� int MPI_Wait(MPI_Request* req, MPI_Status *stat);
- waits until operation req is completed.

The last call we describe for point-to-point communica-
tion is MPI_Iprobe. This call checks incoming messages
if they match the specified message envelope (source rank,
message tag, communicator), without actually receiving the
message.

� int MPI_Iprobe(int source, int tg, MPI_Comm com,
int* flag, MPI_Status* stat); - checks incoming mes-
sages. The result of the query is stored in flag.

If flag is set true, the specified message is pend-
ing. If the specified message is not detected, flag is set
to false. The source argument of MPI_Iprobe may be
MPI_ANY_SOURCE, thus accepting messages from all
processes. Similarly, the message tag can be specified as
MPI_ANY_TAG. Depending on the result of MPI_Iprobe,
receive buffers can be allocated and source ranks and mes-
sage tags set.

Collective Communication

Collective Communication is only possible within a group.
This implements a communication behavior between all
members of the group, not only two members as in point-
to-point communication.

We concentrate on two functions:

� int MPI_Barrier(MPI_Comm com); - blocks calling
process until all members of the group associated with
communicator com are blocked at this barrier.

� int MPI_Bcast(void *buf, int n, MPI_Datatype dt, int
root, MPI_Comm com); - broadcasts message buf of n
items of datatype dt from root to all group members of
communicator com, including itself.

While the first call synchronizes all processes of the group
of communicator com, the second call broadcasts a mes-
sage from group member root to all processes. A broad-
cast is received by the members of the group by calling
MPI_Bcast with the same parameters as the broadcasting
process, including root and com. Please note that collective
operations should be executed in the same order in all pro-
cesses. If this order between sending and receiving broad-
casts is changed, a deadlock might occur. Similarly, the or-
der of collective/point-to-point operation should be the same
too.

4.2. Parallel Virtual Machine - PVM

While MPI was designed for message-passing on multi-
processors, PVM was originally intended for message-
passing within a heterogeneous network of workstations.
In order to guarantee interoperability between independent
computers, the concept of a virtual machine was introduced.
While MPI supports only portability (a MPI-based applica-
tion can be compiled on any system) but not interoperabil-
ity, PVM processes can even communicate with processes
build on completely different machines. Furthermore, pro-
cesses can be started or terminated dynamically from a mas-
ter process§, thus enabling dynamic resource management
and fault tolerant applications.

§ Functions to start or terminate processes are integrated in MPI
2.0.
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Generally, a parallel application using PVM3 is split into a
master process and several slave processes. While the slaves
do the actual work of the task, the master distributes data
and sub-tasks to the individual slave processes. Finally, the
master synchronizes with all slaves at a barrier, which marks
the end of the parallel processing.

Before starting the parallel sessions, all designated ma-
chines of the cluster need to be announced in ahostfile. Fur-
thermore, PVM demons must run on these machines. After
running of the parallel sessions, all PVM demons (virtual
machines) are shut down.

After this initialization, the master starts its execution by
logging on to the running parallel virtual machine (PVM de-
mon). Thereafter, it determines the available hardware con-
figuration (number of available machines (nodes), ...), allo-
cates the name space for the slaves, and starts these slaves
by assigning a sub-task (program executable). After check-
ing if all slaves are started properly, data is distributed (and
sometimes collected) to the slaves.

At the end of the parallel computation, results are col-
lected from the slaves. After a final synchronization at a
common barrier, all slaves and the master log off from the
virtual machine.

Next, we briefly introduce some commands for the pro-
cess control. Furthermore, we introduce commands for dis-
tributing and receiving data. For details, please refer to the
PVM book42.

PVM Process Control

� int pvm_mytid(void); - logs process on to virtual ma-
chine.

� int pvm_exit(void); - logs process off from virtual ma-
chine.

� int pvm_config(int* nproc, ....) - determines number of
available nodes (processes), data formats, and additional
host information.

� int pvm_spawn(char *task, ...) - starts the executable
task on a machine of the cluster.

� int pvm_joingroup(char *groupname); - calling pro-
cess joins a group. All members of this group can syn-
chronize at a barrier.

� int pvm_lvgroup(char *groupname); - leaving the spec-
ified group.

� int pvm_barrier(char *groupname); - wait for all group
members at this barrier.

� int pvm_kill(int tid) - kill slave process with identifier
tid.

PVM Communication

� int pvm_initsend(int opt) - initializes sending of a mes-
sage.

� int pvm_pkint(int* data, int size, ..); - encodes data of
type int¶ for sending.

� int pvm_send(int tid, int tag, ..); - sends data asyn-
chronous (does not wait for an answer) to process tid with
specified tag.

� int pvm_bcast(char* group, int tag); - broadcasts data
asynchronously to all group members.

� int pvm_mcast(int* tids, int n, int tag); - broadcasts data
synchronously ton processes listed intids.

� int pvm_nrecv(int tid, int tag); - non-blocking (does not
wait if message has not arrived yet) receiving of message.

� int pvm_recv(int tid, int tag); - blocking receiving of
messagetag.

� int pvm_upkint(int* data, int size, ..); - decodes re-
ceived data of type int.

There is only one active message buffer at a time. This
determines the order of initialization, coding, and sending of
the message.

B. Pthread Programming

There are quite a number of thread models around, like
the mthread package118 of the University of Erlangen-
Nürnberg, the dots package12 of the University of Tübin-
gen, the Compiler-Parallel-Support package of HP/Convex.
There are NT-threads, Solaris-threads, and last but not least
there is the IEEE POSIX thread standard (pthreads). In this
tutorial, we will focus only on pthreads. Furthermore, all the
examples are tested on SGI’s implementation of pthreads
(available for IRIX 6.x and up).

The pthread standard defines an “Application Program-
ming Interface” (API), as specified by POSIX standard
1003.l, or more specific: ISO/IEC 9945-1:1996 (ANSI/IEEE
Std 1003.1, 1996 Edition). However, this standard does not
define a particular implementation of this standard. There-
fore, many definitions are opaque to the user, e.g. thread
mapping, data types, etc...

The following text only gives a more or less brief in-
troduction intro pthread programming. Advanced features
like real-time scheduling or attribute objects are only briefly
mentioned or even completely ignored. For a more com-
plete introduction into those topics, please refer to the
books14; 87; 64; 57; 90 listed in Section 8.

4.3. Concurrency

There are some differences between programming of se-
quential programs and concurrent (parallel) programs. It is
very important to realize that concurrent programs can be-
have completely differently, mainly because the notion of

¶ There are commands for other data types, such as byte, double,
as well.
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a sequence is not really available on the process level, al-
though it is available on thread the level.

First of all, the order of sequential programs is de-
termined at all times. In parallel programs, however, it is
not. There are no statements within the pthread standard
which control the actual order pthreads are scheduled. Con-
sequently, we cannot tell which pthread will be executed be-
fore the other pthread.

Second -critical sections. A sequential program does not
need to make sure that data which is not completely changed
might be already read in another part of the program, be-
cause a sequential program only performs one statement at
a time. This is different with concurrent programs, where
different threads might perform different statements at virtu-
ally the same time. Therefore, we need to protect those areas,
which might cause inconsistent states, because the modify-
ing thread is interrupted by a reading thread. These areas are
called critical sections. The protection can be achieved by
synchronizing the threads at the beginning of these critical
sections.

Third - error handling . Another difference is error han-
dling. While UNIX calls usually return an useful value, if ex-
ecution was successful, a potential error code is returned to
the general error variableerrno . This is not possible using
threads, because a second thread could overwrite the error
code of a previous thread. Therefore, most pthread calls re-
turn directly an error code, which can be analyzed or printed
onto the screen. Alternatively, the string library function
char* strerror(int errno);
returns an explicit text string according to the parameter
errno .

4.4. Controlling Pthreads

In this part, we discuss the life cycle of a pthread. The life
cycle starts with the creation of the pthread, its work, and the
end of its existence.

To start the life of a pthread, we need to execute the
pthread_create command:

int pthread_create( pthread_t *pthread_id,
const pthread_attr_t* ptr,
void* (*thread_routine) (void *),
void *arg
);

where

� pthread_id is the returned identifier of the created
pthread,

� pthread_attr_t is the passed attribute structure. If
NULL is passed, the default attributes are used.

� thread_routine is the name of the function which is
called by the created pthread, and

� arg is a pointer to the parameter structures for this
pthread.

If this function returns error code 0, it was successful. If
an error was encountered, the return code specifies the en-
countered problem.

If a pthreads needs to know its identity, this identity can
be established using the call

pthread_t pthread_self(void);

where the pthread identifier of the current pthread is re-
turned. However, the pthread identifier of another pthread is
only known by its caller. If this information is not passed to
the particular pthread, this pthread does not know the identi-
fier of the other pthread.

Similar to the last call,

int pthread_equal(pthread_t t1,
pthread_t t2);

determines if two pthread identifiers are referring to the
same pthread. Ift1 is equalt2 a nonzero value will be re-
turned (“True”); if they are not equal, zero will be returned
(“False”).

The life of a pthread usually terminates with a

int pthread_exit(void *ret_val);

call. Although the pthread is terminated, the resources
used by this pthread are still occupied, until the pthread is
detached. Using the command

int pthread_detach(pthread_tpthread_id);

explicitly detaches a pthread, telling the operating system
that it can reclaim the resources as soon as the pthread ter-
minates.

If a pthread A needs to wait for termination of pthread B,
the command

int pthread_join(pthread_t pthreadB_id,
void **ret_val);

can be used. As soon as pthread B terminates, it joins
pthread A, which is waiting at thepthread_join com-
mand. If pthread B is returning a result using the pointer
ret_val , this pointer is accessible viaret_val of the
pthread_join command. Ifret_val is set to NULL,
no return value will be available.pthread_join implic-
itly detaches the specified pthread.

An example for pthread creation can be found as listing 1
in Section 4.7.1.

4.5. Pthread Synchronization

One of the most important topics in thread programming is
synchronization. Different resources (e.g. variables, fields,
etc.) are shared by different threads. Therefore, the access to
these resources needs to be protected. Usually, this protec-
tion for MUTual EXclusion is done by a mutex. However,
other synchronization mechanisms are known, such as con-
ditions and barriers.
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4.5.1. Mutex Synchronization

A mutex protects a critical section in a program. Consider-
ing a scenario, where rendering information is stored in a
special data structure - e.g. a FIFO queue -, and two threads
try to read information from that data structure, obviously,
the access to this data structure is a critical section and the
access must be limited to one thread at the time. Therefore,
the data structure must be protected by a mutex.

Initialization

phtread_mutex_t mutex =
PTHREAD_MUTEX_INITIALIZER;

int pthread_mutex_init(
pthread_mutex_t *mutex,
phtread_mutexattr_t *attr);

int pthread_mutex_destroy(
pthread_mutex_t *mutex);

After memory allocation of the mutex structure, it must
be initialized. For static allocation, we can simply assign the
preprocssor macroPTHREAD_MUTEX_INITIALIZER to
the mutex.

In most cases, however, we dynamically allocate a mutex.
For these cases, we can usepthread_mutex_init to
initialize the allocated mutex structure. The second parame-
ter of this command is used to specify a mutex attribute ob-
ject. This attribute object is not frequently used. Therefore,
we passNULL.

If no pthread is locking the mutex, we can destroy it us-
ing pthread_mutex_destroy before releasing the mu-
tex structure memory. If the mutex is statically allocated and
initialized, the explicit destruction of the mutex is not neces-
sary.

Using a Mutex

int pthread_mutex_lock(
pthread_mutex_t *mutex);

int pthread_mutex_trylock(
pthread_mutex_t *mutex);

int pthread_mutex_unlock(
pthread_mutex_t *mutex);

Before entering a critical section in a parallel pro-
gram, we need to lock the associated mutex using
pthread_mutex_lock . If the mutex is already locked,
the current pthread will be blocked, until the mutex is un-
locked by the other pthread. The behavior if a pthread tries
to lock a mutex which is already locked by the very same
pthread is not defined. Either an error code will be returned,
or this pthread will end up in a deadlock.

In case you do not want to wait on an already locked
mutex, you can usepthread_mutex_trylock . This

call returnsEBUSYin case that the specified mutex is al-
ready locked by another pthread. At the end of a criti-
cal section you need to unlock the locked mutex using
pthread_mutex_unlock .

An example for pthread mutexes can be found as listing 2
in Section 4.7.2.

Semaphores

Semaphores is a concept which is more or less a general-
ization of a mutex. While a mutex only is a binary rep-
resentation of the state of a resource, a semaphore can be
used as a counter (“counting semaphores”). Although the
pthread standard does not specify semaphores, the POSIX
semaphores can be used.

4.5.2. Condition Synchronization

While mutexes protect a critical section of a program, con-
ditions are used to send messages on the state of shared data.
Considering the classic user/producer problem, the producer
signals a condition to the users that it has produced data
which can be digested by the users.

Dave Butenhof14 says that

condition variables are for signaling, not for mu-
tual exclusion.

Initializing

pthread_cond_t cond =
PTHREAD_COND_INITIALIZER;

int pthread_cond_init(
pthread_cond_t *cond,
pthread_condattr_t *condattr);

int pthread_cond_destroy(
pthread_cond_t *cond);

Similar to the mutex initialization, static and dynamic al-
located condition structures need to be initialized using the
respective commands. For our use, we always pass NULL
to thecondattr parameter. Further discussion of the at-
tribute features can be found in Butenhofs book14.

After use, the condition structures need to be destroyed
before releasing the associated memory.

Using conditions

int pthread_cond_wait(
pthread_cond_t *cond,
pthread_mutex_t *mutex);

int pthread_cond_timedwait(
pthread_cond_t *cond,
pthread_mutex_t *mutex,
struct timespec *exp);
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int pthread_cond_signal(
pthread_cond_t *cond);

int pthread_cond_broadcast(
pthread_cond_t *cond);

Note that conditions are always associated with a mutex,
where pthreads waiting on the same condition must use the
very same mutex. It is not possible to combine two mutexes
with one condition, while it is possible to combine two (or
more) conditions with one mutex.

Before entering the wait stage
using pthread_cond_wait or
pthread_cond_timedwait , the associated mutex
must be locked. This mutex is automatically unlocked while
waiting on that condition and re-locked before leaving the
wait stage. Similar, a signaling pthread needs to lock the
mutex before signaling the waiting pthread (see listing 3,
Section 4.7.3).

If you consider a waiting pthread A and a signaling
pthread B, A will lock the associated mutex mA before
entering the wait stage of condition cA. Immediately be-
fore blocking pthread A, the system unlocks mutex mA.
Later, pthread B locks mutex mA in order to signal pthread
A the condition cA. The signal is received by pthread A,
which tries to lock mutex mA. After unlocking mutex mA
by pthread B, pthread A locks mutex mA and returns from
thepthread_cond_wait to the user’s code. Thereafter,
the user unlocks mutex mA.

Another important note is that pthreads might wake up
without getting the proper signal for various reasons. There-
fore, we need to use a shared predicate which is set if there
is a proper wake-up signal. If this predicate is not set, the
waiting pthread will wait again until it receives the proper
signal.

In some situations it is useful to limit the waiting
time by a timeout. In these cases, the maximum wait-
ing time can be specified by theexp parameter of the
pthread_cond_timedwait command. It will return
with the valueETIMEDOUTif the pthread does not receive
the expected signal within the timeout limit.

The pthread mechanism for waking-up pthreads wait-
ing at a condition is pthread_cond_signal and
pthread_cond_broadcast . While the first one only
wakes up the first pthread waiting at that condition, the latter
wakes up all pthreads waiting at that condition.

Please note, if no pthread is waiting at a condition, this
condition will simply die away. Furthermore, if a pthread
starts waiting at this condition shortly after the wake-up sig-
nal/broadcast, it remains waiting for a signal which possibly
never arrives.

An example for pthread conditions can be found as listing
3 in Section 4.7.3.

4.5.3. Barrier Synchronization

The last presented synchronization concept is the barrier
synchronization. Unfortunately, this concept is not part of
the current pthread standard (1996), but it is on the draft list
for the next version.

Generally, a barrier synchronization stops threads at this
barrier, until the specified number of threads arrive. There-
after, all threads proceed. There are different suggestions
how to implement barriers in the current pthread standard.
We will present two examples of an implementation. The
first one implements a barrier synchronization at the end of
the life cycle of the threads by joining them in a cascade
(see listing 2 in Section 4.7.2). However, this method is not
suited for a barrier synchronization which is not at the end of
the life cycle of the pthreads, but in the middle of the work-
ing program. In addition, it has some structural limitations,
because each pthreads in the cascade needs to know its suc-
cessor’s pthread identifier.

The second example is from Dave Butenhof book on
POSIX threads14. In this example, every pthread which waits
at a barrier is decrementing the waiting pthread counter and
checks if more pthreads are expected to wait at this barrier. If
no further pthread is expected to wait, it broadcasts the other
waiting pthreads that the appropriate number of pthreads ar-
rived at the barrier. If the number of waiting pthreads is not
reached, this pthreads starts waiting for the broadcast. This
implementation of a barrier can be found as listing 4, Sec-
tion 4.7.4.

4.6. Additional Topics

4.6.1. Concurrent Memory Visibility

As mentioned earlier, programming concurrent (parallel)
systems is quite different from programming sequential sys-
tems. This is especially true for the view of the memory we
are using within our parallel program.

Modern processors are buffering data into caches of dif-
ferent sizes and different levels. If more than one processor is
working for one program, different caches are storing infor-
mation. Therefore, the information visible by one processors
(in its cache) might be not the same as visible to another pro-
cessor (in its cache or the main memory). This problem be-
comes even worse if NUMA memory architectures are used,
because checking for changes in different caches and differ-
ent memory hierarchies is much more difficult.

The pthread standard defines situations when the mem-
ory view of the different threads (possibly running on differ-
ent processors) is equal, providing that the memory has not
changed after these commands.

� After starting pthreads (pthread_create ), the started
pthreads have the same memory view as their parent.

� After explicitly (pthread_mutex_unlock ) or im-
plicitly (conditions) unlocking mutexes, the pthreads
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which are blocked at this mutex have the same memory
view as the unlocking pthread.

� Furthermore, the memory view of terminated pthreads
(canceled pthreads, exited pthreads, or simply returning
from their thread function) is the same as of the pthread
which joins the terminating pthreads.

� Finally, each pthread which is waked-up by a signaling or
broadcasting pthread has the same memory view as the
signaling or broadcasting pthread.

Apart from these situations, the same memory view can
not be guaranteed. Although you might never encounter
this problems on a particular system (it might be cache-
coherent), you can never be sure.

4.6.2. Cancelation

int pthread_cancel(pthread_t pthread_id);

int pthread_setcancelstate(int state,
int* ostate);

int pthread_setcanceltype(int type,
int* otype);

void pthread_testcancel(void);

Usually, a thread is executing a particular part of the pro-
gram until the task is done and the thread is either returning
to its parent thread (main thread), or exits. However, there
are situations where the task of the thread becomes dispens-
able. In those cases, it is useful to cancel this thread.

In general, we need the pthread identifier of the
pthread to be canceled. Without this identifier, we can-
not cancel the pthread. To cancel a pthread, we call
pthread_cancel(pthread_id); .

There are three different cancelation modes the user can
choose from. First, there is the DISABLED mode, where
the cancel state is set to PTHREAD_CANCEL_DISABLE
(the value of the cancel type will be ignored). In this mode
no cancelation is possible. It becomes meaningful to prevent
data corruption, while the pthread is changing data. In this
cases, the pthread disables cancelation until it has finished
the modification. Thereafter, it enables cancelation again.
Cancel requests issued while the cancelation is disabled, are
queued until the cancelation state is enabled again.

If the cancelation state is set to
PTHREAD_CANCEL_ENABLE, we can choose from two
cancelation types; PTHREAD_CANCEL_DEFERRED (the
default) or PTHREAD_CANCEL_ASYNCHRONOUS.
The second type indicates that the respective pthread
should be canceled at any time from now. This might
cause data corruption, deadlocks - pthreads which are
locked at a mutex locked by the canceled pthread -, and
so forth. This is really an emergency kind of cancela-
tion. Better is the first cancelation type, which asks the

pthread to stop at the next cancelation point. At im-
plicit cancelation points likepthread_cond_wait ,
pthread_cond_timedwait , or pthread_join ,
the pthread cancel immediately after executing these
commands. However, an explicit cancelation point
can be set usingpthread_testcancel . If a can-
cel request is pending, the pthread returns the value
PTHREAD_CANCELED to a pthread which waits to
join this pthread. If no cancel request is pending, the
pthread_testcancel command immediately returns.
Besides these implicit or explicit cancelation points, there
are library calls or system calls which are implicit can-
celation points. Generally, these calls can introduce some
blocking behavior and are therefore good candidates for
cancelation. Please refer to one of the pthread books for a
list of these calls.

Please note, enabling cancelation is not a cancelation
point. Therefore, you need to explicitly set a cancelation
point after enabling cancelation.

Another feature of cancelation is the specification of an
cleaning-up handler for the pthread to be canceled. This
cleaning-up handler can close files, release memory, re-
pair data modifications, and so forth. Please refer to Buten-
hofs book14 for more information on cleaning-up canceled
pthreads.

4.6.3. Hints

In this Section, we provide some tips and hints on common
problems and usage of pthreads on some systems.

Debugging

� Thread races. Never count on an execution order of
pthreads. Generally, we can not assume a certain execut-
ing order of pthreads. The standard does not completely
control the actual scheduling of the physical system. Fur-
thermore, after creation of a pthread, you cannot count
that this pthread will start before another pthread created
after the first pthread.

� Avoid potential deadlock situations.Well, this sounds
obvious. However, there are many unavoidable situations
which are potential deadlock situations. If you use mutex
hierarchies (lock one mutex after successfully locking a
first mutex), you need to consider a back-off strategy in
case that the second mutex locking will block the pthread,
which keeps the first mutex.

� Priority inversion. If you use real-time priority schedul-
ing (see Section 4.6.4), your scheduling strategy (FIFO)
might schedule a pthread to run which tries to lock a mu-
tex, locked by a pthread preempted by the first pthread.
Mutual exclusion and scheduling performing a kind of
contradictory execution which can cause a deadlock.

� Sharing stacks.Pthread attributes (Section 4.6.4) enable
the user to share stack memory. If the size of this stack
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is too small for these pthreads, you will encounter some
strange effects.

Performance

� Mutexesare not for free. You should always carefully de-
cide if you use a “big mutex” protecting one big piece of
code, or a number of mutexes protecting more fine granu-
larly critical sections.

� IRIX Pthreads. The current implementation of pthreads
on SGI workstations maps the pthreads on sproc light-
weight processes of the operating systems. Furthermore,
the system decides if it starts additional sproc for an addi-
tional pthread.
In my experience, this does not work very well. There-
fore, you can tell the operating system that your pthreads
are compute-bound, by setting the environment variable
PT_ITC (setenv PT_ITC). This usually results in starting
enough sprocs for all processors.

� Solaris threads. On Solaris 2.5, threads are not time-
sliced. Therefore, we need to set the concurrency level to
the number of started threads, in order to obtain a con-
current program execution. The respective command is
thr_setconcurrency(<nthreads>); .

I found a nice quote in Dave Butenhof’s book for those
who are getting frustrated while debugging a concurrent pro-
gram:

Wisdom comes from experience,
and experience comes from lack of wisdom.

4.6.4. Further topics

In this tutorial, we do not provide material on all pthread
topics. In my experience, I have never needed features like
one-time initialization, real-time scheduling, thread-specific
data, thread attributes, and so forth. However, there are sit-
uations where you might need this features. A discussion of
these additional features can be found in Butenhofs book14.

4.7. Example Code

This part contains example code for pthread programming.
Please note that we denote the thread which starts all other
threads as main thread. Naturally, this thread is considered
as a pthread too. Furthermore, we use the term pthread for
all threads started by the main thread using the command
pthread_create.

4.7.1. Initializing Pthreads

The pthread program listed listing 1, starts five pthreads and
passes a couple of values to the pthreads. Finally, the main
pthread collects the pthread started first.

14, number of pthreads started (including the main
thread).

16-19, type definition of parameter record passed to the
started pthreads.

21-38, thread function which is executed by the started
pthreads. The own pthread identifier is look up (27). Af-
ter a short loop (28), the thread function tests if the current
pthread is the main thread (30). All pthreads created by the
main thread are terminated and return their number identifier
(35).

48-63, PTHREADS - 1 pthreads are started and a pa-
rameter record containing two parameters are passed to the
pthreads; the current loop value (like a number identifier for
the pthreads) and the pthread identifier of the main thread.

65-72, the four pthreads (PTHREADS - 2) started last are
detached from the main thread. After their termination, their
resources are released to the operating system. If the main
thread terminates before these pthreads, they terminate im-
mediately (without completing their thread function).

74, the main thread executes the thread function (like the
other pthreads).

75-76, the main thread joins with the first pthread started
(and implicitly detaches this pthread, 75). The return value
of the started pthread is returned in resp (75) and casted (76).

4.7.2. Mutex Example

The pthread program listed listing 2, starts five pthreads
and passes a couple of values to the pthreads. Each started
pthread tries to lock the mutex allocated and initialized by
the main thread.

20-25, type definition of parameter passed to the pthreads.

27-63, thread function executed by the started pthreads.
Each started pthread locks the shared mutex 100 times (32-
557). After locking (36), it performs a loop (43) and unlocks
the mutex (44-49). Finally, each started pthread terminates
using pthread_exit (60). In contrast to the mutex locking of
the main pthread (105), the pthreads are using trylock and
count the unsuccessful tries (38-41).

72-83, a common mutex is allocated (72-76) and initial-
ized (78-83).

85-103, five pthreads are started and the respective data is
passed to them (96).

105-117, the mutex is locked by the pthread (105-110).
Please note that this mutex is not necessarily locked by the
main thread first. The pthread standard does not specify a
scheduling/execution order (see 4.6.3 thread races). After
successful locking, the main thread executes a loop (111)
and unlocks the mutex (112-117).

119-129, the main thread joins with all started pthread in
the order they were created. If a pthread created later ter-
minates before an earlier pthread, it is not joined until all
pthreads created earlier were joined. This is a cascade im-
plementation of a barrier. The main thread does not proceed
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until all started pthreads are joined. Please note that after the
presented kind of barrier synchronization, no pthreads are
running anymore.

131-137, the mutex is released.

4.7.3. Condition Example

The pthread program listed listing 3, starts two pthreads and
passes a couple of values to the pthreads. Finally, the main
pthread collects the started pthreads. The pthreads are alter-
nating processing a shared variable using conditions to sig-
nal the state of the variable to the pthread.

18-24, type definition of shared data passed to the
pthreads.

26, shared data definition.

39-72, allocates and initializes mutex (43-51) and condi-
tions (53-70).

74-113, producer pthread. After waiting for two seconds
(82) in order to make sure that consumer pthread waits at
the condition, the producer locks the mutex (87-90), manip-
ulates the shared data, setting the predicate to 0, marking that
it has been processed by the producer (91-92), and signals to
the consumer that the shared data is ready to process (93-96).
Thereafter, the producer waits until the data is consumed by
the consumer pthread (98-103). Each time the producer is
waked up by a signal (99), it checks if the predicate is cor-
rect. If not, it continues waiting (98,103). This is to prevent
wrong wake-ups of the waiting pthread. After waiting of the
pthread at this condition, the mutex is unlocked (107-110).
Please note that while waiting for the signal (99), the mutex
is unlocked by the system and re-locked before returning to
the user code.

115-151 consumer pthread. Similar to the producer
pthread, the consumer locks the mutex (124-127) and waits
at the condition for the proper signal (128-133). If a wrong
signal is received which waked-up the consumer, the predi-
cate is not set properly. Therefore, we continue waiting (128,
133). After successful receiving the proper signal, the con-
sumer consumes the shared data (135), sets the predicate
(136), and signals the consumption to the producer pthread
(139-142). Thereafter, it unlocks the mutex (144-147) and
continues waiting (124) for new data. Please note that the
mutex is locked while producer/consumer are manipulating
the shared data. The mutex is released by the pthreads, while
they are waiting at the condition. If the mutex is unlocked
while manipulating the data, a deadlock is usually the re-
sult, because the later signal might be received by the other
pthread. Due to scheduling, it is possible that the pthread
just waked-up by a wrong signal, therefore misses the cor-
rect signal.

159-166, producer and consumer are started. The pro-
ducer/consumer cycles is performed 200 times. (Actually,
only pointers to data structures should be passed. An inte-
ger does not always fit into the memory space of a pointer.

170-177, both pthreads are collected by the main thread.

179-193, resources are released.

4.7.4. Barrier Example

This Section describes the barrier example of the book by
Dave Butenhofk.

Three functions are defined; barrier_init and bar-
rier_destroy define the initializing and destructor functions
of the barrier. The function barrier_wait defines the entrance
to the barrier. The pthreads at this barrier wait until a speci-
fied number of pthreads has arrived. This number is specified
in barrier_init.

1-42 barrier header file barrier.h.

43-186 barrier code file barrier.c.

19-26 type definition of barrier.

72-88 barrier_init. This function initializes the barrier
barrier (72). The number of pthreads which need to wait
at this barrier is specified withcount (72,76). In 77, cycle
is initialized. This variable is used to filter wrong wake-up
signals. Finally, the barrier is made valid in 86.

93-125 barrier_destroy. This function removes the barrier
barrier (93). After checking if the barrier is valid (97),
the barrier access mutex is locked (100). If any pthreads are
still waiting at this barrier (108), this function is aborted
(110). If no pthreads are waiting, the barrier is invalidized
(113), the access mutex unlocked and released, and the con-
dition is removed (122,123).

132-186 is the actual barrier function. The pthreads which
enter this function are blocked (169) until the it receives a
signal and the cycle has changed, since the pthread has en-
tered this function. If the pthread which has just entered the
barrier_wait function is the pthread all the other pthreads are
waiting for, it changes the cycle (146), resets the counter
(147), and broadcasts to all waiting pthreads that it has ar-
rived (148).

k D. Butenhof, PROGRAMMING with POSIX THREADS, (page
245). (C) 1997 Addison Wesley Longman Inc., Reprinted by per-
mission of Addison Wesley Longman.
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Listing 1 - Initializing Pthreads

 1  /* 
 2   * create.c
 3   * starting and terminating pthreads
 4   *
 5   */
 6  
 7  #include <stdio.h>
 8  #include <stdlib.h>
 9  #include <limits.h>
10  #include <string.h>
11  
12  #include <pthread.h>
13  
14  #define NO_PTHREADS 6
15  
16  typedef struct {
17    pthread_t main;
18    int       pthread_no;
19  } ident_t;
20  
21  void* thread_function(void* arg)
22  {
23    int       i;
24    ident_t*  info = (ident_t*) arg;
25    pthread_t self;
26  
27    self = pthread_self();
28    for (i=0; i<INT_MAX/100; i++);
29  
30    if (pthread_equal(self,info−>main)) {
31      fprintf(stderr,"Current pthread is main thread.\n");
32    } else {
33      fprintf(stderr,"Current pthread is thread #%d.\n",
34      info−>pthread_no);
35      pthread_exit((void*) &(info−>pthread_no));
36    }   
37    return NULL;
38  }
39  
40  int main(void)
41  {
42    int       i,rc;
43    int      *res;
44    void     *resp;
45    pthread_t ids[NO_PTHREADS+1];
46    ident_t   infos[NO_PTHREADS+1];
47      
48    ids[0]= pthread_self();
49    infos[0].pthread_no = 0;
50    infos[0].main = pthread_self();
51    for (i=1; i<=NO_PTHREADS; i++) {
52      infos[i].pthread_no = i;
53      infos[i].main = pthread_self();
54      rc = pthread_create(&ids[i], NULL, thread_function, 
55  (void*) &(infos[i]));
56      if (rc) {
57        fprintf(stderr,"ERROR − while creating pthread %d: %s\n",
58        infos[i].pthread_no, strerror(rc));
59        exit(−1);
60      }
61      fprintf(stderr,"Main: Thread %d started.\n",
62      infos[i].pthread_no);
63    }

64    
65    for (i=2; i<=NO_PTHREADS; i++) {
66      rc = pthread_detach(ids[i]);
67      if (rc) {
68        fprintf(stderr,"ERROR − while detaching pthread %d: %s\n",
69        infos[i].pthread_no, strerror(rc));
70        exit(−1);
71      }
72    }
73  
74    thread_function((void*) &(infos[0]));
75    rc = pthread_join(ids[1], &resp);
76    res = (int*) resp;
77    if (rc) {
78      fprintf(stderr,"ERROR − while joining pthread %d: %s\n",
79      infos[i].pthread_no, strerror(rc));
80      exit(−1);
81    }
82    fprintf(stderr,"Joined pthread result is %d\n",
83      (int) *res);
84  }
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Listing 2 - Mutex Example

 1  /* 
 2   * mutex.c
 3   * pthread mutex handling
 4   *
 5   */
 6  
 7  #include <stdio.h>
 8  #include <stdlib.h>
 9  #include <errno.h>
10  #include <string.h>
11  
12  #include <pthread.h>
13  
14  #define EOK         0
15  #define TRUE        1
16  #define FALSE       0   
17  #define NO_PTHREADS 6
18  #define LOCK_TIMES  100000
19  
20  typedef struct {
21    int pthread_no;
22    pthread_t main;
23    int mutex_tries;
24    pthread_mutex_t* mutex;
25  } param_t;
26  
27  void* thread_function(void* arg)
28  {
29    int       i,j,rc,tries,read;
30    param_t*  info = (param_t*) arg;
31  
32    for (i=0; i<100; i++) {
33      tries = 0;
34      read  = TRUE;
35      while (read) {
36        rc = pthread_mutex_trylock(info−>mutex);
37        switch (rc) {
38        case EBUSY:
39          tries++;
40          info−>mutex_tries++;
41          break;
42        case EOK:
43          for (j=0; j<LOCK_TIMES; j++);
44          rc = pthread_mutex_unlock(info−>mutex);
45          if (rc) {
46             fprintf(stderr,"ERROR − while unlocking mutex: %s\n",
47                     strerror(rc));
48             exit(−1);
49          }
50          read = FALSE;
51          break;
52        default:
53          fprintf(stderr,"ERROR − while trying to lock mutex: %s\n",
54                  strerror(rc));
55        }
56      }
57    }
58  
59    if (!pthread_equal(pthread_self(),info−>main)) {
60      pthread_exit(NULL);
61    }   
62    return NULL;
63  }
64  
65  int main(void)
66  {
67    int       i,rc;
68    pthread_t ids[NO_PTHREADS+1];
69    pthread_mutex_t *mutex;
70    param_t   infos[NO_PTHREADS+1];

71    
72    mutex = (pthread_mutex_t*) calloc(1,sizeof(pthread_mutex_t));
73    if (!mutex) {
74      fprintf(stderr,"ERROR − while allocating mutex.\n");
75      exit(−1);
76    }
77  
78    rc = pthread_mutex_init(mutex,NULL);
79    if (rc) {
80      fprintf(stderr,"ERROR − while init’ mutex: %s\n",
81      strerror(rc));
82      exit(−1);
83    }
84  
85    rc = pthread_mutex_lock(mutex);
86    if (rc) {
87      fprintf(stderr,"ERROR − while locking mutex: %s\n",
88      strerror(rc));
89      exit(−1);
90    }
91    ids[0]= pthread_self();
92    infos[0].pthread_no = 0;
93    infos[0].mutex_tries = 0;
94    infos[0].mutex = mutex;
95    infos[0].main = pthread_self();
96    for (i=1; i<=NO_PTHREADS; i++) {
97      infos[i].pthread_no = i;
98      infos[i].mutex_tries = 0;
99      infos[i].mutex = mutex;
100      infos[i].main = pthread_self();
101      rc = pthread_create(&ids[i], NULL, thread_function, 
102                          (void*) &(infos[i]));
103      if (rc) {
104        fprintf(stderr,"ERROR − while creating pthread %d: %s\n",
105        infos[i].pthread_no, strerror(rc));
106        exit(−1);
107      }
108      fprintf(stderr,"Thread %d started.\n",i);
109    }
110    
111    for (i=0; i<100000; i++);
112    rc = pthread_mutex_unlock(mutex);
113    if (rc) {
114      fprintf(stderr,"ERROR − while unlocking mutex: %s\n",
115      strerror(rc));
116      exit(−1);
117    }
118  
119    /* Simulating a barrier */
120    for (i=1; i<=NO_PTHREADS; i++) {
121      rc = pthread_join(ids[i], NULL);
122      if (rc) {
123        fprintf(stderr,"ERROR − while joining pthread %d: %s\n",
124        infos[i].pthread_no, strerror(rc));
125        exit(−1);
126      }
127      fprintf(stderr,"On average, pthread %d waited %d times\n",
128      infos[i].pthread_no,infos[i].mutex_tries/LOCK_TIMES);
129    }
130  
131    rc = pthread_mutex_destroy(mutex);
132    if (rc) {
133      fprintf(stderr,"ERROR − while destroying mutex: %s\n",
134      strerror(rc));
135      exit(−1);
136    }
137    free(mutex);
138  }
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Listing 3 - Condition Example

 1  /* 
 2   * cond.c
 3   * pthread condition handling
 4   *
 5   */
 6  
 7  #include <stdio.h>
 8  #include <stdlib.h>
 9  #include <unistd.h>
10  #include <string.h>
11  #include <pthread.h>
12  
13  #define NOTHING −1
14  #define CREATED 0
15  #define MODIFIED 1
16  #define RES (void*) 0;
17  
18  typedef struct {
19    int val;
20    pthread_mutex_t *mutex;
21    pthread_cond_t  *created;
22    pthread_cond_t  *consumed;
23    int              pred; /* shared predicate */
24  } buffer_t;
25  
26  static buffer_t buffer;
27  
28  void ferr(char *text, int rc)
29  {
30    fprintf(stderr,"%s: %s\n",text, strerror(rc));
31    exit(−1);
32  }
33  
34  void message(char *text)
35  {
36    fprintf(stderr,"%s\n",text);
37  }
38  
39  void init(void)
40  {
41    int rc;
42    
43    buffer.mutex = 
44      (pthread_mutex_t*) calloc(1,sizeof(pthread_mutex_t));
45    if (!buffer.mutex) {
46      ferr("ERROR − while allocating mutex",0);
47    }
48    rc = pthread_mutex_init(buffer.mutex, NULL);
49    if (rc) {
50      ferr("ERROR − while init’ mutex",rc);
51    }
52  
53    buffer.created = 
54      (pthread_cond_t*) calloc(1,sizeof(pthread_cond_t));
55    if (!buffer.created) {
56      ferr("ERROR − while allocating condition created",0);
57    }
58    buffer.consumed = 
59      (pthread_cond_t*) calloc(1,sizeof(pthread_cond_t));
60    if (!buffer.consumed) {
61      ferr("ERROR − while allocating condition consumed",0);
62    }

63    rc = pthread_cond_init(buffer.created, NULL);
64    if (rc) {
65      ferr("ERROR − while init’ condition created",rc);
66    }
67    rc = pthread_cond_init(buffer.consumed, NULL);
68    if (rc) {
69      ferr("ERROR − while init’ condition conumed",rc);
70    }
71    message("Classic producer/consumer problem is started ..");
72  }
73  
74  void *producer(void *times)
75  {
76    int i,t,rc;
77    
78    t = (int) times;
79    i = 1;
80  
81    /* To slow down initial signal */
82    sleep(2);
83  
84    message("Producer is started..");
85    
86    while (i<=t) {
87      rc = pthread_mutex_lock(buffer.mutex);
88      if (rc) {
89         ferr("ERROR − while locking mutex",rc);
90      }    
91      buffer.val =  i+1;
92      buffer.pred = 0;
93      rc = pthread_cond_signal(buffer.created);
94      if (rc) {
95         ferr("ERROR − while signaling created",rc);
96      }    
97  
98      do {
99        rc = pthread_cond_wait(buffer.consumed, buffer.mutex);
100        if (rc) {
101           ferr("ERROR − while waiting on consumed",rc);
102        }    
103      } while (buffer.pred != 1);
104      fprintf(stderr,"  Modified value No. %d=%d\n",i,buffer.val);
105      i++;
106      
107      rc = pthread_mutex_unlock(buffer.mutex);
108      if (rc) {
109        ferr("ERROR − while unlocking mutex",rc);
110      }
111    }
112    return NULL;
113  }
114  
115  void *consumer(void* times)
116  {
117    int i,t,rc;
118    
119    t = (int) times;
120    i = 1;
121    message("Consumer is started..");
122    
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123    while (i<=t) {
124      rc = pthread_mutex_lock(buffer.mutex);
125      if (rc) {
126        ferr("ERROR − while locking mutex",rc);
127      }   
128      do {
129        rc = pthread_cond_wait(buffer.created,buffer.mutex);
130        if (rc) {
131           ferr("ERROR − while waiting on empty",rc);
132        }    
133      } while (buffer.pred != 0);
134  
135      buffer.val *=11;
136      buffer.pred = 1;
137      i++;
138  
139      rc = pthread_cond_signal(buffer.consumed);
140      if (rc) {
141        ferr("ERROR − while  signaling consumed",rc);
142      }    
143  
144      rc = pthread_mutex_unlock(buffer.mutex);
145      if (rc) {
146        ferr("ERROR − while unlocking mutex",rc);
147      }
148    }
149  
150    return NULL;
151  }
152  
153  void main(void)
154  {
155    pthread_t pthreadA, pthreadB;
156    int rc;
157    
158    init();
159    rc = pthread_create(&pthreadA, NULL, producer, (void*) 200);
160    if (rc) {
161      ferr("ERROR − while creating pthread ",rc);
162    }
163    rc = pthread_create(&pthreadB, NULL, consumer, (void*) 200);
164    if (rc) {
165      ferr("ERROR − while  creating pthread",rc);
166    }
167  
168    message("Main is waiting for pthreads ...");
169  
170    rc = pthread_join(pthreadA,NULL);
171    if (rc) {
172      ferr("ERROR − while joining pthread",rc);
173    }
174    rc = pthread_join(pthreadB,NULL);
175    if (rc) {
176      ferr("ERROR − while joining pthread",rc);
177    }
178    

179    rc = pthread_mutex_destroy(buffer.mutex);
180    if (rc) {
181      ferr("ERROR − while destorying mutex",rc);
182    }
183     rc = pthread_cond_destroy(buffer.created);
184    if (rc) {
185      ferr("ERROR − while destorying condition created",rc);
186    }
187    rc = pthread_cond_destroy(buffer.consumed);
188    if (rc) {
189      ferr("ERROR − while destorying condition consumed",rc);
190    }
191    free(buffer.mutex);
192    free(buffer.created);
193    free(buffer.consumed);
194  
195    message("Done.");
196  }
197  

c
 The Eurographics Association and Blackwell Publishers 1998.



Bartz, Silva and Schneider / Affordable Parallel Environments

Listing 4 - Barrier Example

D. Butenhof, PROGRAMMING WITH POSIX THREADS, (page 245). (c) 1997 Addison-Wesley-Longman Inc., Reprinted
by permission of Addison-Wesley-Longman.

 1  /*
 2   * barrier.h
 3   *
 4   * This header file describes the "barrier" synchronization
 5   * construct. The type barrier_t describes the full state of the
 6   * barrier including the POSIX 1003.1c synchronization objects
 7   * necessary.
 8   *
 9   * A barrier causes threads to wait until a set of threads has
10   * all "reached" the barrier. The number of threads required is
11   * set when the barrier is initialized, and cannot be changed
12   * except by reinitializing.
13   */
14  #include <pthread.h>
15  
16  /*
17   * Structure describing a barrier.
18   */
19  typedef struct barrier_tag {
20      pthread_mutex_t     mutex;          /* Control access to barrier */
21      pthread_cond_t      cv;             /* wait for barrier */
22      int                 valid;          /* set when valid */
23      int                 threshold;      /* number of threads required */
24      int                 counter;        /* current number of threads */
25      int                 cycle;          /* alternate wait cycles (0 or 1) 
*/
26  } barrier_t;
27  
28  #define BARRIER_VALID   0xdbcafe
29  
30  /*
31   * Support static initialization of barriers
32   */
33  #define BARRIER_INITIALIZER(cnt) \
34      {PTHREAD_MUTEX_INITIALIZER, PTHREAD_COND_INITIALIZER, \
35      BARRIER_VALID, cnt, cnt, 0}
36  
37  /*
38   * Define barrier functions
39   */
40  extern int barrier_init (barrier_t *barrier, int count);
41  extern int barrier_destroy (barrier_t *barrier);
42  extern int barrier_wait (barrier_t *barrier);
43  /*
44   * barrier.c
45   *
46   * This file implements the "barrier" synchronization construct.
47   *
48   * A barrier causes threads to wait until a set of threads has
49   * all "reached" the barrier. The number of threads required is
50   * set when the barrier is initialized, and cannot be changed
51   * except by reinitializing.
52   *
53   * The barrier_init() and barrier_destroy() functions,
54   * respectively, allow you to initialize and destroy the
55   * barrier.
56   *
57   * The barrier_wait() function allows a thread to wait for a
58   * barrier to be completed. One thread (the one that happens to
59   * arrive last) will return from barrier_wait() with the status
60   * −1 on success −− others will return with 0. The special
61   * status makes it easy for the calling code to cause one thread
62   * to do something in a serial region before entering another
63   * parallel section of code.
64   */

65  #include <pthread.h>
66  #include "errors.h"
67  #include "barrier.h"
68  
69  /*
70   * Initialize a barrier for use.
71   */
72  int barrier_init (barrier_t *barrier, int count)
73  {
74      int status;
75  
76      barrier−>threshold = barrier−>counter = count;
77      barrier−>cycle = 0;
78      status = pthread_mutex_init (&barrier−>mutex, NULL);
79      if (status != 0)
80          return status;
81      status = pthread_cond_init (&barrier−>cv, NULL);
82      if (status != 0) {
83          pthread_mutex_destroy (&barrier−>mutex);
84          return status;
85      }
86      barrier−>valid = BARRIER_VALID;
87      return 0;
88  }
89  
90  /*
91   * Destroy a barrier when done using it.
92   */
93  int barrier_destroy (barrier_t *barrier)
94  {
95      int status, status2;
96  
97      if (barrier−>valid != BARRIER_VALID)
98          return EINVAL;
99  
100      status = pthread_mutex_lock (&barrier−>mutex);
101      if (status != 0)
102          return status;
103  
104      /*
105       * Check whether any threads are known to be waiting; report
106       * "BUSY" if so.
107       */
108      if (barrier−>counter != barrier−>threshold) {
109          pthread_mutex_unlock (&barrier−>mutex);
110          return EBUSY;
111      }
112  
113      barrier−>valid = 0;
114      status = pthread_mutex_unlock (&barrier−>mutex);
115      if (status != 0)
116          return status;
117  
118      /*
119       * If unable to destroy either 1003.1c synchronization
120       * object, return the error status.
121       */
122      status = pthread_mutex_destroy (&barrier−>mutex);
123      status2 = pthread_cond_destroy (&barrier−>cv);
124      return (status == 0 ? status : status2);
125  }
126  

c
 The Eurographics Association and Blackwell Publishers 1998.



Bartz, Silva and Schneider / Affordable Parallel Environments

127  /*
128   * Wait for all members of a barrier to reach the barrier. When
129   * the count (of remaining members) reaches 0, broadcast to wake
130   * all threads waiting.
131   */
132  int barrier_wait (barrier_t *barrier)
133  {
134      int status, cancel, tmp, cycle;
135  
136      if (barrier−>valid != BARRIER_VALID)
137          return EINVAL;
138  
139      status = pthread_mutex_lock (&barrier−>mutex);
140      if (status != 0)
141          return status;
142  
143      cycle = barrier−>cycle;   /* Remember which cycle we’re on */
144  
145      if (−−barrier−>counter == 0) {
146          barrier−>cycle = !barrier−>cycle;
147          barrier−>counter = barrier−>threshold;
148          status = pthread_cond_broadcast (&barrier−>cv);
149          /*
150           * The last thread into the barrier will return status
151           * −1 rather than 0, so that it can be used to perform
152           * some special serial code following the barrier.
153           */
154          if (status == 0)
155              status = −1;
156      } else {
157          /*
158           * Wait with cancellation disabled, because barrier_wait
159           * should not be a cancellation point.
160           */
161          pthread_setcancelstate (PTHREAD_CANCEL_DISABLE, &cancel);
162  
163          /*
164           * Wait until the barrier’s cycle changes, which means
165           * that it has been broadcast, and we don’t want to wait
166           * anymore.
167           */
168          while (cycle == barrier−>cycle) {
169              status = pthread_cond_wait (
170                      &barrier−>cv, &barrier−>mutex);
171              if (status != 0) break;
172          }
173  
174          pthread_setcancelstate (cancel, &tmp);
175      }
176      /*
177       * Ignore an error in unlocking. It shouldn’t happen, and
178       * reporting it here would be misleading −− the barrier wait
179       * completed, after all, whereas returning, for example,
180       * EINVAL would imply the wait had failed. The next attempt
181       * to use the barrier *will* return an error, or hang, due
182       * to whatever happened to the mutex.
183       */
184      pthread_mutex_unlock (&barrier−>mutex);
185      return status;          /* error, −1 for waker, or 0 */
186  }
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PART TWO

Rendering

5. Parallel Polygonal Rendering

Many datasets in design, modeling, and scientific visualiza-
tion are built from polygons and often from simple triangles.
Frequently these datasets are very big (several millions to
several tens of millions of triangles) as they describe a polyg-
onal approximation to an underlying true surface. The size of
these datasets often exceeds the processing and rendering ca-
pabilities of technical workstations. Parallel algorithms and
parallel computers have often been seen as a solution for in-
teractive rendering of such datasets.

Parallel rendering algorithms have been developed in dif-
ferent domains of computer graphics. Developers of graph-
ics hardware have long recognized the need to partition the
graphics pipeline amongst several processors in order to
achieve fast rendering performance. These efforts resulted
in highly specialized architectures that were optimized for
particular algorithms and workloads.

As supercomputers became more powerful and less ex-
pensive it was a natural step to use them to render and dis-
play the results of the computations they were running. This
had the advantage of saving time and bandwidth because the
data did not need to be transferred from the supercomputer
to a dedicated rendering engine. Rendering on supercomput-
ers often does not constitute the most cost-effective solution,
e.g. measured as dollars per rendering performance. How-
ever, there is no dedicated rendering hardware and all graph-
ics algorithms are implemented in software, thus offering
more flexibility in the choice of algorithms and supported
rendering features.

This paper will describe and discuss different solutions
to the problem of efficient rendering of polygonal models on
parallel computers. We will start out with a description of the
background of the problem, in particular the polygon render-
ing process, different rendering scenarios, and issues related
to the architecture of the target platform. Then we will dis-
cuss ways to classify different parallel rendering algorithms
which will provide insights into the properties of different
strategies. Finally, we will describe different approaches to
achieve load-balancing in parallel rendering systems.

For further study the reader is referred to the papers in
the bibliography, in particular124, and the proceedings of the
Parallel Rendering Symposiums and the Eurographics Ren-
dering Workshops.

5.1. Background

5.1.1. Rendering Pipeline

In this paper we will only consider rendering of polygonal
models using the standard rendering pipeline, i.e. we will

not discuss ray-tracing or volume rendering. Figure 8 shows
the prinicipal steps in rendering of a polygonal model. The
description of the model is stored on disk in some file format
such as VRML. Before commencing the actual rendering
process, the model must be loaded from disk into main mem-
ory and converted into an internal representation suitable for
rendering. All further processing steps are then memory-to-
memory operations. It should be noted that the order of prim-
itives on disk and in the in-memory representation is arbri-
trary and is usually determined by the application. In partic-
ular, the order of primitives in the should not be relied upon
when trying to load-balance parallel processors.

Geometry processingforms the first stage of the render-
ing pipeline. It includes the steps of transforming objects
from their intrinsic coordinate system, e.g. model coordi-
nates, into device coordinates, lighting, computation of tex-
ture coordinates, and clipping against the view frustum. Ex-
cept for clipping, all operations in this stage are performed
on vertex information. (Clipping operates on entire poly-
gons which is, in particular on SIMD computers, often dis-
rupting the data flow. The steps in the geometry pipeline
can be rearranged such that clipping is postponed until the
very end when vertices are reassembled into triangles for
rasterization91; 105. Geometry processing needs mostly float-
ing point operations to implement the matrix multiplications
required to transform vertices and to support lighting cal-
culations. Depending on the number of lights and the com-
plexity of the lighting model geometry processing requires
between several hundred and a few thousand floating point
operations per vertex.

Rasterizationconverts primitives (typically triangles) de-
scribed as screen-space vertices into pixels. The result-
ing pixels are then subjected to variousfragment process-
ing operations, such as texture mapping, z-buffering, alpha-
blending etc. The final pixel values are written into the frame
buffer from where they are scanned out onto the display.
Most graphics systems implement rasterization and frage-
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Figure 8: Simplified model of the rendering pipeline.
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ment processing as a unit. One notable exception is the Pix-
elFlow system33.

Rasterization and fragment processing are use predomi-
nantly fixed-point or integer computations. Depending on
the complexity of the fragment processing operations, be-
tween 5 and up to 50 integer computations per pixel and
per triangle are required. Because rasterization is algorithmi-
cally simple yet requires such a huge number of operations
it is often implemented in hardware.

More details on the computational requirements for the
different stages in the rendering pipeline can be found for
instance in34pp. 866-873.

Finally, the complete image is either sent to the screen for
display or written to disk. In many parallel rendering algo-
rithms this step forms a performance bottleneck as partial
images stored on different processors have to be merged in
one central location (the screen or a disk). (Although this
step should be included when measuring the end-to-end per-
formance of a parallel rendering system, some researchers
explicitly exclude this step due to shortcomings of their par-
ticular target platform28.)

5.1.2. Single-frame vs. multi-frame rendering

Rendering polygonal models can be driven by several needs.
If the model is only used once for the generation of a still
image, the entire rendering process outlined above has to
be performed. The creation of animation sequences requires
rendering of the same model for different values of time
and consequently varying values for time-dependent render-
ing parameters, e.g. view position, object location, or light
source intensities. Even though multi-frame rendering could
be handled as repeated single-frame rendering, it offers the
opportunity to exploit inter-frame coherence. For example,
access to the scene database can be amortized over sev-
eral frames and only the actual rendering steps (geometry
processing and rasterization) must be performed for every
frame. Other ways to take advantage of inter-frame coher-
ence will be discussed below.

5.1.2.1. Target Architectures Parallel polygon rendering
has been demonstrated on a large variety of platforms rang-
ing from small multi-processor system using off-the-shelve
microprocessors over multi-million dollar supercomputers
to graphics workstations built with special-purpose hard-
ware.

In spite of the many differences between those computers,
their rendering performance depends on a few key architec-
tural features:

Disk bandwidthdetermines how fast the model can be
loaded from file into memory. For off-line rendering, i.e.
storing the image on file instead of displaying it on screen,
disk performance also affects how fast the final image can
be written back. For large models, disk access time takes up

an appreciable portion of the total rendering time and calls
for high-performance disk subsystems like disk striping.

Inter-processor communicationis required both to ex-
change or transfer model data between processors and to
synchronize the operation of the parallel processors. The
former calls for a connection providing high bandwidth for
large data packages while the latter requires low latency for
small data transfers. Often these two needs result in con-
flicting technical requirements. The physical interconnection
can be formed by a bus, shared memory, dedicated intercon-
nection networks, or by a standard networking infrastruc-
ture like Ethernet. A mismatch between rendering algorithm
and communication infrastructure will lead to saturated net-
works, low graphics performance, and underutilized CPUs.
It should be noted that advertised peak bandwidth of a net-
work technology is often based on raw hardware perfor-
mance and may differ by as much as an order of magnitude
from the bandwidth attainable by an application in practice.

Memory bandwidthdetermines how fast the processor can
operate on model and pixel information once that informa-
tion has been loaded from disk or over the network. The ef-
fective bandwidth is determined by the entire memory sub-
system, including main memory and the various levels of
caching.

Compute power.Both floating point and integer opera-
tions must be matched to the algorithm. As note above, ge-
ometry processing requires mostly floating point operations
while rasterization uses mostly integer operations. The core
rendering routines contain only few branches. Note that the
available compute power affects only the computational por-
tions of the algorithm. Often computation is outweighed by
communication, which leads to the (often surprising and dis-
appointing) effect that increases in compute power have little
effect on the overall rendering performance104.

5.2. Algorithm Classification

For many years the classification of parallel rendering algo-
rithms and architectures has proven to be an elusive goal. We
will discuss several such classifications to gain some insight
into the design space and possible solutions.

5.2.1. Pipelining vs. Parallelism

Irrespective of the problem domain, parallization strategies
can be distinguished by how the problem is mapped onto the
parallel processors.

For pipeliningthe problem is decomposed into individual
steps that are mapped onto processors. Data travel through
the processors and are transformed by each stage in the
pipeline. For many problems, like the rendering pipeline
(sic!), such a partitioning is very natural. However, pipelin-
ing usually offers only a limited amount of parallelism. Fur-
thermore, it is often difficult to achieve good load-balancing
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amongst the processors in the pipeline as the different func-
tions in the pipeline vary in computational complexity.

To overcome such constraints pipelining is often aug-
mented byreplicating some or all pipeline stages. Data are
distributed amongst those processor and worked on in par-
allel. If the algorithms executed by each of the processors
are identical, the processors can perform their operation in
lockstep, thus forming a SIMD (single-instruction, multiple-
data) engine. If the algorithms contain too many data de-
pendencies thus making SIMD operation inefficient, MIMD
(multiple-instruction, multiple-data) architectures are more
useful. SIMD implementations are usually more efficient as
the processors can share instructions and require very little
interprocessor communication or synchronization.

5.2.2. Object Partitioning vs. Image Partitioning

One of the earliest attempts at classifying partitioning strate-
gies for parallel rendering algorithms took into consider-
ation whether the data objects distributed amongst paral-
lel processors belonged into object space, e.g. polygons,
edges, or vertices, or into image space, i.e. collections of
pixels such as portions of the screen, scanlines or individ-
ual pixels4. Object-space partitioning is commonly used for
the geometry processing portion of the rendering pipeline,
as its operation is intrinsically based on objects. Most par-
allelization strategies for rasterizers employ image-space
partitioning31; 123; 26; 7; 6; 82 A few architectures apply object-
space partitioning in the rasterizer121; 35; 103.

5.2.3. Sorting Classification

Based on the observation that rendering can be viewed as
a sorting process of objects into pixels32, different parallel
rendering algorithms can be distinguished by where in the
rendering pipeline the sorting occurs37. Considering the two
main steps in rendering, i.e. geometry processing and ras-
terization, there are three principal locations for the sorting
step: Early during geometry processing (sort-first), between
geometry processing and rasterization (sort-middle), and af-
ter rasterization (sort-last).

Figure 9) illustrates the three approaches. In the following
discussion we will follow37 in refering to a pair of geometry
processor and a rasterizer as a renderer.

Sort-middlearchitectures form the most natural imple-
mentation of the rendering pipeline. Many parallel rendering
systems, both software and hardware, use this approach, e.g.
7; 31; 6; 25; 23; 125; 28. They assign primitives to geometry pro-
cessors that implement the entire geometry pipeline. The
transformed primitives are then sent to rasterizers that are
each serving a portion of the entire screen. One drawback
is the potential for poor load-balancing among the rasteriz-
ers due to uneven distribution of objects across the screen.
Another problem of this approach is the redistribution of
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Figure 9: Classification of parallel rendering methods ac-
cording to the location of the sorting step. (a) sort-first (b)
sort-middle (c) sort-last.

primitives after the geometry stage which requires a many-
to-many communication between the processors. A hierar-
chical multi-step method to reduce the complexity of this
global sort is described in28.

Sort-last assigns primitives to renderers that generate
a full-screen image of all assigned primitives. After all
primitives have been processed, the resulting images are
merged/composited into the final image. Since all processors
handle all pixels this approach offers good load-balancing
properties. However compositing the pixels of the partial
images consumes large amounts of bandwidth and requires
support by dedicated hardware, e.g.33. Further, with sort-last
implementations it is difficult to support anti-aliasing, as ob-
jects covering the same pixel may be handled by different
processors and will only meet during the final compositing
step. Possible solutions, like oversampling or A-buffers17,
increase the bandwidth requirements during the compositing
step even further.

Sort-firstarchitectures quickly determine for each primi-
tive to which screen region(s) it will contribute. The primi-
tive is then assigned to those renderers that are responsible
for those screen regions. Currently, no actual rendering sys-
tems are based on this approach even though there are some
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indications that it may prove advantageous for large mod-
els and high-resolution images83. In 83, Mueller claims that
sort-first has to redistribute fewer objects between frames
than sort-middle. Similar to sort-middle, it is prone to suf-
fer from load-imbalances unless the workload is levelled us-
ing an adaptive scheme that resizes the screen regions each
processor is responsible for.

5.2.4. Load Balancing

As with the parallel implementation of any algorithm the
performance depends critically on balancing the load be-
tween the parallel processors. There are workload-related
and design-related factors affecting the load balancing. We
will first discuss workload issues and then describe various
approaches to design for good load-balance.

5.2.4.1. Workload Characterization Several properties
of the model are important for analyzing performance and
load-balancing of a given parallel rendering architecture.
Clipping and object tesselation affect load-balancing during
geometry processing, while spatial object distribution and
primitive size mostly affect the balance amongst parallel ras-
terizers.

Clipping. Objects clipped by the screen boundaries incur
more work than objects that are trivially accepted or rejected.
It is difficult to predict whether an object will be clipped and
load-imbalances can result as a consequence of one proces-
sor receiving a disproportionate number of objects requiring
clipping. There are techniques that can reduce the number of
objects that require clipping by enabling rasterizers to deal
with objects outside of the view frustum94; 29. This reduces
the adverse affects of clipping on load-balancing to negligi-
ble amounts.

Tesselation.Some rendering APIs use higher order prim-
itives, like NURBS, that are tesselated by the rendering sub-
system. The degree of tesselation, i.e. the number of trian-
gles per object, determines the amount of data expansion
occuring during the rendering process. The degree of tes-
selation is often view-dependent and hence hard to predict
a priori. The variable degree of tesselation leads to load im-
balances as one processor’s objects may expand into more
primitives than objects handled by another processor. Tesse-
lation also affects how many objects need to be considered
during the sorting step. In sort-first architectures, primitives
are sorted before the tesselation, thus saving communication
bandwidth compared to sort-middle architectures.

Primitive distribution.In systems using image-space par-
titioning, the spatial distribution of objects across the screen
decides how many objects must be processed by each pro-
cessor. Usually, objects are not distributed uniformly, e.g.
more ojects may be located in the center of the screen than
along the periphery. This creates potential imbalances in the
amount of work assigned to each processor. Below we will
discuss different approaces to deal with this problem.

Primitive size.The performance of most rasterization al-
gorithms increases for smaller primitives. (Simply put: It
takes less time to generate fewer pixels.) The mix of large
and small primitives therefore determines the workload for
the rasterizer. Several experiments have shown (see e.g.20)
that many scenes contain a large number of small objects and
a few large objects. The primitive size also affects the over-
lap factor, i.e. the number of screen regions affected by an
object. The overlap factor afffects the performance of image-
space partitioning schemes like sort-first and sort-middle al-
gorithms.

5.2.4.2. Designing for Load-Balancing Several design
techniques are used to compensate for load-imbalances in-
cured by different workloads. They can be distinguished as
static, dynamicandadaptive.

On-demand assignmentis a dynamic method that relies
on the fact that there are many more tasks (objects or pixels)
than there are processors. New work is assigned to the first
available, idle processor. Except during initialization and for
the last few tasks, every processor will be busy all the time.
The maximum load imbalance is bounded by the difference
in processing time between the smallest (shortest processing
time) and largest (longest processing time) task. The ratio of
the number of tasks and the number of processors is called
thegranularity ratio. Selecting the granularity ratio requires
a compromise between good load balancing (high granular-
ity ratio) and overhead for instance due to large overlap fac-
tor (low granularity ratio). The optimal granularity ratio de-
pends on the model, typical values range from about 4 to 32.
Care must be taken when applying this technique to geom-
etry processing: Some graphics APIs (like OpenGL) require
that operations are performed in the exact order in which
they were specified, e.g. objects are not allowed to “pass
each other” on their way through the pipeline. MIMD geom-
etry engines using on-demand assignment of objects could
violate that assumption and must therefore take special steps
to ensure temporal ordering, e.g. by labeling objects with
time stamps.

Interleavingis a static technique which is frequently used
in rasterizers to decrease the sensitivity to uneven spatial ob-
ject distributions. In general, the screen is subdivided into
regions, e.g. pixels, scanlines, sets of scanlines, sets of pixel
columns, or rectangular blocks. The shape and the size of
these regions determines the overlap factor. For a given
region size, square regions minimize the overlap factor37.
Amongn processor, each processor is responsible for every
n-th screen region. The valuen is known as the interleave
factor. Since clustering of objects usually occurs in larger
screen regions and since every object typically covers several
pixels, this technique will eliminate most load-imbalances
stemming from non-uniform distribution of objects. Inter-
leaving makes it harder to exploit spatial coherence as neigh-
boring pixels (or scanlines) are assigned to different proces-
sors. Therefore, the interleave factor, i.e. the distance be-
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tween pixels/scanlines assigned to the same processor, must
be chosen carefully. Several groups have explored various
aspects of interleaving for parallel rasterization, e.g.52.

Adaptive schedulingtries to achieve balanced loading of
all processors by assigning different number of tasks de-
pending on task size. For geometry processing this might
mean to assign fewer objects to processors that are receiving
objects that will be tesselated very finely. In image-space
schemes this means that processors are assigned smaller
pixel sets in regions with many objects, thus equalizing the
number of objects assigned to each processor.

Adaptive scheduling can be performed either dyamically
or statically. Dynamic adaptation is achieved by monitoring
the load-balance and if necessary splitting tasks to off-load
busy processors. Such a scheme is described in125: Screen
regions are initially assigned statically to processors. If the
system becomes unbalanced, idle processors grab a share of
the tasks of the busy processors.

Statically adaptive schemes attempt to statically assign
rendering tasks such that the resulting work is distributed
evenly amongst all processors. Such schemes are either pre-
dictive or reactive. Predictive schemes estimate the actual
workload for the current frame based on certain model prop-
erties. Reactive schemes exploit inter-frame coherence and
determine the partioning of the next frame based on the
workload for the current frame, e.g.28; 98.

Frame-parallel renderingis a straight-forward method to
use parallel processors for rendering. Each processor works
independently on one frame of an animation sequence. If
there is little variation between consecutive frames, frames
can be assigned statically to processors as all processor
tend complete their respective frame(s) in approximately the
same time. If processing time varies between frames, it is
also possible to assign frames dynamically (on-demand as-
signment). In either case, the processors are working on in-
dependent frames and no communication between proces-
sors is required after the initial distribution of the model.
Unfortunately, this approach is only viable for rendering of
animation sequence. It is not suitable for interactive render-
ing as it typically introduces large latencies between the time
a frame is issued by the application and when it appears on
the screen.

The application programming interface (API)impacts
how efficiently the strategies outlined above can be imple-
mented. Immediate-mode APIs like OpenGL or Direct3D do
not have access to the entire model and hence do not allow
global optimizations. Retained-mode APIs like Phigs, Per-
former, OpenGL Optimizer, Java3D and Fahrenheit maintain
an internal representation of the entire model which supports
partitioning of the model for load-balancing.

5.2.4.3. Data Distribution and Scheduling In distributed
memory architectures, e.g. clusters of workstations or

message-passing computers, object data must be sent ex-
plicitely to the processors. For small data sets, one can sim-
ply send the full data set to every processor and each pro-
cessor is then instructed which objects to use. This approach
fails however for large models either because there is not
enough storage to replicate the model at every processor
and/or the time to transfer the model is prohibitive due the
bandwidth limitations of the network.

Therefore, most implementations replicate only small
data structures like graphics state, e.g. current transforma-
tion matrices, light source data, etc., and distribute the stor-
age for large data structures, primarily the object descrip-
tions and the frame buffer.

For system using static assignment of rendering tasks ob-
ject data have to be distributed only during the initialization
phase of the algorithm. This makes it easy to partition the
algorithm into separate phases that can be scheduled con-
secutively.

For dynamic schemes data must be distributed during
the entire process. Therefore processors cannot continu-
ously work rendering objects but must instead divide their
available cycles between rendering and communicating with
other processors. Such an implementation is described in
23: The system implements a sort-middle architecture where
each processor works concurrently on geometry processing
and rasterization, i.e. producing and consuming polygons.
The advantage is that only a small amount of memory must
be allocated for polygons to be transferred between proces-
sors. Determining the balance between polygon transforma-
tion (generation) and polygon rasterization (consuming) is
not obvious. However,23 states that the overall system per-
formance is fairly insensitive to that choice.

5.2.5. Summary

Parallel rendering of polygonal datasets faces several chal-
lenges most importantly load-balancing. Polygon rendering
proceeds in two main steps: geometry processing and raster-
ization. Both steps have unique computational and commu-
nication requirements.

For geometry processing load balancing is usually
achieved using on-demand assignment of objects to idle pro-
cessors. For rasterization, interleaving of pixels or scanlines
mostly eliminates load-balancing problems at the expense of
less inter-pixel or inter-scanline conherence for each proces-
sor. Adaptive load-balancing schemes estimate or measure
the workload and divide the screen into regions that will cre-
ate approximatly equal workload.

6. Parallel Volume Rendering

6.1. Introduction

Volume rendering56 is a powerful computer graphics tech-
nique for the visualization of large quantities of 3D data. It is
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specially well suited for three dimentional scalar61; 27; 119; 100

and vector fields21; 74. Fundamentally, it works by map-
ping quantities in the dataset (such as color, transparency)
to properties of a cloud-like material. Images are generated
by modelling the interaction of light with the cloudy materi-
als129; 76; 75. Because of the type of data being rendered and
the complexity of the lighting models, the accuracy of the
volume representation and of the calculation of the volume
rendering integrals11; 55; 54 are of major concern and have re-
ceived considerable interest from researchers in the field.

A popular alternative method to (direct) volume rendering
is isosurface extraction, where given a certain value of inter-
estλ 2 R , and some scalar functionf : R 3 ! R , a polyg-
onal representation for the implicit surfacef (x;y;z) = λ is
generated. There are several methods to generate isosur-
faces66; 77; 84; 89, the most popular being the marching cubes
method66. Isosurfaces have a clear advantage over volume
rendering when it comes to interactivity. Once the models
have been polygonized (and simplified107 – marching cubes
usually generate lots of redundant triangles), hardware sup-
ported graphics workstation can be used to speed up the ren-
dering. Isosurfaces have several disadvantages, such as lack
of fine detail and flexibility during rendering (specially for
handling multiple transparent surfaces), and its binary de-
cision process where surfaces are either inside or outside a
given voxel tends to create artifacts in the data (there is also
anambiguityproblem, that has been addressed by later pa-
pers like89).

6.1.1. Volumetric Data

Volumetric data comes in a variety of formats, the most com-
mon being (we are using the taxonomy introduced in117)
cartesian or regular data. Cartesian data is typically a 3D ma-
trix composed of voxels (avoxelcan be defined in two dif-
ferent ways, either as the datum in the intersection of each
three coordinate aligned lines, or as the small cube, either
definition is correct as long as used consistently), while the
regular data has the same representation but can also have a
scaling matrix associated with it.

Irregular data comes in a large variety, including curvilin-
ear data, that is data defined in awarpedregular grid, or in
general, one can be given scattered (or unstructured) data,
where no explicitly connectivity is defined. In general, scat-
tered data can be composed of tetrahedra, hexahedra, prisms,
etc. An important special case is tetrahedral grids. They have
several advantages, including easy interpolation, simple rep-
resentation (specially for connectivity information), and the
fact that any other grid can be interpolated to a tetrahe-
dral one (with the possible introduction of Steiner points).
Among their disadvantages is the fact that the size of the
datasets tend to grow as cells are decomposed into tetrahe-
dra. In the case of curvilinear grids, an accurate decomposi-
tion will make the cell complex contain five times as many
cells. More details on irregular grids are postponed until Sec-
tion 6.3.

6.1.2. Interpolation Issues

In order to generate the cloud-like properties from the volu-
metric data, one has to make some assumptions about the un-
derlying data. This is necessary because the rendering meth-
ods typically assume the ability to compute values as a con-
tinuous function, and (for methods that use normal-based
shading) at times, even derivatives of such functions any-
where in space. On the other hand, data is given only at dis-
crete locations in space usually with no explicit derivatives.
In order to correctly interpolate the data, for the case of reg-
ular sampled data, it is generally assumed the original data
has been sampled at a high enough frequency (or has been
low-pass filtered) to avoid aliasing artifacts47. Several inter-
polation filters can be used, the most common by far is to
compute the value of a functionf (x;y;z) by trilinearly inter-
polating the eight closest points. Higher order interpolation
methods have also been studied16; 72, but the computational
cost is too high for pratical use.

In the case of irregular grids, the interpolation is more
complicated. Even finding the cell that contains the sam-
ple point is not as simple or efficient as in the regular case
85; 96. Also, interpolation becomes much more complicated
for cells that are not tetrahedra (for tetrahedra a single linear
function can be made tofit on the four vertices). For curvilin-
ear grids, trilinear interpolation becomes dependant on the
underlying coordinate frame and even on the cell orienta-
tion 127; 45. Wilhelms et al.127 proposes using inverse dis-
tance weighted interpolation as a solution to this problem.
Another solution would be to use higher order interpolation.
In general, it is wise to ask the creator of the dataset for a
suitable fitting function.

6.1.3. Optical Models for Volume Rendering

Volume rendering works by modelling volume as cloud cells
composed of semi-transparent material which emits its own
light, partially transmits light from other cells and absorbs
some incoming light128; 73; 75. Because of the importance of a
clear understanding of such a model to rendering both, regu-
lar and irregular grids, the actual inner workings of one such
mechanism is studied here. Our discussion closely follows
the one in128.

We assume each volume cells (differentially) emits light
of a certain colorEλ(x;y;z), for each color channelλ (red,
green and blue), and absorbs some light that comes from
behind (we are assuming no multiple scattering of light by
particles – our model is the simplest “useful” model – for a
more complete treatment see73).

Correctly defining opacity for cells of general size is
slightly tricky. We define thedifferential opacityat some
depthz to be Ω(z). ComputingT(z), the fraction of light
transmitted through depth 0 toz (assuming no emission of
light inside the material), is simple, we just need to notice
that the amount of transmitted light atz+ ∆z is just the
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amount of light atz minus the attenuationΩ(z) over a dis-
tance of∆z:

T(z+∆z) = T(z)�Ω(z)T(z)∆z (1)

what (after making a division by∆zand taking limits) im-
plies

dT(z+∆z)
dz

=�Ω(z)T(z) (2)

The solution to this linear equation of the first order19

with boundary conditionT(0) = 1 is:

T(z) = e�
R z

0 Ω(u)du (3)

The accumulated opacity over a ray from front-to-back in-
side a cell of depthd is (1�T(d)). An important special case
is when the cell has constant differential opacityΩ, in this
caseT(z) = e�Ωz. Before we continue, we can now solve
the question of definingdifferential opacityΩ from theunity
opacity (usually user defined and saved in a transfer function
table). A simple formula can expressΩ in terms ofO:

Ω = log(
1

1�O
) (4)

If the model allows for the emission of light inside the
material, a similar calculation can be used to calculate the
intensityIλ for each color channel inside a cell. In this case
using an initial intensityIλ(0) = 0, the final system and so-
lutions are as follows:

dIλ(z)
dz

=�Ω(z)Iλ(z)+Eλ(z) (5)

Iλ(z) = T(z)
Z z

0

Eλ(v)
T(v)

dv (6)

Specializing the solution for constant color and opacity
cells (as done above) we get the simple solution:

Iλ(z) =
E
Ω
(1�e�Ωz) (7)

Usually, for computational efficiency, the exponential in
the previous equation is approximated by its first terms in the
Taylor series.128; 73; 75 describe in detail analytical solutions
under different assumptions about the behavior of the opac-
ity and emitted colors inside the cells, extensions to more

complex light behavior and the several tradeoffs of approxi-
mating the exponentials with linear functions.

The previous equations show how to calculate the contin-
uous color and opacity intensity, usually this calculation is
done once for every cell, and the results from each cell are
compositedin a later step. Compositing operators were first
introduced in95, and are widely used. The most used opera-
tor in volume visualization is theover operator, its operation
is basically to add the brightness of the current cell to the
attenuated brightness of the one behind, andin the case of
front-to-back compositingupdate the opacities of the cells.
The equations for theover operator are:

Co =Ca+Cb(1�Oa) (8)

Oo = Oa+Ob(1�Oa) (9)

It is important to note, that in these equations the col-
ors are saved pre-multiplied by the opacities (i.e., the actual
color isCo=Oo), this saves one multiplication per composit-
ing operation.

6.1.4. Ray Tracing

A popular method to generate images from volume data is
to useray tracing or ray casting46; 61. Ray casting works
by casting (at least) one ray per image pixel into volume
space, point sampling the scene with some lighting model
(like the one just presented) and compositing the samples as
described in the previous section. This method is very flex-
ible and extremely easy to implement. There are several ex-
tensions of basic ray casting to include higher order illumi-
nation effects, like discrete ray tracing130, and volumetric
ray tracing116. Both of these techniques take into account
global illumination effects incorporating more accurate ap-
proximations of the more general rendering equation54.

Because of its size, volumetric ray casting (and ray trac-
ing) is very expensive. Several optimizations have been
applied to ray tracing62; 63; 24. One of the most effec-
tive optimizations are thepresence accelerationtechniques,
that exploit the fact volumetric data is relatively sparse
62; 63; 24; 132; 131. Levoy 62 introduced the idea by using an oc-
tree101 to skip over empty space. His idea was further op-
timized by Danskin and Hanrahan24 to not only skip over
empty space, but also to speed up sampling calculations over
uniform regions of the volume. Another important accelera-
tion techniques includeadaptive image samplingandearly
ray termination. Recently, Lacroute and Levoy59 have intro-
duced a hybrid method that combines some of the previous
optimizations in a very efficient class of volume rendering
algorithms.
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PARC – Hardware-Based Presence Acceleration

Avila, Sobierajski and Kaufman9; 115 introduced the idea of
exploiting the graphics hardware on workstations to speed
up volume rendering. First, they introduce PARC (Polygon
Assited Ray Casting)9, a technique that uses the Z-buffer
38 to find the closest and farthest possibly contributing cells.
Later, a revised technique115 is proposed that (still using the
Z-buffer) can produce a better approximation of the set of
contributing cells.

Their algorithm consists of first creating a polygonal
representation of the set of contributing cells (based on
axis aligned quadrilaterals) from acoarsevolume (see Fig-
ure 10). The coarse volume is calculated by grouping neigh-
boring voxels together, creatingsupervoxels. Each super-
voxel is then tested for the presence ofinterestingvoxels
(i.e., voxels that belong to the range of voxels mapped to
non-zero intensities and opacities by the transfer functions).
All six external faces of supervoxels are then marked based
on its possible visibility (the second method seems to need
to project all the faces).

Eye

PARC Sampling Points

Figure 10: Polygon Assisted Ray Casting.

In order to perform the actual rendering, in the first
method (calledDepth Buffer PARC), all the visible quadri-
laterals are transformed and scan-converted twice. Once for
finding the first non-empty front voxel, and again to deter-
mine the final integration location. In the second method
(calledColor Buffer PARC), a sweep along the closest major
axis is generated by coloring the PARC cubes with power
of two numbers (so they do not interfere with each other),
what leaves a footprint of the intervals(ti ;ti+1) that can be
used to better sample the regions having interesting voxels.
This can be quite a savings, given that volumes are quite
sparse (most of the time, only 5-10% of a volume contains
any lighting and shading information for a given set of trans-
fer functions).

6.1.5. Splatting or Projection

Ray casting, described in Section 6.1.4, works from the im-
age space to the object space (volume dataset). Another way

of achieving volume rendering is to reconstruct the image
from the object space to the image space, by computing for
every element in the dataset its contribution to the image.
Several such techniques have been developed27; 122.

Westover’s PhD dissertation describes theSplattingtech-
nique. In splatting, the final image is generated by computing
for each voxel in the volume dataset its contribution to the fi-
nal image. The algorithm works by virtually “throwing” the
voxels onto the image plane. In this process every voxel in
the object space leaves afootprint in the image space that
will represent the object. The computation is processed by
virtually “peeling” the object space in slices, and by accu-
mulating the result in the image plane.

Formally the process consists of reconstructing the signal
that represents the original object, sampling it and comput-
ing the image from the resampled signal. This reconstruc-
tion is done in steps, one voxel at a time. For each voxel,
the algorithm calculates its contribution to the final image,
its footprint, and then it accumulates that footprint in the im-
age plane buffer. The computation can take place in back-
to-front or front-to-back order. The footprint is in fact the
reconstruction kernel and its computation is key to the accu-
racy of the algorithm. Westover122 proves that the footprint
does not depend on the spatial position of voxel itself (for
parallel projections), thus he is able to use a lookup table
to approximate the footprint. During computation the algo-
rithm just need to multiply the footprint with the color of the
voxel, instead of having to perform a more expensive opera-
tion.

Although projection methods have been used for both reg-
ular and irregular grids, they are more popular for irregular
grids. In this case, projection can be sped up by using the
graphics hardware (Z-buffer and texture mapping)109.

6.2. Parallel Volume Rendering of Regular Grids

Here, we present a high performance parallel volume ren-
dering engine for our PVR system. Our research has in-
troduced two contributions to parallel volume rendering:
content-based load balancingand pipelined compositing.
Content-based load balancing (Section 6.2.2) introduces a
method to achieve better load balancing in distributed mem-
ory MIMD machines. Pipelined compositing (Section 6.2.3)
proposes a component dataflow for implementing theParal-
lel Ray Castingpipeline.

The major goal of the research presented is to develop
algorithms and code for volume rendering extremely large
datasets at reasonable speed with an aim on achieving real-
time rendering on the next generation of high-performance
parallel hardware. The sizes of volumetric data we are pri-
marily interested are in the approximate range of 512-by-
512-by-512 to 2048-by-2048-by-2048 voxels. Our primary
hardware focus is on distributed-memory MIMD machines,
such as the Intel Paragon and the Thinking Machines CM-5.
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A large number of parallel algorithms for volume render-
ing have been proposed. Schroeder and Salem106 have pro-
posed a shear based technique for the CM-2 that could ren-
der 1283 volumes at multiple frames a second, using a low
quality filter. The main drawback of their technique is low
image quality. Their algorithm had to redistribute and resam-
ple the dataset for each view change. Montani et al.81 devel-
oped a distributed memory ray tracer for the nCUBE, that
used a hybrid image-based load balancing and context sensi-
tive volume distribution. An interesting feature of their algo-
rithm is the use of clusters to generate higher drawing rates
at the expense of data replication. However, their rendering
times are well over interactive times. Using a different vol-
ume distribution strategy but still a static data distribution,
Ma et al.67 have achieved better frame rates on a CM-5. In
their approach the dataset is distributed in a K-d tree fashion
and the compositing is done in a tree structure. Others51; 15; 86

have used similar load balancing schemes using static data
distribution, for either image compositing or ray dataflow
compositing. Nieh and Levoy88 have parallelized an effi-
cient volume ray caster citeLevoy:1990:ERT and achieved
very impressive performance on a shared memory DASH
machine.

6.2.1. Performance Considerations

In analyzing the performance of parallel algorithms, there
are many considerations related to the machine limita-
tions, like for instance, communication network latency and
throughput86. Latencycan be measured as the time it takes
a message to leave the source processor and be received at
the destination end.Throughput is the amount of data that
can be sent on the connection per unit time. These numbers
are particularly important for algorithms in distributed mem-
ory architectures. They can change the behavior of a given
algorithm enough to make it completely impractical.

Throughput is not a big issue for methods based on vol-
ume ray casting that perform static data distribution with ray
dataflow as most of the communication is amortized over
time 81; 51; 15. On the other hand, methods that perform com-
positing at the end of rendering or that have communica-
tion scheduled as an implicit synchronization phase have
a higher chance of experiencing throughput problems. The
reason for this is that communication is scheduled all at
the same time, usually exceeding the machines architectural
limits. One should try to avoid synchronized phases as much
as possible.

Latency is always a major concern, any algorithm that re-
quires communication pays a price for using the network.
The start up time for message communication is usually long
compared to CPU speeds. For instance, in the iPSC/860 it
takes at least 200µs to complete a round trip message be-
tween two processors. Latency hiding is an important issue
in most algorithms, if an algorithm often blocks waiting for
data on other processors to continue its execution, it is very

likely this algorithm will perform badly. The classic ways to
hide latency is to use pipelining or pre-fetching49.

Even though latency and throughput are very important
issues in the design and implementation of a parallel algo-
rithm, the most important issue by far isload balancing. No
parallel algorithm can perform well without a good load bal-
ancing scheme.

Again, it is extremely important that the algorithm has
as few inherently sequential parts as possible if at all.
Amadahl’s law49 shows how speed up depends on the par-
allelism available in your particular algorithm and thatany,
however small, sequential part will eventually limit the speed
up of your algorithm.

Given all the constraints above, it is clear that to obtain
good load balancing one wants an algorithm that:

� Needs low throughput and spreads communication well
over the course of execution.

� Hides the latency, possibly by pipelining the operations
and working on more than one image over time.

� Never causes processors to idle and/or wait for others
without doinguseful work.

A subtle point in our requirements is in the last phrase,
how do we classifyuseful work? We define useful work as
the number of instructionsIopt executed by the best sequen-
tial algorithm available to volume render a dataset. Thus,
when a given parallel implementation uses a suboptimal al-
gorithm, it ends up using a much larger number of instruc-
tions than theoretically necessary as each processor executes
more instructions thanIopt

P (P denotes the number of proces-
sors). Clearly, one needs to compare with the best sequential
algorithm as this is the actual speed up the user gets by using
the parallel algorithm instead of the sequential one.

The last point on useful work is usually neglected in pa-
pers on parallel volume rendering and we believe this is a
serious flaw in some previous approaches to the problem. In
particular, it is widely known that given a transfer function
and some segmentation bounds, the amount of useful infor-
mation in a volume is only a fraction of its total size. Based
on this fact, we can claim that algorithms that use static data
distribution based only on spatial considerations are present-
ing “efficiency” numbers that can be inaccurate, maybe by a
large margin.

To avoid the pitfalls of normal static data distribution, we
present in the next section a new way to achieve realistic
load balancing. Our load balancing scheme, does not scale
linearly, but achieves very fast rendering times while mini-
mizing the “work” done by the processors.

6.2.2. Content-Based Load Balancing

This section explains our approach to load balancing, which
is able to achieve accurate load balancing even when us-
ing presence acceleration optimizations. The original idea
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of our load balancing technique came from the PARC9 ac-
celeration technique. We notice that the amount of “work”
performed by a presence accelerated ray caster is roughly
directly proportional to the number offull supervoxelscon-
tained in the volume.

We use the number of full supervoxels a given processor
is assigned as the measure of how much work is performed
by that particular processor. LetP denote the number of pro-
cessors, andci the number of full supervoxels processori
has. In order to achieve a good load balancing (by our met-
ric) we need a scheme thatminimizesthe following function
for a partitionX = (c1;c2; : : :):

f (X) =max
i 6= j

�
�ci �cj

�
�;8i; j � P (10)

Equation 10 is very general and applies to any partition of
the datasetD into disjoint piecesDi . In our work we have
tried to solve this optimization problem in a very restricted
context. We have assumed that eachDi is convex. (We show
later that this assumption makes it possible to create afixed
depth sorting network for the partial rays independently cal-
culated each disjoint region.) Furthermore, we only work
with two very simple subdivisions: slabs and a special case
of a BSP-tree.

Before we go any further, it is interesting to study the be-
havior of our load balancing scheme in the very simple case
of a slab subdivision of the volumeD. Slabs (see Figure 11)
are consecutive slices of the dataset aligned on two major
axes. Given a volumeD, with s superslicesand p proces-
sors with the restriction that each processor gets contigous
slices, the problem of calculating the “best” load balanc-
ing partition for p processors consists of enumerating all
the(s�1)(s�2) : : : (s� p+1) ways of partitioningD, and
choosing the one thatminimizesEquation 10.

Figure 11: During slab-based load balancing, each proces-
sor gets a range of continuous data set slabs. The number of
full supervoxels determines the exact partition ratio.

The problem of computing the optimal (as defined by our
heuristic choice) load balance partition indices can be solved
naively as follows. We can compute all the possible parti-
tions of the integern, wheren is the number of slabs, into
P numbers, whereP is the number of processors (it is ac-
tually a bit different, as we need to consider addition non-
associative). For example, ifn= 5, andP= 3, then 1+1+3
represents the solution that gives the first slab to the first
processor, the second slab to the second processor and the
remaining three slabs to the third processor. Enumerating all
possible partitioning to get the optimal one is a feasible so-
lution but can be very computationally expensive for large
n andP. We use a slightly different algorithm for the com-
putations that follows, we choose the permutation with the
smallest square difference from the average.

In order to show how our approach works in practice, let
us work out the example of using our load balancing exam-
ple to divide theneghipdataset (the negative potential of a
high-potential iron protein of 663 resolution) for four pro-
cessors. Here we assume the number of superslices to be
16, and the number of supervoxels to be 64 (equivalent to
a level 4 PARC decomposition). Using a voxel threshold of
10-200 (out of a range up to 255), we get the following 16
supervoxel count for each slab, out of the 1570 total full su-
pervoxels:

12, 28, 61, 138, 149, 154, 139, 104, 106, 139, 156, 151,
129, 62, 29, 13

A naive approach load balancing scheme (such as the ones
used in other parallel volume renderers) would assign re-
gions of equal volume to each processor resulting in the fol-
lowing partition:

12 + 28 + 61 + 138 = 239
149 + 154 + 139 + 104 = 546
106 + 139 + 156 + 151 = 552

129 + 62 + 29 + 13 = 233

Here processors 2 and 3 have twice as much “work” as
processors 1 and 4. Using our metric, we get:

12 + 28 + 61 + 138 + 149 = 388
154 + 139 + 104 = 397
106 + 139 + 156 = 401

151 + 129 + 62 + 29 + 13 = 384

One can see that some configurations will yield better load
balancing than others but this is a limitation of the particu-
lar space subdivision one chooses to implement, the more
complex the subdivision one allows, the better load balanc-
ing but the harder it is to implement a suitable load balanc-
ing scheme and the associated ray caster. Figure 12 plots
the examples just described for the naive approach. Figure
13 shows how well our load balancing scheme works for a
broader set of processor arrangements.

These shortcomings of slabs let us to an alternative space
decomposition structure previously used by Ma et al.67; 68,
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Figure 12: The graph shows the number of cubes per pro-
cessor under naive load balancing.
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Figure 13: Load balancing measures for our algorithm. The
graph shows the number of cubes the processor receives in
our algorithm.
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Figure 14: Naive load balancing on the Paragon. The graph
shows the actual rendering times for 4 processors using the
naive load balancing.
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Figure 15: Our load balancing on the Paragon. The graph
shows the actual rendering times for 4 processors using our
load balancing.

theBinary Space Partition(BSP) tree, originally introduced
by Fuchs et al.41.

Figure 16: An example of the partition scheme we used for
load balancing. The bottom represents a possible decompo-
sition for 8 nodes. Notice that a cut can be made several
times over the same axis to optimize the shape of the decom-
position.

6.2.3. TheParallel Ray CastingRendering Pipeline

Compositing Cluster

The compositing nodes are responsible for regrouping all the
sub-rays back together in a consistent manner, in order to
keep image correctness. This is only possible because com-
position is an associative operation, so if we have to sub-ray
samples where one ends where the other starts, it is possible
to combine their samples into one sub-ray recursively until
we have a value that constitutes the full ray contribution to a
pixel. [htbp]

Ma et al.68 use a different approach to compositing, where
instead of having separate compositing nodes, the render-
ing nodes switch between rendering and compositing. Our
method is more efficient because we can use the special
structure of the sub-ray composition to yield a high perfor-
mance pipeline, where multiple nodes are used to implement
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Figure 17: A cut through the partition acomplished using
our load balancing scheme on an MRI head. It is easy to see
that if a regular partition scheme were used instead, as the
number of processors increase, large number of processors
would get just empty voxels to render.
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Figure 18: Data partitioning shown in two dimensions. The
dataset is partitioned into 8 pieces (marked A. . . H) in a
canonical hierarchical manner by the 7 lines (planes in 3D)
represented by binary numbers. Once such a decomposition
is performed, it is relatively easy to see how the samples get
composited back into a single value.

the complete pipeline (see Figure 19). Also, the structure
of compositing requires synchronized operation (e.g., there
is an explicit structure to the composition, that needs to be
guaranteed for correctness purposes), and light weight com-
putation, making it much less attractive for parallelization
over a large number of processors, specially on machines
with slow communication compared to CPU speeds (almost
all current machines).

It is easy to see that compositing has a very different struc-
ture than rendering. Here, nodes need to synchronize at every
step of the computation, making the depth of the composit-
ing tree a hard limit on the speed of the rendering. That is,
if one uses 2m nodes for compositing, and it takestc time to
composite two images, even without any synchronization or

communication factor in, it takes at leastmtc time to get a
completely composited image.
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010 011000 001

Compositing Cluster

Rendering Cluster

Figure 19: The internal structure of one compositing clus-
ter, one rendering cluster and their interconnection is shown.
In PVR, the communication between the compositing and
the rendering clusters is very flexible, with several rendering
clusters being able to work together in the same image. This
is accomplished by using a set of tokens that are handled by
the first level of the compositing tree in order to guarantee
consistency. Because of its tree structure, one properly syn-
chronized compositing cluster can work on several images at
once, depending on its depth. The compositing cluster shown
is relative to the decomposition shown in Figure 18.

Fortunately, most of this latency can be hiden by pipelin-
ing the computation. Here, instead of sending one image at
a time, we can send images continuosly into the composit-
ing cluster, and as long as we send images at a rate lower
than one for everytc worth of time, the compositing cluster
is able to composite those at full speed, and aftermtc times,
the latency is fully hiden from the computation. As can be
seen for our discussion, this latency hiding process is very
sensitive to the rate of images coming in the pipeline. One
needs to try to avoid “stalls” as much as possible. Also, one
can not pipe more than the overall capacity of the pipeline.

Several implications for real-time rendering can be ex-
tracted from this simple model. Even though the latency is
hiden from the computation, it is not hiden from the user, at
least not totally. The main reason is the overall time that an
image takes to be computed. Without network overhead, if
an image takestr time to be rendered by the rendering clus-
ter, the first image of a sequence takes (at least) timetr +mtc
to be received by the user. Given that people can notice even
very small latencies, our latency budget for real-time volume
rendering is extremely low and will definitely have to wait
for the next generation of machines to be build. We present
a detailed account of the timings later in this chapter.

Going back to the previous discussion, we see that as long
astr is larger thantc we don’t have anything to worry about
with respect to creating a bottleneck in the compositing end.
As it turns out,tr is much larger thantc, even for relatively
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small datasets. With this in mind, an interesting question is
how to allocate the compositing nodes, with respect to size
and topology.

The topology is actually fixed by the corresponding BSP-
tree, that is, if the first level of the tree hasn= 2h images
(if one image per rendering node, thann would be the num-
ber of rendering nodes), than potentially the number of com-
positing nodes required might be as high as 2h� 1. There
are several reasons not to use that many compositing nodes.
First, it is a waste of processors. Second, the first-image la-
tency grows with the number of processors in the composit-
ing tree. Fortunately, we can lower the number of nodes re-
quired in the compositing tree by a process known as virtu-
alization. A general solution to this problem is proposed in
Section 6.5.

Types of Parallelism

Due to the fact that each rendering node gets a portion of
the dataset, this type of parallelism is called “object-space
parallelism”. The structure of our rendering pipeline makes
it possible to exploit other types of parallelism. For instance,
by using more than a single rendering cluster to compute an
image, we are making use of “image-space paralellism” (in
PVR, it is possible to specify that each cluster compute dis-
joint scanlines of the same image; see114 for the issues re-
lated to image-space parallelism). The clustering approach
coupled with the inherent pipeline parallelism available in
the compositing process (because of its recursive structure)
gives rise to a third paralellism type, namely “time-space
paralellism” or “temporal parallelism”. In the latter, we can
exploit multiple clusters by concurrently calculating sub-
rays for several images at once, that can be sent down the
compositing pipeline concurrently. Here, it is important for
the correctness of the images, that each composition step
be done in lockstep, in order to avoid mixing of images. It
should be clear by now that there are several advantages to
our separation of nodes into our two types.

6.3. Lazy Sweep Ray Casting Algorithm

Lazy Sweep Ray Castingis a fast algorithm for render-
ing general irregular grids. It is based on the sweep-plane
paradigm, and it is able to accelerate ray casting for render-
ing irregular grids, including disconnected and nonconvex
(even with holes) unstructured irregular grids with a render-
ing cost that decreases as the “disconnectedness” decreases.
The algorithm is carefully tailored to exploit spatial coher-
ence even if the image resolution differs substantially from
the object space resolution.

Lazy Sweep Ray Casting has several desirable properties,
including its generality, (depth-sorting) accuracy, low mem-
ory comsumption, speed, simplicity of implementation and
portability (e.g., no hardware dependencies).

The design of our LSRC method for rendering irregular

Sweep Plane

Intersection with sweep plane

Z axis

Viewing Plane

Y axis

Scanline X axis

Figure 20: A sweep-plane (perpendicular to the y-axis) used
in sweeping 3-space.

grids is based on two main goals: (1) the depth ordering of
the cells should be correct along the rays corresponding to
every pixel; and (2) the algorithm should be as efficient as
possible, taking advantage of structure and coherence in the
data. With the first goal in mind, we chose to develop a new
ray casting algorithm, in order to be able to handle cycles
among cells (a case causing difficulties for projection meth-
ods). To address the second goal, we use a sweep approach,
as did Giertsen45, in order to exploit bothinter-scanlineand
inter-raycoherence. Our algorithm has the following advan-
tages over Giertsen’s:

(1)It avoids the explicit transformation and sorting phase,
thereby avoiding the storage of an extra copy of the ver-
tices;

(2)It makes no requirements or assumptions about the level
of connectivity or convexity among cells of the mesh;
however, it does take advantage of structure in the mesh,
running faster in cases that involve meshes having convex
cells and convex components;

(3)It avoids the use of a hash buffer plane, thereby allowing
accurate rendering even for meshes whose cells greatly
vary in size;

(4)It is able to handle parallel and perspective projection
within the same framework (e.g, no explicit transforma-
tions).

6.3.1. Performing the Sweep

Our sweep method, like Giertsen’s, sweeps space with a
sweep-plane that is orthogonal to the viewing plane (thex-y
plane), and parallel to the scanlines (i.e., parallel to thex-z
plane). See Figure 20.

Eventsoccur when the sweep-plane hits vertices of the
meshS. But, rather than sorting all of the vertices ofS
in advance, and placing them into an auxiliary data struc-
ture (thereby at least doubling the storage requirements), we
maintain an event queue (priority queue) of an appropriate
subset of the mesh vertices.
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A vertex v is locally extremal(or simply extremal, for
short) if all of the edges incident to it lie in the (closed) half-
space above or below it (iny-coordinate). A simple (linear-
time) pass through the data readily identifies the extremal
vertices.

We initialize the event queue with the extremal vertices,
prioritized according to the magnitude of their inner prod-
uct (dot product) with the vector representing they-axis
(“up”) in the viewing coordinate system (i.e., according to
their y-coordinates). We donot explicitly transform coor-
dinates. Furthermore, at any given instant, the event queue
only stores the set of extremal vertices not yet swept over,
plus the vertices that are the upper endpoints of the edges
currently intersected by the sweep-plane. In practice, the
event queue is relatively small, usually accounting for a very
small percentage of the total data size. As the sweep takes
place, new vertices (non-extremal ones) will be inserted into
and deleted from the event queue each time the sweep-plane
hits a vertex ofS.

The sweep algorithm proceeds in the usual way, process-
ing events as they occur, as determined by the event queue
and by the scanlines. We pop the event queue, obtaining the
next vertex,v, to be hit, and we check whether or not the
sweep-plane encountersv before it reaches they-coordinate
of the next scanline. If it does hitv first, we perform the ap-
propriate insertions/deletions on the event queue; these are
easily determined by checking the signs of the dot products
of edge vectors out ofv with the vector representing they-
axis. Otherwise, the sweep-plane has encountered a scanline.
And at this point, we stop the sweep and drop into a two-
dimensional ray casting procedure (also based on a sweep),
as described below. The algorithm terminates once the last
scanline is encountered.

We remark here that, instead of doing a sort (iny) of all
vertices ofSat once, the algorithm is able to take advantage
of the partial order information that is encoded in the mesh
data structure. (In particular, if each edge is oriented in the
+y direction, the resulting directed graph is acyclic, defining
a partial ordering of the vertices.) Further, by doing the sort-
ing “on the fly”, using the event queue, our algorithm can
be run in a “lock step” mode that avoids having to sort and
sweep over highly complex subdomains of the mesh. This is
especially useful, as we see in the next section, if the slices
that correspond to our actual scanlines are relatively simple,
or the image resolution (pixel size) is large in comparison
with some of the features of the dataset. (Such cases arise,
for example, in some applications of scientific visualization
on highly disparate datasets.)

6.3.2. Processing a Scanline

When the sweep-plane encounters a scanline, the current
sweep status data structure gives us a “slice” through the
mesh in which we must solve a two-dimensional ray cast-
ing problem. (See Figure 21.) LetS denote the polygonal

1 2 3 4 5 6 7

Figure 21: Illustration of a sweep in one slice.

(planar) subdivision at the current scanline (i.e.,S is the
subdivision obtained by intersecting the sweep-plane with
the meshS.) In time linear in the size ofS , we can recover
the subdivisionS (both its geometry and its topology), just
by stepping through the sweep status structure, and utilizing
the local topology of the cells in the slice. In our implemen-
tation,S is actually not constructed explicitly, but only given
implicitly by the sweep status data structure, and thenlocally
reconstructed as needed during the two-dimensional sweep
(described below).

The two-dimensional problem is also solved using a
sweep algorithm — now we sweep the plane with a sweep-
line parallel to thez axis. Events now correspond to vertices
of the planar subdivisionS . At the time that we constructS ,
we could identify those vertices in the slice that are locally
extremal inS (i.e., those vertices that have edges only left-
ward inx or rightward incident on them.), and insert them in
the initial event queue. (The actual implementation just sorts
along thex-axis, since the extra memory overhead is negli-
gible in 2D.) Thesweep-line statusis an ordered list of the
edges ofS crossed by the sweep-line. The sweep-line status
is initially empty. Then, as we pass the sweep-line overS ,
we update the sweep-line status and the event queue at each
event when the sweep-line hits an extremal vertex, making
insertions and deletions in the standard way. This is analo-
gous to the Bentley-Ottmann sweep that is used for comput-
ing line segment intersections in the plane96. We also stop
the sweep at each of thex-coordinates that correspond to the
rays that we are casting (i.e., at the pixel coordinates along
the current scanline), and output to the rendering model the
sorted ordering (depth ordering) given by the current sweep-
line status. We have noticed that the choice of data structure
used to maintain the sweep-line status can have a dramatic
impact on the performance of the algorithm.

See Silva and Mitchell113 for details.
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6.4. Parallel Rendering of Irregular Grids

Here, we present a distributed-memory MIMD machine par-
allelization of the LSRC method. Our parallelization is a
distributed-memory parallelization, and each rendering node
gets a only portion of the dataset, not the complete dataset.

The need for the parallelization of rendering algorithms
for irregular-grid rendering is obvious, given the fact that
irregular grids are extremely large (as compared to regular
grids), and their rendering is much less efficient. The largest
irregular grids currently being renderered are just breaking
the 1,000,000 cell barrier, what would be equivalent to a 100-
by-100-by-100 regular grid, if only data sample points are
taken into account. On the other hand, such a grid requires
more than 50MB of memory, when its regular counterpart
only needs 1MB. Actually, regular grids of this size can be
rendered by inexpensive workstations in real-time (i.e., us-
ing the Shear-Warp technique), while the irregular grids of
this size would be almost out of reach just a year ago.

Actually, the sizes of irregular grids of interest of com-
putational scientists are larger than one million cells, possi-
bly starting at two times that range. (This is subjective data,
obtained by talking to researchers at Sandia National Labs
during the summer of 1996). Given that it takes us about
150 seconds to render a 500,000 cell complex, and assum-
ing linear behavior (what is not completely correct) it would
takes us over 10 minutes to generate images of a 2,000,000
cell complex. What is not an unreasonable amount of time,
given that Ma70 needed over 40 minutes to render a dataset
over 10 times smaller.

But our goal is to develop a method that is both faster and
scalable to larger and larger dataset. The main reason for this
trust is not really current dataset, but those upcoming ones,
specially from the new breed of supercomputers, such as the
ACSI TeraFlop machine installed at Sandia National Labs.
The ACSI machine has orders of magnitude more memory
than the current Intel Paragon installed there, even moreus-
ablememory (i.e., not taking OS and network overhead into
account). This will enable the generation of extremely large
grids, possibly in ranges of 10,000,000-100,000,000 cells or
larger.

Part of this increase in dataset sizes can be offset by better
algorithms, specially by further improvements in our ren-
dering code by complete implementation of our optimiza-
tion ideas. But our experience with irregular grids, seems to
show that only more computing power can really offset the
increase in dataset size.

The other main reason for the use of parallel machines
comes from the pure size of the datasets. The largest work-
stations available to us have 1GB–3GB of memory, what is
very short of the 300GB–512GB of memory in the ASCI
Tflop machine. Several reasons indicate the visualization
should be performed locally: the fact that very few worksta-
tions with more than a few gigabytes of memory are avail-

able; moving 300GB of data in and out at ethernet, or even
ATM OC-3 speeds is clearly infeasible; disk transfer rates,
even for reasonably large (and expensive) disk arrays are just
too slow for this kind of data.

As all of the reasons pointed above for the use of the par-
allel machines that generated the dataset is not enough, we
also need to note that these simulations do not generate a
single static volume, but in general, time dependent data is
being generated and the time steps can not, in general, be
efficiently accessed (for obvious reasons).

With all of this in mind, we present our algorithm for ren-
dering irregular grid data, in place, on distributed-memory
MIMD machines.

6.4.1. Previous Work

There has been very little work on rendering irregular grid
data on distributed memory architectures. Overall parallel
work on rendering irregular grids has received relatively lit-
tle attention. This might be due to the fact that rendering
irregular grids is so much harder than regular grids, that few
people ever get to the point of being able to research parallel
methods for irregular grids.

Uselton has parallelize his original ray tracing work (pre-
sented in120) in a shared memory multiprocessor SGI, and
reported that the implementation scales linearly up to 8 pro-
cessors. Challinger18 reports on a parallel algorithm for ir-
regular grids, implemented on a shared-memory BBN-2000
Butterfly. Giertsen44 has also parallelized his sweep algo-
rithm on a collection of IBM RS/6000, using a master/slave
scheme and total data replication in the nodes.

The most interesting work, by our perspective, is Ma70,
where a parallelization technique very similar to the one pre-
sented here is proposed. It is unfortunate that he used a se-
quential ray casting technique that is shown to be at least two
orders of magnitude slower than the one we use. Because of
this, he did not find any interesting bottlenecks of the paral-
lelization technique.

His technique works by breaking up the original grid
into multiple, disjoint cell complexes using Chaco48, a
graph-based decomposition tool developed at Sandia Na-
tional Labs. Chaco-based decompositions have several inter-
esting and important properties for parallelization of com-
putational methods. It is unclear, the extra overhead of us-
ing Chaco has actually any influence on the rendering speed
of the parallelization. Here, as in our parallel regular grid
method presented in Section 6.2, we divide the nodes into
two classes: rendering and compositing nodes. The render-
ing nodes, compute each ray of an image, creating a set of
stencils (the rays may not be completely connected). After
each ray is computed, they are sent to the compositing nodes
for further sorting and the final accumulation. Each com-
positing node is assigned a set of rays to be composited. He
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reports that because the rendering takes so long, the com-
positing phase is negligible and he has not work any further
on optimizing it.

6.4.2. Parallel LSRC

Overall the our algorithm is very similar to Ma’s. Continuing
in the tradition of our regular grid work and the framework
of our PVR system, we divide the nodes into two relevant
groups, rendering and compositing nodes. Our differences
between our work and Ma’s are actually in the details of the
rendering and compositing.

Dataset Decomposition

In order to subdivide the dataset among the nodes, we use a
hierarchical decomposition method, with a similar flavor to
our load balancing scheme for regular grids. Starting with
the bounding box of the complete cell complex, we start
making cuts in this box, taking two things into account: the
aspect ratio of the cuts, and the number of vertices. At every
step, we cut along the largest axis in such a way as to break
the number of vertices in half, in each stage of the cutting.
because cells might belong to more a single of these convex
space decomposition “boxes”, we assign the cell to the box
that has most of it (e.g., in the number of vertices, with ties
broken in some arbitrary, but consistent way).

The obvious now, is just to assign each processor to a each
box. This is a way to minimize the total rendering time of the
complete irregular grid. Unfortunately, it is not clear that this
is the right thing, given that one might want to create a rough
picture of the grid fast, then wait for more complex render-
ing. In the future we expect to be able to create a scattered
decomposition, that will have better properties in creating
approximate renderings of the grids.

With the decomposition method just proposed, each pro-
cessor should have roughly the same number of primitives,
each of which, approximately confined to a rectangular grid
of almost bounded aspect ratio (because of the largest-axis
cutting).

Rendering

The rendering performed at each node is just a variation of
our sequential technique presented in Section 6.3. This is just
a single significant difference, instead of generating an im-
age, every node generates astencildata-structure. Of course,
all nodes work concurrenly on generating stencil scan-lines.

The stencil representation of a scan-line is just a linked-
list of color and depth of cells, who have been lazily compos-
ited. That is, if two stencils shared an end point (e.g.,(~a;~b)
and (~b;~c)), they are composited into a single stencil(~a;~c),
representing the whole region. In the end of a scan-line ren-
dering computation, each node potentially has a collection of
stencils. Because of the process of decomposing the dataset

among the nodes, it is expected the stencil fragmentation is
low. This is necessary in order to enable fast communication
for compositing.

Compositing

One solution for compositing would just to copy Ma’s tech-
nique, where nodes are responsible for certain scan-lines.
This way the rendering nodes could just send its collection of
stencils for further sorting in the compositing nodes. In our
case, we try to achieve better performance by creating a tree
of compositing nodes (such as the one we use for the regu-
lar case). Every compositing node is reponsible for a certain
region of space (i.e., one of the original box decompositions
proposed above), that belongs to a global BSP-tree.

It is the responsability of the rendering nodes to respect
the BSP-tree boundaries and send the data to the correct
compositing nodes, possibly breaking stencils that are span
across boundaries.

Once the data of each scan-line is received in the com-
positing nodes, the final depth sorting can be efficiently per-
formed by merging the stencils into a complete image. An
efficient pipeline scheme can be implemented on a scan-line
by scan-line basis, with similar good properties as the one
implemented image-by-image for the regular grid case.

6.5. General BSP-tree Compositing

A simple way of parallelizing rendering algorithms is to do
it at the object-space level:i.e., divide the task of rendering
different objects among different rendering processors, and
then compose the full images together. A large class of ren-
dering algorithms (although not all), in particular scan-line
algorithms, can be parallelized using this strategy. Such par-
allel rendering architectures, where renderers operate inde-
pendently until the visibility stage, are calledsort-last(SL)
architectures80. A fundamental advantage of SL architec-
ture is the overall simplicity, since it is possible to paral-
lelize a large class of existing rendering algorithms without
major modifications. Also, such architectures are less prone
to load imbalance, and can be made linearly scalable by us-
ing more renderers78; 79. One shortcoming of SL architec-
tures is that very high bandwidth might be necessary, since
a large number of pixels have to be communicated between
the rendering and compositing processors. Despite the po-
tential high bandwidth requirements, sort-last has been one
of the most used, and successful parallelization strategies for
both volume rendering and polygon rendering, as shown by
the several works published in the area22; 126; 60; 68.

Here we present a general purpose, optimal compositing
machinery that can be used as a black box for efficiently par-
allelizing a large class of sort-last rendering algorithms. We
consider sort-last rendering pipelines that are based on sepa-
rating the rendering processors from the compositing proces-
sors, similar to what was proposed previously by Molnar78.
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The techniques described in this paper optimize overall per-
formance ans scalability without sacrificing generality or the
ease of adaptability to different renderers. Following Molnar,
we propose to use a scan-line approach to image composi-
tion, and to execute the operations in a pipeline as to achieve
the highest possible frame rate. In fact, our framework in-
herits most of the salient advantages of Molnar’s technique.
The two fundamental differences between our pipeline and
Molnar’s are:

(1)instead a fixed network of Z-buffer compositors, our ap-
proach uses a user-programmable BSP-tree based compo-
sition tree;

(2)we use general purpose processors and networks, instead
of Molnar’s special purpose Z-comparators arranged in a
tree.

In our approach, hidden-surface elimination is not per-
formed by Z-buffer alone, but instead by executing a BSP-
tree model. This way, we are able to offer extra flexibil-
ity, and instead of only providing parallelization of simple
depth-buffer scan-line algorithms, we are able to provide a
general framework that adds support for true transparency,
and general depth-sort scan-line algorithms. In trying to ex-
tend the results of Molnar to general purposes parallel ma-
chines, we must deal with a processor allocation problem.
The basic problem is how to minimize the amount of pro-
cessing power devoted to the compositing back-end and still
provide performance guarantees (i.e., frame rate guarantees)
for the user. We propose a solution to this problem in the
paper.

In our framework the user defines a BSP-tree, in which
the leaves correspond to renderers (the renderers perform
user-defined rendering functions). Also, the user defines a
data structure for each pixel, and a compositing function,
that will be applied to each pixel by the internal nodes of the
BSP-tree previously defined. Given a pool of processors to
be used for the execution of the compositing tree, and a mini-
mum required frame rate, our processor allocation algorithm
partitions the compositing operations among processors. The
partition is chosen so as to minimize the number of proces-
sors without violating the frame-rate needs. During render-
ing, the user just needs to provide a viewpoint (actually, for
optimum performance, a sequence of viewpoints, since our
algorithm exploits pipelining). Uponexecutionof the com-
positing tree, messages are sent to the renderers specifying
where to send their images, so no prior knowledge of the ac-
tual compositing order is necessary on the (user) rendering
nodes side. For each viewpoint provided, acompleteimage
will be generated, and stored at the processor that was allo-
cated the root of the compositing tree. The system is fully
pipelined, and if no stalls are generated by the renderers, our
system guarantees a frame rate at which the user can collect
the full images from the root processor.

Algorithm partition(u)
/* The algorithm marks the beginning of partitions in

the subtree ofG rooted atu. If more vertices,
can be added to the root partition, the algorithm
returns the size of the root partition.
Otherwise, the algorithm returns0. */

1. if (arity(u) = 2) then /* u is a binary vertex */
2. w1 := partition(left_child(u));
3. w2 := partition(right_child(u));
4. w := w1+w2+1;
5. if (w> K) then
6. if (w1 �w2) then
7. Mark right_child(u) as start of new partition
8. w := w1 + 1;
9. else
10. Markleft_child(u) as start of new partition
11. w := w2 + 1;
12. else if (arity(u) = 1) then /* u is a unary vertex */
13. w := partition(child(u)) + 1;
14. else /* u is a leaf */
15. w := 1;
16. if (w= K) then
17. Marku as a start of new partition
18. return(0);
19. else
20. return(w);

Figure 23: Algorithm partition

6.5.1. Optimal Partitioning of the Compositing Tree

We can view the BSP tree as an expression tree, with com-
positing being the only operation. In our model of com-
positing clusters, evaluation of the compositing expression
is mapped on to atree of compositing processessuch that
each process evaluates exactly one sub-expression. See Fig-
ure 22 for an illustration of such a mapping. The actual or-
dering of compositing under a BSP-tree depends not only
on the position of the nodes, but also on the viewing direc-
tion. So, during the execution phase, a specific ordering has
to be obeyed. Fortunately, given any partition of the tree,
each subtree can still be executed independently. Intuitively,
correctness is achieved by having the nodes “fire up” in a
on-demand fashion.

Such a decompositing is based on a model of the cost
of the subtrees. For details on this, and the partitioning al-
gorithm, shown in Figure 23, please see Ramakrishnan and
Silva 97.

Practical Considerations

Algorithm partition provides a simple way of given a BSP-
tree, and a performance requirement, given in terms of the
frame rate, how to divide up the tree in such a way as to op-
timize the use of processors. Several issues, including ma-
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Figure 22: (a) A BSP tree, showing a grouping of compositing operations and (b) the corresponding tree of compositing
processes. Each compositing process can be mapped to a different physical node in the parallel machine.

chine architecture bottlenecks, such as synchronization, in-
terconnection bandwidth, mapping the actual execution to
a specific architecture (e.g., a mesh-connected MIMD ma-
chine) were left out of the previous discussion. We now de-
scribe how Algorithmpartition can be readily adapted to ac-
count for some of the above issues in practice.

Compositing Granularity: Note that there is nothing in the
model that requires that full images be composited and trans-
fered one at a time. Actually, one should take into consid-
eration when determining the unit size of work, and com-
munication, hardware constraints such as memory limita-
tions, and bandwidth requirements. So, for instance, instead
of messages being a full image, it might be better to send
a pre-defined number of scan-lines. Notice that in order for
images of arbitrary large size to be able to be computed, the
rendering algorithm must also be able to generate the images
in scan-line order.

Communication Bandwidth: Of course, in order to achieve
the desired frame rate, enough bandwidth for distributing the
images during composition is stritly necessary. Givenp pro-
cessors, each performingk compositing operations, the over-
all aggregate bandwidth required is proportional top(k+2).
It should be clear that askmax increases, the actual band-
width requirement actually decreases (both for the case of
a SL-full, as well as a SL-sparse architecture) since askmax
increases the number of processors required decreases. This
decrease in bandwidth is due to the fact that compositing
computation are performed locally, inside each composite
processor, instead of being sent over the network. If one
processor performs exactlykmax compositing operations, it
needskmax+2 units of bandwidth, as opposed to 3kmax when
using one processor per compositing operation— a band-
width savings of almost a factor of three!

Another interesting consideration related to bandwidth is
the fact that our messages tend to be large, implying that

our method operates on the best range of the message size
versus communication bandwidth curve. For instance, for
messages smaller than 100 bytes the Intel Paragon running
SUNMOS achieve less than 1 MB/sec bandwidth, while for
large messages (i.e., 1MB or larger), it is able to achieve
over 160MB/sec. (This is very close to 175MB/sec, which
is the peak hardware network performance of the machine.)
As will be seen in Section 6.5.2, our tree execution method
is able to completely hide the communication latency, while
still using large messages for its communication.

Latency and Subtree Topology: As will be seen in Sec-
tion 6.5.2, the whole process is pipelined, with a request-
based paradigm. This greatly reduces the overhead of any
possible synchronization. Actually, given enough composit-
ing processors, the overall time is only dependant on the per-
formance of the rendering processors. Also, note that the ac-
tualshapeof the subtree that a given processor gets is irrele-
vant, since the execution of the tree is completely pipelined.

Architectural Topology Mapping: We do not provide any
mechanism for optimizing the mapping from our tree topol-
ogy to the actual processors in a given architecture. With
recent advancements in network technology, it is much less
likely that the use of particular communication patterns im-
prove the performance of parallel algorithms substantially.
In new architectures, the point-to-point bandwidth in access
of 100–400 MB/sec are not uncommon, while in the old days
of the Intel Delta, it was merely on the order of 20 MB/sec.
Also, network switches, with complex routing schemes, are
less likely to make neighbor communication necessary. (Ac-
tually, the current trend is not to try to exploit such patterns
since new fault-handling and adaptive routers usually make
such tricks useless.)

Limitations of Analytical Cost Model: Even though we
can support both SL-full and SL-sparse architecture, our
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model does not make any distinction of the work that a given
compositing processor is performing based on the depth of
its compositing nodes. This is one of the limitations of our
analytical formulation. However, the experimental results in-
dicate that this limitation does not seem have any impact on
the use of our partitioning technique in practice. Actually,
frame-to-frame differences might diminish the concrete ad-
vantage of techniques that try to optimize for this fact.

6.5.2. Optimal Evaluation

In the previous section, we described techniques to partition
the set of compositing operations and allocate one processor
to each partition, such that the various costs of the composit-
ing pipeline can be minimized. We now describe efficient
techniques for performing the compositing operations within
each processor.

Space-Optimal Sequential Evaluation of Compositing
Trees

Storage is the most critical resource for evaluating a com-
positing tree. We need 4MB of memory to store an image of
size 512�512, assuming 4-bytes each for RGB andα val-
ues per pixel. Naive evaluation of a compositing tree withN
nodes may require intermediate storage for up toN images.

We now describe techniques, adapted from register al-
location techniques used in programming language compi-
lation, to minimize the total intermediate storage required.
Figure 24a shows a compositing tree for compositing im-
agesI1 throughI6. We can consider the tree as representing
the expression

(I1�(I2�(I3�I4)))�(I5�I6) (11)

where � is the compositing operator. Since imagesI1
through I6 are obtained from remote processors, we need
to copy these images locally into intermediate buffers be-
fore applying the compositing operator. The problem now is
to sequence these operations and reuse intermediate buffers
such that the total number of buffers needed for evaluating
the tree is minimized.

We encounter a very similar problem in a compiler, while
generating code for expressions. Consider a machine in-
struction (such as integer addition) that operates only on
pairs of registers. Before this operation can be performed
on operands stored in the main memory, the operands must
be loaded into registers. We now describe how techniques to
generate optimal code for expressions can be adapted to min-
imize intermediate storage requirements of a compositing
process. The number of registers needed to evaluate an ex-
pression tree can be minimized, using a simple tree traversal
algorithm 5pages 561–562. Using this algorithm, the com-
positing tree in Figure 24a can be evaluated using 3 buffers.
In general,O(logN) buffers are needed to evaluate a com-
positing tree of sizeN. However, by exploiting the algebraic

properties of the operations, we can further reduce the num-
ber of buffers needed— toO(1). Since� is associative, eval-
uating expression (11) is equivalent to evaluating the expres-
sion:

((((I1�I2)�I3)�I4)�I5)�I6 (12)

The above expression is represented by the compositing tree
in Figure 24b, called anassociative tree108. The associative
tree can be evaluated using only 2 buffers.

Again, for full details, we refer the reader to the full pa-
per97.

6.5.3. Implementation

In this section, we sketch the implementation of our com-
positing pipeline. We implemented our compositing back-
end in the PVR system112. PVR is a high-performance vol-
ume rendering system, and it is freely available for research
purposes. Our main reason for choosing PVR was that it al-
ready supported the notion of separate rendering and com-
positing clusters, as explained in110Chapter 3. The basic op-
eration is very simple. Initially, before image computation
begins, all compositing nodes receive a BSP-tree defining
the compositing operations based on the object space parti-
tioning chosen by the user. Each compositing node, in par-
allel, computes its portion of the compositing tree, and gen-
erates a view-independent data structure for its part. Image
calculation starts when all nodes receive a sequence of view-
points.

The rendering nodes, simply run the following simple
loop:

For each (viewpoint v)
ComputeImage(v);
p = WaitForToken();
SendImage(p);

Notice that the rendering nodes do not need any explicit
knowledge of parallelism; in fact, each node does not even
need to know,a priori, where its computed image is to be
sent. Basically, the object space partitioning and the BST-
tree takes care of all the details of parallelization.

The operation of the compositing nodes is a bit more
complicated. First, (for each view) each compositing pro-
cessor computes (in parallel, using its portion of the com-
positing tree) an array with indices of the compositing op-
erations assigned to it as a sequence of processor numbers
from which it needs to fetch and compose images. The actual
exectution is basically an implementation of the prefecthing
scheme proposed here, with eachread_request being
turned into aPVR_MSG_TOKENmessage, where the value
of the token carries its processor id. So, the basic operation
of the compositing node is:

For each (viewpoint v)
CompositeImages(v);
p = WaitForToken();
SendImage(p);
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Figure 24: (a) A compositing tree and (b) its corresponding associative tree.

Notice that there is no explicit synchronization point in
the algorithm. All the communication happens bottom-up,
with requests being sent as early as possible (in PVR, tokens
are sent asynchronously, and in most cases, the rendering
nodes do not wait for the tokens), and speed is determined
by the slowest processor in the overall execution, effectively
pipelining the computation. Also, one can use as many (or as
few) nodes one wants for the compositing tree. That is, the
user can determine the rendering performance for a given
configuration, and based on the time to composite two im-
ages it is straightforward simple to scale our compositing
back-end for his particular application.
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PART THREE

Case Studies

7. The PVR System

This manuscript�� is a pre-publication version of “PVR:
High Performance Volume Rendering”, C. Silva,

A. Kaufman, and C. Pavlakos.

Cláudio T. Silva* Arie E. Kaufman* Constantine
Pavlakos‡

*State University of New York at Stony Brook ‡Sandia
National Laboratories

7.1. Introduction

Volume rendering56 is a powerful computer graphics tech-
nique for the visualization of large quantities of 3D data.
It is specially well suited for the visualization of three di-
mentional scalar and vector fields. Fundamentally, it works
by modelling the volume as cloudy-like cells composed of
semi-transparent material which emits their own light, par-
tially transmits light from other cells and absorbs some in-
coming light. (See sidebarVolume Renderingfor details).

In order to allow researchers and engineers make effec-
tive use of volume rendering to study complex physical and
abstract structures, a coherent, powerful, easy to use visual-
ization tool is needed. Furthermore, such a tool should allow
for interactivelyvisualization, ideally with support for user-
defined “computational steering”.

There are several issues and challenges in developing such
visualization tools. (1) So much as the latest volume render-
ing acceleration techniques running on top-of-the-line work-
stations, it still takes a few seconds to a few minutes to vol-
ume render images. This is clearly far from interactive. With
the advent of larger parallel machines, better scanners and
instrumentation, larger and larger datasets (typically from
32MB to 512MB, but with sizes as high as 16GB) are be-
ing generated, some of which would not even fit in memory
of a workstation class machine. (2) Even if rendering time is
not a major concern, big datasets may be expensive to hold
in storage, and extremely slow to transfer to typical worksta-
tions over network links.

These issues lead to the question of whether the visu-
alization should be performed directly on the parallel ma-
chines which is used to generate the simulation data or sent
over to a high performance graphics workstation for post-
processing. First, if the visualization software was integrated
in the simulation software, there would be no need for ex-
tra storage and visualization could be an active part of the

�� Copyright IEEE 1996. Reprinted, with permission, from IEEE
Computational Science and Engineering, pp. 18–28, Winter 1996.
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Figure 25: The relationship of Distributed Visualization En-
vironment (DVE) systems and PVR.

simulation. Second, large parallel machines can render these
datasets faster than workstations can, possibly in real-time
or at least achieving interactive frame-rates. Finally, the in-
tegration of simulation and visualization in one tool (when
possible) is highly desirable, because it allows users to in-
teractively “steer” the simulation, and possibly terminate (or
modify parameters in the) simulations instead of perform-
ing painfully long simulations on extremely expensive ma-
chines, with high cost of storage and transmission, only to
find out at post-processing that the simulations are wrong or
uninteresting.

In this paper we introduce the PVR system, currently be-
ing developed under a collaboration between Sandia Na-
tional Laboratories and the State University of New York
at Stony Brook. PVR is a component approach to build-
ing a distributed volume visualization system. On its top-
most level it provides a flexible and high performance
client/server volume rendering architecture to the user with a
unique load balancing scheme which provides a continuum
of cost/performance parameters that can be used to optimize
rendering speed. The original goals of PVR were to achieve
a level of portability and performance for rendering beyond
that of other available systems and to provide a platform that
can be used for further development.

But PVR is more than a rendering system, its components
were specially designed to be user-extensible, in order to al-
low for user defined computational steering (that is, the user
can easily add his own computational code to PVR and just
link in our rendering library). Using PVR, it is much simpler
to build portable, high performance, complex distributed vi-
sualization systems (Figure 25).

The rest of the paper introduces the PVR client/server ar-
chitecture and its components, with emphasis on its applica-
tion to volume rendering. Details on how to achieve compu-
tational steering with PVR are scattered across this paper.
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7.2. The PVR System

It is well known that system complexity always limits the
reliability of large software projects. Distributed systems ex-
acerbate this problem with the introduction of asynchronous
and non-local communication. With all of this in mind, we
use a component approach to developing PVR. PVR at-
tempts to provide just enough functionality in the basic sys-
tem to allow for the development of large and complex com-
putational steering and visualization applications. It is based
on a client/server architecture, where there are coupled ren-
dering/computing servers on one side, and on the other the
user acts as a client (from his workstation).

The PVR client/server architecture is implemented in two
main components: thepvrsh, which runs in the user work-
station, and thePVR renderer, running in parallel machines.
The renderer is implemented as a library and it allows for
easy integration of user defined code that can share the same
processors as the rendering. Communication across aplica-
tions writen with PVR, are performed using the PVR pro-
tocol, and in our implementation communication is handled
by separate UNIX processes (see Figure 26).

7.2.1. Thepvrsh

The pvrsh is an augmented Tcl/Tk shell. It provides a sin-
gle new object to the user, thePVR session. We chose to use
Tcl/Tk 92 as the system glue. Tcl (Tool command language)
is a script language designed to be used as a generic language
in application programs. It is easily extendable with new user
commands (in C or Tcl) and coupled with the graphical envi-
ronment Tk, it is a powerful graphical user interface system.
The use of the Tcl/Tk, which are well-designed, debugged
application language and graphical environment contribute
to reducing the overall system complexity.

The PVR sessionis an object (such as the Tk objets).
It contains attributes and corresponding methods (used to
change those attributes). One of the most important at-
tributes is the one thatbinds a session to a particular par-
allel machine. Figure 26 contains three sessions, two on
acoma.cs.sandia.gov (a large Intel Paragon XP/S with over
1840 nodes running SUNMOS71 installed at Sandia) and
one on parxp2.ams.sunysb.edu (a small Intel Paragon with
110 nodes running Intel’s version of OSF/1 installed at Stony
Brook). The system is designed to handle multiple sessions
using the same protocol with machines running different op-
erating systems.

As part of its attributes a session specifies the number of
nodes it needs, and the parameters that are passed to those
nodes. Several pieces of informations areinteractivelyex-
changed between thepvrshand thePVR renderer, such as
rendering configuration information, rendering commands,
sequences of images, performance and debuging informa-
tion.

There is a high amount of flexibility in the specification of

the rendering. Not only simple rendering elements, such as
changing transformation matrices, transfer functions, image
sizes, datasets can be specified, but there are commands to
specify (in a high level format) the complete parallel render-
ing pipeline (see sidebarParallel Volume Renderingfor de-
tails). With these parameters in hand, thepvrshcan be used
to specify almost arbitrary scalable rendering configurations
(see Section 7.2.4).

The pvrsh is implemented as a single process (used to
make ports easier) in about 5,000 lines of C code. We
have augmented the Tcl/Tk interpreter with TCP/IP con-
nection capabilities (some versions of Tcl/Tk have this
build in). Due to the need of several concurrent sessions,
all the communication is performed asynchronous. We
useTk_CreateFileHandler() routine to arbitrate be-
tween input from the different sessions (a UNIXselect
call and polling could be used instead, but would make the
code harder to understand and overall more complex). Ses-
sions work as interrupt driven commands, responding to re-
quests one at a time (every session can receive events from
two sources at the same time, the user keyboard and the re-
mote machine). Locking and disabling interrupt are needed
to ensure consistency inside critical sessions.

The overall structure of the code allows for user augmen-
tation of a session’s functionality either by external or inter-
nal means.Externalaugmentation is the one that can be per-
formed without re-compilation (such as the one used by the
user interface to show the images as they are received asyn-
chronously from the remote parallel server).Internal aug-
mentation requires changes to the source code. The source
code is structured to allow for simple addition of new func-
tionality. Only a single file needs to be changed to add a new
session method (if it changes theResource Database110, two
files need to be changed). New commands are added using
Tcl conventions (see Part 3 of Ousterhout’s Tcl/Tk book92).

Every PVR message is sent either as a single fixed length
message, or as two messages (the first is used to specify the
size of the second). This is used to make redirection easier
and to achieve optimal performance under different configu-
rations. Look up tables are set up with actions to be taken on
the arrival of each message type. This setup makes additions
to the PVR protocol very simple.

7.2.2. ThePVR renderer

ThePVR rendereris the piece of PVR that runs remotely on
the parallel machine (see Figure 26). It is composed of sev-
eral components, the most complex being the renderer itself.
In order to start up multiple the parallel processes at the re-
mote machine, we usepvrd, the PVR daemon. This daemon
runs in the parallel machine. It waits on a well-known port
for connection requests. Once a request for opening a new
session is made itforks a handling process that will be re-
sponsible for allocating processors and communicating with
the session on the client. In the remote machine, the handling
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Figure 26: PVR Architecture. The overall structure of the system is shown with emphasis on thepvrsh. The Tcl/Tk core acts as
glue for all the client components. Everything with the exception of therenderersrun on the user’s workstation. Therenderers
run remotely on the parallel machines.

process allocates the computing nodes, and runs the renderer
code on them. The connection process is illustrated in Fig-
ure 27. Onepvrd can allocate several processes, once it is
killed, it kills all its children before exiting.

The renderer is the code that actually runs on the parallel
nodes. The overall structure of the code resembles an SIMD
machine50, where there are high-level commands and low-
level commands. There is onemasternode (similar to the
microcontroller on the CM-2 machines), and severalslave
nodes. The functions of the slaves are completely depen-
dent on the master. The master receives commands from the
pvrsh, translates them, and takes the necessary actions, in-
cluding changing the state of the slaves and sending them a
detailed set of instructions.

For flexibility and performance, the method of sending in-
structions to the nodes are throughaction tables(like SIMD
microcode). In order to ask the node to perform some ac-
tion, the master broadcast the address of the function to be
executed. Upon receiving that instruction, the slaves execute
that particular function. With this method, it is very simple to
add new functionality, because any new added functionality
can be performed locally, without the need to change global
files. Also, every function can be optimized independently,
with its own communication protocol. One shortcoming of
this communication method (as in SIMD machines) is that
one has to be careful with non-uniform execution, specially
because the Intel NX communication library (both OSF and
SUNMOS have support for NX) has limited functionality for
handling nodes as groups (e.g., in setting up barriers with
NX it is impossible to select a group from the totality of the
allocated nodes).

The master intrinsically divides the nodes intoclusters.
Each cluster has specialized computational task, and multi-
ple clusters can cooperate in groups to achieve a large task.

Handling
Process

Connection
Request

Fork

Processor
Allocation

Renderer

TCP/IP
Connection

:session

pvrd

Figure 27: In order to allocate nodes, thepvrsh sends a
command to thepvrd, which in turns creates a special com-
munication handling process and allocates a partition on the
parallel machine.

All that is necessary for cluster configuration is that the ba-
sic functions be specified in user-defined libraries that are
linked in a single binary. During runtime, the user can use
the master to reconfigure his clusters accordingly to his im-
mediate goal. Thepvrsh can be used tointeractivelysend
such commands. As an example of the use of such scheme,
see Figure 28, where the rendering configuration for PVR’s
high performance volume renderer is specified.

In order to achieve user-defined computational steering,
one can use this clustering paradigm. It will usually be nec-
essary to add one’s functionality to the action tables (e.g.,
linking the computational code with PVR dispatching code),
and also add extra options to thepvrsh(usually through the
set command) for modifying the relevant parameters inter-
actively.
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PVR’s volume rendering code was the inspiration for this
overall code organization and is a very good application to
demonstrates its features. Because in this paper our focus is
on describing PVR, and not on the actual volume rendering
code, we only sketch the implementation to give insight on
how to add your own code (for possible computational steer-
ing) to PVR and to give you enough information for effective
use of PVR’s rendering facilities.

7.2.3. Volume Rendering Pipeline

The PVR rendering pipeline is composed of three types of
nodes (besides the master, of course). There are therender-
ing nodes, compositing nodes, andcollector nodes(usually
just one), (see Figure 28). This specialization is necessary for
optimal rendering performance and flexibility. All the clus-
ters work in a simple dataflow mode, where data moves from
top to bottom in pipeline fashion. Every cluster has its own
fan-in and fan-out number and type of messages. The mas-
ter configures (and re-configures) the overall dataflow using
a set of user-defined and automatic load balancing parame-
ters.

At the top level are the rendering clusters. The nodes in
a rendering clusters are responsible for the resampling and
shading a given volume dataset. In general the input is a view
matrix, and the output is a set of sub-images, each of which
is a related to a node in the compositing binary tree. The
master can use multiple rendering clusters working on the
same image, but disjoint scanlines in order to speed up ren-
dering. Once the subimages are computed, they are passed
down in the pipeline to the compositing clusters.

The compositing clusters are organized in a binary tree
structure, matching that of the corresponding compositing
tree. The number of compositing nodes can actually be dif-
ferent, as we can usevirtualization to fake more processors
than allocated. Images are pipelined down the tree, with ev-
ery iteration combining the results of compositing until fi-
nally all the pixels are a complete depth-ordered sequence.
Those pixels are converted to RGB format and sent to the
collector node(s) (at this time, we just use a single collector
node).

The collector node receives RGB images from the com-
positing nodes, compresses them using a simple run-length
encoding scheme (very fast compression is necessary). Fi-
nally the images are either sent over to thepvrsh for user
viewing (or saving), or locally cached on the disk (it can also
be specified that images are trashed for performance analysis
purposes).

The previous discussion is over simplistic. There are sev-
eral performance issues, related to CPU speed, synchroniza-
tion and memory usage that have not been discussed. For
more complete details, we refer the interest reader to Cláu-
dio Silva’s Ph.D. dissertation110.

7.2.4. Rendering with PVR

Figure 29 shows a simple PVR program. Several important
features of PVR are demonstrated. In particular, the seam-
sless integration with Tcl/Tk, the flexible load balancing
scheme, and the interactive specification of parameters. The
set command can have several options (in the Figure 29
they are usually specified in multiple lines, but all can be
specified in a single line). For instance,-imagesz speci-
fies the size of the images that are outputed by the system.

The-cluster and-group options are unique to PVR
and its flexible load balacing scheme. With both of these
options, the relative sizes of the rendering and compositing
clusters can be specified together with the image calculation
allocation. Several scalability strategies can be used, for in-
stance, a rendering cluster needs to be large enough to hold
the entire dataset and at least a copy of the image to be cal-
culated. By increasing the size of the cluster, the amount
of memory per node decreases. Bygrouping clusters (us-
ing -group ), the number of scanlines a given cluster is re-
sponsible for decreases, lowering both the memory and the
computational cost, thus speeding up image calculation. The
same commands can be used to configure compositing clus-
ters. The scalability parameters for compositing clusters is
very different than for rendering clusters, because of the dif-
ferent nature of the task. Compositing nodes need memory
to hold two copies of the images, what can be quite large
(our current parallel machines only have between 16MB to
32MB RAM, this might not be a problem in the near future),
and also compositing has very high synchronization cost that
grows as the number of nodes grow. Currently, the only need
for multiple compositing clusters is due to the need of more
memory for large images (such as 1024-by-1024).

7.2.5. DVEs

DVEs can be easily developed by making use of the
client/server metaphor. DVE developed using Tcl/Tk are
very portable, as Tcl/Tk has ports for almost all the operat-
ing systems available, and TCP/IP (our communication pro-
tocol) is virtually universal.

Figure 30 shows a simple prototype GUI developed at
Sandia. The complete interface is written in Tcl/Tk. The user
is able to specify all the necessary rendering parameters in
the right window (including image size, transfer function,
etc.) and the load balancing parameters in the left window.
This simple interface only uses a single session at this time,
but more funcionality is being added to the system.

Using the prototype GUI, users are able to add their own
funcionality to the system as needed. This flexibility not only
makes the system more usable, because redundantbells and
whistlescan be discarted, but also new functionality can be
easily added. The use of a portable and well-documented
windows interface (e.g., Tk) is imperative. Not only users
avoid having to learn yet another programming language
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Figure 28: The host receives high level commands that are translated into virtualmicrocodeby the action tables. For rendering,
the high level commands are for the generation of animations by rotations and translations, that are translated into simple
transformation matrices commands. The rendering clusters perform rendering in parallel. The collector receives and groups
images back together and sends an ordered image sequence to the client application.

and graphical toolkit, but the use of Tk saved us a lot of
implementation and documentation cost (Tcl/Tk is widely
used and highly documented). Another important feature of
Tcl/Tk for the development of prototypes is that it is freely
available, enabling us to do the same for PVR.

7.3. Discussion

7.3.1. Related Work

The Shastra project at Purdue has developed tools for dis-
tributed and collaborative visualization8. Their system im-
plements parallel volume visualization with a mix of image
space and object space load balancing, but few details of the
scheme are given. They report using up to 4 processors for
computation, what makes it hard to evaluate the systems us-
ability in a massively parallel environment. Rowlan et al.
99 describes a distributed volume rendering system imple-
mented on the IBM SP-1. Their system has several of the
same characteristics as ours. They also separate rendering
and compositing nodes to increase performance and provide
a Front-End GUI. Another cousin of our system is DIS-
COVER 65, developed at National Cheng-Kung University
(Taiwan). Their system was customly developed for medical
imaging applications and provides mecanisms for the use of
remote processor pools.

7.3.2. Visualization Servers

One use of our parallel renderer is as a visualization server
for parallel processes93. The basic idea is to pre-allocate a
set of nodes that can be time-shared by multiple users for

visualizing their data. Because of our novel use of pipelin-
ing, this can be achieved fairly efficient and with minimal
overheard.

Actually, our system architecture is also suitable for time-
varying data. When rendering time-varying data, we add a
permanentcaching clustersto the pipeline in Figure 28, that
is responsible for distributing the volume data to the render-
ing nodes efficiently. The caching cluster is used to hide I/O
latency from disk (or other sources). This way the user can
visualize his data for as long as a new version comes along.
Handling data that changes too rapidly (e.g., faster than we
can move it and render) is not possible as it would require
large amounts of buffering.

7.3.3. Performance and Results

The current version of PVR is about 25,000 lines of C and
Tcl/Tk code. It has been used at Brookhaven National Labs,
Sandia National Labs and Stony Brook for the visualization
of large datasets. We have demonstrated the capability of
rendering a 500,000,000 bytes dataset (the CT visible human
data from the National Institute of Health) in approximately
5 seconds/frame. Actually, PVR was demoed in the Sandia
booth during Supercomputing ’95. Our plans are to use ren-
der the full RGB visible human (14,000,000,000 bytes) by
the end of the year. (Parallel I/O will be a must, currently the
500MB visible human takes 15 minutes of disk I/O).

7.3.4. Further Development

The idea of developing PVR started out of frustration trying
to use network of workstations and the Paragon as render-
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toplevel .rgb ; Tcl/Tk stuff – creates necessary windows
photo .rgb.p
pack .rgb.p
toplevel .c
canvas .c.c
pack .c.c
source stat.tcl ; External command specified in stat.tcl

; it will place images that get to the session handler in the
; specified window, and draw a small performance graph

pvr_session :brain ; creates a session called “brain”
:brain image window .rgb.p ; specifies the window that receives

; the images
:brain image callback imgCallback ; specifies the external command
:brain image dir ./ ; where to place images
:brain open acoma.cs.sandia.gov ; opens a connection with acoma

; using the default number of nodes (100)
; the defaults are in .pvrsh
; if this command succeeds, we are connected

:brain set -dataset brain.slc ; specifies the dataset
:brain set -cluster r,16 -group 0,0,1,1 ; 4 rendering clusters of 16 nodes

; divided into 2 groups, nodes in a group
; share the same image calculation

:brain set -cluster c -group 0,0 ; 2 compositing clusters of 15 nodes
; each, this allows for the calculation of very
; large images, as each cluster will handle half
; of pixels coming from the rendering nodes

:brain set -imagesz 512,512 ; specifies the image size
:brain render rotation 0,1,0 15,59:60 ; specifies the rendering of

; 45 images, starting from one quarter rotation
; along the y axis

:brain set -imagesz 256,256 ; specifies the image size
; for this image size, one compositing cluster is enough

:brain set -cluster c -group 0
; re-use the nodes for rendering

:brain set cluster r,16 -group 0,1,2,3,4 ; 5 rendering clusters of 16 nodes
:brain render rotation 1,1,1 0,359:360

Figure 29: A set of PVR rendering commands. The commands can be put in a file and executed in batch, or can be typed
interactively on the keyboard (or mixed). Tcl/Tk code (such as “stat.tcl”) can be written to take care of portions of the actions.

ing engines for VolVis. It was always clear that a pure dis-
tributed approach to building rendering environments would
be much more powerful than special rendering tools with
parallel capabilities. Even though we have completed aus-
able and efficient system, there is still a long wish list, in
both the research and development front.

We are currently working on making the system stable
enough for large scale availability. With that in mind we are
currently working on creating a complete DVE (using VolVis
as a starting point) on top of PVR. One of the challenges is
how to integrateresource allocationandadmission control
in our DVE.

Some functionality is missing from PVR and needs to

be incorporated. The most important is probably the sup-
port for multiple data sets in a session. This would make the
load balancing scheme much more complicated, and sim-
ple heuristics might not generate well balanced decomposi-
tion schemes. If the volumes are allowed to overlap (as in
VolVis), the problem is even harder, and the solution seem
to require having specialcompositenodes that perform the
sorting at the end of the pipeline. It might be necessary to
have a reconfiguration phase each time a new volume is in-
troduced in the picture. It is not clear yet how this can be
done efficiently.

A simpler change is to add support in the PVR renderer
for non-homogeneous processors. One just needs to change
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the load balancing scheme slightly by normalizing the num-
ber of PARC sub-cubes per processor with their relative per-
formance parameters. Finally, we hope to look in the future
for ways to perform real-time manipulation rendering, where
the user can just move a mouse and see the picture changing
in real-time with minimal lag. For this, we suspect the work
done in eliminating virtual reality lag may help.

7.4. Conclusions

In this article we have introduced the PVR system. Here are
some of the key features in our system:

� Transparency- PVR hides most of the hardware depen-
dencies from the DVEs and the user.

� Performance- PVR provides a high speed pipelined ray
caster with a unique load balancing scheme and mech-
anisms to fine tune performance for any given machine
configuration.

� Scalability - All the algorithms used in the system were
carefully choosen to be gracefully scalable. Not only with
respect to the machine size, but special care was taken to
allow for grown in dataset size and image size.

� Extensibility - The PVR architecture can be easily ex-
tended, making it easy for the DVE to add new function-
ality. Also, it is fairly easy for the user to add new fun-
cionality to the PVR shell and its corresponding kernel,
allowing for user defined “computational steering” cou-
pled with visualization.

PVR introduces a new level of interactivity to high per-
formance visualization. Larger DVEs can be built on top of
PVR, and yet be portable across several architectures. These
DVEs that use PVR are given the opportunity to make effec-
tive use of available processing power (upto to a few hundred
processors), giving a range of cost/performance to end users.
This is particularly important in the scientific research com-
munity, since most often the question is nothow fast, but
how much. PVR provides a strong foundation for building
cost effective DVEs.

As far as the user interface is concerned, PVR introduces
a much simpler way to create it. No longer one has to spend
time coding in X/MOTIF (or Windows) to create the de-
sired user interface. The Tcl/Tk combination is much sim-
pler, gives more flexibility, and is closely as powerful as the
other alternatives. Tcl/Tk is becoming as popular as UNIX
shell programming. Different sites should be able to easily
create and modify their own systems.
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Appendix: Parallel Volume Rendering

There are basically three different orthogonal types of par-
allelism that can be exploited with volume rendering. In the
PVR system we exploit all of them:

Image Space Parallelism.

In image space parallelism parts of a single image are di-
vided into multiple processors for concurrent image gener-
ation. For volume rendering (and in general for computer
graphics) this is the simplest form of parallelism, as no sub-
division of the volume itself need to be performed and the
volume never needs to be updated. This is usually the type
of parallelism implemented on shared memory machines114.
The main shortcoming of this method (for distributed mem-
ory machines) is that large datasets can not be rendered using
this type of parallelism alone.

Object Space Parallelism.

In object space parallelism parts of the volume are divided
into multiple processors, each computes a sub-image, that is
later regrouped. The main shortcomings are the higher need
for communication and synchronization among the proces-
sors (parallel machines still have slow communications with
respect to processor speed). Ma et al.69 describes an effi-
cient algorithm for re-grouping the images back together to
form a single correct image. In statically partitioning the vol-
ume dataset, one has to be careful to give every processor the
same amount of work (see111.

Time Space Parallelism.

In time space parallelism, multiple images are computed at
the same time. This exploits the fact that the rendering pro-
cess can be easily divided into multiple disjoint phases.
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Figure 30: A snapshot of Brian Wylie’s user interface developed at Sandia National Labs. There are three windows. On the
right is the main interface window, where the user can specify general rotations. On the left, the cluster configuration window.
And on the bottom an image of a cell calculated with PVR.

8. Building a Linux-based Parallel Machine

See tutorial website.
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Appendix A: Literature and Internet Resources on Par-
allel Programming

Books

� D. Butenhof - Programming with POSIX Threads,
Addison-Wesley, 1997.
This tutorial is based on this book. Besides being a good
introduction into threading, it offers many details and
knowledge of how to use threads.

� S. Kleiman, D. Shah, B. Smaalders - Program-
ming with threads, Prentice Hall, 1995. Covers POSIX
threads.

� B. Lewis, D. Berg - Threads Primer: A guide to multi-
threaded programming, Prentice Hall, 1995. Covers UI,
POSIX, OS/2, and WIN32 threads.

� B. Nichols, D. Buttlar, J. Farrel - Pthread program-
ming, O’Reilly, 1996. Covers POSIX threads.

� S. Norton, M. Depasquale, M. Dipasquale - Thread
Time: The Multithreaded Programming Guide , Pren-
tice Hall, 1997. Covers POSIX threads.

� A. Geist, A. Beguelin, J. Dongarra, W. Jian, R.
Machek, and V. Sunderam - PVM: Parallel Virtual
Machine, MIT Press, 1994. Covers PVM3.

Webpages

� www.lambdacs.com/FAQ.html- thread FAQ list
� www.best.com/ bos/threads-faq/- thread FAQ list
� cseng.awl.com/bookdetail.qry?ISBN=0-201-63392-

2&ptype=1482 - Additional information on Dave
Butenhof book (e.g. source code)

� liinwww.ira.uka.de/bibliography/Os/threads.html -
thread bibliography

� science.nas.nasa.gov/Software/NPB/- results of parallel
benchmarks

� www.sun.com/workshop/threads/- SUN’s thread pages
� www.mit.edu:8001/afs/sipb/user/proven/XMOSAIC/

pthreads_man.html- pthread pages at MIT
� www.netlib.org/{pvm3,mpi} - a source for documents

and packages for MPI and PVM.
� elib.zib.de - also a source for documents, packages, and

more.
� www.erc.msstate.edu/mpi/- MPI home page at Missis-

sippi State.
� www.mcs.anl.gov/mpi/index.html- MPI home page at

Argonne National Lab.
� www.epm.ornl.gov/pvm/pvm_home.html- PVM home

page at Oak Ridge National Lab.

Newsgroups

� comp.parallel - general newsgroup on parallel stuff
� comp.parallel.pvm - newsgroup on PVM
� comp.parallel.mpi - newsgroup on MPI
� comp.programming.threads- newsgroup on threading
� comp.sys.sgi.bugs- newsgroups for threading problems

on SGI workstations

� comp.sys.sgi.{graphics, hardware, misc}- if the previ-
ous newsgroup does not help....

Appendix B: Tiny Thread Glossary

Barrier - All participating execution entities are synchro-
nizing at a particular point within the parallel application.
This point is called a barrier.

Cache-coherent - Modern processors use caches to
speed-up memory access. On multi-processor systems this
can result in different views of memory content for the in-
dividual threads. If a system is cache-coherent, special com-
munication protocols ensure the same memory view. This
system is called cache-coherent.

Concurrency - Parallel execution of programs. This par-
allel execution can be either time-sliced (on single processor
machines), or really parallel on multi-processors.

Condition - A signaling mechanism to indicate the state
of a shared resource.

Kernel thread - A kernel is a exectution entity which is
scheduled by the operating system kernel (one-to-one map-
ping).

Light-weight process - Physical scheduling entity of
an operating system. On some systems, scheduled threads
are mapped on light-weight-processes for execution. On
Sun/Solaris systems, the kernel threads are called light-
weight processes.

Message-Passing- Execution entities communicate by
sending message exchanged via a interconnection network.

Mixed-model scheduling- Scheduling model inbetween
user and kernel threads. Some scheduling tasks are per-
formed by the thread library, some by the operating system
kernel (many-to-few mapping).

Mutex - Synchronization mechanism for mutal exclusion
of critical sections in a parallel program.

NUMA - Non-Uniform Memory Access - Main memory
is distributed to the different hierarchy stages. Therefore, the
memory access times are varying, depending on the proces-
sor and the physical location of the memory address.

Oversubscribing - More threads than processors are
started. This is only efficiently possible with mixed-model
scheduling or with user threads.

Preemption - A process, or a thread is disabled from ex-
ecution (preempted), because the scheduling algorithm de-
cided that another process/thread is more important than the
current.

Process- An execution entity, containing a whole execu-
tion context (private address space, program counter, etc.)

Pthread - Thread standard.

c
 The Eurographics Association and Blackwell Publishers 1998.



Bartz, Silva and Schneider / Affordable Parallel Environments

Recycle thread- After performing its task, a new task is
assigned to the thread; the thread is recycled.

Scheduling - Decicsion which execution entity can use
particular resources (e.g. periphery devices, processors, etc).

Semaphore- Synchronization mechanism similar to mu-
texes. In contrast to binary mutexes, semaphores can have
more than two states (they are “counting”).

Shared-memory Paradigm- Execution entities commu-
nicate via memory which is accessible from all entities.

Synchronization - If a shared resources is needed by dif-
ferent threads, their access must be handled consistantly. The
threads need to agree on an order of access to the resource.

Thread - Control flow entity within a process. Threads of
the same process share parts of the execution context (such
as address space). Therefore, context switching, creation and
destruction of a thread is much faster than for a process.

UMA - Uniform Memory Access - Access times to main
memory are the same for all processors in a system.

User thread - Execution entity of a thread library. The li-
brary itself is scheduling the user thread (many-to-one map-
ping).
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