EUROGRAPHICS 97

Introduction to VRML 97

Lecturer

David R. Nadeau
nadeau@sdsc.edu
http://www.sdsc.edu/~nadeau
San Diego Supercomputer Center

Tutorial notes sections

Abstract

Preface

Lecturer biography

Using the VRML examples
Using the JavaScript examples
Using the Java examples
Tutorial slides

NetscapeWorld article reprints

Introduction to VRML 97

Abstract

VRML (the Virtual Reality Modeling Language) has emerged as the de facto standard for
describing 3-D shapes and scenery on the World Wide Web. VRML'’s technology has very broad
applicability, including web-based entertainment, distributed visualization, 3-D user interfaces to
remote web resources, 3-D collaborative environments, interactive simulations for education,

virtual museums, virtual retail spaces, and more. VRML is a key technology shaping the future of
the web.

Participants in this tutorial will learn how to use VRML 97 (a.k30 VRML. VRML 2.0 and

Moving World$ to author their own 3-D virtual worlds on the World Wide Web. Participants will
learn VRML concepts and terminology, and be introduced to VRML's text format syntax.
Participants also will learn tips and techniques for increasing performance and realism. The tutorial

includes numerous VRML examples and information on where to find out more about VRML
features and use.

Introduction to VRML 97

Preface

Welcome to the EUROGRAPHICS %ftroduction to VRML 97utorial notes! These tutorial
notes have been written to give you a quick, practical, example-driven overWéRMif 97

the Web’s Virtual Reality Modeling Language. To do this, I've included over 500 pages of
tutorial material with nearly 200 images and over 100 VRML examples.

To use these tutorial notes you will need an HTML Web browser with support for viewing
VRML worlds. An up to date list of available VRML browsing and authoring software is
available at:

The VRML Repository
(http://www.sdsc.edu/vrml)

What's included in these notes

These tutorial notes primarily contain three types of information:

1. General information, such as this preface
2. Tutorial slides and examples
3. Article reprints from NetscapeWorld magazine

The tutorial slides are arranged as a sequence of 400+ hyper-linked pages containing VRML
syntax notes, VRML usage comments, or images of sample VRML worlds. Clicking on a
sample world’s image, or the file name underneath it, loads the VRML world into your
browser for you to examine yourself.

You can view the text for any of the VRML worlds using a text editor and see how we created
a particular effect. In most cases, the VRML files contain extensive comments providing
information about the techniques the file illustrates.

The tutorial notes provide a necessarily terse overview of VRML. A more detailed
introduction to the basic features of VRML is provided in four article reprints courtesy
NetscapeWorld magazine. The articles do not cover all of VRML. | recommend that you
invest in one of the VRML books on the market to get thorough coverage of the language. |
am a co-author of one such VRML bodlhe VRML 2.0 SourcebooBeveral other good

VRML books are on the market as well.

A word about VRML versions

VRML has evolved through several versions of the language, starting way back in late 1994.
These tutorial notes cov¥iRML 97 the latest version of the language. To provide context,

the following table provides a quick overview of these VRML versions and the names they
have become known by.

Version

Released

Comments

VRML
1.0

VRML
1.0c

VRML
11

Moving
Worlds

VRML
2.0

May 1995 Begun in late 1994, the first version of VRML was largely based

January
1996

canceled

January
1996

August
1996

upon theOpen Inventofile format developed by Silicon Graphics
Inc. The VRML 1.0 specification was completed in May 1995 and
included support for shape building, lighting, and texturing.

VRML 1.0 browser plug-ins became widely available by late 1995,
though few ever supported the full range of features defined by the
VRML 1.0 specification.

As vendors began producing VRML 1.0 browsers, a number of
ambiguities in the VRML 1.0 specification surfaced. These

problems were corrected in a new VRML 1.0c (clarified)
specification released in January 1996. No new features were added
to the language in VRML 1.0c.

In late 1995, discussion began on extensions to the VRML 1.0
specification. These extensions were intended to address language
features that made browser implementation difficult or inefficient.
The extended language was tentatively dubbed VRML 1.1. These
enhancements were later dropped in favor of forging ahead on
VRML 2.0 instead.

No VRML 1.1 browsers exist.

VRML 1.0 included features for building static, unchanging worlds
suitable for architectural walk-throughs and some scientific
visualization applications. To extend the language to support
animation and interaction, the VRML architecture group made a
call for proposals for a language redesign. Silicon Graphics,
Netscape, and others worked together to creatielttving Worlds
proposal, submitted in January 1996. That proposal was later
accepted and became the starting point for developing VRML 2.0.
The final VRML 2.0 language specification is still sometimes
referred to as the Moving Worlds specification, though it differs
significantly from the original Moving Worlds proposal.

After seven months of intense effort by the VRML community, the
Moving Worlds proposal evolved to become the final VRML 2.0
specification, released in August 1996. The new specification
redesigned the VRML syntax and added an extensive set of new
features for shape building, animation, interaction, sound, fog,
backgrounds, and language extensions.

Beta versions of VRML 2.0 browser plug-ins have been available
since late 1997. However, as of this writing (May 1997) there are
still no fully-compliant, complete VRML 2.0 browsers available on

the market.

VRML September In early 1997, efforts got under way to present the VRML 2.0

97 1997 specification to the International Standards Organization (ISO)
which oversees most of the major language specifications in use in
the computing community. The ISO version of VRML 2.0 was
reviewed and the specification significantly rewritten to clarify
issues. A few minor changes to the language were also made. The
final ISO VRML was dubbe®RML 97 The VRML 97
specification features finalized in March 1997, while the
specification’s text finalized in September 1997.

One beta version of a VRML 97 browser plug-in is available as of
this writing: Silicon Graphics Cosmo Player for SGI platforms.
More VRML 97 compliant browsers are expected within the next
few months.

VRML 1.0 and VRML 2.0 differ radically in syntax and features. A VRML 1.0 browser
cannot display VRML 2.0 worlds. Most VRML 2.0 browsers, however, can display VRML
1.0 worlds.

VRML 97 differs in a few minor ways from VRML 2.0. In most cases, a VRML 2.0 browser
will be able to correctly display VRML 97 files. However, for 100% accuracy, you should
have a VRML 97 compliant browser for viewing the VRML files contained within these
tutorial notes.

How | created these tutorial notes

These tutorial notes were developed primarily on Silicon Graphics High Impact UNIX
workstations. HTML and VRML text was hand-authored using a text editor. A Perl program
script was used to process raw tutorial notes text to produce the 400+ individual HTML files,
one per tutorial slide.

HTML text was displayed using Netscape Navigator 3.01 on Silicon Graphics and PC
systems. Colors were checked for viewability in 24-bit, 16-bit, and 8-bit display modes on a
PC. Text sizes were chosen for viewability at a normal 12 point font on-screen, and at an 18
point font for presentation during the Eurographics 97 tutorial. The large text, white-on-black
colors, and terse language are used to insure that slides are readable when displayed for the
tutorial audience at the Eurographics 97 conference.

VRML worlds were displayed on Silicon Graphics systems using the Silicon Graphics Cosmo
Player 1.02 VRML 97 compliant browser for Netscape Navigator. The same worlds were
displayed on PC systems using three different VRML 2.0 compliant browsers for Netscape
Navigator: Silicon Graphics Cosmo Player 1.0 beta 3a, Intervista WorldView 2.0, and
Newfire Torch alpha 3.

Texture images were created using Adobe PhotoShop 4.0 on a PC with help from KAI's
PowerTools 3.0 from MetaTools. Image processing was also performed using the Image
Tools suite of applications for UNIX workstations from the San Diego Supercomputer Center.

PDF tutorial notes for printing by Eurographics 97 were created by dumping individual
tutorial slides to PostScript on a Silicon Graphics workstation. The PostScript was transferred
to a PC where it was converted to PDF and assembled into a single PDF file using Adobe’s
Distiller and Exchange.

Use of these tutorial notes
| am often asked if there are any restrictions on use of these tutorial notes. The answer is:

These tutorial notes are copyright (c) 1997 by David R. Nadeau. Users and possessors
of these tutorial notes are hereby granted a nonexclusive, royalty-free copyright and
design patent license to use this material in individual applications. License is not
granted for commercial resale, in whole or in part, without prior written permission

from the authors. This material is provided "AS IS" without express or implied warranty
of any kind.

You are free to use these tutorial notes in whole or in part to help you teach your own VRML
tutorial. You may translate these notes into other languages and you may post copies of these
notes on your own Web site, as long as the above copyright notice is included as well. You
may not, however, sell these tutorial notes for profit or include them on a CD-ROM or other
media product without written permission.

If you use these tutorial notes, | ask that you:

1. Give me credit for the original material
2. Tell me since | like hearing about the use of my material!

If you find bugs in the notes, please tell me. | have worked hard to try and make the notes
bug-free, but if something slipped by, I'd like to fix it before others are confused by my
mistake.

Contact

David R. Nadeau
San Diego Supercomputer Center
P.O. Box 85608
San Diego, CA 92186-9784

UPS, Fed Ex: 10100 Hopkins Dr.
La Jolla, CA 92093-0505

(619) 534-5062
FAX: (619) 534-5152

nadeau@sdsc.edu

Introduction to VRML 97

Lecturer biography

® David R. Nadeau
Mr. Nadeau is a principal scientist at the San Diego Supercomputer Center (SDSC),
specializing in scientific visualization and virtual reality. He is an author of technical papers
on graphics and VRML, a co-author of two books on VRNIhg VRML Sourcebopknd
The VRML 2.0 Sourcebaopland authors the bi-monthi¥RML Techniqueolumn for
NetscapeWorld magazine. He has taught VRML courses at conferences including
SIGGRAPH 96, WebNet 96, VRML 97, and SIGGRAPH 97, and is the creaitreo/RML
Repositorya principal Web site for information on VRML software and documentation. Mr.
Nadeau co-chairedRML 95 the first conference on VRML, and ti&ML Behavior
Workshopthe first workshop on behavior support for VRML. He is SDSC'’s representative in
theVRML Consortium

Introduction to VRML 97

Using the VRML examples

These tutorial notes include over a hundred VRML files. AlImost all of the provided worlds
are linked to from the tutorial slides pages.

VRML support

As noted in the preface to these tutorial notes, this tutorial covers VRML 97, the ISO standard
version of VRML 2.0. There are only minor differences between VRML 97 and VRML 2.0,

so any VRML 97 or VRML 2.0 browser should be able to view any of the VRML worlds
contained within these tutorial notes.

The VRML 97 (and VRML 2.0) language specifications are complex and filled with powerful
features for VRML content authors. Unfortunately, the richness of the language makes
development of a robust VRML browser difficult. As of this writing, there are nearly a dozen
VRML browsers on the market, but none support all features in VRML 97 (despite press
releases to the contrary).

| am reasonably confident that all VRML examples in these tutorial notes are correct, though
of course | could have missed something. Chances are that if one of the VRML examples
doesn’t look right, the problem is with your VRML browser and not with the example. It's a
good idea to read carefully the release notes for your browser to see what features it does and
does not support. It's also a good idea to regularly check your VRML browser vendor's Web
site for updates. The industry is moving very fast and often produces new browser releases
every month or so.

As of this writing, | have found that Silicon Graphics (SGI) Cosmo Player for SGI UNIX
workstations is the most complete and robust VRML 97 browser available. It is this browser
that | used for most of my VRML testing. On the PC, | found found that Intervista’s
WorldView was the most complete and robust browser available, though it still had a number
of flaws and unsupported features. On the Macintosh and non-SGI UNIX workstations, | was
unable to find a usable VRML browser with which to test the VRML tutorial examples.

What if my VRML browser doesn’t support a VRML feature?

If your VRML browser doesn’t support a particular VRML 97 feature, then those worlds that
use the feature will not load properly. Some VRML browsers display an error window when
they encounter an unsupported feature. Other browsers silently ignore features they do not
support yet.

When your VRML browser encounters an unsupported feature, it may elect to reject the entire
VRML file, or it may load only those parts of the world that it understands. When only part of
a VRML file is loaded, those portions of the world that depend upon the unsupported features
will display incorrectly. Shapes may be in the wrong position, have the wrong size, be shaded
incorrectly, or have the wrong texture colors. Animations may not run, sounds may not play,
and interactions may not work correctly.

For most worlds | have captured an image of the world and placed it on the tutorial slide page
to give you an idea of what the world should look like. If your VRML browser’s display
doesn’t look like the picture, chances are the browser is missing support for one or more
features used by the world. Alternately, the browser may simply have a bug or two.

In general, VRML worlds later in the tutorial use features that are harder for vendors to
implement than those features used earlier in the tutorial. So, VRML worlds at the end of the
tutorial are more likely to fail to load properly than VRML worlds early in the tutorial.

Introduction to VRML 97

Using the JavaScript examples

These tutorial notes include several VRML worlds that use JavaScript program scripts within
Script nodes. The text for these program scripts is included directly withsctipe node
within the VRML file.

JavaScript support

The VRML 97 specification does not require that a VRML browser support the use of
JavaScript to create program scriptsdatpt nodes. Fortunately, most VRML browsers do
support JavaScript program scripts, though you should check your VRML browser’s release
notes to be sure it is JavaScript-enabled.

Some VRML browsers, particularly those from Silicon Graphics, support a derivative of
JavaScript calleRMLscript The language is essentially identical to JavaScript. Because of
Silicon Graphics’ strength in the VRML market, most VRML browser vendors have modified
their VRML browsers to support VRMLscript as well as JavaScript.

JavaScript and VRMLscript program scripts are included as a text withir tHeeld of a
Script node. To indicate the program script’s language, the field value starts with either
"javascript: " for JavaScript, orvimiscript: " for VRMLscript, like this:

Script {
field SFFloat bounceHeight 1.0
eventln SFFloat set_fraction
eventOut SFVec3f value_changed

url " vrmlscript:
function set_fraction(frac, tm) {
y = 4.0 * bounceHeight * frac * (1.0 - frac);
value_changed[0] = 0.0;
value_changed[1] = y;
value_changed[2] = 0.0;
}II

}
For compatibility with Silicon Graphics VRML browsers, all JavaScript program script
examples in these notes are taggediagstript: ", like the above example. If you have a
VRML browser that does not support VRMLscript, but does support JavaScript, then you can
convert our examples to JavaScript simply by changing thetagcript: " to
"javascript: " like this:

Script {

field SFFloat bounceHeight 1.0
eventln SFFloat set_fraction
eventOut SFVec3f value_changed

url " javascript:
function set_fraction(frac, tm) {
y = 4.0 * bounceHeight * frac * (1.0 - frac);
value_changed[0] = 0.0;
value_changed[1] = y;

value_changed[2] = 0.0;
y
}

What if my VRML browser doesn’t support JavaScript?

If your VRML browser doesn’t support JavaScript or VRMLscript, then those worlds that use
these languages will produce an error when loaded into your VRML browser. This is
unfortunate since JavaScript or VRMLscript is an essential feature that all VRML browsers
should support. | recommend that you consider getting a different VRML browser.

If you can’t get another VRML browser right now, there are only a few VRML worlds in
these tutorial notes that you will not be able to view. Those worlds are contained as examples
in the following tutorial sections:

O Introducing script use
O Writing program scripts with JavaScript
O Creating new node types

So, if you don’t have a VRML browser with JavaScript or VRMLscript support, just skip the
above sections and everything will be fine.

Introduction to VRML 97

Using the Java examples

These tutorial notes include a few VRML worlds that use Java program scripts Seithin

nodes. The text for these program scripts is included in filesjaith file name extensions.
Before use, you will need to compile these Java program scripts to Java byte-code contained
in files with .class file name extensions.

Java support

The VRML 97 specification does not require that a VRML browser support the use of Java to
create program scripts fetript nodes. Fortunately, most VRML browsers do support Java
program scripts, though you should check your VRML browser’s release notes to be sure it is
Java-enabled.

In principle, all Java-enabled VRML browsers identically support the VRML Java API as
documented in the VRML 97 specification. Similarly, in principle, a compiled Java program
script using the VRML Java API can be executed on any type of computer within any brand
of VRML browser

In practice, neither of these ideal cases occurs. The Java language is supported somewhat
differently on different platforms, particularly as the community transitions from Java 1.0 to
Java 1.1 and beyond. Additionally, the VRML Java API is implemented somewhat differently
by different VRML browsers, making it difficult to insure that a compiled Java class file will
work for all VRML browsers available now and in the future.

Because of Java incompatibilities observed with current VRML browsers, | have elected to
not include compiled Java class files in these tutorial notes. Instead, | include the uncompiled
Java program scripts. Before use, you will need to compile the Java program scripts yourself
on your platform with your VRML browser and your version of the Java language and
support tools.

Compiling Java
To compile the Java examples, you will need:

O The VRML Java API class files for your VRML browser
O A Java compiler

All VRML browsers that support Java program scripts supply their own set of VRML Java
API class files. Typically these are automatically installed when you install your VRML
browser.

There are multiple Java compilers available for most platforms. Sun Microsystems provides
the Java Development Kit (JDK) for free from its Web site at http://www.javasoft.com. The
JDK includes thgavac compiler and instructions on how to use it. Multiple commercial Java
development environments are available from Microsoft, Silicon Graphics, Symantec, and
others. An up to date list of available Java products is available at Gamelan’s Web site at

http://www.gamelan.com.

Once you have the VRML Java API class files and a Java compiler, you will need to compile
the supplied Java files. Unfortunately, | can’t give you explicit directions on how to do this.
Each platform and Java compiler is different. You'll have to consult your software’s manuals.

Once compiles, place thetass files in theslides folder along with the other tutorial
slides. Now, when you click on a VRML world using a Java program script, the class files
will be automatically loaded and the example will run.

What if my VRML browser doesn’t support Java ?

If your VRML browser doesn’t support Java, then those worlds that use these languages will
produce an error when loaded into your VRML browser. This is unfortunate since Java is an
essential feature that all VRML browsers should support. | recommend that you consider
getting a different VRML browser.

What if | don’t compile the Java program scripts?

If you have a VRML browser that doesn’t support Java, or if if you don’t compile the Java
program scripts, those worlds that use Java will produce an error when loaded into your
VRML browser. Fortunately, | have kept Java use to a minimum. In fact, Java program scripts
are only used in th®@/riting program scripts with Javeection of the tutorial slides. So, if you
don’t compile the Java program scripts, then just skip the VRML examples in that section and
everything will be fine.

Introduction to VRML 97

Table of contents

Morning

Part 1 - Shapes, geometry, and appearance
Welcome!
Introduction
Building a VRML world
Building primitive shapes
Transforming shapes
Controlling appearance with materials
Grouping nodes
Naming nodes
Summary examples

Part 2 - Animation, sensors, and geometry
Introducing animation
Animating transforms
Sensing viewer actions
Building shapes out of points, lines, and faces
Building elevation grids
Building extruded shapes
Controlling properties of coordinate-based geometry

Summary examples

Afternoon

Part 3 - Textures, lights, and environment
Mapping textures
Controlling how textures are mapped
Lighting your world
Adding backgrounds
Adding fog
Adding sound
Controlling the viewpoint
Controlling navigation
Sensing the viewer
Summary examples

Part 4 - Scripts and prototypes
Controlling detail
Introducing script use
Writing program scripts with JavaScript
Writing program scripts with Java
Creating new node types
Providing information about your world
Summary examples
Miscellaneous extensions

Conclusion

1
Welcome!

Schedule for the day

Tutorial scope

2

Welcomel!

Schedule for the day

Part 1 Shapes, geometry, appearang®0 minutes
Break 15 minutes
Part 2 Animation, sensors, geometry 195
minutes

Lunch 60 minutes
Part 3 Textures, lights, environment |90 minutes
Break 15 minutes
Part 4 Scripts, prototypes 105

minutes

3

Welcome!

Tutorial scope

« This tutorial covers VRML 97
« The ISO standard revision of VRML 2.0

« YOu will learn:
« VRML file structure
« Concepts and terminology
« Most shape building syntax
« Most sensor and animation syntax
« Most program scripting syntax
« Where to find out more

5 6
Intr ion .
troductio Introduction

What is VRML? What is VRML?

What do | need to use VRML?

« VRML is:
« A simple text language for describing
3-D shapes and interactive environments

Example

How can VRML be used on a Web page?
What do | need to develop in VRML?
Should T use a text edior? VRML text files use awrl extension
Should | use a world builder?
Should | use a shape generator?

Should | use a modeler and format converter?

How do | get VRML software?

7

Introduction

What do | need to use VRML?

« YOu can view VRML files using aVRML
browser
« A VRML helper-application
« A VRML plug-in to an HTML browser

« You can view VRML files from your local
hard disk, or from the Internet

8

Introduction

Example

[temple.wrl]

9

Introduction

How can VRML be used on a Web page?

- Load directly into a Web [boxes.wrl]
browser, filling the page

« Embed into a page, filling [boxesl.htm]
a page rectangle

. Load into a page frame, [boxes2.htm]
filling the frame

« Embed into a page
frame, filling a frame
rectangle

[boxes3.htm]

« Embed multiple times
into a page or frame

[boxes4.htm]

10

Introduction

What do | need to develop in VRML?

« YOu can construct VRML files using:
« A text editor
« A world builder application
« A shape generator
« A modeler and format converter

11

Introduction

Should | use a text editor?

« Pros:
« No new software to buy
« Access to all VRML features
« Detailed control of world efficiency

. Cons:
« Hard to author complex 3D shapes
« Requires knowledge of VRML syntax

12

Introduction

Should | use a world builder?

o Pros:
« Easy 3-D drawing user interface
o Little need to learn VRML syntax

. Cons:
« May not support all VRML features
« May not produce most efficient VRML

13

Introduction

Should | use a shape generator?

o Pros:
« Easy way to generate complex shapes
« Fractal mountains, logos, etc.

. Cons:
« Only suitable for narrow set of shapes
« Best used with other software

14

Introduction

Should | use a modeler and format converter?

o Pros:
 Very powerful features available
« Can make photo-realistic images too

. Cons:
« May not support all VRML features
« Not designed for VRML
« One-way path from modeler into VRML
- Easy to make shapes that are too
complex

15

Introduction

How do | get VRML software?

« The VRML Repository maintains links to
available software:

http://www.sdsc.edu/vrml

16

17 18
Building a VRML world Building a VRML world
VRML file structure VRML file structure

A sample VRML file

« VRML files contain:
« The file header
« Comments notes to yourself
« Nodes- nuggets of scene information
. Fields - node attributes you can change
« Values- attribute values
« More. ..

Understanding the header
Understanding UTF8
Using comments

Using nodes

Using fields and values
Using fields and values

Summary

19
Building a VRML world

A sample VRML file

#VRML V2.0 utf8
A Cylinder
Shape {
appearance Appearance {
material Material { }

}

geometry Cylinder {
height 2.0
radius 1.5

}
}

20
Building a VRML world
Understanding the header

#VRML V2.0 utf8
« #VRML File contains VRML text

« V2.0 : Text conforms to version 2.0 syntax
o utfs : Text uses UTF8 character set

21
Building a VRML world

Understanding UTF8

o utf8 IS an international character set
standard

o utfs Stands for:
« UCS (Universal Character Set)
Transformation Format, 8-bit

« Encodes 24,000+ characters for many
languages
« ASCII is a subset

22
Building a VRML world
Using comments

A Cylinder

« Comments start with a number-sign £) and
extend to the end of the line

23
Building a VRML world
Using nodes

Cylinder {
}

« Nodes describe shapes, lights, sounds, etc.

- Every node has:
« A node typgShape, Cylinder , etc.)
« A pair of curly-braces
« Zero or more fields inside the
curly-braces

24
Building a VRML world
Using fields and values

Cylinder {
height 2.0
radius 1.5

}

« Fields describe node attributes

25
Building a VRML world
Using fields and values

height 2.0
« Every field has:
« A field name
. A data type (float, int, etc.)
o A default value

. Fields are optional and given in any order

 Default value used if field not given

26
Building a VRML world
Summary

 The file header gives the version and
encoding

« Nodes describe scene content

. Fields and values specify node attributes

27
Building primitive shapes

Motivation

Example

Syntax: Shape

Specifying geometry

Syntax: Box

Syntax: Cone

Syntax: Cylinder

Syntax: Sphere

Syntax: Text

A sample primitive shape

A sample primitive shape

Building multiple shapes

A sample file with multiple shapes
A sample file with multiple shapes
Syntax: FontStyle

Syntax: FontStyle

Summary

28
Building primitive shapes

Motivation

« Shapesare the building blocks of a VRML
world

« Primitive Shapesare standard building
blocks:
« BOX
« Cone
« Cylinder
« Sphere
o Text

29
Building primitive shapes

Example

[prim.wrl]

30
Building primitive shapes

Syntax: Shape

« A shape node builds a shape
« appearance color and texture
« geometry- form, or structure

Shape {
appearance . . .
geometry ...

31
Building primitive shapes

Specifying geometry

« Shape geometry is built withgeometry
nodes:

Box {...}
Cone {...}
Cylinder{...}
Sphere {...}
Text {...}

« Geometry node fields control dimensions

« Dimensions usually in meters, but can be
anything

32
Building primitive shapes

Syntax: Box
« A Box geometry node builds a box

Box {
size 2.02.02.0

}

[box.wrl]

33
Building primitive shapes

Syntax: Cone

« A Cone geometry node builds an upright
cone

Cone {
height 2.0
bottomRadius 1.0

}
[cone.wrl]

34
Building primitive shapes

Syntax: Cylinder

« A Cylinder geometry node builds an upright
cylinder

Cylinder {
height 2.0
radius 1.0

}

[cyl.wrl]

35
Building primitive shapes

Syntax: Sphere
« A sphere geometry node builds a sphere

Sphere {
radius 1.0

}

[sphere.wrl]

36
Building primitive shapes

Syntax: Text
« A Text geometry node builds text

Text {
string ["Text",
"Shape"]
fontStyle FontStyle {
style "BOLD"

[text.wrl] } }

37
Building primitive shapes

A sample primitive shape

#VRML V2.0 utf8
A cylinder
Shape {
appearance Appearance {
material Material { }

}

geometry Cylinder {
height 2.0
radius 1.5

}

38
Building primitive shapes

A sample primitive shape

[cylinder.wrl]

39
Building primitive shapes

Building multiple shapes
« Shapes are built centered in the world
« A VRML file can contain multiple shapes

« Shapes overlap when built at the same
location

40
Building primitive shapes

A sample file with multiple shapes

#VRML V2.0 utf8

Shape{...}
Shape{...}
Shape {. ..}

41 42
Building primitive shapes Building primitive shapes

A sample file with multiple shapes Syntax: FontStyle

« A FontStyle node describes a font
o family - SERIF, SANS OF TYPEWRITER
« Style- BOLQ ITALIC , BOLDITALIC, Of PLAIN,
e« More . ..

Text {
string . . .
fontStyle FontStyle {
[space.wrl] family "SERIF"
style "BOLD"

}
}

43
Building primitive shapes

Syntax: FontStyle

« A FontStyle node describes a font
« Size- character height
« Spacing- row/column spacing
e More . ..

Text {
string . . .
fontStyle FontStyle {
size 1.0
spacing 1.0

44
Building primitive shapes

Summary
« Shapes are built using ahape node
« Shape geometry is built using geometry
nodes, such asox, Cone, Cylinder , Sphere ,

and Text

« Text fonts are controlled using aontstyle
node

45
Transforming shapes

Motivation

Example

Using coordinate systems
Visualizing a coordinate system
Transforming a coordinate system
Syntax: Transform

Including children

Translating

Translating

Rotating

Specifying rotation axes

Using the Right-Hand Rule
Using the Right-Hand Rule
Rotating

Scaling

Scaling

Scaling, rotating, and translating
Scaling, rotating, and translating
A sample transform group

A sample transform group

Summary

46

Transforming shapes

Motivation

. By default, all shapes are built at the center

of the world

« A transform enables you to
« Position shapes
« Rotate shapes
« Scale shapes

47

Transforming shapes

Example

[towers.wrl]

48

Transforming shapes

Using coordinate systems
« A VRML file builds components for a world

« A file’s world components are built in the
file’s world coordinate system

« By default, all shapes are built at the origin
of the world coordinate system

49

Transforming shapes

Visualizing a coordinate system

Y Y

50

Transforming shapes

Transforming a coordinate system

« A transform creates a coordinate system
that is
« Positioned
 Rotated
« Scaled
relative to a parent coordinate system

« Shapes built in the new coordinate system
are positioned, rotated, and scaled along
with it

51

Transforming shapes

Syntax: Transform

« The Transform group node creates a group
with its own coordinate system
« children - shapes to build
« translation - position
« rotation - orientation
- Scale- size

Transform {
translation . . .
rotation
scale .
children [...]

52

Transforming shapes

Including children

o The children field includes a list of one or
more nodes

Transform {
children [

Shape{...}
Transform {. ..}

53 54

Transforming shapes Transforming shapes
Translating Translating
. Translation positions a coordinate system in Y Iy
X,Y,and Z *
Transform {

XY Z

translation 2.0 0.0 0.0

children|...]

}

55

Transforming shapes

Rotating

« Rotationorients a coordinate system about
a rotation axis by a rotation angle
« Angles are measured imadians

Transform {
X 'Y Z Angle
rotation 0.0 0.0 1.0 0.52
children|...]

56

Transforming shapes

Specifying rotation axes

« A rotation axis defines a pole to rotate

around

« Like the Earth’s North-South pole

. Typical rotations are about the X, Y, or Z

axes.
Rotate about| Axis
X-AXis 1.00.00.0
Y-AXxis 0.01.00.0
Z-AXis 0.00.01.0

57 58

Transforming shapes Transforming shapes
Using the Right-Hand Rule Using the Right-Hand Rule
« TO help remember positive and negative v :
rotation directions: -,
« Open your hand =, .
« Stick out your thumb , 7
« Aim your thumb in an axis positive

direction

« Curl your fingers around the axis
« The curl direction is a positiverotation | m ‘

59

Transforming shapes

Rotating

60

Transforming shapes

Scaling

« Scalegrows or shrinks a coordinate system
by a scaling factor in X, Y, and Z

Transform {
X Y Z
scale 0.50.50.5
children|...]

}

61 62

Transforming shapes Transforming shapes

Scaling Scaling, rotating, and translating

Y Y . Scale Rotate and Translatea coordinate
Y system, one after the other

.?
><,x 7‘%}& Transform {
7 7. | translation 2.0 0.0 0.0
i

rotation 0.0 0.0 1.0 0.52
v scale 0.50.50.5
4 children|[...]

63

Transforming shapes

Scaling, rotating, and translating

64

Transforming shapes

A sample transform group

Transform {
translation 4.0 0.0 0.0

rotation 0.01.00.0 0.785
scale 0.5050.5
children|...]

}

65

Transforming shapes

A sample transform group

[arch.wrl] [arches.wrl]

66

Transforming shapes

Summary
« All shapes are built in a coordinate system

o The Transform node creates a new
coordinate system relative to its parent

« Transform node fields do
e translation
e rotation
e scale

67
Controlling appearance with materials

Motivation

Example

Syntax: Shape

Syntax: Appearance

Syntax: Material

Specifying colors

Syntax: Material

Experimenting with shiny materials
Example

A sample world using appearance
A sample world using appearance

Summary

68

Controlling appearance with materials

Motivation

« The primitive shapes have a default
emissive (glowing) white appearance

« YOu can control a shape’s
« Shading color
« Glow color
« Transparency
« Shininess
« Ambient intensity

69

Controlling appearance with materials

Example

[colors.wrl |

70

Controlling appearance with materials

Syntax: Shape

« Recall that shape nodes describe:
« appearance color and texture
« geometry- form, or structure

Shape {
appearance . . .
geometry ...

71

Controlling appearance with materials

Syntax: Appearance

« An Appearance hode describes overall shape
appearance
« material properties - color, transparency,
etc.
e More . ..

Shape {
appearance Appearance {
material . . .

}

geometry . . .

72

Controlling appearance with materials

Syntax: Material

« A Material node controls shape material
attributes
« diffuse color- main shading color
« emissive color glowing color
« transparency- opaque or not
e More . ..

Material {
diffuseColor . ..
emissiveColor . . .
transparency . ..

}

73

Controlling appearance with materials

Specifying colors

« Colors specify:

« A mixture of red, green, and blue light

« Values between 0.0 (none) and 1.0 (lots)

Color Red Green Blue ||Result
White 1.0 1.0 1.0 (white)
Red 0.0 0.0 0.0 (red)
Yellow 1.0 1.0 0.0 (yellow)
Magenta 1.0 0.0 1.0 (magenta
Brown 0.5 0.2 0.0 (brown)

74

Controlling appearance with materials

Syntax: Material

« A mMaterial node also controls shape
shininess
« Specular color- highlight color
« shininess- highlight size
- ambient intensity- ambient lighting
effects

Material {

specularColor 0.71 0.70 0.56
shininess 0.16
ambientintensity 0.4

}

75

Controlling appearance with materials

Experimenting with shiny materials

Description |ambient Intensity diffuseColor specularColor shininess
Aluminum 0.3 0.30 0.30 0.5() 0.70 0.70 0.80 0.10
Copper 0.26 0.300.11 0.0(II) 0.75 0.33 0.00 0.08
Gold 0.4 0.22 0.15 0.0 0.71 0.70 0.56 0.16
Metalic Purplé 0.17 0.10 0.03 0.22 0.64 0.00 0.98 0.20
Metalic Red 0.15 0.27 0.00 0.00 0.61 0.13 0.18 0.20
Plastic Blue 0.10 0.20 0.20 0.71 0.83 0.83 0.83 0.12

76

Controlling appearance with materials

Example

[shiny.wrl]

7

Controlling appearance with materials

A sample world using appearance

Shape {
appearance Appearance {
material Material {
diffuseColor 1.0 1.0 1.0

}
}

geometry . . .

78

Controlling appearance with materials

A sample world using appearance

[slabs.wrl]

79

Controlling appearance with materials

Summary

« The Appearance Nnode controls overall shape
appearance

« The material node controls overall material
properties including:
« Shading color
« Glow color
« Transparency
« Shininess
« Ambient intensity

80

81
Grouping nodes

Motivation

Syntax: Group

Syntax: Switch

Syntax: Transform
Syntax: Billboard
Billboard rotation axes

A sample billboard group
A sample billboard group
Syntax: Anchor

A Sample Anchor
Syntax: Inline

A sample inlined file

A sample inlined file
Summary

Summary

82

Grouping nodes

Motivation

« YOu can group shapes to compose complex
shapes

« VRML has several grouping nodes,
including:

Group {...}
Switch {...}
Transform {...}

Billboard {...}
Anchor {...}
Inline {...}

83

Grouping nodes

Syntax: Group

« The Group node creates a basic group
« Every childnode in the group is
displayed

Group {
children|[...]

}

84

Grouping nodes

Syntax: Switch

« The switch group node creates a switched
group
« Only one childnode in the group is
displayed
« You select which child

Switch {
whichChoice 0
choice[...]

85

Grouping nodes

Syntax: Transform

« The Transform group node creates a group
with its own coordinate system
« Every childnode in the group is
displayed

Transform {
translation . . .
rotation
scale .
children|[...]

}

86

Grouping nodes

Syntax: Billboard

« The Bilboard group node creates a group
with a special coordinate system
« Every childnode in the group is
displayed
« Coordinate system is turned to face

viewer

Billboard {
axisOfRotation . . .
children|...]

87 88

Grouping nodes Grouping nodes
Billboard rotation axes A sample billboard group
« A rotation axis defines a pole to rotate Grgﬁiﬁ’ d{ren [
round Billboard {
« Similar to a Transform Node’Srotation axisOfRotation 0.0 1.0 0.0
children| ...]

field, but no angle (auto computed)
Transform {. ..}

]

‘f)

i X

89

Grouping nodes

A sample billboard group

[robobill.wrl]

90

Grouping nodes

Syntax: Anchor

« An Anchor nNode creates a group that acts as
a clickable anchor
« Every childnode in the group is
displayed
« Clicking any child follows a URL
« A descriptionnames the anchor

Anchor {
url "stairwy.wrl"
description "Twisty Stairs"
children|...]

91

Grouping nodes

A Sample Anchor

[anchor.wrl] [stairwy.wrl]

92

Grouping nodes

Syntax: Inline

« An Inline node creates a special group from
another VRML file’s contents
« Children read from file selected by a
URL
« Every childnode in group is displayed

Inline {
url "table.wrl"

}

93

Grouping nodes

A sample inlined file
Inline { url "table.wrl" }
Transform {
translation . . .

children [
Inline { url "chair.wrl" }
]

}

94

Grouping nodes

A sample inlined file

[table.wrl, chair.wrl, dinette.wrl]

95

Grouping nodes

Summary
« The Group node creates a basic group

« The switch node creates a group with 1
choice used

« The Transform node creates a group with a
new coordinate system

96

Grouping nodes

Summary

« TheBilboard Node creates a group with a
coordinate system that rotates to face the
viewer

« The Anchor node creates a clickable group
« Clicking any child in the group loads a
URL

« The inine node creates a special group
loaded from another VRML file

97 98

Naming nodes Naming nodes

Motivation

Motivation

Syntax: DEF
. If several shapes have the same geometry or

appearance, you must use multiple
duplicate nodes, one for each use

Syntax: USE
Using named nodes

A sample use of node names

S . .
ummary . Instead, definea name for the first
occurrence of a node

. Later, usethat name to share the same node
In a new context

99

Naming nodes

Syntax: DEF

« The DEFsyntax gives a hame to a node

DEF RedColor Material {
diffuseColor 1.0 0.0 0.0

}

« YOU can name any node
« Names can be most any sequence of letters
and numbers
« Names must be unique within a file

100

Naming nodes

Syntax: USE

« The usesyntax uses a previously named
node

Appearance {
material USE RedColor
}

« A re-use of a named node is called an
Instance
« A named node can have any number of
instances
« Each instance shares the same node
description

101

Naming nodes

Using named nodes

« Naming and using nodes:
« Saves typing
« Reduces file size
« Enables rapid changes to shapes with the
same attributes
« Speeds browser processing

« Names are also necessary for animation...

102

Naming nodes

A sample use of node names

[dinette.wrl]

103

Naming nodes

Summary
« DEFNames a node

« USEUSES a named node

104

105
Summary examples

A fairy-tale castle
A bar plot
A simple spaceship

A juggling hand

106

Summary examples

A fairy-tale castle

« Cylinder nodes build the towers
« Cone hodes bhuild the roofs and tower
bottoms

[castle.wrl]

107

Summary examples

A bar plot

« Box nodes create the bars

« Text nNodes provide bar labels

« Bilboard nodes keep the labels facing the
viewer

[barplot.wrl]

108

Summary examples

A simple spaceship

« Sphere Nodes make up all parts of the ship
« Transform nodes scale the spheres into ship
parts

[space2.wrl]

109

Summary examples

A juggling hand
e Cylinder and sphere nodes build fingers and
joints
 Transform nodes articulate the hand

[hand.wrl]

110

111
Introducing animation

Motivation

Building animation circuits
Examples

Routing events

Using node inputs and outputs
Sample inputs

Sample outputs

Syntax: ROUTE

Event data types

Following naming conventions
A sample animation

A sample animation

Using multiple routes

Summary

112

Introducing animation

Motivation

o Nodes likeBillboard and Anchor have
built-in behavior

« YOU can create your own behaviors to make
shapes move, rotate, scale, blink, and more

« We need a means to trigger, time, and
respond to a sequence of events in order to
provide better user/world interactions

113

Introducing animation

Building animation circuits

« Almost every node can be a component in
an animation circuit
« Nodes act like virtual electronic parts
« Nodes can send and receivavents
- Wired routesconnect nodes together

« An eventis a message sent between nodes
. A data value (such as a translation)
« A time stamp (when did the event get
sent)

114

Introducing animation

Examples

« TO spin a shape:
« Connect a node that sendmotation events
to aTransform node’srotation field

« To blink a shape:
« Connect a node that sendsolor eventgo
a Material hode’sdiffuseColor field

115

Introducing animation

Routing events

« TO set up an animation circuit, you need:

« A node which sends events
« The node must be named withper

« A node which receives events
« The node must be named withper

« A route connecting them

116

Introducing animation

Using node inputs and outputs

« Every node has fields, inputs, and outputs:
. field: A stored value
« eventin: An input
« eventOut:An output

« An exposedFields a short-hand for afield,
eventln, and eventOut

117

Introducing animation

Sample inputs

« SOmeTransform node inputs:

e set_translation
e set_rotation
e set_scale

« SOmeMmaterial node inputs:
e set_diffuseColor
e set_emissiveColor
e set_transparency

118

Introducing animation

Sample outputs

« SOmeTouchSensor Node outputs:
e isOver
e iSActive
e touchTime

« AN Orientationinterpolator node output:
¢ value_changed

« A Positioninterpolator node output:
¢ value_changed

119

Introducing animation

Syntax: ROUTE

« A ROUTEStatement connects two nodes
together using
« The sender’s node name andventOut
name
« The receiver’'s node name an@ventin
name

ROUTE MySender.rotation_changed
TO MyReceiver.set_rotation

- Event data types must match!

120

Introducing animation

Event data types

SFRotation /

SFBool MFRotation

SFColor / MFColor |SFString / MEString

SFFloat / MFFloat |SFTime

SFImage SFVec2f / MFVec2f

SFInt32 / MFInt32 |SFVec3f/ MFVec3f

SFNode / MFNode

121

Introducing animation

Following naming conventions
« Most nodes haveexposedFields

o If the exposed field name isxx , then:
e set xxx IS aneventinto set the field
« xxx_changed IS aneventOutthat sends
when the field changes
e« Theset and changed sufixes are
optional but recommended for clarity

e The Transform node has:
o rotation field
e set_rotation eventin
e rotation_changed eventOut

122

Introducing animation

A sample animation

DEF RotateMe Transform {
rotation 0.0 1.0 0.0 0.0
children|...]

DEF Rotator Orientationinterpolator { . . .

ROUTE Rotator.value_changed
TO RotateMe.set_rotation

123

Introducing animation

A sample animation

[colors.wrl |

124

Introducing animation

Using multiple routes

« YOu can havefan-out
« Multiple routes out of the same sender

« YOu can havefan-in
- Multiple routes into the same receiver

125

Introducing animation

Summary
« Connect senders to receivers using routes

« eventinsare inputs, andeventOutsare
outputs

« A route names thesender.eventOuytand the
receiver.eventin
- Data types must match

« YOu can have multiple routes into or out of
a node

126

127
Animating transforms

Motivation

Example

Controlling time

Using absolute time

Using fractional time

Syntax: TimeSensor

Using timers

Using timers

Using cycling timers

Using timer outputs

A sample time sensor

A sample time sensor

Converting time to position
Interpolating positions

Syntax: PositionInterpolator

Using position interpolator inputs and outputs
A sample using position interpolators
A sample using position interpolators
Using other types of interpolators
Syntax: OrientationInterpolator
Syntax: ColorInterpolator

Syntax: Scalarlnterpolator

Syntax: PositionInterpolator

A sample using other interpolators
Summary

Summary

Summary

128

Animating transforms

Motivation

« An animation changes something over time:

« position- a car driving
« Orientation - an airplane banking
« color - seasons changing

« Animation requires control over time:
« When to start and stop
« How fast to go

129

Animating transforms

Example

[floater.wrl]

130

Animating transforms

Controlling time

« A TimeSensor Nnode is similar to a stop watch
« You control the start and stop time

« The sensor generates time events while it is
running

« TO animate, route time events into other
nodes

131

Animating transforms

Using absolute time

« A TimeSensor node generatesbsoluteand
fractional time events

« Absolute time events give the wall-clock
time
« Absolute time is measured in seconds
since 12:00am January 1, 1970!
« Useful for triggering events at specific
dates and times

132

Animating transforms

Using fractional time

. Fractional time events give a number from
0.0to 1.0
« Valuescyclefrom 0.0 to 1.0, then repeat

« The number of seconds between 0.0 and
1.0 is controlled by thecycle interval

« The sensor can loop forever, or run once
and stop

133

Animating transforms

Syntax: TimeSensor

« A TimeSensor Node generates events based
upon time
« Start and stoptime - when to run
« cycle intervaltime - how long a cycle is
« looping - whether or not to repeat cycles

TimeSensor {
cycleinterval 1.0
loop FALSE
startTime 0.0
stopTime 0.0

134

Animating transforms

Using timers

 Create continuously running timers:
loop TRUE
stopTime <= startTime

« Run one cycle then stop
loop FALSE
stopTime <= startTime

« Run until stopped, or after cycle is over
loop TRUE or FALSE
stopTime > startTime

135

Animating transforms

Using timers

e The set_startTime input event:
« Sets when the timer should start

o The set stopTime input event:
« Sets when the timer should stop

136

Animating transforms

Using cycling timers
« The first cycle starts at thestart time

« The cycle intervalis the length (in seconds)
of the cycle

« Each cycle varies a fraction from 0.0 to 1.0

o If 1oop Is FALSE, there is only one cycle,
otherwise the timer may cycle forever

137

Animating transforms

Using timer outputs

« TheisActive output event:
« Outputs TRUEat timer start
« Outputs FALSE at timer stop

- Thetime output event:
« Outputs the absolute time

 The fraction_changed output event:
« Outputs values from 0.0 to 1.0 during a
cycle
« Resets to 0.0 at the start of each cycle

138

Animating transforms

A sample time sensor

DEF Monolithl1Timer TimeSensor {
cycleinterval 4.0
loop FALSE
startTime 0.0
stopTime 1.0

}
ROUTE MonolithlTouch.touchTime
TO MonolithlTimer.set_startTime

ROUTE Monolith1Timer.fraction_changed
TO MonolithlLight.set_intensity

139

Animating transforms

A sample time sensor

[monolith.wrl]

140

Animating transforms

Converting time to position

« TO animate the position of a shape you
provide:
« A list of key positiondor a movement
path
« A time at which to be at each position

« An interpolator node converts an input time
to an output position
« When a time is in between two key
positions, the interpolator computes an
intermediate position

141

Animating transforms

Interpolating positions
« Each key position along a path has:
« A key value(such as a position)
« A keyfractional time

« Interpolation fills in values between your

key values:

Time Position

0.0 0.00.0 0.0
0.1 0.40.10.0
0.2 0.80.20.0

0.5 401.00.0

142

Animating transforms

Syntax: Positioninterpolator
o A PositionInterpolator node describes a
position path
« keys- key fractional times
« key values key positions

Positioninterpolator {
key [0.0, ...]
keyValue [0.0 0.00.0, .. .]

« Route into aTransform node’s
set_translation input

143

Animating transforms

Using position interpolator inputs and outputs

« The set_fraction input:
« Sets the current fractional time along the
key path

e The value_changed oOutput:
« Outputs the position along the path each
time the fraction is set

144

Animating transforms

A sample using position interpolators

DEF Mover Positioninterpolator {
key [0.0,...]
keyValue [0.00.00.0, .. .]

}
ROUTE Clock.fraction_changed
TO Mover.set_fraction

ROUTE Mover.value_changed
TO Movee.set_translation

145

Animating transforms

A sample using position interpolators

[floater.wrl]

146

Animating transforms

Using other types of interpolators

« TO animate shape orientation, use an
OrientationInterpolator

- TOo animate shape color, use a
ColoriInterpolator

. TOo animate shape transparency, use a
ScalarInterpolator

- TO animate shape scale, use a trick and use
a Positioninterpolator

147

Animating transforms

Syntax: Orientationinterpolator
e A Orientationinterpolator node describes
an orientation path
« keys- key fractions
« key values key rotations (axis and angle)

Orientationinterpolator {
key [0.0, ...]
keyValue [0.01.00.00.0, .. .]

« Route into aTransform nNode’Sset_rotation
input

148

Animating transforms

Syntax: Colorinterpolator

e Colorinterpolator node describes a color
path
« keys- key fractions
« values- key colors (red, green, blue)

Colorinterpolator {
key [0.0, ...]
keyValue [1.01.00.0, .. .]

« Route into amaterial node’s
set_diffuseColor Or set_emissiveColor
inputs

149

Animating transforms

Syntax: Scalarlnterpolator

e Scalarinterpolator node describes a scalar
path
« keys- key fractions
« values- key scalars (used for anything)

Scalarinterpolator {
key [0.0, ...]
keyValue [4.5, .. .]

« Route into amaterial node’s
set_transparency input

150

Animating transforms

Syntax: Positioninterpolator

o A PositionInterpolator node describes a
position or scalepath
« keys- key fractional times
« key values key positions (or scales)

Positioninterpolator {
key [0.0, ...]
keyValue [0.0 0.00.0, .. .]

« Route into aTransform nOde’Sset_scaIe
input

151

Animating transforms

A sample using other interpolators

[squisher.wrl]

152

Animating transforms

Summary

« The Timesensor node’s fields control
« Timer start and stop times
- The cycle interval
« Whether the timer loops or not

« The sensor outputs
o true/false onisactive at start and stop
. absolute time ontime while running
« fractional time on fraction_changed while
running

153

Animating transforms

Summary

. Interpolators use key times and values and
compute intermediate values

« All interpolators have:
e A set_fraction input to set the fractional
time
« Avalue_changed OuUtput to send new
values

154

Animating transforms

Summary

« The PositionInterpolator node converts
times to positions (or scales)

« The Orientationinterpolator node converts
times to rotations

 The Colorinterpolator node converts times
to colors
 The Scalarlnterpolator node converts times

to scalars (such as transparencies)

155
Sensing viewer actions

Motivation

Using action sensors

Sensing shapes

Syntax: TouchSensor

A sample use of a TouchSensor node
Syntax: SphereSensor

Syntax: CylinderSensor

Syntax: PlaneSensor

Using multiple sensors

A sample use of a multiple sensors

Summary

156

Sensing viewer actions

Motivation

« YOU can sense when the viewer’s cursor:
. Is overa shape
« Hastoucheda shape
« Is draggingatop a shape

« YOU can trigger animations on a viewer's
touch

« YOU can enable the viewer to move and
rotate shapes

157

Sensing viewer actions

Using action sensors

« There are four main action sensor types:
e TouchSensor Senses touch
o SphereSensor Senses drags
o CylinderSensor senses drags
e PlaneSensor Senses drags

« The Anchor node is a special-purpose action
sensor with a built-in response

158

Sensing viewer actions

Sensing shapes

« All action sensorssenseall shapes in the
same group

« Sensors trigger when the viewer’s cursor
touchesa sensed shape

159

Sensing viewer actions

Syntax: TouchSensor

« A TouchSensor node senses the cursor’s
touch

iIsOver- send true/false when cursor
over/not over

iISActive- send true/false when mouse
button pressed/released

touchTime- send time when mouse
button released

Transform {
children [

]
}

DEF Touched TouchSensor {}

160

Sensing viewer actions

A sample use of a TouchSensor node

[colors.wrl |

161

Sensing viewer actions

Syntax: SphereSensor

« A SphereSensor node senses a cursinag
and generates rotations as if rotating a ball
« iISActive- sends true/false when mouse

button pressed/released
« rotation_changed sends rotation during
a drag

Transform {
children [
DEF RotateMe Transform {. ..}
DEF Rotator SphereSensor { }

]

}
ROUTE Rotator.rotation_changed
TO RotateMe.set_rotation

162

Sensing viewer actions

Syntax: CylinderSensor

« A CylinderSensor node senses a cursairag

and generates rotations as if rotating a
cylinder
« iSActive- sends true/false when mouse
button pressed/released
« rotation_changed sends rotation during
a drag

Transform {

children [
DEF RotateMe Transform {. ..}
DEF Rotator CylinderSensor { }

]

}
ROUTE Rotator.rotation_changed
TO RotateMe.set_rotation

163

Sensing viewer actions

Syntax: PlaneSensor

« A PlaneSensor node senses a cursirag
and generates translations as if sliding on a
plane

« iISActive- sends true/false when mouse
button pressed/released

o translation_changed sends translations
during a drag

Transform {
children |
DEF MoveMe Transform{. ..}
DEF Mover PlaneSensor {}

]

ROUTE Mover.translation_changed
TO MoveMe.set_translation

164

Sensing viewer actions

Using multiple sensors

« Multiple sensors can sense the same shape
but. . .
o If sensors are in the same group:
« They all respond

« If sensors are at different depths in the
hierarchy:
« The deepest sensor responds
« The other sensors do not respond

165

Sensing viewer actions

A sample use of a multiple sensors

[lamp.wrl]

166

Sensing viewer actions

Summary

« Action sensors sense when the viewer's
cursor:
« IS Oover a shape
« has touched a shape
« is dragging atop a shape

« Sensors convert viewer actions into events
to
« Start and stop animations
« Orient shapes
« Position shapes

167
Building shapes out of points, lines, and faces

Motivation

Example

Building shapes using coordinates
Syntax: Coordinate

Using geometry coordinates

Syntax: PointSet

A sample PointSet node shape
Syntax: IndexedLineSet

Using line set coordinate indexes
Using line set coordinate index lists

A sample IndexedLineSet node shape
Syntax: IndexedFaceSet

Using face set coordinate index lists
A sample IndexedFaceSet node shape
Syntax: Coordinatelnterpolator
Summary

Summary

Summary

168

Building shapes out of points, lines, and faces

Motivation

« Complex shapes are hard to build with
primitive shapes
« Terrain
« Animals
« Plants
« Machinery

« Instead, build shapes out of atomic
components:
« Points, lines, and faces

169

Building shapes out of points, lines, and faces

Example

170

Building shapes out of points, lines, and faces

Building shapes using coordinates

« Shape building is like a 3-Dconnect-the-dots
game:
- Placedotsat 3-D locations
« Connect-the-dots to form shapes

« A coordinatespecifies a 3-0Odot location
- Measured relative to a coordinate system
origin

« A geometry node specifies how to connect
the dots

171 172

Building shapes out of points, lines, and faces Building shapes out of points, lines, and faces
Syntax: Coordinate Using geometry coordinates
o A Coordinate node contains a list of « Build shapes using geometry nodes:
coordinates for use in building a shape o PointSet

e IndexedLineSet
Coordinate {
point [

XY

Z
.0 3.0, « For all three nodes, use &oordinate node as
553 :

the value of thecoord field

¢ IndexedFaceSet

173 174

Building shapes out of points, lines, and faces Building shapes out of points, lines, and faces

Syntax: PointSet A sample PointSet node shape

« A Pointset geometry node creates geometry
out of points
« One point (a dot) is placed at each
coordinate

PointSet {
coord Coordinate {

} point[...] [ptplot.wrl]

175

Building shapes out of points, lines, and faces

Syntax: IndexedLineSet

« AN IndexedLineSet geometry node creates
geometry out oflines
« A straight line is drawn between pairs of
selected coordinates

IndexedLineSet {
coord Coordinate {
point[...]

coordindex [.. .]

}

176

Building shapes out of points, lines, and faces

Using line set coordinate indexes

« Each coordinate in acoordinate node is
implicitly numbered
« Index 0 is the first coordinate
« Index 1 is the second coordinate, etc.

« TO build a line shape
« Make a list of coordinates, using their
indexes
« Use anindexedLineSet node to draw a
line from coordinate to coordinate in the
list

177

Building shapes out of points, lines, and faces

Using line set coordinate index lists

e1,0,3,-1,
1,0, Drawfrom1toO
«0,3, Draw fromOto 3
«-1, End line sequence

« List coordinate indexes in thecoordindex
field of the IndexedLineSet node

178

Building shapes out of points, lines, and faces

A sample IndexedLineSet node shape

[Inplot.wrl]

179

Building shapes out of points, lines, and faces

Syntax: IndexedFaceSet

« An IndexedFaceSet geometry node creates
geometry out of faces
« A flat facet(polygon) is drawn using an
outline specified by coordinates

IndexedFaceSet {
coord Coordinate {
point[...]

coordindex [.. .]

}

180

Building shapes out of points, lines, and faces

Using face set coordinate index lists

« To build a face shape
- Make a list of coordinates, using their
indexes
« Use anindexedFaceSet node to draw a
face outlined by the coordinates in the
list

« List coordinate indexes in thecoordindex
field of the indexedFaceset node

181

Building shapes out of points, lines, and faces

A sample IndexedFaceSet node shape

[lightng.wrl]

182

Building shapes out of points, lines, and faces

Syntax: Coordinatelnterpolator

o A Coordinatelnterpolator node describes a
coordinate path
« keys- key fractions
« values- key coordinate lists (X,Y,Z lists)

Coordinatelnterpolator {
key [0.0, ...]
keyValue [0.0 1.00.0, .. .]

183

Building shapes out of points, lines, and faces

Summary

« Shapes are built by connecting together
coordinates

« Coordinates are listed in acoordinate node

« Coordinates are implicitly numbers starting
at0

. Coordinate index lists give the order in
which to use coordinates

184

Building shapes out of points, lines, and faces

Summary

« The Pointset node draws a dot at every
coordinate
e« Thecoord field value is acoordinate node

e The IndexedLineSet node draws lines
between coordinates
e The coord field value is acoordinate node
e The coordindex field value is a list of
coordinate indexes

185

Building shapes out of points, lines, and faces

Summary

o The IndexedFaceSet node draws faces
outlined by coordinates
e The coord field value is acoordinate node
e The coordindex field value is a list of
coordinate indexes

e The Coordinatelnterpolator node converts
times to coordinates

186

187
Building elevation grids

Motivation

Example

Syntax: ElevationGrid
Syntax: ElevationGrid
A sample elevation grid
A sample elevation grid

Summary

188

Building elevation grids

Motivation

« Building terrains is very common
« Hills, valleys, mountains
« Other tricky uses...

« You can build a terrain using an
IndexedFaceSet node

« You can build terrains more efficiently
using anElevationGrid ~ hode

189 190
Building elevation grids Building elevation grids

Example Syntax: ElevationGrid

« AN ElevationGrid geometry node creates
terrains
« X & Z dimensions- grid size
« X & Z spacings- row and column
distances

[mount16.wrl] [mount32.wrl] e More

ElevationGrid {
xDimension 3
zDimension 2
xSpacing 1.0
zSpacing 1.0

[mount128.wrl]

191 192

Building elevation grids Building elevation grids
Syntax: ElevationGrid A sample elevation grid
« An ElevationGrid geometry node creates Shape {
terrains geometry ElevationGrid {
i - i i i xDimension 9
« height - elevations at grid points Do neon o
_ _ xSpacing 1.0
ElevationGrid { zSpacing 1.0
- height [. . .]
height [}
0.0, -0.5, 0.0, }
0.2, 4.0,0.0

193

Building elevation grids

A sample elevation grid

[mount.wrl]

194

Building elevation grids

Summary

« An ElevationGrid ~ node efficiently creates a
terrain

« Grid size is specified in thexbimension and
zDimension fields

« Grid spacing is specified in thexspacing and
zSpacing field

« Elevations at each grid point are specified
in the height field

195

Building extruded shapes

Motivation

Examples

Creating extruded shapes

Extruding along a straight line

Extruding around a circle

Extruding along a helix

Syntax: Extrusion

Squishing and twisting extruded shapes
Syntax: Extrusion

Sample extrusions with scale and rotation

Summary

196
Building extruded shapes

Motivation

« Extruded shapes are very common
« Tubes, pipes, bars, vases, donuts
« Other tricky uses...

« You can build extruded shapes using an
IndexedFaceSet node

« You can build extruded shapes more easily
and efficiently using anextrusion node

197

Building extruded shapes

Examples

[slide.wrl]

[donut.wrl]

198

Building extruded shapes

Creating extruded shapes

« Extruded shapes are described by
« A 2-D cross-section
« A 3-D spinealong which to sweep the
Cross-section

« Extruded shapes are like long bubbles
created with a bubble wand
« The bubble wand’s outline is the
Cross-section
- The path along which you swing the
wand is thespine

199

Building extruded shapes

Extruding along a straight line

| -

200

Building extruded shapes

Extruding around a circle

=S
R

201

Building extruded shapes

Extruding along a helix

202

Building extruded shapes

Syntax:

Extrusion

« An Extrusion geometry node creates

extruded geometry

« 2-D cross-section cross-section
« 3-D spine- sweep path

e MOIe . ..
Extrusion {
crossSection [.. .]

spine[...]

.

203

Building extruded shapes

Squishing and twisting extruded shapes

« YOu can scale the cross-section along the
spine
. Vases, musical instruments
« Surfaces of revolution

« YOU can rotate the cross-section along the
spine
« Twisting ribbons

204

Building extruded shapes

Syntax: Extrusion

« An Extrusion geometry node creates

geometry using

« Scales- cross-section scaling per spine

point

« rotations- cross-section rotation per

spine point

Extrusion {

scale[...]
orientation [. . .]

}

205

Building extruded shapes

Sample extrusions with scale and rotation

[horn.wrl] [bartwist.wrl]

206

Building extruded shapes

Summary

« An Extrusion node efficiently creates
extruded shapes

e The crosssection field specifies the
Cross-section

« The spine field specifies the sweep path

e The scale andorientation fields specify
scaling and rotation at each spine point

207
Controlling properties of coordinate-based geometry

Motivation

Example

Syntax: Color

Binding colors

Syntax: PointSet

A sample PointSet node shape

Syntax: IndexedLineSet

Controlling color binding for line sets

A sample IndexedLineSet node shape
Syntax: IndexedFaceSet

Controlling color binding for face sets
A sample IndexedFaceSet node shape
Syntax: ElevationGrid

Controlling color binding for elevation grids
A sample ElevationGrid node shape
Controlling shading using the crease angle
Selecting crease angles

A sample using crease angles

Syntax: Normal

Syntax: IndexedFaceSet

Controlling normal binding for face sets

Syntax: ElevationGrid

Controlling normal binding for elevation grids
Syntax: Normallnterpolator
Summary

Summary

208

Controlling properties of coordinate-based geometry

Motivation

« The material node gives an entire shape the
same color

« You can provide colors for parts of a shape
using acolor node

« You can specify smooth or faceted shading
using acreaseAngle field value

209

Controlling properties of coordinate-based geometry

Example

[cmount.wrl |

210

Controlling properties of coordinate-based geometry

Syntax: Color

« A color node contains a list of RGB values

Color {
color[1.00.00.0,...]

}

« Used as theolor field value of
IndexedFaceSet , IndexedLineSet , PointSet Of
ElevationGrid ~ nhodes

211

Controlling properties of coordinate-based geometry

Binding colors

« Colors in the color node override those Iin
the materiai hode

« YOU can bind colors
« TO each point, line, or face
« TO each coordinate in a line, or face

212

Controlling properties of coordinate-based geometry

Syntax: PointSet

« A Pointset geometry node creates geometry
out of points

« color - provides a list of colors
« Always binds one color to each point, in
order

PointSet {

}

coord Coordinate { . . . }
color Color{. ..}

213

Controlling properties of coordinate-based geometry

A sample PointSet node shape

[scatter.wrl |

214

Controlling properties of coordinate-based geometry

Syntax: IndexedLineSet

« AN IndexedLineSet geometry node creates
geometry out of lines
« color - a list of colors
« color indexes selects colors from list
(just like selecting coordinates)
« color per vertex control color binding

IndexedLineSet {
coord Coordinate { . . .}
coordindex [.. .]
color Color{ ...}
colorindex[...]
colorPerVertex TRUE

215

Controlling properties of coordinate-based geometry

Controlling color binding for line sets

o The colorPervertex field controls how color
indexes are used
« FALSE one color index to each line
(ending at -1 coordinate indexes)

« TRUE one color index to each coordinate
index of each line (including -1
coordinate indexes)

216

Controlling properties of coordinate-based geometry

A sample IndexedLineSet node shape

[burst.wrl |

217

Controlling properties of coordinate-based geometry

Syntax: IndexedFaceSet

« An IndexedFaceSet geometry node creates
geometry out of faces
« color - a list of colors
« color indexes selects colors from list
(just like selecting coordinates)
« color per vertex control color binding

IndexedFaceSet {
coord Coordinate { . . . }
coordindex [.. .]
color Color{ ...}
colorindex [.. .]
colorPerVertex TRUE

218

Controlling properties of coordinate-based geometry

Controlling color binding for face sets

e The colorPervertex field controls how color
indexes are used (similar to line sets)
« FALSE oOne color index to each face
(ending at -1 coordinate indexes)

« TRUE one color index to each coordinate
index of each face (including -1
coordinate indexes)

219

Controlling properties of coordinate-based geometry

A sample IndexedFaceSet node shape

[log.wrl]

220

Controlling properties of coordinate-based geometry

Syntax: ElevationGrid

« AN ElevationGrid geometry node creates
terrains
« color - a list of colors
« color per vertex control color binding

ElevationGrid {

height [. . .]
color Color{ ...}
colorPerVertex TRUE

}

« The ElevationGrid node does not use color

iIndexes

221

Controlling properties of coordinate-based geometry

Controlling color binding for elevation grids

e The colorPervertex field controls how color
indexes are used (similar to line and face
sets)

« FALSE one color to each grid square

« TRUE one color to each height for each
grid square

222

Controlling properties of coordinate-based geometry

A sample ElevationGrid node shape

[cmount.wrl]

223

Controlling properties of coordinate-based geometry

Controlling shading using the crease angle

. By default, faces are drawn with faceted
shading

« You can do smooth shading using the
creaseAngle field for
e IndexedFaceSet
¢ ElevationGrid
e Extrusion

224 225

Controlling properties of coordinate-based geometry Controlling properties of coordinate-based geometry

Selecting crease angles A sample using crease angles

« A crease angles a threshold angle between
two faces

. If face angle >= crease
angle, use facet shading

i If face angle < crease crease angle =0 crease angle = 45 deg
[]

angle, use smooth shadin

226

Controlling properties of coordinate-based geometry

Syntax: Normal

« A Normal node contains a list of normal
vectors thatoverrideuse of a crease angle

Normal {
vector [0.01.00.0, .. .]
}

« Usually automatically generated normals
are good enough

« Normals can be given fonndexedFaceSet
and ElevationGrid ~ nodes

227

Controlling properties of coordinate-based geometry

Syntax: IndexedFaceSet

« AN IndexedFaceSet geometry node creates
geometry out of faces
« Normal vectors list of normals
- Normal indexes- selects normals from
list (just like selecting coordinates)
« Normal binding - control normal binding

IndexedFaceSet {
coord Coordinate { . . . }
coordindex | . . .]
normal Normal { . . . }
normalindex [. . .]
normalPerVertex TRUE

228

Controlling properties of coordinate-based geometry

Controlling normal binding for face sets

e The normalPervertex field controls how
normal indexes are used
« FALSE one normal index to each face
(ending at -1 coordinate indexes)

« TRUE one normal index to each

coordinate index of each face (including

-1 coordinate indexes)

o AN ElevationGrid

229

Controlling properties of coordinate-based geometry

Syntax: ElevationGrid

geometry node creates

terrains

« Normal vectors list of normals

- Normal indexes- selects normals from
list (just like selecting coordinates)

« Normal binding - control normal binding

ElevationGrid {

}

height [.. .]
normal Normal { . . . }
normalPerVertex TRUE

230

Controlling properties of coordinate-based geometry

Controlling normal binding for elevation grids

e The normalPervertex field controls how
normal indexes are used (similar to face
sets)

« FALSE one normal to each grid square

« TRUE one normal to each height for each
grid square

231

Controlling properties of coordinate-based geometry

Syntax: Normalinterpolator

« A Normallinterpolator node describes a
normal path
« keys- key fractions
« values- key normal lists (X,Y,Z lists)

Normalinterpolator {
key [0.0, ...]
keyValue [0.01.01.0,...]

232

Controlling properties of coordinate-based geometry

Summary

« The color node lists colors to use for parts
of a shape
« Used as the value of theolor field
« Color indexes select colors to use
« Colors override material node

« The colorPervertex field selects color per
line/face/grid square or color per coordinate

233

Controlling properties of coordinate-based geometry

Summary

« The creaseAngle field controls faceted or
smooth shading

« The Normal node lists normal vectors to use
for parts of a shape
« Used as the value of theormal field
« Normal indexes select normals to use
« Normals override creaseAngle Vvalue

e The normalPervertex field selects normal per
face/grid square or normal per coordinate

« The Normallnterpolator node converts times

to normals

234

A computed terrain
A twisty ribbon

A real-time clock
A timed timer

A morphing snake

235
Summary examples

236

Summary examples

A computed terrain

« AN ElevationGrid hode creates a computed
terrain
« A Color node provides terrain colors

[terrainl.wrl]

237

Summary examples

A twisty ribbon

« AN Extrusion hode creates a ribbon
e Orientation andscale fields make the
ribbon twist and change size

[ribbon2.wrl]

238

Summary examples

A real-time clock

« A set of TimeSensor nodes watch the time
« A set of Orientationinterpolator nodes spin
the clock hands

[stopwtch.wrl]

239

Summary examples

A timed timer

« A first Timesensor node clocks a second
TimeSensor Node to create a periodic
animation

[timetime.wrl]

240

Summary examples

A morphing snake

A Coordinatelnterpolator node animates the
spine of anextrusion node

[snake.wrl]

241
Mapping textures

Motivation

Example

Example Textures

Using texture types

Syntax: Appearance

Using materials with textures
Colorizing textures

Syntax: ImageTexture
Syntax: PixelTexture

Syntax: MovieTexture

Using transparent textures

A sample transparent texture
A sample transparent texture

Summary

242

Mapping textures

Motivation

« YOu can model every tiny texture detail of a
world using a vast number of colored faces
» Takes a long time to write the VRML
» Takes a long time to draw

« Use a trick instead
« Take a picture of the real thing
. Paste that picture on the shape, like
sticking on a decal

« This technique is calledTexture Mapping

243

Mapping textures

Example

[can.wrl]

244

Mapping textures

Example Textures

245

Mapping textures

Using texture types

. Image textures
« A single image from a file
« JPEG, GIF, or PNG format

« Pixel textures
« A single image, given in the VRML file
itself

« Movie textures
« A movie from a file
« MPEG format

246

Mapping textures

Syntax: Appearance

« An Appearance nhode describes overall shape
appearance
o texture - texture source

Appearance {
material Material { . . . }
texture ImageTexture {. ..}

}

247

Mapping textures

Using materials with textures

« Color textures overridethe color in a
Material hode

- Grayscale texturesmultiply with the
Material nhode color
« Good for colorizing grayscale textures

248

Mapping textures

Colorizing textures

249
Mapping textures

Syntax: ImageTexture

o AN ImageTexture Node selects a texture
Image for texture mapping
o url - texture image file URL

ImageTexture {
url "wood.jpg"

250

Mapping textures

Syntax: PixelTexture

« A pixelTexture node specifies texture image
pixels for texture mapping
« imagepixels - texture image pixels
« image data - width, height, bytes/pixel,
pixel values

PixelTexture {

}

image 2 1 3 OxFFFFOO OxFF0000

251

Mapping textures

Syntax: MovieTexture

« A MovieTexture Node selects a texture movie
for texture mapping
o url - texture movie file URL
« When to play the movie, and how quickly
(like a Timesensor node)

MovieTexture {
url "movie.mpg"
loop TRUE
speed 1.0

}

252

Mapping textures

Using transparent textures

« Texture images can includecolor and
transparencyvalues for each pixel

« Pixel transparency enables you to make
parts of a shape transparent
« Windows, grillwork, holes
. Trees, clouds

253

Mapping textures

A sample transparent texture

254

Mapping textures

A sample transparent texture

[treewall.wrl]

255

Mapping textures

Summary
« A textureis like a decal pasted to a shape
« Specify the texture using anmageTexture
PixelTexture , OF MovieTexture hode in an

Appearance hode

« Color textures override material, grayscale
textures multiply

« Textures with transparency create holes

256

257
Controlling how textures are mapped

Motivation

Working through the texturing process
Using the texture coordinate system
Texture coordinates and transforms
Working through the texturing process
Syntax: TextureCoordinate

Syntax: IndexedFaceSet

Syntax: ElevationGrid

Syntax: Appearance

Syntax: TextureTransform

A sample using no transform

A sample using translation

A sample using rotation

A sample using scale

A sample using texture coordinates

A sample using scale

A sample using scale and rotation

Summary

258

Controlling how textures are mapped

Motivation

« By default, an entire texture image is
mapped once around the shape

« YOU can also:
« Extract pieces of interest
. Create repeating patterns

259

Controlling how textures are mapped

Working through the texturing process

- Imagine the texture image is a big piece of
rubbery cookie dough

« Select a texture image piece
« Define the shape of a cookie cutter
« Position and orient the cookie cutter
« Stamp out a piece of texture dough

« Stretch the rubbery texture cookie to fit a
face

260

Controlling how textures are mapped

Using the texture coordinate system

« Texture images (the dough) are in &exture
coordinate system

[. Sdirection is
horizontal

« T direction is vertic
« (0,0) at lower-left
« (1,1) at upper-right

»S

261

Controlling how textures are mapped

Texture coordinates and transforms

« Texture coordinatesaand texture coordinate
indexesspecify a texture piece shape (the
cookie cutter shape)

« Texture transformsranslate, rotate, and
scale the texture coordinates (placing the
cookie cutter)

262

Controlling how textures are mapped

Working through the texturing process

« Select piece with texture coordinates and
indexes
- Create a cookie cutter

« Transform the texture coordinates
« Position and orient the cookie cutter

. Bind the texture to a face
« Stamp out the texture and stick it on a
face

« The process ivery similarto creating faces!

263

Controlling how textures are mapped

Syntax: TextureCoordinate

o A TextureCoordinate node contains a list of
texture coordinates

TextureCoordinate {
point [0.2 0.2,0.80.2, . ..]

« Used as thaexcoord field value of
IndexedFaceSet OFr ElevationGrid nodes

264

Controlling how textures are mapped

Syntax: IndexedFaceSet

« An IndexedFaceSet geometry node creates
geometry out of faces
« Texture coordinatesand indexes- specify
texture pieces

IndexedFaceSet {
coord Coordinate { . . .}
coordindex [. . .]
texCoord TextureCoordinate { . . .
texCoordIndex [.. .]

}

—

265

Controlling how textures are mapped

Syntax: ElevationGrid

« AN ElevationGrid geometry node creates
terrains
« Texture coordinates specify texture
pieces
- Automatically generated texture
coordinate indexes

ElevationGrid {
height [.. .]
texCoord TextureCoordinate { . . .

}

—

266

Controlling how textures are mapped

Syntax: Appearance

« An Appearance nhode describes overall shape
appearance
« textureTransform- the transform

Appearance {
material Material { . . . }
textureTransform TextureTransform {

}

e A TextureTransform

267

Controlling how textures are mapped

Syntax: TextureTransform

coordinates
« translation - position
« rotation - orientation
« Scale- size

TextureTransform {

}

translation . . .
rotation
scale

node transforms texture

268

Controlling how textures are mapped

A sample using no transform

269

Controlling how textures are mapped

A sample using translation

O O
QO I

O Q"

P

270

Controlling how textures are mapped

A sample using rotation

%]8%

@@

271 272

Controlling how textures are mapped Controlling how textures are mapped

A sample using scale A sample using texture coordinates

[pizza.wrl]

273 274

Controlling how textures are mapped Controlling how textures are mapped

A sample using scale A sample using scale and rotation

brickb.wrl] [fence.wrl]

275

Controlling how textures are mapped

Summary

« Texture images are in a texture coordinate
system

« Texture coordinates and indexes describe a
texture piece shape

« Texture transforms translate, rotate, and
scale the texture coordinates

« Use one or both to fit texture to geometry
and desired appearance

276

277
Lighting your world

Motivation

Example

Using types of lights

Using common lighting features
Using common lighting features
Syntax: PointLight

Syntax: DirectionalLight
Syntax: SpotLight

Syntax: SpotLight

Example

Summary

278
Lighting your world

Motivation

. By default, you have one light in the scene,
attached to your head

« For more realism, you can add multiple
lights
« Suns, light bulbs, candles
« Flashlights, spotlights, firelight

. Lights can be positioned, oriented, and
colored

« Lights do not cast shadows

279

Lighting your world
Example

280
Lighting your world

Using types of lights

- Theer are three types of VRML lights
« Point lights - radiate in all directions
from a point

« Directional lights - aim in one direction
from infinitely far away

« Spot lights- aim in one direction from a
point, radiating in a cone

281
Lighting your world

Using common lighting features

« All lights have several common fields:
o on - turn it on or off
o intensity - control brightness
e ambientintensity - control ambient effect

e color

- select color

Using

282
Lighting your world

common lighting features

« Point lights and spot lights also have:

e location

- position

e radius - maximum lighting distance

e attenuation

- drop off with distance

« Directional lights and spot lights also have

e direction

- aim direction

283
Lighting your world

Syntax: PointLight

o A PointLight node illuminates radially from
a point

PointLight {
location 0.0 0.0 O.
intensity 1.0
color1.01.01.0

}

284
Lighting your world

Syntax: DirectionalLight

o A DirectionalLight node illuminates in one
direction from infinitely far away

DirectionalLight {
direction 1.00.00
intensity 1.0
color1.01.01.0

}

285
Lighting your world

Syntax: SpotLight

o A spotLight node illuminates from a point,
In one direction, within a cone

SpotLight {
location 0.00.00
direction 1.0 0.0 0
intensity 1.0
color1.01.01.0

286
Lighting your world

Syntax: SpotLight

« The maximum width of a spot light's cone is
controlled by the cutoffangle field

« An inner cone region with constant
brightness is controlled by thebeamwidth
field

SpotLight {

cutOffAngle 0.785
beamWidth 1.571
}

287
Lighting your world

Example

[temple.wrl]

288
Lighting your world

Summary

« There are three types of lights: point,
directional, and spot

« All lights have an on/off, intensity, ambient
effect, and color

« Point and spot lights have a location, radius,
and attenuation

« Directional and spot lights have a direction

289 290
Adding backgrounds Adding backgrounds

Motivation

Motivation

Using the background components

« Shapes form theforeground of your scene

Using the background components

Syntax: Background

« YOu can add abackgroundto provide

A sample background

context
Syntax: Background
A sample background image . Backgrounds describe:
A sample background « Sky and ground colors
Summary « Panorama images of mountains, cities,
etc

« Backgrounds are faster to draw than if you
used shapes to build them

201
Adding backgrounds

Using the background components

« A background creates three special shapes:

« A sky sphere

« A ground spheranside the sky sphere

« A panorama boxnside the ground
sphere

« The sky and ground spheres are shaded
with a color gradient

- The panorama box is texture mapped with
Six images

292
Adding backgrounds

Using the background components

« Transparent parts of the ground sphere
reveal the sky sphere

« Transparent parts of the panorama box
reveal the ground and sky spheres

« The viewer can look up, down, and
side-to-side to see different parts of the
background

« The viewer can never get closer to the
background

293
Adding backgrounds

Syntax: Background

« A Background node describes background

colors
« ground

colorsand angles- ground

gradation
« Sky colorsand angles- sky gradation

e MOre . .

Background {

groundColor [0.00.20.7, .. .]
groundAngle [1.309, 1.571]

skyColor
skyAngle

[0.10.10.0,...]
[1.309, 1.571]

294
Adding backgrounds
A sample background

[back.wrl]

295 296

Adding backgrounds Adding backgrounds
Syntax: Background A sample background image
o A Background Nnode describes background
Images —
o frontUrl - texture image URL for box
[J etC P

Background {

frontUrl "mountns.png”
backUrl "mountns.png"
leftUrl "mountns.png"
rightUrl "mountns.png"
topUrl “clouds.png"

bottomUrl "ground.png"

297
Adding backgrounds
A sample background

[back2.wrl]

298
Adding backgrounds
Summary

« Backgrounds describe:
« Ground and sky color gradients on
ground and sky spheres

- Panorama images on a panorama box

« The viewer can look around, but never get
closer to the background

299
Adding fog

Motivation

Examples

Using fog visibility controls
Selecting a fog color
Syntax: Fog

Several fog samples

Summary

300
Adding fog
Motivation

« Fog increases realism:
- Add fog outside to create hazy worlds
- Add fog inside to create dark dungeons
« Use fog to set a mood

« The further the viewer can see, the more
you have to model and draw

« TO reduce development time and drawing
time, limit the viewer’s sight by using fog

301
Adding fog
Examples

[fog2.wrl]

[fog4d.wrl]

302
Adding fog
Using fog visibility controls

« The fog typeselects linear or exponential
visibility reduction with distance
. Linear is easier to control
« Exponential is more realistic and
"thicker"

« The visibility rangeselects the distance
where the fog reaches maximum thickness
« Fog is "clear" at the viewer, and
gradually reduces visibility

303
Adding fog
Selecting a fog color

- Fog has afog color
« White is typical, but black, red, etc. also
possible

- Shapesare faded to the fog color with
distance

« The background is unaffected
« For the best effect, make the background
the fog color

304
Adding fog

Syntax: Fog

« A Fog node creates colored fog
« color - fog color

« type- fog type
« visibility range- maximum visibility limit

Fog {
color1.01.01.0

fogType "LINEAR"
visibilityRange 0.0
}

305
Adding fog
Several fog samples

[fogl.wrl] [fog2.wrl]

[fog3.wrl]

306
Adding fog
Summary

« Fog has a color, a type, and a visibility
range

« Fog can be used to set a mood, even indoors

« Fog limits the viewer’s sight:
« Reduces the amount of the world you
have to build
« Reduces the amount of the world that
must be drawn

307
Adding sound

Motivation

Creating sounds

Syntax: AudioClip

Syntax: MovieTexture

Selecting sound source types

Syntax: Sound

Syntax: Sound

Syntax: Sound

Setting the sound range

Creating triggered sounds

A sample using triggered sound

A sample using triggered sound

Creating continuous localized sounds
Creating continuous background sounds

A sample using continuous localized sound
A sample using continuous localized sound

Summary

308
Adding sound

Motivation

« Sounds can be triggered by viewer actions
« Clicks, horn honks, door latch noises

« Sounds can be continuous in the
background
« Wind, crowd noises, elevator music

« Sounds emit from a location, in a direction,
within an area

309
Adding sound
Creating sounds

« Sounds have two components
« A sound sourceroviding a sound signal
« Like a stereo component

« A sound emitterconverts a signal to
virtual sound
« Like a stereo speaker

310
Adding sound

Syntax: AudioClip

« An AudioClip node creates a digital sound

source
. url - a sound file URL
« pitch - playback speed
« playback controls, like aTimeSensor node

AudioClip {
url "myfile.wav"
pitch 1.0
startTime 0.0
stopTime 0.0
loop FALSE

311
Adding sound

Syntax: MovieTexture

o A MovieTexture N
source
« Url - a texture

ode creates a movie sound

movie file URL

 Speed playback speed
« playback controls, like aTimeSensor node

MovieTexture {
startTime 0.0
stopTime 0.0
loop FALSE
speed 1.0
url "movie.mpg"

312
Adding sound

Selecting sound source types

« Supported by theaudioClip node:
« WAV - digital sound files
« Good for sound effects

« MIDI - General MIDI musical
performance files

« MIDI files are good for background
music

« Supported by themovieTexture node:
« MPEG - movie file with sound
« Good for virtual TVs

313
Adding sound

Syntax: Sound

« A Sound node describes a sound emitter
e SOUrce- AudioClip Or MovieTexture hode
« location and direction - emitter placement
e More . ..

Sound {
source AudioClip{...}
location 0.0 0.0 0.0
direction 0.0 0.0 1.0

}

314

Adding sound

Syntax: Sound

« A sound node describes a sound emitter
« intensity - volume
- Spatialize- use spatialize processing
e priority - prioritize the sound

e MOre . ..

Sound {

ir{ténsity 1.0
spatialize TRUE
priority 0.0

315
Adding sound

Syntax: Sound

« A sound node describes a sound emitter
« Minimum and maximumrange - area in
which sound can be heard

Sound {

minFront 1.0
minBack 1.0
maxFront 10.0
maxBack 10.0

316
Adding sound

Setting the sound range

« The sound range fields specify twellipsoids
e minFront and minFront control an inner
ellipsoid
« maxFront and maxFront control an outer
ellipsoid

« Sound has a constant volume inside the
inner ellipsoid

« Sound drops to zero volume from the inner
to the outer ellipsoid

317
Adding sound

Creating triggered sounds

e AudioClip node:
e loop FALSE
o SetstartTime from a sensor node

e Sound node:
e spatialize TRUE
« minFront etc. with small values
e priority 1.0

318
Adding sound

A sample using triggered sound

Sound {
source DEF C4 AudioClip {
url "tonel.wav"
pitch 1.0

}

}
ROUTE Touch.touchTime

TO C4.set_startTime

319
Adding sound

A sample using triggered sound

[Kbd.wrl]

320
Adding sound

Creating continuous localized sounds

e AudioClip node:
e loop TRUE
e startTime 0.0 (default)
o stopTime 0.0 (default)

e Sound hode:
« spatialize TRUE (default)
« minFront etc. with medium values
e priority 0.0 (default)

321
Adding sound

Creating continuous background sounds

e AudioClip node:
e loop TRUE
e startTime 0.0 (default)
o stopTime 0.0 (default)

« Sound node:
« spatialize FALSE (default)
« minFront etc. with large values
e priority 0.0 (default)

322
Adding sound

A sample using continuous localized sound

Sound {
source AudioClip {
url "willowl.wav"
loop TRUE

}
}

323
Adding sound

A sample using continuous localized sound

[ambient.wrl]

324
Adding sound

Summary

« AN AudioClip node or aMovieTexture hode
describe a sound source
« A URL gives the sound file
« Looping, start time, and stop time
control playback

« A sound Nnode describes a sound emitter
« A source node provides the sound
« Range fields describe the sound volume

325 326
Controlling the viewpoint Controlling the viewpoint

Motivation

Motivation

Creating viewpoints

. By default, the viewer enters a world at (0.0,
0.0, 10.0)

Syntax: Viewpoint

Summary

« YOu can provide your own preferred view
points
« Select the entry point position
« Select favorite views for the viewer
« Name the views for a browser menu

327

Controlling the viewpoint

Creating viewpoints

« Viewpoints specify a desired location, an
orientation, and a camera field of view lens
angle

« Viewpoints can be transformed using a
Transform node

« The first viewpoint found in a file is the
entry point

328

Controlling the viewpoint

Syntax: Viewpoint

« A Viewpoint Nnode specifies a named viewing
location
« positionand orientation - viewing
location
. fieldOfView - camera lens angle
« description- description for viewpoint
menu

Viewpoint {
position 0.0 0.0 10.0
orientation 0.0 0.0 1.0 0.0
fieldOfView 0.785
description "Entry View"

}

329 330

Controlling the viewpoint

Summary

« Specify favorite viewpoints inviewpoint
nodes

« The first viewpoint in the file is the entry
viewpoint

331 332

Controlling navigation Controlling navigation

Motivation

Motivation

Selecting navigation types

« Different types of worlds require different
styles of navigation
« Walk through a dungeon
« Fly through a cloud world
Summary « Examine shapes in a CAD application

Specifying avatars
Controlling the headlight

Syntax: NavigationInfo

« You can select the navigation type

« YOou can describe the size and speed of the
viewer’'s avatar

333

Controlling navigation

Selecting navigation types

« There are five standard navigation
keywords:
« WALK- walk, pulled down by gravity
« FLY - fly, unaffected by gravity
« EXAMINE- examine an object at "arms
length"
« NONE- N0 navigation, movement
controlled by world not viewer!
« ANY - allows user to change navigation

type

« Some browsers support additional
navigation types

334

Controlling navigation

Specifying avatars

« Avatar size (width, height, step height) and
speed can be specified

335

Controlling navigation

Controlling the headlight

« By default, aheadlightis placed on the
avatar's head and aimed in the head
direction

« You can turn this headlight on and off
« Most browsers provide a menu option to
control the headlight
« You can also control the headlight with
the Navigationinfo node

336

Controlling navigation

Syntax: NavigationInfo

A Navigationinfo node selects the
navigation type and avatar characteristics
« type- navigation style
 avatarSizeand speed avatar
characteristics
« headlight- headlight on or off

Navigationinfo {
type ["WALK", "ANY"]
avatarSize [0.25, 1.6, 0.75]
speed 1.0
headlight TRUE

}

337

Controlling navigation

Summary

- The navigation type specifies how a viewer
can move in a world
- walk, fly, examine, or none

« The avatar overall size and speed specify
the viewer’s avatar characteristics

338

339
Sensing the viewer

Motivation

Sensing the viewer

Using visibility and proximity sensors
Syntax: ProximitySensor

Syntax: ProximitySensor

Syntax: VisibilitySensor

A sample use of a proximity sensor
Detecting viewer-shape collision
Creating collision groups

Syntax: Collision

A sample use of a collision group
Optimizing collision detection
Using multiple sensors

Summary

Summary

Summary

340

Sensing the viewer

Motivation

« Sensing the viewer enables you to trigger
animations
« When a region is visible to the viewer
« when the viewer is within a region
« when the viewer collides with a shape

« The LobDandBilboard nodes are
special-purpose viewer sensors with built-in
responses

341

Sensing the viewer

Sensing the viewer

« There are three types of viewer sensors:

o A VisibilitySensor node senses if the
viewer can see a region

« A ProximitySensor node senses if the
viewer is within a region

« A collision node senses if the viewer has
collided with shapes

342

Sensing the viewer

Using visibility and proximity sensors

e VisibilitySensor and ProximitySensor ~ hodes

sense a box-shaped region
« Center - region center

« Size - region dimensions

« Both nodes have similar outputs:
« enterTime - Sends time on visible or
region entry
e exitTime - Sends time on not visible or
region exit
o isActive - Sends true on entry, false on
exit

343

Sensing the viewer

Syntax: ProximitySensor

A ProximitySensor node senses if the viewer
enters or leaves a region
« centerand size- the region’s location and
size
. enterTimeand exitTime- sends time on
entry/exit
« iSActive- sends true/false on entry/exit
e More . ..

DEF DoorSense ProximitySensor {
center 0.0 1.75 0.0
size 6.03.58.0

}
ROUTE DoorSense.enterTime
TO OpenSound.set_startTime

344

Sensing the viewer

Syntax: ProximitySensor

« A ProximitySensor ~ node senses the viewer
while in a region
« positionand orientation - sends position
and orientation while viewer is in the
region

DEF DoorSense ProximitySensor {

ROUTE DoorSense.position_changed
TO PetRobotFollower.set_translation

345

Sensing the viewer

Syntax: VisibilitySensor

o A VisibilitySensor node senses if the viewer
can see a region
« centerand size- the region’s location and
Size
- enterTimeand exitTime - sends time on
entry/exit
« iSActive- sends true/false on entry/exit

DEF DoorSense VisibilitySensor {
center 0.0 1.75 0.0
size3.0251.0

}
ROUTE DoorSense.enterTime
TO OpenSound.set_startTime

346

Sensing the viewer

A sample use of a proximity sensor

[prox1.wrl]

347

Sensing the viewer

Detecting viewer-shape collision

« A Collision grouping node senses shapes
within the group
« Detects if the viewer collides with any
shape in the group
« Automatically stops the viewer from
going through the shape

« Collision occurs when the viewer’s avatar
gets close to a shape
« Collision distance is controlled by the
avatar size in theNavigationinfo node

348

Sensing the viewer

Creating collision groups

« Collision checking isexpensiveso, check for
collision with a proxy shape instead
« Proxy shapes are typically extremely
simplified versions of the actual shapes
« Proxy shapes are never drawn

« A collision group with a proxy shape, but no
children, creates an invisible collidable
shape

« Windows and invisible railings
« Invisible world limits

349

Sensing the viewer

Syntax: Collision

« A Collision grouping node senses if the
viewer collides with group shapes
« collide - enable/disable sensor
« children - children to sense
« proxy - simple shape to sense instead of
children

DEF DoorCollide Collision {

proxy . . .
children|...]

}
ROUTE DoorCollide.collideTime
TO OpenSound.set_startTime

350

Sensing the viewer

A sample use of a collision group

[collidel.wrl]

351 352

Sensing the viewer Sensing the viewer

Optimizing collision detection Using multiple sensors
« Collision is on by default « Any number of sensors can sense at the
« Turn it off whenever possible! same time
« YOou can have multiple visibility,
« However, once a parent turns off collision, a proximity, and collision sensors

child can’t turn it back on!

« Sensor areas can overlap

« Collision results from viewer colliding with
a shape, but not from a shape colliding with o If multiple sensors should trigger, they
a viewer do

353

Sensing the viewer

Summary

o A VisibilitySensor node checks if a region
IS visible to the viewer
- The region is described by a center and a
size

« Time is sent on entry and exit of visibility

« True/false is sent on entry and exit of
visibility

354

Sensing the viewer

Summary

A ProximitySensor node checks if the viewer
Is within a region
- The region is described by a center and a
size

« Time is sent on viewer entry and exit

« True/false is sent on viewer entry and
exit

« Position and orientation of the viewer is
sent while within the sensed region

355

Sensing the viewer

Summary

« A Collision grouping node checks if the
viewer has run into a shape
« The shapes are defined by the group’s
children or a proxy

« Collision time is sent on contact

356

357 358

Summary examples
Summary examples

A doorway A doorway

A mysterious temple

o A set OfimageTexture Nodes add marble
textures

« Lighting nodes create dramatic lighting

« A Fog node fades distant shapes

A ProximitySensor ~ nhode controls animation

[doorway.wrl]

359 360

Summary examples

A mysterious temple

« A Background node creates a sky gradient

« A sound node creates a spatialized sound
effect

« A set ofviewpoint nodes provide standard
views

[temple.wrl]

361
Controlling detail

Motivation

Example

Creating multiple shape versions
Controlling level of detall
Choosing detail ranges

Syntax: LOD

Optimizing a shape

A sample of detail versions

A sample LOD

A sample LOD

Summary

362

Controlling detalil

Motivation

« The further the viewer can see, the more
there is to draw

. If a shape is distant:
« The shape is smaller
« The viewer can’t see as much detalil
« SO... draw it with less detall

. Varying detail with distance reduces
upfront download time, and increases
drawing speed

363
Controlling detail

Example

[prox1.wrl]

364
Controlling detail

Creating multiple shape versions

« To control detail, model thesame shape
several times
« high detail for when the viewer is close
up
« medium detail for when the viewer is
nearish
« low detail for when the viewer is distant

« Usually, two or three different versions is
enough, but you can have as many as you
want

365

Controlling detalil

Controlling level of detail

« Group the shape versions akvelsin an Lob
grouping node
« LOD is short for Level of Detail
o List them from highest to lowest detail

« Give the entire group acenterpoint

366
Controlling detalil

Choosing detail ranges

« Use a list of ranges for version switch points
o If you have 3 versions, you need 2 ranges
« Ranges arehints to the browser

range [7.5, 12.0]
viewer < 7.5 1st child used
7.5 <=viewer < 12.02nd child used
12.0 < viewer 3rd child used

367

Controlling detail

Syntax: LOD

« An LoDgrouping node creates a group of
shapes describing different versions of the

same shape

« center- the center of the shape
. range- a list of version switch ranges
. level- a list of shape versions

LOD {
center 0.0 0.0 0.0
range [...]
level [...]

}

368

Controlling detalil

Optimizing a shape

« Suggested procedure to make different
versions:
« Make the high detail shape first
« Copy it to make a medium detail version
« Move the medium detail shape to a
desired switch distance
« Delete parts that aren’t dominant
« Repeat for a low detail version

« Lower detail versions should use simpler
geometry, fewer textures, and no text

369

Controlling detail

A sample of detail versions

[torches3.wrl]

370

Controlling detalil

A sample LOD

LOD {
center 0.0 0.0 0.0
range [7.5, 12.0]
level [
Inline { url "torchl.wrl" }
Inline { url "torch2.wrl" }
Inline { url "torch3.wrl" }

]
}

371

Controlling detail

A sample LOD

[torches.wrl]

372

Controlling detalil

Summary

« Increase performance by making multiple
versions of shapes
« High detail for close up viewing
« Lower detail for more distant viewing

« Group the versions in anLobnode
« Ordered from high detail to low detail
« Ranges to select switching distances

373
Introducing script use

Motivation

Syntax: Script

Defining the program script interface
A sample using a program script

A sample using a program script

Summary

374

Introducing script use

Motivation

« Many actions are too complex for
animation nodes
« Computed animation paths (eg. gravity)
« Algorithmic shapes (eg. fractals)
« Collaborative environments (eg. games)

« YOU can create new sensors, interpolators,
etc., using program scripts written in
« Java- powerful general-purpose
language
« JavaScript- easy-to-learn language
« VRMLscript - same as JavaScript

375

Introducing script use

Syntax: Script

« A Script node selects a program script to
run:
o url - choice of program script

DEF MyScript Script {

url "myscript.class”
or...

url "myscript.js”
or...

url "javascript: ..."
or...

url "vrmlscript: ..."

}

376

Introducing script use

Defining the program script interface

« A script node also declares the program
script interface

« fields and events- ins and outs
« Each has a name and data type
« Fields have an initial value

DEF Bouncer Script {

}

field SFFloat bounceHeight 3.0
eventln SFFloat set_fraction
eventOut SFVec3f value_changed

377
Introducing script use

A sample using a program script

DEF Bouncer Script{ ... }

ROUTE Clock.fraction_changed
TO Bouncer.set_fraction

ROUTE Bouncer.value_changed
TO Ball.set_translation

378
Introducing script use

A sample using a program script

. e e
e S S = =S)

= g

[bouncel.wrl]

379

Introducing script use

Summary

« The script node selects a program script,
specified by a URL

« Program scripts have field and event
interface declarations, each with
. A data type
« A name
« An initial value (fields only)

380

381
Writing program scripts with JavaScript

Motivation

Declaring a program script interface
Initializing a program script
Shutting down a program script
Responding to events
Processing events in JavaScript
Accessing fields from JavaScript
Accessing eventOuts from JavaScript
A sample JavaScript script

A sample JavaScript script

A sample JavaScript script

A sample JavaScript script

A sample JavaScript script

A sample JavaScript script

A sample JavaScript script

A sample JavaScript script
Building user interfaces

Building a toggle switch

Using a toggle switch

Using a toggle switch

Building a color selector

Using a color selector

Using a color selector

Summary

382

Writing program scripts with JavaScript

Motivation

« A program script implements the Script
node using values from the interface
« The script responds to inputs and sends
outputs

« A program script can be written in Java,
JavaScript and other languages
« JavaScript is easier to program
. Java is more powerful

383

Writing program scripts with JavaScript

Declaring a program script interface

 For a JavaScript program script, typically
give the script in thescript node’surl field

DEF Bouncer Script {
field SFFloat bounceHeight 3.0
eventln SFFloat set_fraction
eventOut SFVec3f value_changed
url "javascript: . . ."

}

384

Writing program scripts with JavaScript

Initializing a program script

 The optionalinitialize function is called
when the script is loaded

function initialize () {
}

. Initialization occurs when:
« the script node is created (typically when
the browser loads the world)

385

Writing program scripts with JavaScript

Shutting down a program script

« The optional shutdown function is called
when the script is unloaded

function shutdown () {

-

« Shutdown occurs when:
« the script node is deleted
« the browser loads a new world

386
Writing program scripts with JavaScript

Responding to events

« An eventln functionmust be declared for
each eventin

- The eventln function is called each time an
event is received, passing the event’'s
. value
. time stamp

function set_fraction(value, timestamp)

-

387

Writing program scripts with JavaScript

Processing events in JavaScript

o If multiple events arrive at once, then
multiple eventin functions are called

« The optional eventsProcessed ~ function is
called after all (or some) eventln functions

have been called

function eventsProcessed () {

-

388 389

Writing program scripts with JavaScript Writing program scripts with JavaScript
Accessing fields from JavaScript Accessing eventOuts from JavaScript
« Each interface field is a JavaScript variable - Each interface eventOut is a JavaScript
« Read a variable to access the field value variable
« Write a variable to change the field value - Read a variable to access the last
eventOut value
lastval = bounceHeight, ~ # get field « Write a variable to send an event on the

bounceHeight = newval; # set field
eventOut

lastval = value_changed[0]; # get last ev
value_changed[0] = newval; # send new ev

390

Writing program scripts with JavaScript

A sample JavaScript script

. Create aBouncing ball interpolatorthat
computes a gravity-like vertical bouncing
motion from a fractional time input

« Fields needed:
« Bounce height

DEF Bouncer Script {
field SFFloat bounceHeight 3.0

391

Writing program scripts with JavaScript

A sample JavaScript script

« Inputs and outputs needed:
« Fractional time input
« Position value output

DEF Bouncer Script {

é;/'entln SFFloat set_fraction
eventOut SFVec3f value_changed

392

Writing program scripts with JavaScript

A sample JavaScript script

« Initialization and shutdown actions needed:

« None - all work done in eventln function

393

Writing program scripts with JavaScript

A sample JavaScript script

- Event processing actions needed:
e set_fraction eventln function
« NO need foreventsProcessed function

DEF Bouncer Script {

url "javascript:

function set_fraction(frac, tm)

-

394

Writing program scripts with JavaScript

A sample JavaScript script

« Calculations needed:
« Compute new ball position
« Send new position event

- Use a ball position equation roughly based
upon Physics
« See comments in the VRML file for the
derivation of the equation

395

Writing program scripts with JavaScript

A sample JavaScript script

function set_fraction(frac, tm) {
y = 4.0 * bounceHeight * frac * (1.0 -
value_changed[0] = 0.0;
value_changed[1] = y;
value_changed[2] = 0.0;

}

396

Writing program scripts with JavaScript

A sample JavaScript script

« Routes needed:

« Clock into script’s set_fraction
o SCript’s value_changed into transform

ROUTE Clock.fraction_changed
TO Bouncer.set_fraction

ROUTE Bouncer.value_changed

TO Ball.set_translation

397

Writing program scripts with JavaScript

A sample JavaScript script

s = = -
e e = = -l

[bouncel.wrl]

398

Writing program scripts with JavaScript

Building user interfaces

« Program scripts can be used to help create
3D user interface widgets

« Toggle buttons

- Radio buttons

« Rotary dials

« Scrollbars

o Text prompts

« Debug message text

399

Writing program scripts with JavaScript

Building a toggle switch

« A toggle switch script turns on at the first

touch, and off at the second
o A TouchSensor node can supply the touch
events

DEF Toggle Script {
field SFBool on TRUE
eventin SFTime set_active
eventOut SFBool on_changed
url "vrmiscript:
function set_active(b, tm) {
if (b == FALSE) return;
if (on == TRUE) on = FALSE;
else on = TRUE;
on_changed = on;

y

400

Writing program scripts with JavaScript

Using a toggle switch

« Use the toggle switch to make a lamp turn
on and off
« Use aTouchSensor node to sense a switch
shape

« Route the sensor node’sActive
eventOut into the script node’s
set_active eventin

« Route the script node’son_changed
eventOut into the light node’sset_on
eventin

401

Writing program scripts with JavaScript

Using a toggle switch

————

[IampZa.er]

402

Writing program scripts with JavaScript

Building a color selector

« The lamp in the previous example turns on
and off, but the light bulb doesn’t change
color!

« A color selector script sends amn color on
a TRUEInput, and an off color on aFALSE
input

DEF ColorSelector Script {
field SFColor onColor 1.01.01.0
field SFColor offColor 0.0 0.0 0.0
eventln SFBool set_selection
eventOut SFColor color_changed
url "vrmlscript:
function set_selection(b, tm) {
if (b == TRUE) color_changed
else color_changed

y

403

Writing program scripts with JavaScript

Using a color selector

« Use the color selector to change the lamp
bulb color
« Route the toggle script node’sn_changed
eventOut into the selector script node’s
set_selection eventln

« Route the selector script node’s
color_changed eventOut into the bulb
Material NOde’Sset_emissiveColor
eventin

404

Writing program scripts with JavaScript

Using a color selector

——

[Iambz.wrl]

405

Writing program scripts with JavaScript

Summary

o The initialize and shutdown functions are
called at load and unload

« An eventln function is called when an event
IS received

« The eventsProcessed ~ function is called after
all (or some) events have been received

« Functions can get field values and send
event outputs

406

407 408

Writing program scripts with Java Writing program scripts with Java

Motivation

Motivation

Declaring a program script interface

« Compared to JavaScript, Java enables:
« Better modularity
« Better data structures
« Potential for faster execution
« Access to the network

Creating the Java class
Initializing a program script
Shutting down a program script
Responding to events

Processing events in Java

Accessing flelds from Java « For simple tasks, use JavaScript
Accessing eventOuts from Java o For CompleX taSkS use Java

A sample Java script
A sample Java script
A sample Java script
A sample Java script
A sample Java script
A sample Java script
A sample Java script
A sample Java script
A sample Java script
A sample Java script

Summary

409

Writing program scripts with Java

Declaring a program script interface

« For a Java program script, give the class
file in the script node’surl field
« A class file is a compiled Java program
script

DEF Bouncer Script {
field SFFloat bounceHeight 3.0
eventin SFFloat set_fraction
eventOut SFVec3f value_changed
url "bounce?2.class"

410

Writing program scripts with Java

Creating the Java class

« The program script file must import the
VRML packages:

import vrml.*;
import vrml.field.*;
import vrml.node.*;

« The program script must define a public
class that extends thecript class

public class bounce2
extends Script

{
.

411

Writing program scripts with Java

Initializing a program script

 The optionalinitialize method is called
when the script is loaded
public void initialize () {

-

. Initialization occurs when:
« the script node is created (typically when
the browser loads the world)

412

Writing program scripts with Java

Shutting down a program script

« The optional shutdown method is called
when the script is unloaded

public void shutdown () {
}

« Shutdown occurs when:
« the script node is deleted
« the browser loads a new world

413

Writing program scripts with Java

Responding to events

« The processEvent method is called each time
an event is received, passing avent object
containing the event’s

- value
. time stamp

public void processEvent(Event event) {

-

414

Writing program scripts with Java

Processing events in Java

o If multiple events arrive at once, then the
processEvent method is called multiple times

« The optional eventsProcessed method is
called after all (or some) events have been
handled

public void eventsProcessed () {

-

415

Writing program scripts with Java

Accessing fields from Java

« Each interface field can be read and written
o Call getField to get a field object

obj = (SFFloat) getField("bounceHei g
o Call getvalue to get a field value

lastval = obj.getValue();
. Call setvalue to set a field value

obj.setValue(newval);

416

Writing program scripts with Java

Accessing eventOuts from Java

« Each interface eventOut can be read and
written
o Call getEventout to get an eventOut
object

obj = (SFVec3f) getEventOut("value _
« Call getvalue to get the last event sent
lastval = obj.getValue();

o Call setvalue to send an event

obj.setValue(newval);

417

Writing program scripts with Java

A sample Java script

. Create aBouncing ball interpolatorthat
computes a gravity-like vertical bouncing
motion from a fractional time input

. Give it the same interface as the JavaScript

example

DEF Bouncer Script {

field SFFloat bounceHeight 3.0
eventln SFFloat set_fraction
eventOut SFVec3f value_changed

url "bounce2.class"

418

Writing program scripts with Java

A sample Java script

« Imports and class definition needed:

import vrml.*;
import vrml.field.*;
import vrml.node.*;

public class bounce2
extends Script

{
.

419

Writing program scripts with Java

A sample Java script

« Class variables needed:
« One for the bounceHeight field
o One for thevalue changed eventOut
object

private float bounceHeight;
private SFVec3f value_changedObj;

420

Writing program scripts with Java

A sample Java script

« Initialization actions needed:
« Get the value of thevounceHeight field
« Get thevalue_changedobj eventOut object

public void initialize()

SFFloat obj = (SFFloat) getField("bo
bounceHeight = (float) obj.getValue(
value_changedObj = (SFVec3f) getEventO

}

421

Writing program scripts with Java

A sample Java script

« Shutdown actions needed:
« None - all work done inprocessEvent
method

422

Writing program scripts with Java

A sample Java script

- Event processing actions needed:

e processEvent event method
« NO need foreventsProcessed method

public void processEvent(Event event)

{

-

423

Writing program scripts with Java

A sample Java script

« Calculations needed:
« Compute new ball position
« Send new position event

424

Writing program scripts with Java

A sample Java script

public void processEvent(Event event)

{

ConstSFFloat flt = (ConstSFFloat) even
float frac = (float) flt.getValu

float y = (float)(4.0 * bounceHeight *

float[] changed = new float[3];
changed[0] = (float)0.0;

changed[1] =y;

changed|2] = (float)0.0;
value_changedObij.setValue(changed);

425

Writing program scripts with Java

A sample Java script

« Routes needed:
« Clock into script’s set_fraction
o SCript’s value_changed into transform

ROUTE Clock.fraction_changed
TO Bouncer.set_fraction

ROUTE Bouncer.value_changed
TO Ball.set_translation

;w_-;"' e T =

426

Writing program scripts with Java

A sample Java script

— —

[bounce2.wrl]

427

Writing program scripts with Java

Summary

o The initialize and shutdown methods are
called at load and unload

o The processEvent method is called when an
event is received

« The eventsProcessed ~method is called after
all (or some) events have been received

« Methods can get field values and send event
outputs

428

429
Creating new node types

Motivation

Syntax: PROTO

Defining prototype bodies
Syntax: IS

Using IS

Using prototyped nodes
Controlling usage rules
Controlling usage rules
A sample prototype use
A sample prototype use
A sample prototype use
A sample prototype use
A sample prototype use
Changing a prototype

A sample prototype use
Syntax: EXTERNPROTO

Summary

430

Creating new node types

Motivation

« YOU can create new node types that
encapsulate:
« Shapes
« Sensors
« Interpolators
o Scripts
. anything else . . .

« This creates high-level nodes
« Robots, menus, new shapes, etc.

431

Creating new node types

Syntax: PROTO

« A PROTOStatement declares a new node type
- Name- the new node type name
. fields and events- interface to the

prototype

PROTO BouncingBall [
field SFFloat bounceHeight 1.0
field SFTime cyclelnterval 1.0

{..

-}

432

Creating new node types

Defining prototype bodies

« PROTOdEfINES:
« body- nodes and routes for the new node

type

PROTO BouncingBall [...]{

}

Transform {
children|[...]

}
ROUTE. ..

433

Creating new node types

Syntax: IS

« The I1s syntax connects a prototype
interface field, eventln, or eventOut to the
body

PROTO BouncingBall [
field SFFloat bounceHeight 1.0
field SFTime cycleinterval 1.0

I

DEF Clock TimeSensor {
cyclelnterval IS cyclelnterval

434

Creating new node types

Using IS
May Is to. ..

Exposed
Interface |Fields| fields |[Eventins|EventOL
Fields yes yes no no
E_xposed no yes no no
fields
Eventins no yes yes no
EventOuts| no yes no yes

Creating new node types

Using prototyped nodes

« The new node type can be used like any

other type

BouncingBall {
bounceHeight 3.0
cyclelnterval 2.0

}

435

436

Creating new node types

Controlling usage rules

« Recall that node use must be appropriate
for the context
« A shape node specifies shape, not color
« A Material node specifies color, not shape
« A Box node specifies geometry, not shape
or color

437

Creating new node types

Controlling usage rules

- The context for a new node type depends
upon the first node in theproTdbody

« For example, if the first node is ageometry
node
« The prototype creates a nevgeometry
nodetype

- The new node type can be used wherever
the first node of the prototype body can be
used

438

Creating new node types

A sample prototype use

- Create aBouncingBall node type that:
« Builds a beachball

« Creates an animation clock
« Using aproT1dield to select the cycle
interval
« Bounces the beachball

« Using the bouncing ball program
script

« Using aproTdield to select the bounce
height

439

Creating new node types

A sample prototype use

. Fields needed:
« Bounce height
« Cycle interval

PROTO BouncingBall [
field SFFloat bounceHeight 1.0
field SFTime cyclelnterval 1.0

1{..

-}

440

Creating new node types

A sample prototype use

« Inputs and outputs needed:
« None - aTimeSensor node is built in to the
new node

441

Creating new node types

A sample prototype use

- Body needed:
« A ball shape inside a transform

« An animation clock

« A bouncing ball program script
- Routes connecting it all together

PROTO BouncingBall [...]{
DEF Ball Transform {
children [
Shape{...}

}

DEF Clock TimeSensor{...}
DEF Bouncer Script{ ...}
ROUTE ...

442

Creating new node types

A sample prototype use

- = S

[bounce3.wrl]

443

Creating new node types

Changing a prototype

« If you change a prototype, all uses of that
prototype change as well
« Prototypes enable world modularity
. Large worlds make heavy use of
prototypes

« For the BouncingBall ~ prototype, adding a
shadow to the prototype makes all balls
have a shadow

444

Creating new node types

A sample prototype use

[bounce4.wrl]

445

Creating new node types

Syntax: EXTERNPROTO

- Prototypes are typically in a separate
externalfile

« An EXTERNPROTdECIares a new node type in
an external file
« Name fields, events- as frompPROTO
o url - the URL of the prototype file

EXTERNPROTO BouncingBall |
field SFFloat bounceHeight 1.0
field SFTime cyclelnterval 1.0

] "bounce.wrl#BouncingBall"

446

Creating new node types

Summary

« PROTOdEcClares a new node type and defines
its node body

« EXTERNPROTOECI|ares a new node type,
specified by URL

« The new node anywhere thdirst node in
the prototype body can be used

447 448

Providing information about your world Providing information about your world

Motivation Motivation

Syntax: WorldInfo . .
« After you've created a great world, sign it!

« YOu can provide a title and a description
embedded within the file

449

Providing information about your world

Syntax:

WorldInfo

« A worldinfo node provides title and
description information for your world
. title - the name for your world
« info - any additional information

WorldInfo {
title "My Masterpiece"

info ["Copyright (c) 1997 Me." |

450

451
Summary examples

An animated flame node

A torch node

452

Summary examples

An animated flame node

« A script node cycles between flame textures
« A PROTOENCapsulates the flame shape,
script, and routes into arlames node

[match.wrl]

453

Summary examples

A torch node

A Flame node creates animated flame

« An LoDNode selects among torches using the
flame

« A PROTOENCapsulates the torches into a
Torch nhode

[columns.wrl]

454

455 456

Miscellaneous extensions . .
Miscellaneous extensions

Extensions Extensions

Using the binary file format

- Several VRML extensions are in progress
« Binary file format
« External authoring interface
« Multi-user framework

Using the binary file format
Using the external authoring interface
Using the external authoring interface

Using the multi-user framework

457

Miscellaneous extensions

Using the binary file format

« The binary file format enables smaller files
for faster download

« The binary file format includes
« Binary representation of nodes and fields
« Support for prototypes
« Geometry compression

458

Miscellaneous extensions

Using the binary file format

« Most authoring will be done with world
builders that output binary VRML files
directly

- Hand-authored text VRML will be
compiled to the binary format

« Converters back to text VRML will become
available
« Comments will be lost by translation
« Worldinfo nodes will be retained

459

Miscellaneous extensions

Using the external authoring interface

« Program scripts in ascript node are
Internal
« Inside the world
« Connected by routes

« External program scripts can be written in
Java using theExternal Authoring Interface
(EAI)

« Outside the world, on an HTML page
« No need to use routes!

460

Miscellaneous extensions

Using the external authoring interface

« A typical Web page contains:
« HTML text
« An embedded/RML browser plug-in
« A Java applet

« The EAI enables the Java applet to "talk"
to the VRML browser

« The EAI is not part of the VRML standard
(yet), but it is widely supported
« Check your browser’s release notes for
EAI support

461

Miscellaneous extensions

Using the multi-user framework

« Several extensions are in progress to create
a framework for multi-user worlds
« Shared objects and spaces
« Piloted objects (like avatars)
« Common avatar descriptions

462

463 464

Conclusion)
Conclusion

Coverage

Coverage

Coverage

« This morning we covered:
« Building primitive shapes
« Building complex shapes
. Translating, rotating, and scaling shapes
« Controlling appearance
« Grouping shapes
« Animating transforms
« Interpolating values
« Sensing viewer actions

Where to find out more

Introduction to VRML 97

465

Conclusion

Coverage

. This afternoon we covered:
« Controlling texture
« Controlling shading
« Adding lights
« Adding backgrounds and fog
« Controlling detail
« Controlling viewing
« Adding sound
« Sensing the viewer
« Using and writing program scripts
« Building new node types

466

Conclusion

Where to find out more

« The VRML 2.0 specification
http://vag.vrml.org/VRML2.0/FINAL

« The VRML 97 specification
http://vrml.sgi.com/moving-worlds

« The VRML Repository
http://www.sdsc.edu/vrml

467

Conclusion

Introduction to VRML 97

Thanks for coming!

Introduction to VRML 97

NetscapeWorld article reprints

IDG’s NetscapeWorldon-line monthly magazine publishes articles on Web technologies and
trends, including articles on Web browsers, Web servers, development tools, push technologies,
HTML, Java, JavaScript, and VRML. In his regéRML Techniqueolumn, David R. Nadeau
writes about VRML world-building technique, market trends, and VRML technology news.

Included here are reprints of four introductdig ML Techniqueolumns published by

NetscapeWorld in December 1996 through March 1997. These articles provide detailed tutorials on
beginning VRML nodes, including those for creating predefined shapes, positioning, orienting, and
scaling shapes, creating animations, and sensing the viewer.

Additional VRML Technique columns, as well as other articles on Web technologies, are available
at NetscapeWorld magazine’s Web site:

http://www.netscapeworld.com

VRML Technique column reprints

Columns
See what VRML 2.0 is all about and start building shapes today
The first in a series, we introduce VRML'’s shape-building features to
create boxes, cylinders, cones, and spheres. (December 1996)

Building virtual structures
How to position, orient, and resize shapes in VRML 2.0. (January 1997)

Animating shapes
How to animate the position, orientation, and size of shapes in VRML
2.0. (February 1997)

Sensing the viewer’s touch
How to sense the viewer’s touch to start and stop animations in VRML
2.0. (March 1997)

Sidebars
How to view VRML 2.0
Finding and installing the right VRML browser for your computer

The UTF-8 character set
VRML 2.0’s international character set

VRML 2.0 glossary
The key terms you need to know to get started with VRML

| VRML Technique

See what VRML 2.0 is all about and start
building shapes today

The first in a series, we introduce VRML'’s shape-building features to create
boxes, cylinders, cones, and spheres

By David R. Nadeau

Summary

In August 1996, the members of the VRML community completed the eagerly-anticipated
specification foWRML 2.0. This latest version dramatically extends the popular 3-D content
language, updating it to enable faster drawing and introducing new features for interactioj
animation, scripting, sounds, and much more!

—J

Beginning with this issud\etscape Worldhtroduces a new monthly columviRML
TechnigueWritten for the beginning 3-D content author, each month’s column introduces|hew

VRML 2.0 features, explains their use and syntax, and provides tips and techniques for gfficient
and creative authoring.

language concepts (file header, nodes, fields, and values), and provides syntax and exa
VRML 2.0’s shape building primitives (box, cone, cylinder, and sphé&Q00 words)

This month’s VRML Technique column introduces the VRML 2.0 language, discusses ke’ﬂ;
ples for

Table of contents

Building VRML 2.0 worlds Specifying shape appearance

Using VRML 2.0 files The Appearance node type
The Material node type
Understanding VRML 2.0 syntax Table: Selected RGB colors
The VRML 2.0 file header Experimenting with VRML 2.0
Comments
Nodes Next in the VRML Technique column
Fields and field values
Table: Field data types for VRML 2.0 Resources

Eventins, eventOuts, fields, and exposed fields

About the author
Giving shape dimensions
Sidebar: VRML 2.0 browsers
Building shapes
Sidebar: The UTF-8 character set
The Shape node type

Specifying shape geometry

The Box node type
The Cone node type
The Cylinder node type
The Sphere node type

Building VRML 2.0 worlds

Version 2.0 of VRML, theVirtual Reality Modeling Languagés a rich text language for the
description of 3-D interactive virtual worlds. Like version 1.0, version 2.0 of VRML enables you
to build complex, realistic 3-D environments, complete with shiny materials, textured surfaces,
and multiple light sources. VRML 2.0’s new features enable you to make your worlds come alive
with embedded animations and sound tracks. VRML 2.0 worlds can sense the viewer’s touch,
position, and gaze direction, trigger sounds and animations on viewer proximity, fly the viewer on
a guided tour of the world, and even communicate with other applications and users on the
Internet.

You can author VRML 2.0 worlds using any text editor or word processor on PCs, Macintoshes,
and Unix systemd/Norld builderapplications, just now entering the market, enable you to author
VRML 2.0 worlds within an interactive 3-D drawing environment.

Once authored, you can view your worlds usingRML browser VRML browsers are available

as plug-ins to Netscape Navigator, add-ins to Microsoft Internet Explorer, or as stand-alone
helper-applications for any Web browser. Several VRML 2.0 browsers are available now for PCs
running Windows 95 or Windows NT, or for Silicon Graphics Unix workstations. Macintosh
VRML 2.0 browsers are expected within the next few months.

Note VRML 1.0 browsers, such as Netscape’s Live3D 1.0, cannot load and display
VRML 2.0 worlds. To view the VRML 2.0 worlds in this column you will need to
install a VRML 2.0 browser. See the sidebar on VRML 2.0 Browsers for information
on obtaining and installing VRML 2.0 browsers. Also see the VRML Vendors chart
for a list of VRML browsers and plug-ins.

Figure 1 shows a few sample worlds to try out. All of the sample worlds include animations only

possible with the advent of VRML 2.0. Click on any of the images to load the associated VRML
2.0 world into your VRML 2.0 browser. Beneath each image is a note giving the size of the world,
in bytes, and the expected download time using a 14.4 modem.

(a) Frames that slowly spin when touched, (b) Floating pads that form geometric patterns
creating an evolving 3-D spiral pattern as they endlessly slide back and forth
(10kbytes = 6 seconds) (6kbytes = 4 seconds)

. o -
4 & o

e 7/5. _/ I RS \ e
S e e
(c) Darkened monoliths that glow when touched (d) A dungeon hallway with wooden spikes that

(33kbytes = 23 seconds) slide out when you approach
(53kbytes = 37 seconds)

Figure 1. Sample VRML 2.0 worlds you can view with a VRML 2.0 browser.
Click on an image to load the world.

All four sample worlds have something to explore. In Figure 1a, click on the colored frames to
start them rotating in an evolving 3-D spiral pattern. In Figure 1b, fly through a world of floating
pads that slide back and forth in complex geometric patterns. In Figure 1c, click on any gray
monolith to start it glowing. In Figure 1d, run the gauntlet in a dungeon hallway, avoiding wooden
spikes that shoot out as you approach.

Viewing tip Once loaded into your VRML 2.0 browser, if these worlds run a little
slowly, try reducing the size of the browser window. A smaller window means there’s
less screen area for the browser to redraw each time something moves in the world.
This reduction in drawing area speeds up the browser and enables it to animate more
smoothly, or respond more quickly to user actions.

Note These sample worlds use advanced features of VRML 2.0 that may not be fully
supported yet by some VRML 2.0 browsers. Care has been taken to insure that the
worlds load in all VRML 2.0 browsers. Nevertheless, due to different levels of
support, the appearance, interactivity, and animation may be somewhat different from

browser to browser.

These sample worlds illustrate a few of the animation and interaction features available in VRML
2.0. In this month’s column I'll focus on the basics of shape building. In the months to come, I'll
return to these examples and explore how you can create animations and interactions, like these,
using VRML 2.0.

Using VRML 2.0 files

VRML 2.0 world files contain text instructions that describe how to build 3-D shapes, where to
put them, what color to make them, how to animate them, and more. By convention, VRML 2.0
files are named with awrl" file name extension (".wrl" is short for "world"). You can load

VRML 2.0 files from your hard disk or off the Web.

Figure 2 shows a simple VRML 2.0 file containing several VRML instructions.

#VRML V2.0 utf8
Build a cylinder shape
Shape {
appearance Appearance {
material Material {
diffuseColor 0.8 0.8 0.8

}

geometry Cylinder {
height 2.0
radius 1.0

Figure 2. A sample VRML 2.0 file

VRML 2.0 syntax is quite intuitive. Just from reading the words within the VRML file in Figure 2,
you can already guess that this file buildshepefrom AppearanceandCylinder descriptions.
TheCylinder description useleight andradius values to select the cylinder’s dimensions, and
the Appearancedescription useMlaterial anddiffuseColor values to control shape coloration.

When loaded by a VRML browser, the browser follows the VRML file’s instructions, then builds
and displays the virtual world. Using browser menus and buttons, users can move about within the
virtual world, view its shapes from any angle they chose, and interact with its animations. If the
virtual world contains music and sound effects instructions, the browser plays the sounds, varying
their volume and panning to create a 3-D sound experience to match the visuals.

Figure 3 shows three images generated by loading the cylindrical shape world whose VRML 2.0
instructions are shown in Figure 2. Figure 3a shows the world loaded into Netscape Navigator 3.0
using Intervista’s WorldView VRML 2.0 browser plug-in on a PC. Figure 3b shows the same
world loaded into Netscape Navigator 3.0 using Silicon Graphics’ Cosmo Player VRML 2.0
browser plug-in on a PC. Figure 3c shows the world loaded into Sony’s Community Place VRML
2.0 browser helper-application for Netscape Navigator 3.0. Sony also provides a Netscape
Navigator 3.0 plug-in with a similar user interface. (See the sidebar on VRML 2.0 Browsers for
information on obtaining and installing VRML 2.0 browsers. Also see the VRML Vendors chart

for a list of VRML browsers and plug-ins.)

ot Kistiagn - [l HAT LM Disiswssds 7% hapesi | Fogbenisn sil]

s Rt i - (1 ALy Draimwssds fShopei |ingbedes si]

B Ed Pew Go Becdwads [pees [weciay pfedes Hep Bl Edb Jew Go Bedwads [pees [owivg afedos Hel
==l @w|ES|w] e o 1o WL R o IR
] oot e 11T ¢ Dmrn 1 Mt Wi i) Lt vl _-:I |] L e /030y DocmarsMotacape W orkk Shages Lcyre vl -j

#le gler T MR infervisio
Eaml Panads Hove up dosn, bt and ngnt (=g S Hesale =
(a) Intervista’'s WorldView plug-in for Netscape (b) Silicon Graphics’ Cosmo Player plug-in for

Navigator 3.0 Netscape Navigator 3.0

(c) Sony’s Community Place helper-application for Netscape Navigator 3.0

Figure 3. The display after loading the VRML 2.0 file in Figure 2 into browsers from Intervista, Silicon
Graphics, and Sony.
Click on an image to load the world into your VRML 2.0 browser.

Understanding VRML 2.0 syntax
VRML 2.0 files contain these main syntactic elements:

® The VRML 2.0 file header
® Comments

® Nodes

® Fields and Field Values

The VRML 2.0 file header

The first line of every VRML 2.0 file must be tMRML 2.0 file headeVRML browsers are
case-sensitive, so the header must use upper- and lower-case characters exactly as shown in the
following syntax box.

Syntax: VRML 2.0 File Header

#VRML V2.0 utf8

The VRML file header is a single line indicating that the file is:

® A VRML file
® Compliant with version 2.0 of the VRML specification
® A file using the international UTF-8 character set (see the sidebar The UTF-8 character set)

Comments

A commentis an arbitrary note, copyright message, or other type of extra information included in
a VRML file. Comments begin with a number-sigi) &nd end with a line break. VRML browsers
skip past comments wherever they occur in a VRML 2.0 file.

Nodes

Nodesare the basic building-blocks of VRML 2.0 world-building instructions. A VRML 2.0 file
always has at least one node in it, and often contains hundreds or even thousands of nodes.
Individual nodes build shapes, control shape appearance, describe shape geometry, and so on.

Each node in a VRML file contains:

® The name of a type of node

® An opening curly-brace

® Zero or more fields and field values
® A closing curly-brace

A node’stypename indicates the kind of information contained within the node. VRML 2.0
supports over 50 built-in node types, plus the ability to define new node types. Some browser
vendors provide additional extension node types for added functionality. Typical node types
includeShapefor building a shapéAppearancefor describing the appearance of a shape,
Cylinder for describing the geometry of a shape, and so on.

VRML browsers are case-sensitive, ssfmpeandSHAPE are not the same &hape By

convention, all built-in node types in VRML 2.0 use an upper-case character at the beginning of
each word in the type name. For instargieape ElevationGrid, andindexedFaceSetre all

built-in node types in VRML 2.0. Authors of new node types and browser vendor extensions
should follow the same naming convention.

Indentation and curly-brace style is up to you. VRML 2.0 browsers ignore spaces, tabs,
carriage-returns, line-feeds, and commas.

Figure 4 shows a VRML file with the nodes highlighted. Each node type name is followed by an
open curly-brace, zero or more fields and their values, and then a matching closing curly-brace.

#VRML V2.0 utf8
Build a cylinder shape

Shape {
appearance Appearance {
material Material {

diffuseColor 0.8 0.8 0.8
}

}

geometry Cylinder {
height 2.0
radius 1.0

}

Figure 4. A VRML 2.0 file with the nodes highlighted

Fields and field values

Fieldsand theirfield valuesprovide parameters for a node. A node’s curly-braces group together
the field information associated with the node.

Each field in a node has a name followed by one or more values. Typical values include
floating-point numbers and text strings. Some fields even use nodes as field values.

Different node types have different fields available. Tyénder node type, for instance, has
radius andheight fields, while thed~ontStyle node type hagmily, style, andsizefields.

When a node type has multiple fields, you can provide them in any order within the curly-braces
of a node. If you give the same field more than once within the same node, then the last one
overrides any given earlier. If you omit a field, the node uses a default value for the field.

Figure 5 shows a VRML file with the fields highlighted. T®leapenode hasppearanceand
geometryfields. TheAppearancenode has anaterial field, and theMaterial node has a
diffuseColor field. TheCylinder node haseight andradius fields. Each field’s name is always
followed by a field value.

#VRML V2.0 utf8
Build a cylinder shape
Shape {
appearance Appearance {
material ~ Material {
diffuseColor 0.80.80.8
}

}
geometry Cylinder {

height 2.0
radius 1.0

Figure 5. A VRML 2.0 file with the fields highlighted

Each field expects one or more values of a spefiéld data typeA field data type describes the
kind of value a field expects. Tieight field of aCylinder node type, for instance, expects a
floating-point number giving the cylinder’s height. Tdi&useColor field of aMaterial node

type expects a numeric color description, and so forth.

Each field data type has a name, suc8RGolor or MFVec3f. Names starting with "SF" indicate
data types that hold a single value, such as a floating-point number or a numeric color description.
Names starting with "MF" indicate data types that hold multiple values, such as a 3-D coordinate

list. The values for multiple value fields must be enclosed within square-brackets when typed into
a VRML 2.0 file.

The table below summarizes the field data types available within VRML 2.0.

Field data types for VRML 2.0

Field type Description

SFBool A Boolean TRUE or FALSE value

SFColor A color specified by three floating-point values selecting the
MFColor amount of red, green, and blue to be mixed together to form a

desired color

SFFloat A floating-point value
MFFloat

SFimage An image described by a series of pixel color values

SFInt32 A 32-bit integer value
MFInt32

SFNode A VRML node value
MFNode

SFRotation A rotation specified by four floating-point values selecting a
MFRotation rotation axis and rotation angle

SFString A text string, surrounded by double-quotes

MFString

SFTime A time specified as a floating-point value, measured in
seconds

SFVec2f A 2-D vector consisting of a pair of floating-point values

MFVec2f

SFVec3f A 3-D vector consisting of a triple of floating-point values

MFVec3f

In this column, each time a new node type is introduced, a syntax box will be provided to show a
quick summary of a node type’s fields, field default values, and field data types. For example, the
following is a syntax box for VRML 2.0’€ylinder node type.

Syntax: Cylinder

Cylinder {
radius 1.0 # field SFFloat
height 2.0 # field SFFloat
bottom TRUE # field SFBool
top TRUE # field SFBool
side TRUE # field SFBool

}

TheCylinder node type’s syntax box indicates that the node type has five fiattigs, height,
bottom, top, andside Each field has a default value, sucH dsfor theradius field, andTRUE
for thetop field.

Each field line in the syntax box also indicates the field’s data type. For instance, the first two
fields of theCylinder node type expect single floating-point values, and the last three expect
single Boolean values.

Eventlns, eventOuts, fields, and exposed fields

VRML 2.0 provides nodes for building shapes, creating lights, placing sounds, and more. To make
a virtual world come alive, you can connect nodes together, wiring them iataraation circuit

Each connected node in the circuit acts like an electronic component with its own input and output
connection points. By wiring the output of one node into the input of another, you can establish a
route along which can flow data values,ewents

For example, to make a light blink you can wire the on/off switch input of a lighting node to a
node that outputs on/off events. Each time an "on" event flows along the route to the light, the
light turns on. Each time an "off" event flows along the route, the light turns off. You can
construct similar circuits to make shapes move, rotate, change color, and so on.

An eventlnis an input connection point for a node. &rentOuis an output connection point.
Like fields, eventins and eventOuts have names and data types. Different node types have
different eventins and eventOuts available. $petLight node type, for instance, haset_on
eventln for turning the light on and off. TResitioninterpolator node type hasalue changed
eventOut that outputs positions you can use to animation the position of a shape.

An exposed fields a special type of field that combines together a standard field, an eventin to set
that field, and an eventOut that outputs the field value each time the field is seh &mosed

field of aSpotLight node type, for example, has an implgst_oneventin and an implicit
on_changedeventOut.

Animation circuits, exposed fields, eventins, and eventOuts will be discussed in greater depth in
future columns. To enable this month’s column to be used later as a syntax reference, the syntax
box for each node type discussed below indicates fields, exposed fields, eventins, and eventOuts.

Giving shape dimensions

Many node types include fields for setting the dimensions of a shap€&ylihder node type, for
instance, hakeight andradius fields to specify the height of the cylinder, and its radius. By
convention, these dimensions should be given in meters. The default valueCylirtder node
type, for instance, create a cylinder 2.0 meters tall with a 1.0 meter radius.

For some worlds, using meters is awkward or inappropriate. A world depicting a model of a
molecule, for instance, may measure dimensions in Angstroms instead of meters. A world
depicting a spiral galaxy may use dimensions measured in lightyears. Because of these special
needs of some worlds, VRML 2.0 does not impose any required unit of measure for shape
dimensions. The interpretation of dimension numbers is largely up to you.

In this column, all shape dimensions are expressed generically in teamsoo, instead of
saying a cylinder is 2.0 meters high, I'll say i2i® unitshigh and let you and your VRML 2.0
application decide if units are meters, Angstroms, lightyears, or whatever.

Building shapes

Most VRML 2.0 files build one or more shapes. Each VRML 2.0 shape is described by specifying
the shape’'geometryandappearanceShape geometry attributes provide the form, or structure of
the shape. Shape appearance attributes provide the coloring of the shape. A car tire shape, for
instance, has a cylindrical geometry and a black appearance. A planet shape has a spherical
geometry and a multi-colored cloudy appearance.

The Shape node type
All shapes are built using tf&hapenode type. EacBhapenode combines together your choices
for geometry and appearance via the node@metry andappearancefields.

Syntax: Shape
Shape {

geometry NULL # exposedField SFNode
appearance NULL # exposedField SFNode

The value of thgeometryfield specifies a node that defines the 3-D form, or geometry, of the
shape. Typicafjeometryfield values include primitive geometBox, Cone Cylinder, and
Spherenode types discussed below. The defllt L value for this field indicates the absence
of shape geometry.

The value of thappearancefield specifies a node defining the coloration of the shape. Typical
appearancefield values include thAppearancenode type discussed below. The defali L
value for this field indicates a black appearance.

Note Currently there is wide variability in how VRML 2.0 browsers treatN# L

value case for thappearancefield. Some browsers draw null-appearance shapes in
black, while others draw such shapes in flat white, or in shaded white. To guarantee
consistent treatment in all browsers, you should always provid@pearancenode
value for theappearancefield, thereby avoiding null-appearance issues.

Notice that thegeometry andappearancefields both use entire nodes as their values. Those

nodes may, in turn, use further nodes as field values, and so on. This node within a node structure
of VRML 2.0 helps to group features together in logical building-blocks, making the syntax easier
to learn and use. For example, Figure 6 shoksapenode using aAppearancenode to specify

the shape coloration, andax node to create a 3-D rectangular box shape geometry.

#VRML V2.0 utf8
Shape {
appearance Appearance {
material Material {
diffuseColor 0.8 0.8 0.8

}
geometry Box {
size 2.02.02.0

}

}

Figure 6. A shape built using a Shape node.

Specifying shape geometry

VRML 2.0 provides severgleometrynode types that you can use witBl@penode’sgeometry

field to specify the form and structure of a shape. Geometry node types inclixti@one

Cylinder, andSpherenode types, as well as more advanced geometry node types. Each geometry
node type has one or more fields that enable you to specify geometry dimensions, such as the
height of a cylinder, or the radius of a sphere.

The Box node type
TheBox geometry node type creates a 3-D rectangular box when used as the value of the
geometryfield in aShapenode.

Syntax: Box

Box {
size 2.02.0 2.0 #field SFVec3f
}

The value of thd&ox node type’sizefield specifies the dimensions of the box. The first value in
the field is the box’s width, the second its height, and the third its depth. All three dimensions
must be greater than 0.0. The defaidefield values build a box 2.0 units wide, tall, and deep.

A Box node can be used as a value forgaemetryfield of aShapenode, like that shown in
Figure 7.

#VRML V2.0 utf8
Shape {
appearance Appearance {
material Material {
diffuseColor 0.8 0.8 0.8
}

geometry Box {
size 2.02.02.0

Figure 7. A box shape built using Shape and Box nodes.
Click on the image to load the world.

The Cone node type
The Cone geometry node type creates a 3-D upright cone when used as the valugeointiegry
field in aShapenode.

Syntax: Cone

Cone {
height 2.0 # field SFFloat
bottomRadius 1.0 # field SFFloat

side TRUE # field SFBool
bottom TRUE # field SFBool

}

The values of th€onenode type’dieight andbottomRadius fields specify the height of a cone,
and the radius of its bottom. Both values must be greater than 0.0. The default values create a cone
with a height of 2.0 units, and a bottom radius of 1.0 unit.

The values of theide andbottom fields specify whether or not the sloping sides and bottom of
the cone are built. If a field valueTRUE, the corresponding part of the cone is built. If a field
value isFALSE, the corresponding cone part is not built. The default value for both fields is
TRUE.

A Conenode can be used as a value forgaemetryfield of aShapenode, like that shown in
Figure 8.

#VRML V2.0 utf8
Shape {
appearance Appearance {
material Material {
diffuseColor 0.8 0.8 0.8

}

geometry Cone {
height 2.0
bottomRadius 1.0
side TRUE
bottom TRUE

Figure 8. A cone shape built using Shape and Cone nodes.

The Cylinder node type

Click on the image to load the world.

TheCylinder geometry node type creates a 3-D upright cylinder when used as the value of the

geometryfield in aShapenode.

Syntax: Cylinder

Cylinder {
radius 1.0 # field

height 2.0 # field
bottom TRUE # field
top TRUE # field
side TRUE # field

SFFloat
SFFloat

SFBool
SFBool
SFBool

The values of th€ylinder node type’eight andradius fields specify the height and radius of a
cylinder. Both values must be greater than 0.0. The default values create a cylinder with a height
of 2.0 units, and a radius of 1.0 unit.

The values of theide bottom, andtop fields specify whether or not the curved sides, bottom, and
top of the cylinder are built. If a field valueTRUE, the corresponding part of the cylinder is
built. If a field value iFFALSE, the corresponding cylinder part is not built. The default value for

all three fields iISTRUE.

A Cylinder node can be used as a value forgeemetryfield of aShapenode, like that shown

in Figure 9.

#VRML V2.0 utf8
Shape {
appearance Appearance {
material Material {
diffuseColor 0.8 0.8 0.8
}
} .
geometry Cylinder {
height 2.0
radius 1.0
bottom TRUE
top TRUE
side TRUE

Figure 9. A cylinder shape built using Shape and Cylinder nodes.

Click on the image to load the world.

The Sphere node type
The Spheregeometry node type creates a 3-D sphere, or ball, when used as the value of the
geometryfield in aShapenode.

Syntax: Sphere

Sphere {
radius 1.0 # field SFFloat

The value of th&pherenode type’sadius field specifies the radius of a sphere. Thaius field
value must be greater than 0.0. The default value builds a sphere with a radius of 1.0 unit.

A Spherenode can be used as a value forgeemetryfield of aShapenode, like that shown in
Figure 10.

#VRML V2.0 utf8
Shape {
appearance Appearance {
material Material {
diffuseColor 0.8 0.8 0.8

}
geometry Sphere {
radius 1.0

Figure 10. A sphere shape built using Shape and Sphere nodes.
Click on the image to load the world.

Specifying shape appearance

The Shapenode type'sappearancefield is used to specify the appearance of a shape. VRML

2.0’s rich set of appearance controls enable you to select shape color, glow color, material finish,
and transparency levels. With VRML 2.0’s texture mapping features, you can place an image from
an image file onto the sides of a shape, like sticking a decal on a model airplane. Using advanced
appearance controls, you can color individual shape parts and create color gradients across the
sides of a shape.

In this month’s column, I'll take a first look at two of the node types available for controlling
shape appearanciéppearanceandMaterial .

The Appearance node type
The Appearancenode type specifies the appearance attributes of a shape, and may be used as the
value of theappearancefield of aShapenode.

Syntax: Appearance

Appearance {

material NULL # exposedField SFNode
texture NULL # exposedField SFNode
textureTransform NULL # exposedField SFNode

}

The value of thé\ppearancenode type’snaterial field specifies a node that defines the material

coloration and finish attributes of the appearance. Typiedtrial field values include the
Material node type. The defauULL value for this field indicates a black material.

Thetexture andtextureTransform fields enable you to paste a texture image on to the sides of a
shape. These features are discussed in a future column.

Note As with theNULL value case for theppearancefield of aShapenode, there is
also wide variability in how VRML 2.0 browsers treat t&LL value case for the
material field of anAppearancenode. Some browsers draw null-material shapes in
black, while others draw such shapes in flat white, or in shaded white. To guarantee
consistent treatment in all browsers, you should always prowtkerial node value

for thematerial field, thereby avoiding null-material issues.

The Material node type

TheMaterial node type specifies the material color attributes of a shape appearance, and may be
used as the value of tieaterial field of anAppearancenode.

Syntax: Material

Material {
diffuseColor 0.8 0.8 0.8 # exposedField SFColor
ambientintensity 0.2 # exposedField SFFloat

emissiveColor 0.0 0.0 0.0 # exposedField SFColor
shininess 0.2 # exposedField SFFloat
specularColor 0.0 0.0 0.0 # exposedField SFColor
transparency 0.0 # exposedField SFFloat

The value of théMaterial node type’sliffuseColor field specifies a color for the material. A

material color is specified using three floating-point values between 0.0 and 1.0 that indicate the
amount of red, green, and blue light to be mixed together to form a color. A value of 0.0 for a red,
green, or blue amount means that color is turned off. A value of 1.0 for a red, green, or blue
amount means that color is turned on completely. Values between 0.0 and 1.0 mean a color is
partially turned on. The default value for this field is a medium-bright white created by mixing
together 0.8 of red light, 0.8 of green light, and 0.8 of blue light.

Colors created by mixing together red, green, and blue light are BgliBdcolors ("RGB" comes
from the first letters of the three color components). The table below provides a brief list of a few
RGB colors and their corresponding red, green, and blue values uséiffuseColor field.

Selected RGB colors

Red Green Blue Description

1.0 0.0 0.0 Pure red
0.0 1.0 0.0 Pure green
0.0 0.0 1.0 Pure blue
1.0 1.0 1.0 White

0.0 0.0 0.0 Black

1.0 1.0 0.0 Yellow

0.0 1.0 1.0 Cyan

1.0 0.0 1.0 Magenta
0.75 0.75 0.75 Light gray
0.5 0.5 0.5 Medium gray
0.25 0.25 0.25 Dark gray
0.5 0.0 0.0 Dark red

0.0 0.5 0.0 Dark green
0.0 0.0 0.5 Dark blue

Note: Whereas VRML 2.0 uses red, green, and blue color values between 0.0 (off) and
1.0 (on), many drawing and painting applications instead use red, green, and blue
values between 0 (off) and 255 (on). These two value ranges are equivalent. You can
convert from a 0-255 RGB color to a VRML 2.0 RGB color by dividing each red,
green, and blue value by 255.0.

To give shapes a 3-D look, the VRML browser automatically computes darker colors as it shades
the sides of a shape, gradually darkening the shading color as it progresses from the lighted side of
a shape to the unlighted sides.

The remaining fields of thilaterial node type enable you to control the emissive (glowing)
color, vary its transparency, and specify its material finish. These features are discussed in a future
column.

The AppearanceandMaterial node types are always used together wiinapenode. An
Appearancenode is used as the value of 8teapenode’sappearancefield, and aMaterial

node is used as the value of fkgpearancenode’smaterial field. Figure 11 shows a sample use
of these node types.

#VRML V2.0 utf8
Shape {
appearance Appearance {
material Material {
diffuseColor 1.0 0.0 0.0

}
geometry Sphere {
radius 1.0

}

Figure 11. A red sphere shape with appearance controlled by Appearance and Material nodes.
Click on the image to load the world.

Experimenting with VRML 2.0

With VRML 2.0’s shape building tools in hand, it's time to experiment! Each of the VRML
examples in Figures 7 through 11 used a siSyEpenode to build a single shape in a virtual

world. Figure 11, for instance, built a single red sphere. To make more interesting worlds, you can
combine together multipl8hapenodes within the same VRML 2.0 file.

Figure 12 builds a multi-colored 3-D plus-sign by building three box shapes within the same
VRML 2.0 file. The first box is 8.0 units wide, 0.5 units tall and deep, and shaded with a dark blue
appearance. The second box is 8.0 units tall, 0.5 units wide and deep, and shaded with a cyan
appearance. The third box is 8.0 units deep, 0.5 units tall and wide, and shaded with a purple
appearance.

#VRML V2.0 utf8
Shape {
appearance Appearance {
material Material {
diffuseColor 0.0 0.0 1.0

geometry Box {
size 8.00.50.5

}

}
Shape {
appearance Appearance {
material Material {
diffuseColor 0.0 0.5 1.0

}

geometry Box {
size 0.58.00.5

}
Shape {
appearance Appearance {
material Material {
diffuseColor 0.5 0.0 1.0

}
geometry Box {
size 0.50.5 8.0

Figure 12. A 3-D plus-sign built out of three box shapes.
Click on the image to load the world.

By default, all shapes are built at the center of the world. If you build multiple shapes at the same
location, then they overlap and intersect each other. You can use this feature of VRML 2.0 to
create complex 3-D shapes by using multiple overlapping shapes.

Figure 13 builds a stair-stepped tetrahedron out of a series of overlapping box shapes, all placed at

the center of the world. The first box is wide, flat, and yellow. Successive boxes decrease in width,
increase in height, and turn more red. The last box is narrow, tall, and red.

#VRML V2.0 utf8
Shape {
appearance Appearance {
material Material {
diffuseColor 1.0 1.0 0.0

}

geometry Box {
size 8.0 1.0 8.0

}

}
Shape {
appearance Appearance {
material Material {
diffuseColor 1.0 0.9 0.0

}

geometry Box {
size 7.02.07.0

}
Shape {
appearance Appearance {
material Material {
diffuseColor 1.0 0.8 0.0
}
}
geometry Box {
size 6.0 3.0 6.0
}

}
Shape {
appearance Appearance {
material Material {
diffuseColor 1.0 0.7 0.0

}

geometry Box {
size 5.04.05.0

}

}
Shape {
appearance Appearance {
material Material {
diffuseColor 1.0 0.6 0.0

}

geometry Box {
size 4.05.0 4.0

}
Shape {
appearance Appearance {
material Material {
diffuseColor 1.0 0.5 0.0

}

geometry Box {
size 3.0 6.0 3.0

}
Shape {
appearance Appearance {
material Material {
diffuseColor 1.0 0.4 0.0

}
geometry Box {
size 2.07.02.0

}

}
Shape {
appearance Appearance {
material Material {
diffuseColor 1.0 0.3 0.0

}

geometry Box {
size 1.08.01.0
}

}

Figure 13. A stair-stepped tetrahedron made from multiple overlapping boxes.
Click on the image to load the world.

You can build complex shapes by using a variety of geometry node types. For example, Figure 14
creates a "space-probe" using a series of shapes of varying sizes and colors.

#VRML V2.0 utf8
Shape {
appearance Appearance {
material Material {
diffuseColor 0.0 1.0 0.0

}

geometry Box {
size 1.01.01.0

}
Shape {
appearance Appearance {
material Material {
diffuseColor 0.0 1.0 0.5

}
geometry Sphere {
radius 0.7

}

}
Shape {
appearance Appearance {
material Material {
diffuseColor 1.0 1.0 0.0

}

}

geometry Cylinder {
radius 1.25
height 0.05

}
Shape {
appearance Appearance {
material Material {
diffuseColor 0.0 1.0 1.0

}

geometry Cylinder {
radius 0.4
height 2.0

}

}
Shape {
appearance Appearance {
material Material {
diffuseColor 0.0 0.5 1.0

}

}

geometry Cylinder {
radius 0.3
height 3.0

}

}
Shape {
appearance Appearance {
material Material {
diffuseColor 0.0 0.0 1.0

}

}

geometry Cylinder {
radius 0.1
height 6.0

Figure 14. A "space-probe" made from multiple overlapping shapes.
Click on the image to load the world.

Next in the VRML Technique column

Next month I'll continue discussing shape building and introduce VRML 2.0 features for
positioning, orienting, and scaling shapes usindrtia@sform node type. I'll also continue
discussing thaterial node type and discuss how you can make shapes semi-transparent or
make them appear to glow.

meke tnem appearo gow.

Sites

® A list of David Nadeau’'s VRML Technique columnsNietscapeWorld

® VRML 2.0 browserd\etscapeWorld'guide to finding and installing a VRML browser ¢n
your computer.

® VRML 2.0 glossary

® NetscapeWorld’¥RML vendors chart A handy reference of VRML browser and servgr
companies including their plug-ins to Web browsers -- with updated items in bold to|aid
your review -- and links to all the vendors.
http://www.netscapeworld.com/netscapeworld/common/nw.vrmitable.html

® The UTF-8 character set sidebar accompanying the first VRML Technique column.

Specifications

® VRML 2.0 specification http://vag.vrml.org/VRMLZ2.0/FINAL/

® [SO 10646-1:1993 Universal Character Set (UCS) specification sales information
http://www.iso.ch/cate/d18741.html

® UTF-8 character encoding scheme for UCS
http://mww.dkuug.dk/JTC1/SC2/WG2/docs/n1335

® The VRML Repository http://www.sdsc.edu/vrml
® VVRML Architecture Group http://vag.vrml.org

Resources

About the author

David R. Nadeau is a co-authorTtdie VRML 2.0 Sourcebogbublished by John Wiley & Sons

and written with Andrea L. Ames and John L. Moreland. David is a staff researcher at the San
Diego Supercomputer Center where he is a specialist in 3-D computer graphics, virtual reality, and
scientific visualization. He is also the creator of The VRML Repository, a Web site providing
extensive information on VRML software, documentation, and 3-D worlds.

A You can buy David R. Nadeaul$ie VRML 2.0 Sourceboak a 20% discount from
Amazon.com Books.

1996-19497
WPI

An 1D
Communications
pany

Feedback: editors@netscapeworld.com

URL.:

http://www.netscapeworld.com/netscapeworld/nw-12-1996/nw-12-vrmltechnique.htm
Last updated: Tuesday, March 11, 1997

| VRML Technique

Building virtual structures

How to position, orient, and resize shapes in VRML 2.0

By David R. Nadeau

Summary

VRML 2.0 features enable you to build complex virtual structures, including castles,
skyscrapers, spacecraft, and futuristic cities. A VRML 2.0 file provides the blueprint for yaur
structures by describing their component shapes and how the shapes fit together.

This month’s VRML Technique column introduces the useoofdinate systemand shows
how you can use thEransform node type to position, orient, and resize shapes to build virfual
structures. Along the way, | discuss VRML 2.0EF andUSE features that enable you to us
the same shape repeatedly to build structural patterns, such as a row of identical marble [columns
or a grid of windows on a skyscrapet, 100 word}y

Table of contents

Building virtual structures Orienting coordinate systems

Repeating nodes using defined names Specifying a rotation axis

Table: Common rotation axes
Specifying a rotation angle

Table: Common rotation angles
Using the right-hand rule for rotations
The Transform node type, revisited

® Experimenting with coordinate system rotation

o

([

® Defining and using node names °
® The syntax of DEF and USE °
® Experimenting with DEF and USE °
o

Building shapes in three dimensions

® Using the right-hand rule for axis directions

® Determining 3-D coordinates Scaling coordinate systems

Using the world’s default coordinate system ® The Transfqrm ”F’de type., revisited again)
@ Experimenting with coordinate system scaling

Creating and positioning coordinate systems
Next in the VRML Technique column

® Parent and child coordinate systems
® The Transform node type

® Experimenting with coordinate system About the author
translation

Resources

Building virtual structures
Last month’s column introduced VRML 2.0’s shape building features, includirghityeenode

type, and four of VRML’s geometry node typ&xx, Cone Cylinder, andSphere Using these
node types, you can create 3-D shapes and view them interactively within a VRML 2.0 browser.

(SeeNetscapeWorld'sidebar on VRML 2.0 Browsers for information on obtaining and installing
VRML 2.0 browsers. Also see tiNetscapeWorl&/RML Vendors chart for a list of VRML
browsers and plug-ins, and our glossary of VRML 2.0 terms. You need a VRML browser or
plug-in to view the 3D examples presented in this series.)

By combining multiple shapes, you can create complex virtual structures. Figure 1 shows two
sample structures built by positioning, orienting, and resizing multiple shapes. Click on an image
to load the associated VRML 2.0 world into your VRML 2.0 browser. The captions below each
figure give the size of the world in bytes, and the expected download time.

(a) A fairy-tale castle built from cylinders and (b) A structure with a complex ceiling built from
cones boxes
(15 kilobytes = 10 seconds @ 14.4bps) (11 kilobytes = 8 seconds @ 14.4bps)

Figure 1. Sample VRML 2.0 structures built using boxes, cones, cylinders, and spheres.
Click on an image to load the world.

Viewing tip Once loaded into your VRML 2.0 browser, if these worlds run a little
slowly, try reducing the size of the browser window. A smaller window means there is
less screen area for the browser to redraw each time you move in the world. This
reduction in drawing area speeds up the browser and enables it to animate more
smoothly, or respond more quickly to user actions.

Repeating nodes using defined names

Last month’s column ("Building Shapes") discussed key syntactic features of VRML 2.0,

including the VRML file header, comments, nodes, fields, and field values. A VRML 2.0 file, for
instance, always starts with a VRML file header, followed by one or more nodes. Each node has a
node type name, such 8kape followed by an opening curly-brace, zero or more fields and

values, and a closing curly-brace. The fields within the curly-braces provide values for named
attributes of a node. THghapenode type, for instance, has fields to describe the appearance and
geometry of a 3-D shape. TBex node type has a field to describe the width, height, and depth of

a 3-D box.

The VRML world shown in Figure 2 builds a 3-D "plus-sign" from three red box shapes. Each
Shapenode builds a box usingBox node. TheAppearanceandMaterial nodes specify a red
appearance for the boxes.

#VRML V2.0 utf8
Shape {
appearance Appearance {
material Material {
diffuseColor 1.0 0.0 0.0

}
geometry Box { size 8.00.50.5}

Shape {
appearance Appearance {
material Material {
diffuseColor 1.0 0.0 0.0

}
geometry Box { size 0.58.0 0.5}

Shape {
appearance Appearance {
material Material {
diffuseColor 1.0 0.0 0.0

) }
geometry Box { size 0.50.58.0 }

Figure 2. Three red box shapes forming a 3-D plus-sign.
Click on the image to load the world.

In Figure 2, notice that all three box shapes use idetmadaranceandMaterial nodes to

achieve a uniform red appearance. Repeatedly specifying the same set of nodes and values is
tedious. Such repetition also makes it awkward to make global changes to a set of shapes, such as
to turn all three red boxes blue.

Defining and using node names
To reduce redundancy, you cdefine a naméor any node in a VRML 2.0 file. Once a node has a
name, you can re-use that same node later in the file without retyping the node’s description.

For example, you can give the naRwel to theAppearancenode used to describe the red color of
the first box in Figure 2. Then, you can re-use the sau@ode twice more to shade the
remaining two boxes the same shade of red.

A node with a defined name is calledaiginal node, and each re-use of that node is called an
instance You can have any number of named original nodes in a VRML world, and each original
can be instanced any number of times.

Fields and their values are only specified when creating an original node. Each instance re-uses the
original’s field values without change. This enables you to define once the node that makes up,

say, a red appearance, then later create an instance of that red appearance node each time you neec
to make another shape red. Later, if you make a change to the original red appearance node, all of
the instances of the red appearance change as well. This feature enables you to make rapid

changes throughout your world by only modifying the original nodes.

The syntax of DEF and USE

To define a node for use in instancing, precede the node type name with th®®&Bldathd a

node name of your choosing. While a VRML 2.0 file may contain any number of named nodes, no
two may have the same name.

Syntax: DEF

DEF node_name node_type {...}

For example, you can give the naRwel to anAppearancenode like this:

Shape {
appearance DEF Red Appearance {
material Material {
diffuseColor 1.0 0.0 0.0

}

}
geometry Box { size 8.00.50.5}
}

Once you have defined a name for a node, you can re-use that node again and again within the
same file by typing only the wordUSE' and the node name. There is no need to re-specify the
node type, curly-braces, fields, or field values: The VRML browser automatically fills these in
from the original node.

Syntax: USE

USE node_name

For example, you can use a named rratein place of amppearancenode like this:

'S'h.ape {
appearance USE Red
geometry Box { size 0.58.00.5}

Node names may be any convenient sequence of characters, and are case-sensitive. For example,
"RED" and "red" are different names. Node names may include letters, numbers, and underscores.
The following are examples of legal node names:

Red WallColor3 my_chair
PianoKey GurgleSound Kitchen_Design
NCC1701 BrightLight MarbleTexture

Node names cannot start with a number and cannot include non-printing ASCII characters, like

spaces, tabs, line-feeds, form-feeds, and carriage-returns. Names also cannot include double or
single quotes, number signs, plus signs, minus signs, commas, periods, square brackets, back
slashes, or curly braces. The following names are prohibited, since they are words used for other,
specific purposes within VRML 2.0:

DEF EXTERNPROTO FALSE
IS NULL PROTO
ROUTE TO TRUE

USE eventin eventOut

exposedField field

Experimenting with DEF and USE

You can us®EF andUSE to simplify the red box world shown in Figure 2. Start by addibg

Red to define a name for thppearancenode for the first box shape. For each of the remaining
two box shapes, substitute the #ajpearancenode specification witbSE Red. Figure 3 shows
the simplified world that results.

#VRML V2.0 utf8
Shape {
appearance DEF Red Appearance {
material Material {
diffuseColor 1.0 0.0 0.0

}
} .
geometry Box { size 8.00.50.5}

}

Shape {
appearance USE Red
geometry Box { size 0.58.00.5}

Shape {
appearance USE Red
geometry Box { size 0.50.58.0}

Figure 3. An Appearance node, with a defined name, used twice more later in the file.
Click on the image to load the world.

You can name and instance any node in a VRML 2.0 file, incluippgearance Material ,

Shape and geometry nodes. Node instancing eliminates redundancy and decreases the size of a
VRML file. Additionally, node instancing increases the performance of a VRML browser by
enabling it to share node descriptions and the processing associated with them.

Building shapes in three dimensions

Like the real world, 3-D shapes built in a VRML 2.0 virtual world haigith, height anddepth

To provide reference directions along which to measure these shape dimensions, you can imagine
a trio of arrows drawn through the middle of a shape extending left-to-right, bottom-to-top, and
back-to-front. Figure 4 shows such a set of arrows drawn through a box shape.

Figure 4. A box shape with reference arrows for width, height, and depth measurement.

A direction arrow, like any of those shown in Figure 4, is calledxi Conventionally, the

left-to-right arrow, shown in red, is called tKeaxis the bottom-to-top arrow, shown in green, is
called theY axis and the back-to-front arrow, shown in blue, is calledzth&is Using these axes,

you can measure the width of a shape along the X axis, the height along the Y axis, and the depth
along the Z axis.

The center point where all three axes cross is calledrihi@. VRML 2.0 browsers build all
shapes so that their centers are at the origin.

You can treat each axis like a ruler along which to measure positive and negative distances from
the origin. A positive distance extends in the direction of the axis arrow, while a negative distance
extends in the reverse direction.

Using the right-hand rule for axis directions

While building complex worlds, it can be surprisingly hard to remember which axis points in
which direction. To help keep the axis positive directions straight, you can usghtieand rule

For this rule, hold up your right hand, stick your thumb out as if hitch-hiking, point your index
finger straight up, and point your second finger straight forward. Curl your other fingers under. In
this configuration, your thumb points in the positive X direction, your index finger in the positive
Y direction, and your second finger in the positive Z direction. Figure 5 shows this hand
configuration.

Figure 5. The right-hand rule used to indicate the positive directions for the X, Y, and Z axes.

Determining 3-D Coordinates

A triple of X, Y, and Z distance measurements uniquely describe a location in 3-D. Such a triple
of distances is called®&D coordinate You can use 3-D coordinates to describe the location of

key features of a shape, such as the corners of a box. Figure 6 and the table below, for example,
show the 3-D coordinates for the eight corners of a box with a width, height, and depth of 2.0

units.

Figure 6. A box shape with 3-D coordinates shown for its eight corners.

3-D coordinates for a box shape

Corner X Y Z
Front, top, right 1.0 10 1.0
Front, top, left -1.0 1.0 1.0

Front, bottom, right 1.0 -1.0 1.0

Front, bottom, left -1.0 -1.0 1.0
Back, top, right 1.0 1.0 -1.0
Back, top, left -1.0 1.0 -1.0
Back, bottom, right 1.0 -1.0 -1.0
Back, bottom, left -1.0 -1.0 -1.0

Building 3-D shapes in VRML 2.0 is like playing a child’s game of connect-the-dots. A geometry
node, such asBox node, places 3-D coordinates and connects them together to form the faces of
a shape. The four geometry node types discussed in last month’s cBn@one Cylinder,
andSpherg each automatically computes a set of 3-D coordinates and connecting faces.

Using the world’s default coordinate system

A set of reference X, Y, and Z axes defineoardinate systenm which you can measure

distances to locate 3-D coordinates. Shapes whose coordinates are measured with respect to a
particular coordinate system are said torbihat coordinate system.

Every VRML 2.0 world file has a default coordinate system in which to build the world’s shapes.
That coordinate system is called, simply, Weld coordinate systenBy default, all shapes are

built centered at the origin of this world coordinate system. For example, all three red boxes in
Figures 2 and 3 are built centered in the world coordinate system by default.

Creating and positioning coordinate systems

VRML 2.0 enables you to position shapes through the creatioeve¢oordinate systems using
the Transform node type. The origin of a new coordinate system is positioned by you at a 3-D
coordinate measuredlativeto the origin of another coordinate system, such as the world
coordinate system. Any shape you build in the new coordinate system is centered at the new
coordinate system origin instead of at the world origin.

Using new coordinate systems, you can build and position shapes anywhere in the world. For
example, to position a shape 4.0 units to the right of the world origin, create a new coordinate
system 4.0 units to the right, then build the shape centered within that new coordinate system.
Later, if you want the shape 6.0 units to the right instead, change the position of the shape’s
coordinate system. When the coordinate system moves, the shape built within it moves as well.

Tip: You can think of a coordinate system as an imaginary box that can contain shapes.
If you move a coordinate system box about, then the shapes within the box move as
well.

Figure 7 shows a series of images illustrating steps in creating a row of marble columns. Figure 7a
starts the series with a set of axes indicating the world coordinate system. Figure 7b shows a
marble column built at the world coordinate system origin. Figure 7c shows a new coordinate
system positioned to the right relative to the world coordinate system, and Figure 7d shows a
column centered in the new coordinate system. Figures 7e, 7f, 79, and 7h repeat the process,
showing two more coordinate systems and a column built in each one.

(a) The world coordinate system alone, indicated (b) A marble column built at the center of the
by a set of axes. world coordinate system.

(c) A second coordinate system positioned to the (d) A marble column built at the center of the
right relative to the world coordinate system second coordinate system.
origin.

A

p——

e —

(e) A third coordinate system positioned behind (f) A marble column built at the center of the
the world coordinate system origin. third coordinate system.

(g) A fourth coordinate system positioned to the (h) A marble column built at the center of the
right and behind the world coordinate system fourth coordinate system.
origin.

Figure 7. Eight steps in building a row of marble columns using the world coordinate system, three new
coordinate systems, and a marble column built at the center of each coordinate system.

Parent and child coordinate systems

When a shape is built within a particular coordinate system, we say that the shelpiidisfathat
coordinate system. The coordinate system enclosing the childrgraismtcoordinate system.

Each of the marble columns above, for instance, are children of their respective parent coordinate
systems.

Similarly, when a new coordinate system is positioned relative to another, we say that the new
coordinate system ischild coordinate system. Each of the marble column coordinate systems
used in Figures 7c through Figure 7h are positioned relative to the world coordinate system, and
are therefore children of that coordinate system.

Parent coordinate systems can, in turn, be children of other parent coordinate systems, and so on.
This parent-child relationship of coordinate systems and shapes creates a family tree of world
scenery. The top-most parent of the family tree is the VRML file’s world coordinate system. The
entire family tree is called scene graph

Figure 8 shows a diagram of the scene graph for the columns in Figure 7. The first column is a
child of the world coordinate system at the top of the family tree. The second, third, and fourth
columns are children of three new coordinate systems that are, themselves, children of the world
coordinate system.

World

Figure 8. A scene graph diagram for the column shapes and coordinate systems in Figure 7.

Typical VRML 2.0 worlds contain dozens or even thousands of coordinate systems in the scene
graph. It is common, for instance, to use a new coordinate system for each shape in a world. If the
world individually positions thousands of shapes, then there will be thousands of coordinate
systems as well.

The Transform node type

TheTransform node type creates a new coordinate system relative to its parent coordinate
system. Shapes created as childrenTrfaasform node are built relative to that new coordinate
system’s origin.

Syntax: Transform

Transform {
children [] # exposedField MFNode
translation 0.0 0.0 0.0 # exposedField SFVec3f

The values in thehildren field provide child nodes to be built within the new coordinate system
and centered at its origin. The list of children is enclosed within square-brackets. The default value
for this field is an empty list of children.

Typical children field values includ&hapeandTransform nodes. ATransform node may be
the child of anothefransform node, which may be a child again, and so on up the family tree of
coordinate systems.

The values of thganslation field specify the positive or negative distances in the X, Y, and Z
directions between the parent’s coordinate system origin and the origin of the new coordinate
system. The default zero values for this field cause no translation in X, Y, or Z. This places the
new coordinate system in exactly the same place as the parent coordinate system.

Experimenting with coordinate system translation

Figure 9 shows a castle tower built using a white cylinder and a red cone. The cylinder is built
centered within the world coordinate system. The cone is built centered within a new coordinate
system positioned 25.0 units up the Y axis. In the VRML text, notice that the cone shape is
described within thehildren list of theTransform node. That child list, like all VRML 2.0 value
lists, is enclosed within square-brackets.

#VRML V2.0 utf8

Tower
Shape {
appearance Appearance {
material Material { }

}
geometry Cylinder {
radius 5.0
height 30.0
top FALSE
}
}

Roof
Transform {

translation 0.0 25.0 0.0

children [

Shape {
appearance Appearance {
material Material {
diffuseColor 1.0 0.0 0.0

}

geometry Cone {
bottomRadius 8.0
height 20.0

World

Figure 9. A castle tower built using a cylinder in the world coordinate system and a cone in a new translated
coordinate system.

Click on the image to load the world.

You can use any number ®fansform nodes within the same VRML 2.0 file and provide any
number of child shapes and coordinate systems withiohitdren field. Figure 10, for example,
uses multipleransform nodes to build a castle using four towers and a central box. Notice that
shapes can overlap, even when built within separate coordinate systems. Also notice the use of
DEF andUSE to share appearance and shape definitions.

#VRML V2.0 utf8

Walls
Transform {
translation 0.0 10.0 0.0
children [
Shape {
appearance DEF White Appearance {
material Material { }

}
geometry Box { size 30.0 20.0 30.0 }

—

}

Towers
Transform {
translation -15.0 15.0 15.0
children [
Tower
DEF Tower Shape {
appearance USE White
geometry Cylinder {
radius 5.0
height 30.0
top FALSE
}
}

Roof
DEF Roof Transform {
translation 0.0 25.0 0.0
children [
Shape {
appearance Appearance {
material Material {
diffuseColor 1.0 0.0 0.0

}

geometry Cone {
bottomRadius 8.0
height 20.0

}
]

Transform {
translation 15.0 15.0 15.0
children [
USE Tower
USE Roof

]

Transform {
translation 15.0 15.0 -15.0
children [
USE Tower
USE Roof

]

Transform {
translation -15.0 15.0 -15.0
children [
USE Tower
USE Roof

]

World

Figure 10. A castle built using multiple shapes in multiple coordinate systems.
Click on the image to load the world.

Orienting coordinate systems

VRML 2.0’s Transform node type enables you to create and position a new coordinate system
anywhere in your world. Imagine, for instance, that you create an airplane shape within the new
coordinate system. Using th@nslation field of the coordinate systemIgansform node, you

can "fly" the airplane about.

To make the airplane’s flight more realistic, you can control the airplane’s orientatiotabgg
the airplane’s coordinate system. You can tilt the airplane upward during take-off, turn it to face
the direction in which it is flying, or bank it in a turn.

Specifying a rotation axis

Coordinate system rotation is described Ipgtation axisand arotation anglespecified in the
rotation field of aTransform node. The rotation axis defines an imaginary line about which to
rotate the coordinate system. The rotation angle indicates the amount to rotate about the axis.

A rotation axis can point in any direction. For example, the rotation axis for a toy top is vertical,
while that for a car wheel is horizontal. To specify a rotation axis, imagine drawing a line between
two 3-D coordinates. One coordinate is always the origin of a new coordinate system. The second
coordinate’s X, Y, and Z values are specified inThensform node’srotation field. The

imaginary line between these two coordinates defines a rotation axis.

For example, to define a vertical rotation axis for a toy top, use a rotation axis that points straight
up from the origin. The second coordinate for such an axis is directly above the origin, such as
(0.0, 1.0, 0.0).

The distance between the origin and the second coordinate does not matter. Any point on the
imaginary line is valid. To define a rotation axis that points straight up along the Y axis, (0.0, 2.0,
0.0), (0.0, 0.589, 0.0), (0.0, 1823789.0, 0.0), and (0.0, 1.0, 0.0) are all equivalent because they all
point straight up.

Note: Technically, the rotation axis isvactorwhose direction orients the rotation.
The magnitude of the vector is ignored.

While you can specify a rotation axis in any direction, in practice most rotation axes aim to the
right along the X axis, up along the Y axis, or out along the Z axis. The table below provides the

rotation axis values used to create these common axes.

Common rotation axes

Direction Rotation axis values
To the right along the X axi$.00.0 0.0
Up along the Y axis 0.01.00.0
Out along the Z axis 0.00.01.0

For example, airplane orientation is typically described using three rotagpitets:yaw, androll.
Pitch rotations tilt an airplane’s nose up or down with rotation about the X axis. Yaw rotations
spin an airplane around the Y axis. Roll rotations turn an airplane about the Z axis. Figure 11
shows these three rotation axes for an airplane model.

(a) X-axis rotation to control airplane pitch (b) Y-axis rotation to control airplane yaw

(c) Z-axis rotation to control airplane roll

Figure 11. Airplane rotation about X, Y, and Z axes.

Specifying a rotation angle

Along with a rotation axis, a rotation angle specifies the amount by which to rotate around the
chosen axis. Rotation angles may be positive or negative and are measadéhi instead of

the more familiar degrees.

Recall that an angle measurement in degrees varies from 0.0 to 360.0 in a full circle. Half way
around the circle is 180.0 degrees, and a quarter of the way is 90.0 degrees. An angle measurement
in radians varies from 0.0 to7 = 6.283 in a full circle. Halfway around the circlens= 3.142

radians, and a quarter of the way is .5 1.57 radians.

You can convert between degrees and radians using these simple formulae:

radians = degrees * 3.142/ 180.0
degrees = radians * 180.0/ 3.142

The table below shows several common rotation angles in degrees and radians.

Common rotation angles

Degrees Radians

0.0 0.0

10.0 0.175
45.0 0.785
90.0 1.571
180.0 3.142
270.0 4.712

Using the right-hand rule for rotations

If you look down an axis from the arrow end, a positive rotation angle turnsoumnder-clockwise
direction. When worlds get complex, it can be hard to decide if a positive or negative rotation is
needed to get a desired rotation. To help keep rotation directions straight, you can use a variation
of theright-hand ruleintroduced earlier. Hold up your right hand, and stick your thumb out as if
hitch-hiking. Orient your hand so that your thumb points in the positive direction of the X, Y, or Z
axis. Curl your fingers around as if gripping the axis. The circular direction in which your fingers
curl is a positive rotation direction around that axis. Figure 12 shows a hand illustrating the
positive rotation directions for the X, Y, and Z axes.

(a) Positive X-axis rotation (b) Positive Y-axis rotation

(c) Positive Z-axis rotation

Figure 12. Positive rotations using the right-hand rule
The Transform node type, revisited

As before, th&@ransform node type creates a new coordinate system relative to its parent
coordinate system.

Syntax: Transform

Transform {
translation 0.00.00.0 # exposedField SFVec3f
rotation 0.0 0.0 1.0 0.0 # exposedField SFRotation

;:hfldren [1 # exposedField MFNode

The values of theotation field provide a rotation axis and rotation angle with which to orient the
new coordinate system. The first three values in the field specify the X, Y, and Z values for a
rotation axis. The last field value specifies a rotation angle, measured in radians. All field values
may be positive or negative. The default field values specify a rotation axis aimed outward along
the Z axis with a zero radian rotation angle.

Rotation and translation can be used together to first orient a new coordinate system, then position
it relative to a parent coordinate system.

Experimenting with coordinate system rotation

Figure 13 shows an archway built using two vertical columns, a horizontal cross-piece, and two
tilted roof blocks. Each shape is built within its own coordinate system and translated into
position. Each roof piece is tilted usingagation field with a Z-axis rotation by 0.524 radians =
30.0 degrees. Notice the usebiF andUSE to share shapes and appearances.

#VRML V2.0 utf8

Left and right columns
Transform {
translation -2.0 3.0 0.0
children [
DEF Column Shape {
appearance DEF White Appearance {
material Material { }

}

geometry Cylinder {
radius 0.3
height 6.0
top FALSE

}
]

Transform {
translation 2.0 3.0 0.0
children [USE Column]

Cross-piece
Transform {
translation 0.0 6.05 0.0
children [
Shape {
appearance USE White
geometry Box { size 4.6 0.4 0.6 }

}

Roof pieces
Transform {
translation -1.15 7.12 0.0
rotation 0.0 0.0 1.0 0.524
children [
DEF Roof Shape {
appearance USE White
geometry Box { size 2.86 0.4 0.6 }

]

Transform {
translation 1.15 7.12 0.0
rotation 0.0 0.0 1.0 -0.524
children [USE Roof]

}

Figure 13. An archway built from two columns, a cross-piece, and two tilted roof pieces.
Click on the image to load the world.

You can use multipl&ransform nodes, andransform nodes as children dransform nodes

to build complex structures. Figure 14, for instance, extends Figure 13 by repeating the same arch
structure three times. Each repetition turns the arch further around the Y axis. With a floor added,
the resulting structure is a rotunda, or gazebo-like building.

#VRML V2.0 utf8

DEF Arch Transform {
children [
Left and right columns
Transform {
translation -2.0 3.0 0.0
children [
DEF Column Shape {
appearance DEF White Appearance {
material Material { }

}

geometry Cylinder {
radius 0.3
height 6.0
top FALSE

bottom FALSE

]

Transform {
translation 2.0 3.0 0.0
children [USE Column]

}
Archway span
Transform {
translation 0.0 6.05 0.0
children [
Shape {
appearance USE White
geometry Box { size 4.6 0.4 0.6 }

]

Roof pieces
Transform {
translation -1.15 7.12 0.0
rotation 0.0 0.0 1.0 0.524
children [
DEF Roof Shape {
appearance USE White
geometry Box { size 2.86 0.4 0.6 }

]

}
Transform {
translation 1.15 7.12 0.0
rotation 0.0 0.0 1.0 -0.524
children [USE Roof]
}
]
Transform {
rotation 0.0 1.0 0.0 0.785
children [USE Arch]
Transform {
rotation 0.0 1.0 0.0 -0.785
children [USE Arch]
Transform {
rotation 0.0 1.0 0.0 1.571
children [USE Arch]

Floor
Transform {
translation 0.0 -0.125 0.0
children [
Shape {
appearance USE White
geometry Cylinder {
radius 3.0
height 0.25
bottom FALSE

}
]

Transform {
translation 0.0 -0.375 0.0
children [
Shape {
appearance USE White
geometry Cylinder {
radius 4.0
height 0.25

Figure 14. A rotunda created by using four archways, rotated about the Y axis.

Click on the image to load the world.

Scaling coordinate systems

TheTransform node type’sranslation androtation fields enable you to create a new coordinate
system that is positioned and oriented as you desire. In addition, you can change the size of shapes
within a new coordinate system usingransform node type’scalefield.

In the real world, construction blueprints providgcaling factorthat indicates a ratio between the

size of the desired construction, and that described by the blueprints. For instance, a scaling factor
of 10.0 indicates that the desired construction is 10.0 times larger than that depicted in the
blueprints. Similarly, a scaling factor of 0.5 indicates construction should be half the size of that
shown in the blueprints.

VRML 2.0’s Transform node type uses a similar scaling factor to indicate the amount to increase
or decrease the size of shapes within a new coordinate system. A scaling factor of 10.0 increases
shape sizes, growing them ten-fold. A scaling factor of 0.5 reduces shapes to half-size.

You can scale a coordinate system’s shapes by any positive factor. Factors between 0.0 and 1.0
decrease shape size, while those greater than 1.0 increase the size of shapes. A scaling factor of
1.0 leaves shape sizes unchanged.

To enable you to warp shapes, you can provide different scaling factors for the X, Y, and Z
directions. For instance, you can stretch a sphere into an ellipsoid, or flatten a cone into a triangle.

The Transform node type, yet again
As before, th&ransform node type creates a new coordinate system relative to its parent
coordinate system.

Syntax: Transform

Transform {
translation 0.00.00.0 # exposedField SFVec3f
rotation 0.0 0.0 1.0 0.0 # exposedField SFRotation
scale 1.01.01.0 # exposedField SFVec3f

Ehfldren [1 # exposedField MFNode

The values of thecalefield specify positive X, Y, and Z scaling factors with which to increase or
decrease the size of the new coordinate system and any shapes built within it. The default field
values specify a 1.0 scaling factor for the X, Y, and Z directions and result in no size change.

Scaling, rotation, and translation can be used together first to scale a coordinate system, then orient
it and position it relative to a parent coordinate system.

There are several more fields in fhiensform node type. Discussion of these less commonly
used fields is left to a future column.

Experimenting with coordinate system scaling
Figure 15 shows a spacecraft built entirely with spheres. Two spheres are scaled nearly flat,
rotated, and positioned to form swept-back wings. Another sphere is elongated to form the

fuselage. A final sphere is scaled and positioned to form a cockpit dome.

#VRML V2.0 utf8

Wing
Transform {
translation 0.0 0.0 -0.9
rotation 0.0 1.0 0.0 0.52
scale 0.4 0.0351.5
children [
DEF WingSphere Shape {
appearance Appearance {
material Material {
diffuseColor 0.7 0.7 1.0

}
geometry Sphere {}
}
]
Transform {
translation 0.0 0.0 0.9
rotation 0.0 1.0 0.0 -0.52
scale 0.4 0.035 1.5

children [USE WingSphere
}

Fuselage
Transform {

scale 2.0 0.2 0.5

children [

Shape {
appearance Appearance {
material Material {
diffuseColor 0.5 0.5 1.0

}
geometry Sphere {}

}

Dome
Transform {

scale 0.6 0.4 0.375

children [

Shape {
appearance Appearance {
material Material {
diffuseColor 0.7 0.5 1.0

}
geometry Sphere {}

]

Figure 15. A spacecraft built by scaling, rotating, and translating four spheres.
Click on the image to load the world.

You can use multipl@ransform nodes to create complex structures, scaling, rotating, and

translating each new coordinate system. Figure 16, for example, extends Figure 15 by adding a tail
and engines to the spacecraft. The tail is formed by repeating the wing and fuselage shapes, scaled
down and translated into position. The engines use two more scaled and translated spheres.

#VRML V2.0 utf8

Wing
DEF LeftWing Transform {
translation 0.0 0.0 -0.9
rotation 0.0 1.0 0.0 0.52
scale 0.4 0.0351.5
children [
DEF WingSphere Shape {
appearance Appearance {
material Material {
diffuseColor 0.7 0.7 1.0
}

}
geometry Sphere {}
}
]
|
DEF RightWing Transform {
translation 0.0 0.0 0.9
rotation 0.0 1.0 0.0 -0.52

scale 0.4 0.035 1.5
children [USE WingSphere]

Fuselage
DEF Fuselage Transform {
scale 2.0 0.2 0.5
children [
DEF FuselageSphere Shape {
appearance Appearance {
material Material {
diffuseColor 0.5 0.5 1.0
}

}
geometry Sphere {}

Dome

Transform {
scale 0.6 0.4 0.375
children [
Shape {
appearance Appearance {
material Material {
diffuseColor 0.7 0.5 1.0

}
}
geometry Sphere {}

}

Engines
Transform {
translation -0.6 0.0 -1.5
scale 0.6 0.06 0.1
children [
DEF EngineSphere Shape {
appearance Appearance {
material Material {
diffuseColor 0.3 0.3 0.7

}

}
geometry Sphere {}
}
]
Transform {
translation -0.6 0.0 1.5

scale 0.6 0.06 0.1
children [USE EngineSphere]

Tall
Transform {
translation -2.0 0.5 0.0
scale 0.40.40.4
children [
USE LeftWing
USE RightWing
USE Fuselage
]

Transform {

translation -1.5 0.25 0.0

rotation 0.0 0.0 1.0 -0.6

scale 0.5 0.2 0.075

children [USE FuselageSphere]

}

Figure 16. The spacecraft of Figure 15 extended to include engines and a tail.
Click on the image to load the world.

Next in the VRML Technique column

TheTransform node type is clearly a powerful and essential VRML 2.0 feature enabling you to
construct complex structures in your virtual world. Next month | will continue discussion of the
Transform node type and introduce VRML 2.0 features for animating the position, orientation,
and scale of coordinate systems and their shapes.

Resources

® A list of David Nadeau’'s VRML Technique columnsNietscapeWorld

® VRML 2.0 browserdNetscapeWorld'guide to finding and installing a VRML browser gn
your computer.

® VRML 2.0 glossary

® NetscapeWorld'¥ RML vendors chart A handy reference of VRML browser and servgr
companies including their plug-ins to Web browsers -- with updated items in bold to|gid
your review -- and links to all the vendors.
http://www.netscapeworld.com/netscapeworld/common/nw.vrmitable.html

® The UTF-8 character set sidebar accompanying the first VRML Technique column.

Specifications

® VRML 2.0 specification http://vag.vrml.org/VRML2.0/FINAL/

® |SO 10646-1:1993 Universal Character Set (UCS) specification sales information
http://www.iso.ch/cate/d18741.html

® UTF-8 character encoding scheme for UCS
http://www.dkuug.dk/JTC1/SC2/WG2/docs/n1335

Sites

® The VRML Repository http://www.sdsc.edu/vrml
® VVRML Architecture Group http://vag.vrml.org

About the author

David R. Nadeau is a co-authorTdie VRML 2.0 Sourcebogbublished by John Wiley & Sons

and written with Andrea L. Ames and John L. Moreland. David is a staff researcher at the San
Diego Supercomputer Center where he is a specialist in 3-D computer graphics, virtual reality, and
scientific visualization. He is also the creatoifoke VRML Repository Web site providing

extensive information on VRML software, documentation, and 3-D worlds.

A\ You can buy David R. NadeauT$ie VRML 2.0 Sourceboak a 20% discount from
Amazon.com Books.

Feedback nweditors@netscapeworld.com
1996-1997 | URL: http://www.netscapeworld.com/netscapeworld/nw-01-1997/nw-01-vrmltechnique.html

:ﬁé Last updated Tuesday, March 11, 1997
Communications
Companmy

| VRML Technique

Animating shapes

How to animate the position, orientation, and size of shapes in VRML 2.0

By David R. Nadeau

Summary

Perhaps the most exciting aspects of VRML 2.0 are features that enable you to create dy
animatedvirtual environments. You can make shapes fly hither and yon, spin about, grow
shrink, change color, fade in and out, morph from one form to another, and much more.

This month’s VRML Technique column introduces VRML 2.0’s animation features and sh
how you can use them together with Transform node type to create animations that
position, orient, and resize shapes. Along the way, | introduce VRML &hfisation circuit
concept, explaieventsand present theROUTE statement.5,300 word¥

namic,
and

OWS

Table of contents

Animating shapes Describing how to animate

Describing animations ® Keyframe animation

® Linear interpolation

® The Positioninterpolator node type

® The Orientationinterpolator node type
® Using a PositionInterpolator node

Understanding events and animation circuits
® Inputs and outputs
® Eventln and eventOut data types

Building animation circuits Experimenting with VRML 2.0 animation

® The ROUTE statement @ Using an OrientationInterpolator node
® Animating multiple shapes using the same
Describing when to animate interpolator
® Using multiple TimeSensor nodes
® The TimeSensor node type ® Using longer motion paths
® Using TimeSensor nodes ® Animating the size of a shape
® Using start and stop times ® Combining together multiple interpolators

Next in the VRML Technique column
Resources

About the author

Animating shapes
Last month’s column ("Building virtual structures") introduced VRML 2Transform node
type and discussed its use in creating new coordinate systems. Udiragshegion, rotation,

andscalefields of aTransform node, you can position, orient, and resize shapes built within a
new coordinate system. These features enable you to create 3D virtual structures and walk through
them interactively within a VRML 2.0 browser.

(SeeNetscapeWorld'sidebar on VRML 2.0 Browsers for information on obtaining and installing
VRML 2.0 browsers. Also see tiNetscapeWorl&/ RML Vendors chart for a list of VRML
browsers and plug-ins, and our glossary of VRML 2.0 terms. You need a VRML browser or
plug-in to view the 3D examples presented in this series.)

With VRML 2.0’s animation features, you can create virtual structures with moving parts. A
windmill’s sails can rotate and an escalator’s stairs can slide up or down. Cars can move endlessly
in a virtual city’s traffic patterns, a sun can rise and set daily, clouds can slide across the sky, and
much more. Figure 1 shows two sample animated virtual worlds. Click on an image to load the
associated VRML 2.0 world into your VRML 2.0 browser. The captions below each figure give

the size of the world in bytes, and the expected download time.

(a) A windmill with rotating sails (b) A bouncing ball and glowing rings
(11 kilobytes = 7 seconds @ 14.4bps) (18 kilobytes = 13 seconds @ 14.4bps)

Figure 1. Sample VRML 2.0 worlds containing automatic continuous animations
Click on an image to load the world.

Viewing tip Once loaded into your VRML 2.0 browser, if these worlds run a little
slowly, try reducing the size of the browser window. A smaller window means there is
less screen area for the browser to redraw each time you move in the world. This
reduction in drawing area speeds up the browser and enables it to animate more
smoothly, or respond more quickly to user actions.

Describing animations
To build an animation for your VRML 2.0 virtual world, you need to describe:

® what to animate
® how to animate
® when to animate

For example, if you want to animate an elevator going up and down all day, then the "elevator"” is
whatto animate, the "up and down" motiorhswto animate, and "all day" ishento animate.

The what, how, and when parts of a VRML 2.0 animation are fairly independent. For instance,
you can increase the up and down range of the elevator animation without changing the elevator

shape or "all day" time frame.

The independence of what, how, and when parts of a VRML 2.0 animation description also enable
you to create new animations by re-using parts of prior animations. For example, you can create a
dramatically bouncing pogo-stick animation by combining a new pogo-stick shape with the "up
and down" and "all day" parts of the elevator animation.

To enable this kind of easy mix-and-match animation creation, VRML 2.0 provides separate nodes
dedicated to describing the what, how, and when parts of an animation. Together with these nodes,
VRML 2.0 provides a speci®@OUTE statement that hooks what, how, and when nodes together

into a complete animation description.

You can describe the what part of an animation usin&tia@eandTransform node types

discussed in previous columns. To enable you to describe how and when to animate, this column
introduces three new node typ@gneSensor Positioninterpolator, and

Orientationinterpolator .

For instance, the VRML 2.0 example in Figure 2 builds an elevator that continually moves up and
down. To describevhatto animate, the VRML file uses seveBax, Shape andTransform

nodes to build and position the floor, ceiling, and three walls of a simple elevatdrowlaad
whenparts of the elevator’'s animation are describedibyeSensorandPositioninterpolator

nodes discussed in the next few sections.

#VRML V2.0 utf8
DEF Elevator Transform {
children [
Elevator floor
DEF FloorCeiling Shape {
appearance DEF ElevatorColor Appearance {
material Material { }

}
geometry Box { size 1.50.05 1.5}

Elevator walls
Transform {
translation -0.725 1.0 0.0
children DEF SideWall Shape {
appearance USE ElevatorColor
geometry Box { size 0.051.951.5}

Transform {
translation 0.725 1.0 0.0
children USE SideWall

Transform {
translation 0.0 1.0 -0.725
children Shape {
appearance USE ElevatorColor
geometry Box { size 1.5 1.950.05 }

Elevator ceiling
Transform {
translation 0.0 2.0 0.0
children USE FloorCeiling

]

}
DEF AllDay TimeSensor{...}
DEF UpAndDown PositionInterpolator { . . . }

Figure 2. An animated elevator built using Shape, Box, and Transform nodes
Click on the image to load the world.

Understanding events and animation circuits

To build an animation out of what, how, and when nodes, VRML 2.0 enables you to wire nodes
together into amnimation circuit Each node in the circuit acts like an electronic component with
its own input and output connection points. By wiring the output of one node into the input of
another node, you can createate along which can flow data values callagents

For example, to make an elevator go up and down you can wire the output of a node that generates
up and down events into a node that creates an elevator shape. Each time an up or down event
flows along the wired route to the elevator, the elevator moves up or down. If the events stop
flowing, the elevator stops moving. Using animation circuits like this you can animate the

position, orientation, and size of shapes or change other shape attributes.

Inputs and outputs

An eventlnis an input connection point for a node. &rentOuis an output connection point.

Like fields, a node type’s eventins and eventOuts have names. Different node types have different
eventlns and eventOuts available. Material node type, for instance, haset_diffuseColor

eventln for changing the shading color of a shape Pds#ioninterpolator node type, discussed

later in this column, haswalue_changedeventOut that outputs position events.

An exposed fields a special type of field that combines together a standard field, an eventin to set

that field, and an eventOut that outputs the field value each time the field is seanEtetion
exposed field of &ransform node, for example, has an implisét_translationeventin, and an
implicit translation_changedeventOut.

The syntax boxes used in this column provide a quick summary of a node type’s fields, exposed
fields, eventins, and eventOuts. The syntax box below, for instance, describesgferm

node type introduced in last month’s column. Notice that each of the node type’s fields are
exposed fields and therefore have implicit eventins and eventOuts.

Syntax: Transform

Transform {
translation 0.00.00.0 # exposedField SFVec3f
rotation 0.0 1.0 0.0 # exposedField SFRotation
1.0

scale . 1.0 # exposedField SFVec3f

;:hi'ldren [1 # exposedField MFNode

Eventln and eventOut data types

Like fields, eventins and eventOuts hawtasa type The data type of an eventOut indicates the
kind of event data it sends when wired into an animation circuit. The data type of an eventin
indicates the kind of event data it expects from a circuit.

When wiring an animation circuit from an eventOut to an eventin, the data types of the eventOut
and eventin must match. It is inappropriate, for instance, to wire an eventOut that generates color
data into an eventin that expects positions.

Building animation circuits

Like a computer circuit board, a virtual world’s animation circuitry is built by wiring components
together one at a time. Each VRML 2.0 wireraute, connects two nodes together, enabling
events to flow between the nodes.

The ROUTE statement

VRML 2.0's ROUTE statement wires a route between an eventOut of one node and the eventin of
another.

Syntax: ROUTE

ROUTE outName.eventOutName TO inName.eventinName

EveryROUTE statement includes four pieces:

outName the name of a node that sends events
eventOutNamethe name of an eventOut for the sending node
inName the name of a node that receives events

eventinName the name of an eventin for the receiving node

To wire a route between sending and receiving nodes, both nodes must have names. You can give

a node a name using tB&F syntax introduced in last month’s column.

Along with the names of sending and receiving nodeR@ETE statement selects the sender’s
eventOut and the receiver’s eventin to connect together. For example, the folREWATE
statement connects thalue_changedeventOut of a node nameétbwToMove to the
set_translationeventin of a node nam&tihatToMove.

| ROUTE HowToMove.value_changed TO WhatToMove.set_translation |

The example in Figure 3, below, extends the elevator example shown in Figure 2. The example
wires routes between two pairs of nodes. The RBUTE statement wires a route between

AllDay node’sfraction_changedeventOut and thEpAndDown node’sset_fraction eventin.

The secondROUTE statement wires a route between thAndDown node’svalue_changed
eventOut and thElevator node’sset_translationeventin. This completed animation circuit
enables events to flow froAlDay into UpAndDown, and then frondpAndDown into

Elevator, causing the elevator to animate.

#VRML V2.0 utf8

DEF Elevator Transform{...}

DEF AllDay TimeSensor{...}

DEF UpAndDown PositionInterpolator { . . . }

ROUTE AllDay.fraction_changed TO UpAndDown.set_fraction
ROUTE UpAndDown.value_changed TO Elevator.set_translation

Figure 3. What, how, and when parts of an elevator animation wired together using two routes
Click on the image to load the world.

A VRML 2.0 file may contain any number BIOUTE statements, each one of which adds another
wire into an animation circuit. The same node inputs and outputs may be wired into multiple

routes, enabling a single eventOut to connect to multiple eventins, or a single eventin to connect to
multiple eventOuts.

ROUTE statements may be placed anywhere within a VRML 2.0 file. TypiBAIYTE
statements are placed at the end of the VRML 2.0 file to make it easy to find them while editing

the file.

Describing when to animate
To indicatewhento animate, an animation needs to sense the passage of time. Such time sensing
abilities are provided by VRML 2.08imeSensornode type.

The TimeSensor node type

In an animation circuit, &imeSensornode provides eventOuts that can be wired into other

nodes. As time ticks away, the sensor outputs a variety of time-related values that you can use to
start and stop animations and control their playback speed.

Syntax: TimeSensor

TimeSensor {

enabled TRUE # exposedField SFBool
startTime 0.0 # exposedField SFTime
stopTime 0.0 # exposedField SFTime
cycleinterval 1.0 # exposedField SFTime
loop FALSE # exposedField SFBool
isActive # eventOut SFBool

time #eventOut SFTime
cycleTime #eventOut SFTime
fraction_changed # eventOut SFFloat

A TimeSensornode acts a little like an electronic stop-watch. When turned imeSensor
node starts and stops when you tell it to, only generating outputs between the start and stop times.

TheTRUE or FALSE value of theenabledexposed field turns the sensor on and off. The values
of thestartTime andstopTime exposed fields tell the sensor when to start generating events, and
when to stop.

Start and stop time values are measured in seconds, counting from 12:00 midnight, GMT, January
1st, 1970. This seemingly odd basis for measuring time is an artifact of the computer’s internal
way of measuring time. In practice, this is not a problem since the valuesstdirtiiéme and

stopTime fields are usually not set explicitly within a VRML 2.0 file. Instead, these fields are
typically wired into an animation circuit and set automatically via the output from some other

node.

When the sensor’s stop time is later than the start time, the sensor runs from the start time to the
stop time, then stops, just like a stop-watch. However, if the stop tiealisr than the start time,
then the stop time is ignored and the sensor runs forever.

Sensors that run forever are common in VRML worlds. Such sensors are used to control
animations that play back continually, such as animations that make the sun rise and fall, or that
cycle stop lights.

TheisActive eventOut sends BRUE event at the start time, andFALSE event at the stop time.
Using these output events, you can us@m@eSensornode like an alarm clock and trigger
animation actions at specific times.

Thetime eventOut repeatedly sends the current time while the sensor is running. Output time
values are measured in seconds since 12:00 midnight, GMT, January 1st, 1970.

The remaining exposed fields and eventOuts work together to enbinie&ensornode to

manage a concept dfactional time Normal, absolute time, like that in the real world, always
marches forward. By contrast, VRML'’s fractional time is cyclical: it starts at a given time,
advances for awhile, then starts over. This kind of fractional time is particularly useful for creating
repeating, cyclical animations. A windmill animation, for instance, requires that the windmill’s
sails rotate 360.0 degrees, then start over in a repeating cycle. Similarly, an orbiting virtual planet
repeatedly rotates around a sun, cycle after cycle. The fractional time abilitieS ohd&ensor

node type are the principal mechanism by which VRML animations like these are controlled. All
of the examples in the rest of this column use fractional times to control cyclical animations.

The value of theyclelnterval exposed field specifies the length of a single cycle, measured in
seconds. The first cycle starts at the start time selected btattiEime exposed field.

The value of théoop exposed field indicates if the sensor should run for a single cycle or continue
to cycle indefinitely. When thimop exposed field value BALSE, the sensor runs for a single

cycle then stops, even if the time in 8tepTime field hasn’t been reached yet. When libep

exposed field value iISRUE, the sensor runs for a potentially infinite number of cycles, halting
only when the stop time is reached, if ever.

ThecycleTime eventOut sends the current time each time a cycle is started. Lika¢he
eventOut, the time output by togcleTime eventOut is measured in seconds since 12:00
midnight, GMT, January 1st, 1970.

Thefraction_changedeventOut is the most important output dfimeSensornode. During each
cycle of the sensor, theaction_changedeventOut sends floating-point number events that vary
from 0.0 at the start of a cycle to 1.0 at the end. At the end of a cycle, the sensor’s fractional time
resets back to 0.0, ready for the next cycle.

The fractional time outputs of EmeSensornode are almost always wired into one of the
interpolator node types discussed in the next section. In such an animation circuit, the
TimeSensornode controlsvhento animate, and the interpolator nodes coritoal to animate.

Using TimeSensor nodes

The example in Figure 4 shows an expanded version of the elevator example from Figures 2 and 3.
To describevhento animate the elevator, the VRML file usebimeSensornode namedliDay .

The node’s fields indicate it should loop through 4.0 second long cycles starting at 1.0 second after
12:00 midnight, GMT, January 1st, 1970. Since the stop time is 1.0 second earlier than the start
time, the sensor ignores the stop time and cycles forever.

At each tick of thelimeSensornode, a fractional time event is output from the node’s
fraction_changedeventOut and routed into an interpolator. The interpolator uses these fractional
time values to compute positions with which to animate the elevator.

#VRML V2.0 utf8
DEF Elevator Transform { ...}
DEF AllDay TimeSensor {
cyclelnterval 4.0
loop TRUE
startTime 1.0
stopTime 0.0

}
DEF UpAndDown PositionInterpolator { . . . }

ROUTE AllDay.fraction_changed TO UpAndDown.set_fraction
ROUTE UpAndDown.value_changed TO Elevator.set_translation

Figure 4. A TimeSensor node used to animate an elevator through an infinite number of 4.0 second cycles
Click on the image to load the world.

Using start and stop times
The use of start and stop times measured since 12:00 midnight, GMT, January 1st, 1970, may
seem confusing at first. This is, however, a very powerful feature of VRML 2.0.

Conceptually, a VRML 2.0 virtual world existsdependentrom the real world. Your virtual

world has its own shapes, and its own activities going on, even if you aren’t watching them right
now. The animation circuits you wire together describe these activities. Once wired, you can let go
and the animations continue on without you.

When you set up a loopingmeSensornode, the sensor cycles over and over from the start time

to the stop time. That cycling continues, conceptually, whether or not the world is currently loaded
into your VRML 2.0 browser. Each time you load your world into your browser, the browser
computes what is currently happening in your virtual world and displays it.

For example, imagine that you set upimeSensornode so that an animation starts at 12:00
midnight, PST, the morning of February 1st, 1997, and stops at the same time on February 28th,
1997. If you load this virtual world any time in February, you’ll see the animation. However, if
you load the world in January, the animation won’t have started yet, and if you load it in March,
the animation will already have completed.

The use of start and stop times for animations enables you to give your virtual worlds a history and
a future. You can specify exactly what has happened, and what will happen in your world.

For example, the elevator VRML file shown in Figure 4 above u3ém@Sensornode that

started its cycling 27 years ago, 1 second after midnight, GMT, January 1st, 1970. Since then, the
sensor has cycled over and over every 4.0 seconds until the present day. Since the sensor has a
stop time earlier than its start time, the stop time is ignored and the sensor will continue cycling
forever. When you load this world into your browser, you experience a brief portion of this
elevator’s continuing up and down existence.

VRML 2.0’s use of 12:00 midnight, GMT, January 1st, 1970 as the beginning of your virtual
world calendar is arbitrary. This calendar starting date and time is one commonly used by other
computer time measurements, making it a convenient choice for VRML 2.0.

Describing how to animate

To describéhowto animate, VRML 2.0 provides a varietyinferpolator node types. Two of the
most common interpolators are tRAesitioninterpolator and theOrientationinterpolator node

types. Both of these node types uséraeSensornode’s fractional time output to help them
compute and output position or orientation values for your animations. By wiring a route from an
interpolator node into a shap&sansform node, you can use an interpolator’s position or
orientation outputs to animate the position or orientation of a shape.

Keyframe animation

To animate a shape’s position or orientation, your animation description must provide a new
position or orientation for every moment during which the shape is animating. For cyclical
animations using aimeSensornode’s fractional time, you only need to provide a new position or
orientation for every fractional time value between 0.0 and 1.0.

The most straightforward approach for an animation description is to use a table of positions or
orientations, one for each possible fractional time between 0.0 and 1.0. Unfortunately, there are an
infinite number of possible fractional time values between 0.0 and 1.0, which makes a table like
this impractical.

Instead, animation descriptions use a technique dedigilame animatigrnwhere a position or
orientation is specified for only a few, key fractional times. The position or orientation values at
these times are callégy valuesVRML 2.0’s interpolator nodes use these key fractional times

and key values as a rough sketch of the animation and fill in the values between those specified as
needed. Using keyframe animation, an animation description specifies only a few positions and
orientations, instead of an infinite number of them.

For example, to cause an elevator to rise from the bottom floor to the top floor as fractional time
proceeds from 0.0 to 1.0, a keyframe animation can use just two key fractional times, 0.0 and 1.0,
and just two key values, the bottom and top of the elevator shaft. An interpolator node can
automatically compute positions between these two key positions for fractional times between 0.0
and 1.0. At fractional time 0.5, for instance, an interpolator computes the elevator’s position as
exactly halfway between the bottom and top floors.

Linear interpolation

All VRML 2.0 interpolator nodes udmear interpolationto compute intermediate values between

the key values you provide. Linear interpolation can be visualized by first imagining two

key-value positions plotted as dots on a piece of graph paper. Next, using an imaginary ruler, draw
alinear, or straight line between the two dots. All points along the drawn line are intermediate

positions between the first key-value position and the second.

A linear interpolator computes an intermediate position or orientation each time an output is
needed. Any number of intermediate values can be computed between your key positions and
orientations.

The use of interpolation is especially important when playing an animation at different speeds. For
a quick animation, your VRML browser may only have time to draw the world a few times
between the time the animation starts and the time it stops. In this case, your browser may only
need to linearly interpolate values at a few fractional times between the key fractional times you
provide.

For a slow animation, your VRML browser may have the time to draw the world many times and
may need a large number of interpolated positions or orientations. In this case, your browser may
interpolate values at many fractional times between your key fractional times.

Using keyframe animation and linear interpolation, you can describe an animation independent of
the playback speed of the animation. During playback, an appropriate number of intermediate
values are computed automatically.

The Positioninterpolator node type

ThePositioninterpolator node type describes a linear interpolator for use in the keyframe
animation of shape positions.

Syntax: Positioninterpolator

PositionInterpolator {
key [] # exposedField MFFloat

keyValue [] # exposedField MFVec3f
set_fraction #eventin SFFloat
value_changed # eventOut SFVec3f

The value of théey exposed field specifies a list of key fractional times. Typically, fractional
times are between 0.0 and 1.0, such as those outpukibye&ensornode’sfraction_changed
eventOut. Key fractional times, however, may be positive or negative floating-point numbers of
any size as long as they are listed in non-decreasing order.

The value of théeyValue exposed field specifies a list of key positions. Each key position is a
3D coordinate composed of an X, a Y, and a Z distance.

The key fractional times and positions are used together so that the first key fractional time
specifies the time for the first key position, the second key fractional time for the second key
position, and so forth. The lists, together, may provide any number of fractional times and
positions, but both lists must contain the same number of values.

Theset_fraction eventln accepts floating-point fractional time events, such as those output by a
TimeSensornode’sfraction_changedeventOut. Each time a fractional time event is received,

the Positioninterpolator node computes by linear interpolation a new position based upon the list
of key positions and their corresponding key fractional times. The new computed position is
output via thevalue_changedeventOut.

In typical use, th@alue_changedeventOut of @&ositioninterpolator node is routed into a
Transform node’sset_translationeventin. Each time the interpolator outputs a new position
event, thelransform node sets itganslation field, causing the shapes built within the
Transform node’s coordinate system to change position.

The Orientationinterpolator node type
TheOrientationinterpolator node type describes a linear interpolator for use in keyframe
animation of shape orientations.

Syntax: OrientationInterpolator

OrientationInterpolator {
key [] # exposedField MFFloat

keyValue [] # exposedField MFRotation
set_fraction #eventin SFFloat
value_changed # eventOut SFRotation

TheOrientationinterpolator node type performs in a way analogous toRbsitioninterpolator

node type. Th&ey exposed field specifies a list of key fractional times, whilek#d/alue

exposed field specifies a list of key rotations. Each key rotation is a set of four floating-point
numbers where the first three values describe a rotation axis, and the last value describes a rotation
angle about that axis, measured in radi@rgentationinterpolator node type rotations are

identical to those used in thetation field of theTransform node type described in last month’s
column.

Similar to thePositioninterpolator node type, theet_fraction eventin accepts a fractional time
event and causes the interpolator to compute and output a new rotation value via the
value_changedeventOut. Output rotations are computed by linearly interpolating between the list
of key rotations.

Using a Positioninterpolator node

Figure 5 expands upon the elevator example used in Figures 2, 3, and 4 earlier. Tohimscribe

the elevator moves up and down, this example uBeasiéioninterpolator node with three key
fractional times and three key positions. At fractional time 0.0, the associate key position is at the
origin: 0.0 0.0 0.0. At fractional time 0.5, the associated position is 2.0 units up the Y axis from

the origin. At fractional time 1.0, the associated position is again at the origin. When this
animation plays back, the interpolator automatically generates intermediate positions up and down
the elevator’s path.

#VRML V2.0 utf8

DEF Elevator Transform{...}

DEF AllDay TimeSensor{...}

DEF UpAndDown Positioninterpolator {
key [0.0,0.5,1.0]
keyValue [

ocoo
[elole)
ono
[elole)
ooo
oopo

]
}

ROUTE AllDay.fraction_changed TO UpAndDown.set_fraction
ROUTE UpAndDown.value_changed TO Elevator.set_translation

Figure 5. A PositionInterpolator node used to animate the vertical position of an elevator
Click on the image to load the world.

Experimenting with VRML 2.0 animation

The elevator example shown in Figures 2 through 5 u$eaeSensornode to control a
Positioninterpolator node. On eacliimeSensornode output, the interpolator computes a new

3D position and sends it into thranslation field of aTransform node. In response, the

Transform node adjusts the position of its coordinate system, thereby moving the shapes making
up the elevator.

You can use interpolators to create a variety of animations, varying positions and orientations of
multiple shapes in your world. The examples below illustrate a few uses of VRML interpolators.

Using an Orientationinterpolator node

You can use a@rientationinterpolator node to cause a shape to spin. The example in Figure 6,
for instance, uses EmeSensornode to control a@rientationinterpolator node, which in turn
changes theotation field value of a purple barBransform node. As th&imeSensornode ticks
away, the interpolator computes new rotations and the purple bar spins.

#VRML V2.0 utf8
DEF Bar Transform {
children Shape {
appearance Appearance {
material Material { diffuseColor 0.5 0.0 1.0 }

}
geometry Box { size 0.53.00.5}

DEF Forever TimeSensor {
cyclelnterval 6.0
loop TRUE
startTime 1.0
stopTime 0.0

DEF FullCircle OrientationInterpolator {
key [0.0,0.5,1.0]
keyValue [

[eNeoNe]
[eNeole]
[eNeoNe]
[eNeoNe]

1.
1.
1.

(oo
OO wWo
N o

00. 14,
00. 28
]

}

ROUTE Forever.fraction_changed TO FullCircle.set_fraction
ROUTE FullCircle.value_changed TO Bar.set_rotation

Figure 6. An animation circuit to spin a purple bar
Click on the image to load the world.

Animating multiple shapes using the same interpolator

You can use a single interpolator node to animate the position or orientation of more than one
shape. For instance, Figure 7 extends the spinning purple bar example of Figure 6, adding five
more spinning purple bars arranged on the six sides of a cube. ABmg8ensornode controls

a singleOrientationinterpolator node. The interpolator’s rotation value outputs are routed into
all six purple bars, causing them all to rotate in synch.

#VRML V2.0 utf8
#
Rotating bars positioned as six faces of a cube
#
DEF Barl Transform {

translation 0.0 0.0 1.5

children DEF PurpleBar Shape {

appearance Appearance {
material Material { diffuseColor 0.5 0.0 1.0 }

}
geometry Box { size 0.53.00.5}

Transform {
rotation 0.0 1.0 0.0 1.57
children DEF Bar2 Transform {
translation 0.0 0.0 1.5
children USE PurpleBar

Transform {
rotation 0.0 1.0 0.0 3.14
children DEF Bar3 Transform {
translation 0.0 0.0 1.5
children USE PurpleBar

}

Transform {
rotation 0.0 1.0 0.0 -1.57
children DEF Bar4 Transform {
translation 0.0 0.0 1.5
children USE PurpleBar

Transform {
translation 0.0 1.5 0.0
rotation 1.0 0.0 0.0 -1.57
children DEF Bar5 Transform {
children USE PurpleBar

Transform {
translation 0.0 -1.5 0.0
rotation 1.0 0.0 0.0 1.57
children DEF Bar6 Transform {
children USE PurpleBar
}
}

#
Master timer used for all rotating bars
#
DEF Forever TimeSensor {
cyclelnterval 6.0
loop TRUE

startTime 1.0
stopTime 0.0
}

#
Master spinner used for all rotating bars
#
DEF FullCircle OrientationInterpolator {
key [0.0,0.5,1.0]
keyValue [

[eXeoNe]
[eNeole]
[eeole]
[eNeoNe]

1.
1.
1.

[eolele]
oo wo
NP O

00. 14,
00. 28
]

}

ROUTE Forever.fraction_changed TO FullCircle.set_fraction
ROUTE FullCircle.value_changed TO Barl.set_rotation
ROUTE FullCircle.value_changed TO Bar2.set_rotation
ROUTE FullCircle.value_changed TO Bar3.set_rotation
ROUTE FullCircle.value_changed TO Bar4.set_rotation
ROUTE FullCircle.value_changed TO Bar5.set_rotation
ROUTE FullCircle.value_changed TO Bar6.set_rotation

Figure 7. An animation circuit to spin six purple bars using a single Orientationinterpolator
Click on the image to load the world.

Using multiple TimeSensor nodes
Each of the previous examples use a sifigieeSensornode to control all the motion in the
world. You can also create animation circuits with multil@eSensornodes.

The example in Figure 8 creates an abbreviated model of the Solar System. The model includes a
stationary central Sun, and three orbiting planets: Mercury, Venus, and Earth. Each planet has a
different color, size, and orbital radius. To make the planets orbit the Sun, each planet is animated
by the output from a separddientationinterpolator node describing a circular path for the

planet. To simulate (very roughly) the different orbital speeds of the planets, each planet’s
Orientationinterpolator node is controlled by a separdieneSensornode with its own cycle

length. In this virtual world, Mercury’'SimeSensornode takes 2.0 seconds to complete a cycle,
while Venus’ takes 3.5 seconds and Earth’s takes 5.0 seconds.

#
Stationary sun and three orbiting planets

#VRML V2.0 utf8 H

#
Shape {
appearance Appearance {
material Material { diffuseColor 1.0 1.0 0.0 }

}
geometry Sphere {}

DEF Mercury Transform {
children Transform {
translation 2.0 0.0 0.0
children Shape {
appearance Appearance {
material Material { diffuseColor 0.9 0.2 0.0 }

}
geometry Sphere { radius 0.2 }
}

DEF Venus Transform {
children Transform {
translation 3.0 0.0 0.0
children Shape {
appearance Appearance {
material Material { diffuseColor 0.5 0.5 0.8 }

}
geometry Sphere { radius 0.25 }
}
}

}
DEF Earth Transform {
children Transform {
translation 4.0 0.0 0.0
children Shape {
appearance Appearance {
material Material { diffuseColor 0.0 0.5 1.0 }

}
geometry Sphere { radius 0.4 }

}
}

#
Timers, one per planet
#
DEF MercuryForever TimeSensor {
cycleinterval 2.0
loop TRUE
startTime 1.0
stopTime 0.0

DEF VenusForever TimeSensor {
cycleinterval 3.5
loop TRUE
startTime 1.0
stopTime 0.0

DEF EarthForever TimeSensor {
cyclelnterval 5.0
loop TRUE
startTime 1.0
stopTime 0.0

#
Orbital paths, one per planet (all identical)
#
DEF MercuryOrbit OrientationInterpolator {
key [0.0,0.5,1.0]
keyValue [
0.01.0
0.01.0
0.01.0
]

}
DEF VenusOrbit Orientationinterpolator {
key [0.0,0.5,1.0]
keyValue [
0.01.0
0.01.0
0.01.0
]

0.0 0.0,
0.0 3.14,
0.0 6.28

1

0.0 0.0,
0.0 3.14,
0.0 6.28,

}

DEF EarthOrbit OrientationInterpolator {
key [0.0,0.5,1.0]
keyValue [
0.01.0
0.01.0
0.01.0
]

0.0 0.0
0.0 3.14,
0.0 6.28,

}

ROUTE MercuryForever.fraction_changed TO MercuryOrbit.set_fraction
ROUTE MercuryOrbit.value_changed TO Mercury.set_rotation
ROUTE VenusForever.fraction_changed TO VenusOrbit.set_fraction
ROUTE VenusOrbit.value_changed TO Venus.set_rotation

ROUTE EarthForever.fraction_changed TO EarthOrbit.set_fraction
ROUTE EarthOrbit.value_changed TO Earth.set_rotation

Figure 8. An animation circuit to simulate the orbits of three planets around a stationary Sun
Click on the image to load the world.

Using longer motion paths

In the elevator example shown earlier, Basitioninterpolator node uses only three key

positions to describe the up and down motion path of the elevator. Similarly, each of the examples
usingOrientationinterpolator nodes use only three key orientations. You can, however, use any
number of positions or orientations in the key value list for an interpolator. For very complex
motion paths, you may have hundreds, or even thousands of separate positions or orientations
listed in an interpolator.

The example shown in Figure 9 builds a simple escalator with four stairs. Each stair is identical
and follows an identical motion path containing seven positions. The motion path positions
describe a diagonal, upward path for an escalator stair. At the top of the escalator, the stair drops
down and returns to the bottom of the escalator, ready to travel upwards again on the next cycle.
An identical motion path is specified in each of fBasitioninterpolator nodes, one per stair. To
cause the four stairs to travel upwards, offset from each other, each stair useslitm@®8ansor

node with an offset start time.

#VRML V2.0 utf8
#
Four escalator stairs (all identical)
#
DEF Stairl Transform {
children DEF Platform Shape {

appearance Appearance {
material Material { diffuseColor 0.0 0.5 1.0}

}
geometry Box { size 1.00.1 2.0}

}

DEF Stair2 Transform { children USE Platform }
DEF Stair3 Transform { children USE Platform }
DEF Stair4 Transform { children USE Platform }

#
Four timers, one per stair (each offset by 1 second)
#
DEF Foreverl TimeSensor {
cycleinterval 4.0
loop TRUE
startTime 1.0
stopTime 0.0

DEF Forever2 TimeSensor {
cycleinterval 4.0
loop TRUE
startTime 2.0
stopTime 0.0

DEF Forever3 TimeSensor {
cycleinterval 4.0
loop TRUE
startTime 3.0
stopTime 0.0

DEF Forever4 TimeSensor {
cycleinterval 4.0
loop TRUE
startTime 4.0
stopTime 0.0

#
Four animation paths, one per stair (all identical)
#
DEF Diagonall PositionInterpolator {
key [0.0, 0.4, 0.45, 0.5, 0.9, 0.95,1.0]
keyValue [
0.0 0. 4.0
.0, 45
0.0 -

ol—‘l\)

.00.0
.8 0.0,
.20.0

OO M
ocwum
oconN
oNnoOOo
cooo
coooo

]

}

DEF Diagonal2 PositionInterpolator {
key [0.0, 0.4, 0.45, 0.5, 0.9, 0.95,1.0]
keyValue [

0.0 0. 4.0

.0, 45

0.0 -

ol—‘l\)

.00.0
.8 0.0,
.20.0

OO M
ocwu
oconN
oNnoOOo
cooo
cooo

]

}

DEF Diagonal3 PositionInterpolator {
key [0.0, 0.4, 0.45,0.5,0.9,0.95,1.0]
keyValue [

0.0 0. 4.0

.0, 45

0.0 -

ol—‘l\)

.00.0
.8 0.0,
.20.0

OO M
ocwu
oconN
oNnoOOo
cooo
cooo

]

}

DEF Diagonal4 PositionInterpolator {
key [0.0, 0.4, 0.45,0.5,0.9,0.95,1.0]
keyValue [

0.0 0. 4.0

45

0.0 -

ol—‘l\)

.00.0
.8 0.0,
.20.0

OO M
[@Né N6
ocoonN
oNnoOOo
ococoo
coooo

]
}

ROUTE Foreverl.fraction_changed TO Diagonall.set_fraction
ROUTE Forever2.fraction_changed TO Diagonal2.set_fraction
ROUTE Forever3.fraction_changed TO Diagonal3.set_fraction
ROUTE Forever4.fraction_changed TO Diagonal4.set_fraction

ROUTE Diagonall.value_changed TO Stairl.set_translation
ROUTE Diagonal2.value_changed TO Stair2.set_translation
ROUTE Diagonal3.value_changed TO Stair3.set_translation
ROUTE Diagonal4.value_changed TO Stair4.set_translation

Figure 9. A simple escalator containing four identical stairs traveling along identical diagonal paths, offset in
time
Click on the image to load the world.

Animating the size of a shape

ThePositioninterpolator node can be used to vary the position of a shape, and the
Orientationinterpolator node used to vary a shape’s orientation. VRML 2.0 does not include an
interpolator dedicated to animating a shape’s size. However, you camasgi@ninterpolator

node to achieve this purpose.

Output events of Rositioninterpolator node include X, Y, and Z values with 8&Vec3fdata
type. This data type is appropriate for use in animatifigaasform node’stranslation field

value, as in the elevator examples. This data type is also appropriate for use in animatialg the
field value of alransform node.

The example in Figure 10 usePasitioninterpolator node to animate trecalefield value of a

yellow sphere’sTransform node. Key values in thHeositionInterpolator node are set to be X, Y,
and Z scaling factors instead of 3D positions. Each output from the interpolator is routed into the
Transform node’sscalefield and changes the X, Y, and Z scaling factors for the yellow sphere.
The effect of the animation is to repeatedly squish the yellow sphere.

#VRML V2.0 utf8
DEF Squishy Transform {
children Shape {
appearance Appearance {
material Material { diffuseColor 1.0 1.0 0.0 }

}
geometry Sphere {}

DEF Forever TimeSensor {
cycleinterval 2.0
loop TRUE
startTime 1.0
stopTime 0.0

}
DEF Squisher Positioninterpolator {
key [0.0,0.5,1.0]
keyValue [
Scaling factors, not positions...
1.01.01.0,
0.51.41.4,
1.01.01.0,
]
}

ROUTE Forever.fraction_changed TO Squisher.set_fraction
ROUTE Squisher.value_changed TO Squishy.set_scale

Figure 10. An animation that repeatedly squishes a yellow sphere by animating scaling factors using a
Positioninterpolator.
Click on the image to load the world.

Combining together multiple interpolators

You can create complex animations by combining together multiple interpolators. The example in
Figure 11 extends the squishy yellow sphere example in Figure 10, creating a whimsical rotating
gadget that repeatedly moves a yellow ball within reach of a pair of plunger shafts that slide in and
squish the ball.

An Orientationinterpolator node rotates the gadget. A paiRafsitioninterpolator nodes slide
the plunger shafts in and out. Four mBussitioninterpolator nodes squish one each of the
yellow spheres on the gadget. A sin§lsmeSensornode controls all of the interpolators.

#

‘ #VRML V2.0 utf8 H

Weird rotating gadget with four squishable balls
#
DEF Gadget Transform {
children [
Four squishable balls positioned around a circle
DEF Squishy1 Transform {
translation 0.0 0.0 4.0
children DEF Ball Shape {
appearance Appearance {
material Material { diffuseColor 1.0 1.0 0.0 }

}
geometry Sphere {}

}

DEF Squishy2 Transform {
translation 0.0 4.0 0.0
children USE Ball

}

DEF Squishy3 Transform {
translation 0.0 0.0 -4.0
children USE Ball

}

DEF Squishy4 Transform {
translation 0.0 -4.0 0.0
children USE Ball

A central plate and spokes for the gadget
Transform {
rotation 0.0 0.0 1.0 1.57
children Shape {
appearance DEF Gray Appearance {
material Material { }

}

geometry Cylinder {
radius 2.0
height 0.2

}

}

DEF Spoke Shape {
appearance USE Gray
geometry Cylinder {

height 6.0
radius 0.3

}

Transform {
rotation 1.0 0.0 0.0 1.57
children USE Spoke
}
]
}

#
Sliding squishing apparatus with two shafts
#

Transform {
translation 0.0 0.0 4.0
children [
Left shaft
DEF Left Transform {
rotation 0.0 0.0 1.0 -1.57
children DEF Shaft Transform {
translation 0.0 -1.25 0.0
children [
Main shaft
Shape {
appearance USE Gray
geometry Cylinder {
height 2.0
radius 0.4
}

}
Squishing head on the shaft
Transform {
translation 0.0 1.125 0.0
children Shape {
appearance USE Gray
geometry Cylinder {
height 0.25
radius 0.6

}
}
]
}

}
Right shaft
DEF Right Transform {
translation 0.0 0.0 4.0
rotation 0.0 0.0 1.0 1.57
children USE Shaft

}
]
}
#
Animation timer
#

DEF Forever TimeSensor {
cycleinterval 10.0
loop TRUE
startTime 1.0
stopTime 0.0

#
Rotation path for the ball-holder gadget
#
DEF Rotater Orientationinterpolator {
key [

0.00, 0.0625, 0.125,

0.25, 0.3125, 0.375,

0.50, 0.5625, 0.625,
0.75, 0.8125, 0.875,
1.0

keyValue [
1.00.00.00.0, 1.00.00.00.0, 1.0
1.00.00.01.57, 1.00.00.01.57, 1.
1.00.00.03.14, 1.00.00.03.14, 1.
1.00.00.04.71, 1.00.00.04.71, 1.
1.00.0 0.0 6.28,

]

}
#
Scaling for the four squishable balls
#
DEF Squisherl PositionInterpolator {
key [
0.00, 0.0625, 0.125,
0.25, 0.3125, 0.375,
0.50, 0.5625, 0.625,
0.75, 0.8125, 0.875,
1.0

]

keyValue [

Scaling factors, not positions...
1.01.01.0, 051414, 1.01.01.0,
1.0101.0, 1.01.01.0, 1.01.01.0,
1.0101.0, 1.01.01.0, 1.01.01.0,
1.0101.0, 1.01.01.0, 1.01.01.0,
1.01.01.0,

,]
DEF Squisher2 PositionInterpolator {
key [
0.00, 0.0625, 0.125,
0.25, 0.3125, 0.375,
0.50, 0.5625, 0.625,
0.75, 0.8125, 0.875,
1.0

]

keyValue [

Scaling factors, not positions...
1.0101.0, 1.01.01.0, 1.01.01.0,
101010, 051414, 1.01.01.0,
1.0101.0, 1.01.01.0, 1.01.01.0,
1.0101.0, 1.01.01.0, 1.01.01.0,
1.0101.0

,]
DEF Squisher3 PositionInterpolator {

.0625, 0.125,
.3125, 0.375,
.5625, 0.625,
.8125, 0.875,

mpmo
cooo

]

keyValue [

Scaling f
1.01.

Q
o

ctors, not pOSItI n

B o

ouUltoo
B e
oOpM,OO
B
orhooO
coood
B
oOooo
B e
oooo

coocooo
PRPPRP
PR

.0
.0
0,
.0
.0

PPRRPPG
000 O«
PPRPP

]

}
DEF Squisher4 PositionInterpolator {
key [

0.00, 0.0625, 0.125,
0.25, 0.3125, 0.375,
0.50, 0.5625, 0.625,
0.75, 0.8125, 0.875,
1.0
]
keyValue [

Scaling f
1.01.

QD
Q

tors, not p

sition

o

S..
01
0
0
0

tnooo
PRpe
~AOOO
PRER
hooo

1.
1.
1.
1.

PR R
coocoo
PPRPP
ocooo

coocooo
L
ooooo0o

orpRkrpRE

B ey
[eoleloNe]
e

]
}

#

Paths for the left and right squisher shafts
#

DEF LeftToRight PositionInterpolator {

key [
0.00, 0.0625, 0.125,

0.25, 0.3125, 0.375,
0.50, 0.5625, 0.625,
0.7 ,0.8125, 0.875,
1.0

}
DEF RightToLeft PositionInterpolator {
key [
0.00, 0.0625, 0.125,
0.25, 0.3125, 0.375,
0.50, 0.5625, 0.625,
0.75, 0.8125, 0.875,
1.0

o

IS
cooo
cooo
oooo
oooo
PReR

cooo
o000
[eoNeoloNe]
oooo
oooo

ROUTE Forever.fraction_changed TO Rotater.set_fraction
ROUTE Rotater.value_changed TO Gadget.set_rotation

ROUTE Forever.fraction_changed TO Squisherl.set_fraction
ROUTE Forever.fraction_changed TO Squisher2.set_fraction
ROUTE Forever.fraction_changed TO Squisher3.set_fraction
ROUTE Forever.fraction_changed TO Squisher4.set_fraction
ROUTE Squisherl.value_changed TO Squishyl.set_scale
ROUTE Squisher2.value_changed TO Squishy2.set_scale
ROUTE Squisher3.value_changed TO Squishy3.set_scale
ROUTE Squisher4.value_changed TO Squishy4.set_scale

ROUTE Forever.fraction_changed TO LeftToRight.set_fraction
ROUTE Forever.fraction_changed TO RightToLeft.set_fraction
ROUTE LeftToRight.value_changed TO Left.set_translation
ROUTE RightToLeft.value_changed TO Right.set_translation

Figure 11. A whimsical gadget to repeatedly squish four yellow balls
Click on the image to load the world.

Next in the VRML Technique column

VRML 2.0’s animation features enable you to make your worlds come alive with animating

shapes whose position, orientation, and size change as time progresses. All of the examples in this
column use looping animations that repeat forever. In next month’s column I'll introduce the
TouchSensormode type with which you can start and stop animations at the user’s touch.

Resources

® A list of David Nadeau’'s VRML Technique columnsNietscapeWorld

® VRML 2.0 browserd\NetscapeWorld'guide to finding and installing a VRML browser ¢n
your computer.

® VRML 2.0 glossary

® NetscapeWorld’¥RML vendors chart A handy reference of VRML browser and servgr
companies including their plug-ins to Web browsers -- with updated items in bold to|aid
your review -- and links to all the vendors.
http://www.netscapeworld.com/netscapeworld/common/nw.vrmitable.html

® The UTF-8 character set sidebar accompanying the first VRML Technique column.

Specifications

® VVRML 2.0 specification http://vag.vrml.org/VRML2.0/FINAL/

® [SO 10646-1:1993 Universal Character Set (UCS) specification sales information
http://www.iso.ch/cate/d18741.html

® UTF-8 character encoding scheme for UCS
http://www.dkuug.dk/JTC1/SC2/WG2/docs/n1335

Sites

® The VRML Repository http://www.sdsc.edu/vrml
® VVRML Architecture Group http://vag.vrml.org

About the author

David R. Nadeau is a co-authorTtdie VRML 2.0 Sourcebogbublished by John Wiley & Sons

and written with Andrea L. Ames and John L. Moreland. David is a staff researcher at the San
Diego Supercomputer Center where he is a specialist in 3-D computer graphics, virtual reality, and
scientific visualization. He is also the creatoifbke VRML Repositorya Web site providing

extensive information on VRML software, documentation, and 3-D worlds.

A You can buy David R. Nadeaul$ie VRML 2.0 Sourceboalk a 20% discount from
Amazon.com Books.

Feedback nweditors@netscapeworld.com
1996-1997 | URL: http://www.netscapeworld.com/netscapeworld/nw-02-1997/nw-02-vrmltechnique.html

3?[;15 Last updated Tuesday, March 11, 1997
Communications
Company

| VRML Technique

Sensing the viewer’s touch

How to sense the viewer’s touch to start and stop animations in VRML 2.0

By David R. Nadeau

Summary
To enable your virtual worlds to come alive and interact with the viewer, VRML 2.0 provides

nodes thasensehe viewer’s actions. Using sensor nodes, you can create doors that openjand
close at the viewer’s knock. Virtual control panels can steer virtual space craft or direct the
movements of a virtual robot. Gizmos can whir to life and virtual creatures scuttle away af the
viewer’s touch.

In this month’s VRML Technique column I'll introduce VRML 2.0reuchSensormode type
with which you can author worlds that sense the touch of the viewer’s cursor. Along the way I'll
discuss advanced uses of VRML 2.TUimmeSensornode and show how you can create
animations that run periodically, run for a selected number of cycles, or keep track of wallrclock
time. @,500 word}

Table of contents

Animating at the viewer’s touch Experimenting with time sensors

Sensing touch ® Counting timer cycles
® Creating periodic animations

® The TouchSensor node type ® Creating a stop-watch

Experimenting with touch sensors Next in the VRML Technique column

® Triggering animations with cursor proximity || Resources

® Triggering animations using proxy shapes

® Triggering animations with mouse button About the author
presses

® Triggering animations with touch time

® Creating 3D buttons

Animating at the viewer’s touch

Last month’s column ("Animating shapes") introduced VRML 2.0’s animation features,

discussing animation circuits, events, routes, and itheSensor Positioninterpolator, and
Orientationinterpolator node types. Using these nodes, you can animate the position,

orientation, and scale of shapes. You can create spinning sails on a windmill, orbit planets about a
sun, and construct all sorts of virtual mechanical gadgets.

To make your world interactive, you can attach to a shag@asorthat senses viewer actions with

a pointing device, such as a mouse. When the viewer clicks on a shape with an attached sensor, the
sensor outputs events that can be routed into other nodes to start and stop animations. Using shape
Sensors you can create shapes that react to the touch of the viewer’s cursor.

Figure 1 shows a sample virtual world containing a robot and control panel. Pressing control panel
buttons activate the robot. Click on the image to load the robot world into your VRML 2.0

browser. The caption below the figure gives the size of the world in bytes, and the expected
download time.

(SeeNetscapeWorld’'sidebar on VRML 2.0 Browsers for information on obtaining and installing
VRML 2.0 browsers. Also see tidetscapeWorld/RML Vendors chart for a list of VRML
browsers and plug-ins, and our glossary of VRML 2.0 terms. You need a VRML browser or
plug-in to view the 3D examples presented in this series.)

Figure 1. A sample VRML 2.0 world containing touch sensitive shapes
(45 kilobytes = 31 seconds @ 14.4bps)

Click on the image to load the world.

Viewing tip Once loaded into your VRML 2.0 browser, if these worlds run a little
slowly, try reducing the size of the browser window. A smaller window means there is
less screen area for the browser to redraw each time you move in the world. This
reduction in drawing area speeds up the browser and enables it to animate more
smoothly, or respond more quickly to user actions.

Sensing touch

Most computers today provide a pointing device to move the cursor on the screen. A mouse with
one, two, or three buttons is probably the most common pointing device, but joysticks, trackballs,
touchpads, and other such devices are also available. To interact with an application, the viewer

moves the cursor about to point at items of interest. When an interesting item is found, the viewer
can perform one of three actions:

® Move:without pressing a mouse button, move the cursor over an item.
® Click: while the cursor is over an item, press the mouse button, then immediately

release the button without moving the mouse.
® Drag: while the cursor is over an item, press the mouse button, move the mouse, then
release the button.

In most applications, each of these familiar actions causes something specific to happen. In
Microsoft Windows, for instance, movement of the cursor so that it rests on a button causes a
message to pop up telling a viewer what will happen if they press the button. In a drawing
application, clicking on a shape selects the shape so that its size or color can be changed.
Similarly, in a drawing application, a drag action moves a shape across the screen.

In VRML 2.0, you can attach a sensor node to a shape to detect move, click, and drag viewer
actions. You can wire the outputs of a sensor node into a circuit to cause shapes to move and
animations to play when the viewer interacts with a sensed shape.

The number of buttons available on a pointing device, like a mouse, varies from computer to
computer. Macintoshes typically have one-button mice, PCs have two-button mice, and UNIX
workstations usually have three-button mice. To insure that VRML 2.0 worlds can be viewed on
any type of computer, VRML 2.0 sensors assume there is only a single mouse button available. On
a computer with a multiple-button mouse, ki mouse button is usually the button sensed. The
remaining mouse buttons, if any, may be used by a VRML browser to select among menu items or
steer the viewer as they move through your world.

The TouchSensor node type

VRML 2.0’s TouchSensomode detects move, click, and drag actions by the viewer’s pointing
device, such as a mouse. The sensor can be included within any group of shapes, such as that
managed by &ransform node. When in such a groupJauchSensomode senses when the
viewer’s cursor moves over or clicks any shape built in that group

The ability of aTouchSensomode to sense all the shapes in a group enables you to create
complex sensed shapes. You can, for instance, build an entire car within a group, then add to the
group alouchSensornode. When the viewer clicks anywhere on the car, the sensor detects the
touch and sends events out its outputs. You could use such outputs to control an animation that
drives the car about within a virtual city.

Syntax: TouchSensor

TouchSensor {
enabled TRUE # exposedField SFBool
isOver # eventOut SFBool
isActive # eventOut SFBool
touchTime # eventOut SFBool
hitPoint_changed # eventOut SFVec3f
hitNormal_changed # eventOut SFVec3f

hitTexCoord_changed # eventOut SFVec2f

The value of thenabledexposed field turns the sensor on and off. WHRWE, the sensor
actively monitors the viewer and generates outputs on one or more of its eventOuts. When
FALSE, the sensor is disabled and ignores viewer actions.

When the viewer moves the cursor over a shape sensetiduchSensomode, the sensor node
outputs arRUE event using thesOver eventOut. When the viewer moves the cursor off the
sensed shape FALSE event is output using theOver eventOut. You can use tiIiRUE or

FALSE output to cause a shape to highlight, blink, or wiggle whenever the viewer’s cursor is
moved over the shape.

When the viewer presses a mouse button while the cursor is over a sensed shape, the sensor node
outputs arlRUE event using thesActive eventOut. Later, when the viewer releases the mouse

button, aFALSE event is output using theActive eventOutandthe current time is output using
thetouchTime eventOut. You can use tigActive eventOut to make a 3D button click in and out

when the viewer presses it. You can usedlehTime eventOut to start and stop animations at

the viewer’s touch.

The remaining three eventOuts of th@uchSensornode hitPoint_changed
hitNormal_changed andhitTexCoord_changed are primarily used along with advanced
VRML 2.0 features, such &cript nodes. Discussion of these eventOuts is left to a future column.

Experimenting with touch sensors

TheTouchSensornode type enables you to create virtual control panels with buttons the viewer

can press, and shapes that animate in response. Each of the node’s outputs are designed for use in
creating a different user interface effect.

Triggering animations with cursor proximity

Recall from last month’'s VRML Technique column thatimeSensornode has aanabledfield.
When this field’s value iEALSE, the timer is silent and outputs no values. If this field’s value is
set toTRUE, the timer starts running when the timer’s start time is reached. If you wire a
TouchSensornode’sisOver eventOut into thenabledfield of aTimeSensornode, you can
automatically enable and disable the timer whenever the viewer’s cursor moves over and off a
sensed shape.

The VRML text in Figure 2 builds a pair of box shapes forming two spokes on a wheel. Both
spokes are built within @&ransform node group and sensed by@chSensomode included in
that group. Th&ouchSensornode’sisOver eventOut is routed into BEmeSensornode’s
enabledfield. TheTimeSensornode’s output is routed into &rientationinterpolator node,
whose output is routed into thetation field of theTransform node for the spokes.

When the viewer’s cursor moves over a spokeTthehSensormode output3 RUE using its
isOver eventOut. This enables thiéneSensornode and starts the spokes rotating. When the
viewer's cursor moves off a spokel-ALSE is sent using th&ouchSensornode’sisOver
eventOut, disabling th€imeSensorand stoping the spoke animation.

#VRML V2.0 utf8
#
Spin while the cursor is over the spokes
#
DEF Spokes Transform {
rotation animated
children [
DEF Start TouchSensor {}
Shape {
appearance DEF SpokeColor Appearance {
material Material { diffuseColor 1.0 1.0 0.0 }

}
geometry Box { size 0.54.00.5}

Shape {
appearance USE SpokeColor
geometry Box { size 4.00.50.5}

]

}

DEF Clock TimeSensor {
enabled FALSE
enabled set on over
cyclelnterval 4.0
loop TRUE
startTime 1.0
stopTime 0.0

DEF Spinner Orientationinterpolator {
key [0.0,0.5,1.0]
keyValue [

14,
28

[eNeoNe]
[eNeole]
[eNeoNe]
[eNeoNe]

1.
1.
1.

[eoleole)

.00. 0.
00. -3.
00. -6.
]

}

ROUTE Start.isOver TO Clock.set_enabled
ROUTE Clock.fraction_changed TO Spinner.set_fraction
ROUTE Spinner.value_changed TO Spokes.set_rotation

Figure 2. A pair of wheel spokes that spin when the viewer’s cursor moves over them
Click on the image to load the world.

As you experiment with the example in Figure 2, notice that the animation stops if you move the
cursor off a spoke. But what happens if a spoke rotates out from under the cursor?

TheTouchSensomode only checks if the cursor is over a shegueh time the cursor is movdd
the viewer leaves the cursor still and the spokes rotate out from under the cursor, then the

TouchSensomode won't notice the change and won’t sedh\&SE to stop the animation.
Later, if the viewer jiggles the cursor, theuchSensornode will notice the change, check the
cursor’s new location, and stop the animation if the cursor is no longer over the sensed shape.

Triggering animations using proxy shapes

To avoid problems with a shape animating out from under the cursor, you caprosg ahape

instead to control the animation. A proxy shape is an invisible stand-in for a normal shape, sensed
but not seen. Like any other shape, a proxy shape is built \Bitlapenode, positioned using a
Transform node, and can be sensed byoachSensornode. The only difference is that the

proxy shape is typically made invisible by settingtla@sparency field value to 1.0 for the
shape’dVaterial node.

Proxy shapes can be used to create touch sensitive invisible areas in your world. For example, the
VRML text in Figure 3 uses an invisible box proxy shape to make the rectangular area around the
spinning spokes touch sensitive. Movement of the viewer’s cursor over the invisible proxy shape
starts the spokes spinning. The proxy shape is stationary, enabling the animation to continue to run
even if the spokes rotate out from under the viewer’s cursor. Only movement of the viewer’'s

cursor off the stationary proxy shape stops the animation.

#VRML V2.0 utf8
#
Spin while the cursor is over the proxy shape
#
DEF Spokes Transform {

rotation animated

children [

Shape {
appearance DEF SpokeColor Appearance {
material Material { diffuseColor 1.0 1.0 0.0 }

}
geometry Box { size 0.54.00.5}

Shape {
appearance USE SpokeColor
geometry Box { size 4.00.50.5}

]

}
#
Proxy shape
#
T

ransform {
children [
DEF Start TouchSensor { }
Shape {
appearance DEF SpokeColor Appearance {
material Material { transparency 1.0 }

}
geometry Box { size 4.04.00.5}

]

}

DEF Clock TimeSensor {
enabled FALSE
enabled set on over
cycleinterval 4.0
loop TRUE
startTime 1.0
stopTime 0.0

DEF Spinner OrientationInterpolator {
key [0.0,0.5,1.0]
keyValue [
0.00.0

0.00.0
0.00.0
]

}

ROUTE Start.isOver TO Clock.set_enabled
ROUTE Clock.fraction_changed TO Spinner.set_fraction
ROUTE Spinner.value_changed TO Spokes.set_rotation

1.0 0.0,
1.0 -3.14,
1.0 -6.28

Figure 3. A pair of wheel spokes that spin when the viewer’s cursor moves over an invisible box proxy shape
Click on the image to load the world.

While building a world, it can be helpful to make proxy shapes patrtially visible by setting their
Material node’stransparency field value to a number between 0.0 (opaque) and 1.0 (fully
transparent). Figure 4 shows a partially visible view of the proxy shape used in Figure 3.

Figure 4. The proxy shape of Figure 3 made partially visible

Triggering animations with mouse button presses

TheisOver eventOut of & ouchSensormode send$RUE andFALSE values when the viewer’s
cursor moves over and off a sensed shapeisHaive eventOut, however, seni®RUE and
FALSE values when the viewgresses and releases a mouse butkoer a sensed shape.

The VRML text in Figure 5 builds a ball that bounces when the viewer presses the mouse button
over the shape, and stops bouncing when the mouse button is reledsedh&ensormode

senses the ball shape. The sengeAstive eventOut is routed into EimeSensornode’senabled

field, and theTimeSensornode’s output routed into interpolators to bounce the ball, squishing it a
bit each time it lands.

When the viewer’s cursor moves over the ball and the mouse button is pres3edicti®ensor
node sends @&RUE using itsisActive eventOut, starting the bouncing animation. When the
mouse button is releasedFALSE is sent using thisActive eventOut, stoping the animation.

|| #VRML V2.0 utf8 ||

#
Ball that bounces while the cursor is over it
and the mouse button is pressed
#
DEF Ball Transform {
translation animated
scale animated
children [
DEF Touch TouchSensor {}
Shape {
appearance Appearance {
material Material { diffuseColor 0.0 0.7 1.0 }

geometry Sphere {}
}
]

}

DEF BounceClock TimeSensor {
enabled FALSE
enabled set on mouse button press
cycleinterval 1.0
loop TRUE
startTime 1.0
stopTime 0.0

DEF BouncePosition Positioninterpolator {
key [
Squish and leap...
0.0, 0.055, 0.11,
Parabolic arc up and down...
0.22, 0.33, 0.44, 0.55, 0.66, 0.77, 0.88,

Land...
1.0

]

keyValue [

Squish and leap...
0.00 0.00 0.00, #0.0
0.00 -0.20 0.00, # 0.055
0.00 0.00 0.00, #0.11

Parabolic arc up and down...
0.00 0.35 0.00, #0.22
0.00 0.59 0.00, #0.33
0.00 0.73 0.00, #0.44
0.00 0.78 0.00, #0.55
0.00 0.73 0.00, #0.66
0.00 0.59 0.00, #0.77
0.00 0.35 0.00, #0.88

Land...
0.00 0.00 0.00, #1.0

]

}
DEF BounceSquish PositionInterpolator {
key [
Squish and leap...
0.0, 0.055, 0.11,
Parabolic arc up and down...
Land...
1.0
] . y
Values are scaling factors, not positions
keyValue [
Squish and leap...
1.01.01.0, #0.0
1.1081.1, #0.055
1.01.01.0, #0.11
Parabolic arc up and down...
Land...
1.01.01.0, #1.0

]

}

ROUTE Touch.isActive TO BounceClock.set_enabled

ROUTE BounceClock.fraction_changed TO BouncePosition.set_fraction
ROUTE BounceClock.fraction_changed TO BounceSquish.set_fraction
ROUTE BouncePosition.value_changed TO Ball.set_translation
ROUTE BounceSquish.value_changed TO Ball.set_scale

Figure 5. A ball that bounces when the viewer’'s mouse button is pressed
Click on the image to load the world.

As you experiment with the bouncing ball, notice that the ball stops its bouncing when you release
the mouse button. However, the next time you press the mouse button theebaibt start where
it left off. Why?

A TimeSensornode senses the passage of time even whenatsedfield value iSFALSE.
While disabled, the sensor continues computing new fractional time \&ukeis were enabled
but doesn’t output them. Later, if the sensor is enabled, the values again flow out of the sensor.

The effect seen by disabling and enablingraeSensornode is similar to fiddling with the
volume knob on your stereo while a cassette tape is playing. Disaldlinge&ensornode is like
turning down the volume knob: the output is disabled, but the cassette tape continues to play.
Enabling aTimeSensornode is like turning the volume back up: the output returns to normal,
joining the cassette tape’s playback in progress.

The VRML examples in Figures 3 and 5 both TisachSensornode outputs to enable and

disable a runnin@imeSensornode. Each time the node is enabled, the viewer joins the animation
in progress. This causes a jump in the animated shape’s position as it leaps from its old position to
where it should be in the in-progress animation. If this isn’t the effect you want, you can use the
touchTime eventOut of & ouchSensorinstead.

Triggering animations with touch time

Recall that alimeSensornode has a start time and a stop time. If the start time is set to a time
greater than the stop time, then the timer starts running at the start time and continues forever (if
theloop field value iSTRUE), or runs only for a single cycle (if theop field value iSFALSE).

If you wire a circuit into alimeSensornode’sstartTime field, you can set the time at which the
sensor starts running, and thereby control the start time of any animation to whiahéisensor

node is wired.

The VRML text in Figure 6 builds three boxes that spin 90.0 degrees when animated. To start the
animation, theouchTime eventOut of & ouchSensornode is routed into th&tartTime field of
aTimeSensornode. ThelimeSensornode’s output is then routed into three

Orientationinterpolator nodes which are, in turn, routed into thigansform nodes for the

three boxes.

When the viewer clicks the mouse button atop the sensed shapeutieSensormode sends the
time at which the shape was touched usingpitshTime eventOut. The touch time sets the
TimeSensornode’s start time, and the animation begins. By usiRgleSE value for the
TimeSensornode’sloop field, the timer runs for a single cycle then stops. When the viewer clicks
the mouse button atop the sensed shape agaihinie&ensornode starts again, and the

animation runs through another cycle.

#VRML V2.0 utf8

#

Boxes that spin when touched

#

Transform {

children [
DEF Start TouchSensor { }
DEF SpinMel Transform {
children Shape {
appearance Appearance {
material Material { diffuseColor 0.0 0.5 1.0 }

}
geometry Box { size 4.04.04.0}

}
DEF SpinMe2 Transform {
children Shape {
appearance Appearance {
material Material { diffuseColor 1.0 0.0 1.0 }

}
geometry Box { size 3.93.93.9}

}
DEF SpinMe3 Transform {
children Shape {
appearance Appearance {
material Material { diffuseColor 0.5 0.0 1.0 }

}
geometry Box { size 3.8 3.8 3.8}
}
}
1

}
DEF Clock TimeSensor {
cycleinterval 2.0
loop FALSE
startTime 0.0
stopTime 1.0
start time set on touch

}
DEF Spinnerl Orientationinterpolator {
key [0.0,1.0]
keyValue [0.0 1.00.0 0.0, 0.01.00.0 1.57]

}
DEF Spinner2 Orientationinterpolator {
key [0.0,1.0]
keyValue [1.00.00.0 0.0, 1.00.00.0 1.57]

}
DEF Spinner3 Orientationinterpolator {
key [0.0,1.0]
keyValue [0.00.0 1.0 0.0, 0.00.01.0 1.57]

}

ROUTE Start.touchTime TO Clock.set_startTime
ROUTE Clock.fraction_changed TO Spinnerl.set_fraction
ROUTE Clock.fraction_changed TO Spinner2.set_fraction
ROUTE Clock.fraction_changed TO Spinner3.set_fraction
ROUTE Spinnerl.value_changed TO SpinMel.set_rotation
ROUTE Spinner2.value_changed TO SpinMe2.set_rotation
ROUTE Spinner3.value_changed TO SpinMe3.set_rotation

Figure 6. Three boxes that spin when the viewer clicks on them
Click on the image to load the world.

Creating 3D buttons

Recall that thestopTime field of aTimeSensornode sets the time at which the timer stops. By
wiring an animation circuit into @imeSensornode’sstartTime andstopTime fields, you can
start and stop the timer and thereby start and stop any animation controlled by the timer.

The VRML text in Figure 7 builds a simple control panel with two buttonBoéchSensornode
senses a green "on" button that, when pressed, $ete&ensornode’s start time. Similarly, a
secondlouchSensormode senses a red "off" button that, when pressed, sets the timer’s stop time.

#VRML V2.0 utf8
#
Start and stop buttons
#
Transform {
translation -5.0 1.0 0.0
children [
DEF Start TouchSensor { }
Shape {
appearance Appearance {
material Material { diffuseColor 0.0 1.0 0.0 }

}
geometry Box { size 2.0 1.0 0.25}
]

Transform {
translation -5.0 -1.0 0.0
children [
DEF Stop TouchSensor { }
Shape {
appearance Appearance {
material Material { diffuseColor 1.0 0.0 0.0 }

}
geometry Box { size 2.0 1.0 0.25}

]

}
#

Spinning boxes
#

DEF SpinMel Transform {
children Shape {
appearance Appearance {
material Material { diffuseColor 0.0 0.5 1.0 }

}
geometry Box { size 4.04.04.0}

}
DEF SpinMe2 Transform {
children Shape {
appearance Appearance {
material Material { diffuseColor 1.0 0.0 1.0 }

}
geometry Box { size 3.93.93.9}

}
DEF SpinMe3 Transform {
children Shape {
appearance Appearance {
material Material { diffuseColor 0.5 0.0 1.0 }

}
geometry Box { size 3.8 3.8 3.8}
}
}

DEF Clock TimeSensor {
cycleinterval 2.0
loop TRUE
startTime 0.0
stopTime 1.0
start time set on touch

}
DEF Spinnerl Orientationinterpolator {
key [0.0,1.0]
keyValue [0.01.00.0 0.0, 0.01.00.0 1.57]

}
DEF Spinner2 Orientationinterpolator {
key [0.0,1.0]
keyValue [1.00.00.0 0.0, 1.00.00.0 1.57]

}
DEF Spinner3 Orientationinterpolator {
key [0.0,1.0]
keyValue [0.00.0 1.0 0.0, 0.00.01.0 1.57]

}

ROUTE Start.touchTime TO Clock.set_startTime
ROUTE Stop.touchTime TO Clock.set_stopTime
ROUTE Clock.fraction_changed TO Spinnerl.set_fraction
ROUTE Clock.fraction_changed TO Spinner2.set_fraction
ROUTE Clock.fraction_changed TO Spinner3.set_fraction
ROUTE Spinnerl.value_changed TO SpinMel.set_rotation
ROUTE Spinner2.value_changed TO SpinMe2.set_rotation
ROUTE Spinner3.value_changed TO SpinMe3.set_rotation

Figure 7. Three boxes that start spinning when the green button is pressed, and stop when the red button is
pressed
Click on the image to load the world.

As you experiment with the example in Figure 7, notice that the animation starts over from the
beginning each time you press the green start button. Why doesn’t it continue from where it left
off the last time you pressed the red stop button?

Animations in VRML 2.0 are typically controlled by the fractional time output bh@eSensor

node, like that used in Figure 7. Each time the timer starts, its fractional time output resets to 0.0
and the timer begins a new cycle. This behavioriha&Sensornode insures that starting the
sensor always starts an animation from the beginning, not somewhere in the middle.

You can create animation pause buttons, toggle buttons, and a variety of user interface widgets by
wiring animation circuits usinjouchSensorandTimeSensornodes and VRML 2.0’s advanced

Script node. TheScript node enables you to write small program scripts in the Java, JavaScript,

or VRMLScript programming languages. By writing your own program scripts you can gain

access to advanced VRML 2.0 features and implement pause buttons, toggle buttons, and other
behaviors not supported directly by the stock VRML 2.0 nodes. The advanced abilities of the
Script node will be discussed in a future column.

Experimenting with time sensors

TheTimeSensornode forms the foundation atop which virtually all VRML 2.0 animations are
built. Each of the examples in this column, and last month’s, illustrate standard uses of
TimeSensornodes. To create more advanced timing effects, you can wire together multiple
TimeSensornodes in the same circuit.

Counting timer cycles
Each of the examples shown so far create one of two types of animations:

® [nfinitely repeating animations that start and stop under viewer control

® Animations that run a single cycle then stop automatically
What if you want an animation to run for four cycles then stop? How would you do it?

TheTimeSensornode does not include a built-in feature to run for a preset number of cycles.
However, you can create such a behavior usingliweSensornodes.

Recall that thenabledfield of aTimeSensornode enables and disables the outputs of the timer.
Recall also that th&imeSensornode’sisActive eventOut sends BRUE event value when the

timer starts, and BALSE event value when the timer stops. If you routeishetive eventOut of

one timer into thenabledfield of a second timer, then the first timer can start and stop the second
timer, and thereby start and stop any animation controlled by the second timer. If you set the cycle
interval of the first timer to be an integer multiple of the cycle interval of the second timer, then

the first timer acts like a cycle counter that only lets the second timer run for a selected number of
cycles.

The VRML text in Figure 8 builds a bouncing blue ball controlled by TimeeSensornodes

configured so that the first timer starts and stops the second timer. When the blue ball is touched,
the touch time of @douchSensomode sets the start time for both timers. The first timer,

configured as a cycle counter, starts immediately and enables the second timer. In response, the
second timer starts and begins bouncing the blue ball. When the first timer reaches the end of its
cycle, it stops and disables the second timer, which stops the animation. To let the ball bounce four
times, the first timer’s cycle interval is set to be four times that of the second timer.

#VRML V2.0 utf8

#

Ball that bounces four times when touched
#

DEF Ball Transform {

translation animated
scale animated
children [

DEF Touch TouchSensor {}

Shape {

appearance Appearance {
material Material { diffuseColor 0.0 0.7 1.0 }

}
geometry Sphere {}

}
#

Two clocks: one counts cycles while the
other animates a bouncing ball
#
DEF CycleClock TimeSensor {
enabled TRUE
cyclelnterval 4.0 # 4 cycles
loop FALSE
startTime 0.0
start time set on mouse button press
stopTime 1.0

DEF BounceClock TimeSensor {
enabled FALSE
enabled set by cycle clock
cycleinterval 1.0
loop TRUE
startTime 1.0
start time set on mouse button press
stopTime 0.0

DEF BouncePosition Positioninterpolator {
key [
Squish and leap...
0.0, 0.055, 0.11,
Parabolic arc up and down...
0.22, 0.33, 0.44, 0.55, 0.66, 0.77, 0.88,

Land...
1.0

]

keyValue [

Squish and leap...
0.00 0.00 0.00, #0.0
0.00 -0.20 0.00, # 0.055
0.00 0.00 0.00, #0.11

Parabolic arc up and down...
0.00 0.35 0.00, #0.22
0.00 0.59 0.00, #0.33
0.00 0.73 0.00, #0.44
0.00 0.78 0.00, #0.55
0.00 0.73 0.00, #0.66
0.00 0.59 0.00, #0.77
0.00 0.35 0.00, #0.88

Land...
0.00 0.00 0.00, #1.0

]

}
DEF BounceSquish PositionInterpolator {

key [
Squish and leap...
0.0, 0.055, 0.11,
Parabolic arc up and down...
Land...
1.0
] . .
Values are scaling factors, not positions
keyValue [
Squish and leap...
1.01.01.0, #0.0
1.10.81.1, #0.055
1.01.01.0, #0.11
Parabolic arc up and down...
Land...
1.01.01.0, #1.0
)]
ROUTE Touch.touchTime TO CycleClock.set_startTime
ROUTE Touch.touchTime TO BounceClock.set_startTime
ROUTE CycleClock.isActive TO BounceClock.set_enabled

ROUTE BounceClock.fraction_changed TO BouncePosition.set_fraction
ROUTE BounceClock.fraction_changed TO BounceSquish.set_fraction
ROUTE BouncePosition.value_changed TO Ball.set_translation
ROUTE BounceSquish.value_changed TO Ball.set_scale

Figure 8. Two timers configured so that one timer starts and stops the other
Click on the image to load the world.

Creating periodic animations

A periodicanimation is one that starts, stops, sleeps, then starts over again on a regular basis. The
cuckoo movement of a cuckoo clock, for instance, is periodic: it runs once every hour and is
dormant in between. You can create periodic animations usingitneSensornodes configured

in a manner similar to that in Figure 8.

Recall that theycleTime eventOut of &imeSensornode sends the current time each time the
sensor starts a new cycle. If you route this time intstheTime field of a secondimeSensor
node, then the second timer will start each time the first node begins a new cycle.

The VRML text in Figure 9 uses twimeSensornodes to create a periodic leap-frog motion for
two box shapes. A first timer, namBériodicTimer, runs through 4.0 second long cycles,

repeating indefinitely. The timerts/cleTime eventOut is routed into a second timer, named
LeapFrogTimer, that runs for a single 2.0 second long cycle each time it is started. The second
timer controls two interpolators which, in turn, control the position of the two leap-frogging boxes.

Each time théeriodicTimer starts a new 4.0 second long cyclecitsleTime eventOut sets the

start time of the.eapFrogTimer. That timer starts, runs for 2.0 seconds, causes the boxes to leap
frog, then stops. In another 2.0 secondsPgodicTimer finishes another 4.0 second cycle,

sends another time out itgcleTime eventOut, and the whole thing repeats.

#VRML V2.0 utf8

#

Leap-frogging boxes
#

DEF RightBox Transform {
translation animated
children [
DEF Partl Shape {
appearance Appearance {
material Material { diffuseColor 1.0 1.0 0.0 }

geometry Box { }

DEF Part2 Shape {
appearance DEF Orange Appearance {
material Material { diffuseColor 1.0 0.4 0.0 }

}
geometry Box {size241.6 1.6}

DEF Part3 Shape {
appearance USE Orange
geometry Box { size 1.6 2.4 1.6}

DEF Part4 Shape {
appearance USE Orange
geometry Box { size 1.6 1.6 2.4}

]

}
DEF LeftBox Transform {
translation animated
children [USE Partl, USE Part2, USE Part3, USE Part4]

}

#
Timers and interpolators
#
DEF PeriodicTimer TimeSensor {
cycleinterval 4.0
loop TRUE
startTime 1.0
stopTime 0.0

}

DEF LeapFrogTimer TimeSensor {
cycleinterval 2.0
loop FALSE
startTime 0.0
start time set by periodic timer
stopTime 1.0

}

DEF LeftToRight PositionInterpolator {
key [0.0,1.0]
keyValue [-3.0 0.0 0.0, 3.00.00.0]

}
DEF RightToLeft PositionInterpolator {
key [0.0, 0.17, 0.33, 0.5, 0.66, 0.83, 1.0]

keyValue [
3.00.00.0, 26150.0, 1.52.60.0, 0.03.00.0,
-1.52.60.0, -2.6 1.50.0, -3.00.00.0,

]
}

ROUTE PeriodicTimer.cycleTime TO LeapFrogTimer.set_startTime
ROUTE LeapFrogTimer.fraction_changed TO LeftToRight.set_fraction
ROUTE LeapFrogTimer.fraction_changed TO RightToLeft.set_fraction
ROUTE LeftToRight.value_changed TO LeftBox.set_translation
ROUTE RightToLeft.value_changed TO RightBox.set_translation

Figure 9. Two timers configured so that one timer periodically starts the second timer
Click on the image to load the world.

The animation in Figure 9 runs forever. You could &ddchSensomodes to start the animation
when either of the boxes are touched. To make the animation run only for a chosen number of
leap-frogs, then stop, you could adthied TimeSensornode to automatically start and stop the

PeriodicTimer sensor by using exactly the same technique illustrated in the VRML text in Figure
8!

Creating a stop watch
By using multiple time and touch sensor techniques you can create complex interactive animated
shapes. The VRML text in Figure 10 builds a stop watch with these characteristics:

® Hour, minute, and second hands animate continuously, always showing the current
time of day in Pacific Standard Time

® A red sweep hand starts and stops when the viewer touches green and red buttons

® Every 15 minutes, a periodic animation puts on a show

To create the hour, minute, and second hand motion, three sépare&ensornodes tick
through 60.0 second (1 minute), 3600.0 second (1 hour), and 43200.0 second (12 hour) cycles.
Each hand timer is routed to @mientationinterpolator node to rotate the appropriate hand.

A red stop watch sweep hand uses anodlireeSensornode andrientationinterpolator node.
The timer’s start and stop time values are set by start and stop buttons, each sensed by a
TouchSensomode.

A periodic animation runs every 15 minutes, controlled by a pdimeéSensornodes. The first

timer controls the animation period, automatically starting the second timer every 900.0 seconds
(15 minutes). The second timer contrOisentationinterpolator andPositioninterpolator

nodes to spin and scale the clock.

#VRML V2.0 utf8
#
A stop-watch with automatically moving second, minute,
and hour hands, start and stop buttons, and a stop-watch sweep
second hand
#
DEF StopWatch Transform {
rotation animated
scale animated
children [
Frame and face
Transform {
rotation 1.0 0.0 0.0 1.571
children [
Frame

Shape {
appearance Appearance {
material Material { diffuseColor 0.7 0.3 0.0 }

}

geometry Cylinder {
radius 4.8
height 0.8

Face
Shape {
appearance Appearance {
material Material { diffuseColor 1.0 1.0 1.0 }

}
geometry Cylinder {
radius 4.0
height 0.9
}
}
]

}
Start button
Transform {
translation 3.5 3.5 0.0
rotation 0.0 0.0 1.0 -0.71
children [
DEF Start TouchSensor { }
Shape {
appearance Appearance {
material Material { diffuseColor 0.0 1.0 0.0 }

}

geometry Cylinder {
radius 0.38
height 0.3

}
]

}
Stop button
Transform {
translation -3.5 3.5 0.0
rotation 0.0 0.0 1.0 0.71
children [
DEF Stop TouchSensor { }
Shape {
appearance Appearance {
material Material { diffuseColor 1.0 0.0 0.0 }

}

geometry Cylinder {
radius 0.38
height 0.3

}
]

Hands
DEF MinuteHand Transform {

translation 0.0 1.5 0.6

center 0.0-1.50.6

animated rotation

children [

Arm

DEF Arm Shape {
appearance DEF Black Appearance {
material Material { diffuseColor 0.2 0.2 0.2}

}

geometry Cylinder {
radius 0.17
height 3.0

}
Pointy end
DEF ArrowHead Transform {
translation 0.0 1.9 0.0
children Shape {
appearance USE Black
geometry Cone {
bottomRadius 0.4
height 0.8

]

}
DEF HourHand Transform {
translation 0.0 1.5 0.6
center 0.0-1.50.6
animated rotation
scale 1.00.7 1.0
children [USE Arm, USE ArrowHead]

}
DEF SecondHand Transform {
translation 0.0 1.5 0.6
center 0.0-1.50.6
animated rotation
scale 0.6 1.0 0.6
children [USE Arm, USE ArrowHead]

}
DEF SweepHand Transform {
translation 0.0 1.9 0.6
center 0.0-1.9 0.6
animated rotation
scale 0.6 1.0 0.6
children Shape {
appearance DEF Black Appearance {
material Material { diffuseColor 1.0 0.0 0.0 }

}
geometry Cylinder {

radius 0.17
height 3.8
}
}
]
}
#
Timers and interpolators to spin hands
#

DEF SecondTimer TimeSensor {
cycleinterval 60.0 # 60 seconds per sweep
loop TRUE
startTime 0.0
stopTime -1.0

DEF MinuteTimer TimeSensor {
cycleinterval 3600.0 # 60*60 seconds per sweep
loop TRUE
startTime 0.0
stopTime -1.0

DEF HourTimer TimeSensor {
cycleinterval 43200.0 # 60*60*12 seconds per sweep
loop TRUE
startTime 28800.0 # Adjust for Pacific Standard Time
start time of 0 is midnight Grenwich Mean Time (GMT)
Pacific Mean Time (PST) is 8 hours behind GMT
stopTime -1.0
}

DEF SecondSpinner Orientationinterpolator {
key [0.0,0.5,1.0]
keyValue [0.0 0.0 1.0 0.0, 0.00.01.0-3.14, 0.00.01.0-6.28]

DEF MinuteSpinner Orientationinterpolator {
key [0.0,0.5,1.0]
keyValue [0.0 0.0 1.0 0.0, 0.00.01.0-3.14, 0.00.01.0-6.28]

DEF HourSpinner Orientationinterpolator {
key [0.0,0.5,1.0]
keyValue [0.0 0.0 1.0 0.0, 0.00.01.0-3.14, 0.00.01.0-6.28]

ROUTE SecondTimer.fraction_changed TO SecondSpinner.set_fraction
ROUTE MinuteTimer.fraction_changed TO MinuteSpinner.set_fraction
ROUTE HourTimer.fraction_changed TO HourSpinner.set_fraction
ROUTE SecondSpinner.value_changed TO SecondHand.set_rotation
ROUTE MinuteSpinner.value_changed TO MinuteHand.set_rotation
ROUTE HourSpinner.value_changed TO HourHand.set_rotation

#

Timer and interpolators to spin stop watch hand
#

DEF SweepTimer TimeSensor {

cycleinterval 60.0 # 60 seconds per sweep
loop TRUE

startTime 0.0

start time set on start button press
stopTime 1.0

stop time set on stop button press

DEF SweepSpinner Orientationinterpolator {
key [0.0,0.5,1.0]
keyValue [0.00.01.00.0, 0.00.01.0-3.14, 0.00.01.0-6.28]

ROUTE Start.touchTime TO SweepTimer.set_startTime

ROUTE Stop.touchTime TO SweepTimer.set_stopTime

ROUTE SweepTimer.fraction_changed TO SweepSpinner.set_fraction
ROUTE SweepSpinner.value_changed TO SweepHand.set_rotation

#
Timers and interpolators for quarter-hour animations
#
DEF QuarterHour TimeSensor {
cyclelnterval 900.0 # 60*15 seconds per action
loop TRUE
startTime 28800.0 # PST
stopTime -1.0

DEF QuarterAnimation TimeSensor {
cycleinterval 3.0
loop FALSE
startTime -1.0
start time set by quarter-hour clock
stopTime 0.0

}

DEF QuarterSpinner OrientationiInterpolator {
key[0.0,0.5,1.0]
keyValue [1.01.00.00.0, 1.01.00.0-3.14, 1.01.00.0-6.28]

DEF QuarterSquisher PositionInterpolator {
key [0.0, 0.25,0.5,0.75, 1.0]
keyValue [
101010, 0.13.01.2, 3.00.11.0, 0.32.01.2,
1.01.01.0,
]
}

ROUTE QuarterHour.cycleTime TO QuarterAnimation.set_startTime

ROUTE QuarterAnimation.fraction_changed TO QuarterSpinner.set_fraction
ROUTE QuarterAnimation.fraction_changed TO QuarterSquisher.set_fraction
ROUTE QuarterSpinner.value_changed TO StopWatch.set_rotation

ROUTE QuarterSquisher.value_changed TO StopWatch.set_scale

Figure 10. A stop watch with continuous animation, periodic animation, and animation started and stopped by
the viewer’s touch

Click on the image to load the world.

Notice that the stop watch shows the correct time (if you live in the Pacific Standard Time (PST)
time zone)! How is this done?

Recall that &imeSensornode uses start and stop times measured since 12:00 midnight,
Grenwich Mean Time (GMT), January 1st, 1970. SstagtTime field value of 0.0 starts a timer
at midnight on this date, and a value of 1.0 starts it 1 second later.

To start a timer at a specific time in the history or future of your world, compute the number of
seconds since 12:00 midnight, GMT, January 1st, 1970. There are 3600 seconds in an hour,
86,400 seconds in a day, 31,536,000 seconds in a year of 365 days, and so on.

Times computed in this manner are always in GMT. To convert to another time zone, add or
subtract the appropriate number of hours. Pacific Standard Time (PST), for instance, is eight hours

behind GMT.

The stop watch in Figure 10 uses these time calculations to start the stop watch hands moving at 8
hours after 12:00 midnight, GMT, January 1st, 1970. This insures that the timers are synchronized
to PST, 8 hours delayed from GMT.

Next in the VRML Technique column

This month’s column concludes this series introducing VRML 2.0’s shape-building, animation,

and interaction features. Next month I'll take a look at what's happening in the VRML industry.

I'll report on the recent WorldMovers and VRML '97 conferences, highlight a few of the
announcements made at those conferences, and provide some perspective on where the industry is
going and what might happen next.

Resources

® A list of David Nadeau’s VRML Technique columnsNretscapeWorld

® VRML 2.0 browserd\etscapeWorld'guide to finding and installing a VRML browser gn
your computer.

® VRML 2.0 glossary

® NetscapeWorld’¥ RML vendors chart A handy reference of VRML browser and servger
companies including their plug-ins to Web browsers -- with updated items in bold to|aid
your review -- and links to all the vendors.
http://www.netscapeworld.com/netscapeworld/common/nw.vrmltable.html

® The UTF-8 character set sidebar accompanying the first VRML Technique column.

Specifications

® VRML 2.0 specification http://vag.vrml.org/VRMLZ2.0/FINAL/

® [SO 10646-1:1993 Universal Character Set (UCS) specification sales information
http://www.iso.ch/cate/d18741.html

® UTF-8 character encoding scheme for UCS
http://mww.dkuug.dk/JTC1/SC2/WG2/docs/n1335

Sites

® The VRML Repository http://www.sdsc.edu/vrml
® VVRML Architecture Group http://vag.vrml.org

About the author

David R. Nadeau is a co-authorTdie VRML 2.0 Sourcebogbublished by John Wiley & Sons

and written with Andrea L. Ames and John L. Moreland. David is a staff researcher at the San
Diego Supercomputer Center where he is a specialist in 3-D computer graphics, virtual reality, and
scientific visualization. He is also the creatofbke VRML Repositorya Web site providing

extensive information on VRML software, documentation, and 3-D worlds.

A You can buy David R. Nadeaul$ie VRML 2.0 Sourceboak a 20% discount from
Amazon.com Books.

©
1996-1997

WPI

An D@
Communications
Company

Feedback nweditors@netscapeworld.com

URL: http://www.netscapeworld.com/netscapeworld/nw-03-1997/nw-03-vrmltechnique.html
Last updated: Monday, March 31, 1997

How to view VRML 2.0

Finding and installing the right VRML browser for your computer

By David R. Nadeau

Table of contents

Obtaining a VRML 2.0 browser Switching among VRML 2.0 browser plug-ins
Installing a VRML 2.0 browser Configuring your system

Installing DimensionX's LiquidReality
Installing Intervista’'s WorldView
Installing Netscape’s Live3D

Installing Silicon Graphics’ Cosmo Playe
Installing Sony’s Community Place

—

Obtaining a VRML 2.0 browser

DimensionX, Intervista, Newfire, Netscape, Silicon Graphics (SGI), and Sony each provide
freely-downloadable VRML 2.0 browser plug-ins for use with Netscape Navigator or Microsoft
Intenet Explorer.

DimensionX, Intervista, Netscape, SGI, and Sony browsers run on PCs with Windows 95. SGI
also provides a version of their browser that runs on their Unix workstations. DimensionX
provides versions of their browser that work on SGI, Sun, and Linux platforms. The latest version
of Netscape Navigator, Netscape Communicator, or Microsoft Internet Explorer is required by
most VRML browser plug-ins.

You can obtain information on Netscape Navigator and Communicator from Netscape’s web site
at:

http://www.netscape.com
You can obtain information on Microsoft Internet Explorer from Microsoft's web site at:

http://www.microsoft.com

Installing a VRML 2.0 browser

All VRML 2.0 browsers load and display VRML 2.0 worlds. Browsers differ in their user
interfaces, drawing speed, image quality, documentation, and completeness of their VRML 2.0
feature support. To find the browser that’s right for you, download them all and try them out.

Installing DimensionX'’s LiquidReality

Unlike other VRML 2.0 browsers, DimensionX’s LiquidReality VRML 2.0 browser is written
primarily in Java and runs as a Java applet. You can download the LiquidReality Java applet and
support files from DimensionX’s Web site at:

http://www.dimensionx.com

LiguidReality is currently available in a 1.0 beta release for PCs running Windows 95, Windows
NT 4.0, and Linux, as well as Sun workstations running Solaris, and SGI workstations running
IRIX.

Note The beta release of LiquidReality does not yet support all VRML 2.0 features.
See the product’s release notes for feature support details.

Detailed installation instructions for a variety of platforms are available at DimensionX’s Web
site.

Installing Intervista’s WorldView
You can download the WorldView VRML 2.0 browser plug-in from Intervista’s Web site at:

http://www.intervista.com
WorldView is currently available in a beta release for PCs running Windows 95.

Note The beta release of WorldView does not yet support all VRML 2.0 features. See
the product’s release notes for feature support details.

To install WorldView, download the release from Intervista’'s Web site, then double-click on the
file to run the installation wizard to walk you through the rest of the installation procedure.

Intervista’s WorldView installation automatically installs the browser, plus Intel's RSX I
software. RSX provides advanced sound playback features used by WorldView to enhance the
realism of sounds played within VRML 2.0 worlds.

Once installed, WorldView acts as a plug-in for Netscape Navigator. To load a VRML 2.0 world,
open the world’s file or URL within Navigator. The WorldView plug-in is automatically invoked
and the VRML world displayed within the Navigator window.

Installing Netscape’s Live3D

Netscape’s Communicator preview release includes the Live3D 2.0 browser plug-in. Unlike the
prior Live3D 1.0, the new version supports VRML 2.0. You can download the Netscape
Communicator preview release from Netscape’s Web site at:

http://www.netscape.com
Live3D is currently available in a beta release for PCs running Windows 95.

Note The beta release of Live3D does not yet support all VRML 2.0 features. See the
product’s release notes for feature support details.

To install Netscape Communicator, download the release from Netscape’s Web site, then
double-click on the file to run the installation wizard to walk you through the rest of the
installation procedure.

Installing Silicon Graphics’ Cosmo Player
You can download the Cosmo Player VRML 2.0 browser plug-in from Silicon Graphics’ (SGI’'s)

Web site at:
http://vrml.sgi.com

Cosmo Player is currently available in a beta release for PCs running Windows 95 or Windows
NT. Cosmo Player is also available in a full release for SGI workstations running IRIX 5.3 or
IRIX 6.2.

Note: The beta and full releases of Cosmo Player do not yet support all VRML 2.0
features. See the product’s release notes for feature support details.

To install Cosmo Player on a PC, download the release from SGI's Web site, then double-click on
the file to run the installation wizard to walk you through the rest of the installation procedure.

SGI's Cosmo Player PC installation automatically installs the browser, plus Intel's RSX I
software. RSX provides advanced sound playback features used by Cosmo Player to enhance the
realism of sounds played within VRML 2.0 worlds.

To install Cosmo Player on an SGI Unix workstation, download the release tar archives from
SGI's Web site. SGI also recommends that you download and install 18 Mbytes of operating
system patches. Usingr, extract the distribution files from the downloaded tar archive, then
install the distribution usingst or swmgr. You will need the root password to install the files.

Once installed, Cosmo Player acts as a plug-in for Netscape Navigator. To load a VRML 2.0
world, open the world’s file or URL within Navigator. The Cosmo Player plug-in is automatically
invoked and the VRML world displayed within the Navigator window.

Installing Sony’s Community Place
You can download the Community Place VRML 2.0 browser plug-in and helper application from
Sony’s Web site at:

http://vs.spiw.com/vs

Community Place is currently available in a full 1.0 release for PCs running Windows 95 or
Windows NT.

Note: The full release of Community Place does not yet support all VRML 2.0
features. See the product’s release notes for feature support details.

Sony provides two versions of Community Place: one that acts as a helper-application, and one
that acts as a plug-in for Netscape Navigator 3.0. Both versions provide identical functionality.
Most users will probably find that the plug-in version is more convenient since it can display
VRML 2.0 worlds directly within the Navigator window. The helper-application version instead
uses a separate application window for the display of VRML 2.0 worlds.

To install the Community Place helper-application or plug-in, download the release file then
double-click the downloaded file to run a ZIP file self-extractor that extracts the distribution into a
temporary folder of your choosing. Once extracted, double-clidewp.exe to run the

installation wizard to walk you through the rest of the installation procedure.

Once installed, the Community Place helper-application acts as a slave application for Netscape

Navigator. To load a VRML 2.0 world, open the world’s file or URL within Navigator. The
Community Place helper-application is automatically invoked and the VRML world displayed in a
separate application window.

The Community Place plug-in works as a plug-in for Netscape Navigator. To load a VRML 2.0
world, open the world’s file or URL within Navigator. The Community Place plug-in is
automatically invoked and the VRML world displayed within the Navigator window.

Switching among VRML 2.0 browser plug-ins

Each time a VRML world is loaded into Netscape Navigator, the application looks for a VRML
plug-in to display the world. If you have more than one VRML plug-in installed, only the first
plug-in found by Navigator is used. If you want to install multiple VRML plug-ins and switch
among them, you will need to trick Navigator into loading the one you want.

On a PC, Netscape Navigator plug-ins are stored as DLL (Dynamically Loaded Library) files in a
plugins folder within the application’s folder. You can view your current set of plug-ins by
following these steps:

® Open the plugins folder for Netscape Navigator
Open theNetscapeapplication folder on your hard disk. This is often found in your

Program Filesfolder. Within theNetscapefolder, open th&lavigator folder (orNavigator
Gold), then theProgram folder, and finally theolugins folder.

&= Metscape M=] E3 |l & Mavigator [_ O] =]
File Edt “iew Help File Edt “iew Help
Navigator Cache Live3D M ail News Program;
& Program =] E3 |§ & plugins M=l B
File Edit Yiew Help File Edt Yiew Help
O OO 0O 03
java five3d Mavigator Dluqlns npl3d32.zip

® Show all hidden files

Using theView menu on any file and folder window, sel@gitions to bring up an options
window. On the window'¥/iew tab, click onShow all files then clickOK to close the
window.

Options g |

Folder “iew |Fi|e T_l,lpesl

— Hidden files:

& Show all files

rreomoeomptonmreoe

™ Hide files of these tpes;

Hidden Files -
.DOLL [Application Extenzsion)

S5 [Spetem file)
MeD [irtual device driver|

386 [irtual device driver)
MR Meawire dArivearl LI

[T Display the full M5-DOS path in the title bar

™ Hide M5-D05 file extensions for file pes that are registered

(] I Cancel | air |

By showing all files, you reveal the hidden plug-in DLL files in phegins folder.

& pluginz M= E3
File Edit *iew Help

npl3d32.zip npl3d32.dll nprul32.dll

If you've installed all of the VRML 2.0 plug-ins from Intervista, Netscape, SGI, and Sony, you
should have a DLL file from each one in yglugins folder.

The table below shows the names of several VRML plug-in DLL files.

DLL file Plug-in
npcosmop.dll SGI Cosmo Player
npl3d32.dll Netscape Live3D
npvscp.dll Sony Community Placé
npWorldView.dll Intervista WorldView

When Netscape Navigator looks for a VRML plug-in to display a VRML world, it selects the first
plug-inalphabetically So, if you have all of the above plug-ins installed, SGI's Cosmo Player will
always be selected. The plug-ins from Netscape, Sony, and Intervista will be ignored.

You can trick Navigator into selecting one of the other VRML plug-ins by one of three methods:
® Drag unwanted plug-ins to another folder

For each plug-in yodon't want move the plug-in’s DLL file to another folder. For
instance, you can create amplugged folder within the Netscape Navigaterogram
folder. If you don’t want the Live3D plug-in loaded, drag its DLL file out ofghegins
folder and into theinpluggedfolder:

& unplugged M=l

File Edit Yiew Help

npl3d32.dil

® Add an underscore to names of unwanted plug-ins

For each plug-in yodon't want add an underscore (_) to the front of the plug-in’s DLL
file name. Leave unchanged the name of the VRML plug-in you do want.

The added underscore in the names of unwanted plug-in DLL files changes the alphabetic
sort order of the plug-ins. Plug-ins without underscores are sorted to the top of the list and
are chosen by Navigator in preference to those with underscores. For instance, if you don’t
want Cosmo Player, Live3D, or WorldView to load (leaving only Community Place), add
underscores to their DLL file names.

& plugins M=l E3
File Edit “iew Help

npvscpdl _npocosmopdl _npl3d32dl _npwforddyie

® Use Sony'’s plug-in chooser to deactivate unwanted plug-ins

Sony provides a plug-in chooser application which you can download from Sony’s Web site.
To install the application, download the filgc10.zip (112 Kbytes) and unzip it into a new
application folder. Double-click on the filpChooser.exe to start the application and bring

up a plug-in chooser window.

The chooser window has an upper area that provides a scrolling list of content-types (also
known as MIME types). If you select one of the content types, the lower part of the chooser
window displays lists of active and inactive plug-ins for that content type. Clicking on the
name of an active or inactive plug-in displays information about that plug-in in the area to
the right.

* Metscape Plugin Chooser =]

File Help
ContertTypes: [aadi o e—waw (*_waw) ﬂ
model frrml
wideo/quicktime
x-worldSx-vrml (*owrl)
application/x-director ﬂ
Active Flugins Flugin Information

Company Mame
Sony Corporation

Product Mame

Cormmunity Place Browser [Plug-in]
+ * erzion

Werzion 1.1 Beta 1
Drezcription
Sony Community Place Browser Plugin file

Inactive Plugins
npl3daz. dll

] Cancel

To enable or disable VRML plug-ins, scroll through the content type list and look for one or
more entries with VRML's type codg&:world/x-vrml . Click on the content type to display
active and inactive plug-ins in the lower part of the chooser window.

For each active plug-in yaidon’t want click on the plug-in’s name in the active list, then
click on the red down-arrow to slide the plug-in to the inactive list. The chooser application
automatically adds an underscore (_) to the plug-in’s DLL name. Similarly, to activate an
inactive plug-in, click on the plug-in’s name in the inactive list, then click on the red
up-arrow to slide the plug-in to the active list.

In the future, choosing among different VRML plug-ins will probably be easier. A plug-in chooser
like Sony’s is expected to be integrated into the next version of Netscape Navigator.

Configuring your system

Once you have a VRML 2.0 browser installed, you should also adjust your screen settings to use
16-bit colors(also calledHigh Color or 65535 color¥. Do not use-bit colors(also called256

colors), 24-bit colorsor 32-bit colors(also calledlrue color$. 8-bit colors give you too few

colors to achieve smooth realistic shading when VRML worlds are drawn. 24-bit and 32-bit colors
give you plenty of colors for shading, but the added colors require extra processing in your VRML
2.0 browser. That extra processing can significantly slow down the browser, reducing its
interactivity.

On a PC running Windows 95 or Windows NT, open yDisplay control panel and select the
Settingstab. Adjust theColor palette menu to seled5535 Colors(16-bit colors). Finally, click
the OK button. On some systems, you may be prompted to restart your computer to make the
changes take effect.

Dizplay Properties

Eackgmundl Screen Saverl .ﬁ.ppealancel Plust Settings |

— Calar Palette — Desktop Area
Less J_ b ore
1280 by 1024 pixels
—Font Size — Refresh Frequency
Small Fonts j IEEI Hertz j
Ligt All WModes ... | Test | Dizplay Tvpe. .. |

0k I Cancel | Spply |

© Feedback nweditors@netscapeworld.com
1996-1997 | URL: http://www.netscapeworld.com/nw-12-1996/sidebars/browsers.html
E'II[;% Last updated Wednesday, February 19, 1997
Communitations
Company

The UTF-8 character set

VRML 2.0’s international character set

By David R. Nadeau

To enable VRML 2.0 browsers to display any character in any of the world’s languages, VRML
2.0 uses th&/TF-8 Character Set Encodingdefined by the International Standards Organization
(ISO) in the ISO 10646-1:1993 specification and the specification’s pDAM 1-5 extension.
VRML'’s use of this character set standard enables you to use VRML features to build shapes for
any English alphabet character, as well as characters in Japanese, Arabic, Cyrillic, and other
languages.

UTF-8 is short for UCS Transformation Format 8," andUCS is short for Universal

Character Set" Putting these together, UTF-8 is a computer-encoding scheme (transformation
format) for storing characters in a file. The "8" in the UTF-8 name indicates that the basic unit of
encoding is an 8-bit byte.

The UTF-8 character set encoding includes, as a subset, all of the characters found in the ASCII
character set used by most computers. So, to put an "A" in a VRML 2.0 file, just type an "A."
International characters not found on the standard computer keyboard may be entered by typing in
their UTF-8 codes. This requires special features in your text editor or in a VRML world-building
application.

Note: For maximum portability of your VRML worlds, restrict your use of UTF-8
characters to only those found on the computer keyboard. There are over 24,000
characters defined in the ISO 10646-1:1993 standard, but only 127 in the ASCII
character set. Many VRML browsers will not support the full range of characters
theoretically available within VRML 2.0. Additionally, because the UTF-8 encoding
requires the use of 8-bit characters, instead of the more common 7-bit ASCII
characters, many text editing applications will be unable to create UTF-8 characters or
display them properly.

Feedback nweditors@netscapeworld.com
1996-1997 | URL: http://www.netscapeworld.com/netscapeworld/nw-12-1996/sidebars/utf8.html

Hﬁ Last updated Wednesday, February 19, 1997
Communications
Company

VRML 2.0 glossary

The key terms you need to know to get started with VRML

By David R. Nadeau

Appearance
A description of the coloration of a shape. Appearance is described by an Appearance node
type. [see Appearance node type, material, Material node type, and shape]

Appearance node type
A node type used to describe the coloration of a shape. Node fields specify the shape
material, texture, and texture transform (position, orientation, and scaling of the texture).
[see appearance, material, and Material node type]

Axis
An imaginary line establishing a direction in 3-D space. Three axes, labeled X, Y, and Z,
are typically used to indicate three orthogonal directions for a coordinate system. A rotation
axis is used when specifying an orientation for a coordinate system. [see coordinate system
and rotation axis]

Box node type
A geometry node type that builds a 3-D box or cube. A node field specifies the box width,
height, and depth. [see geometry and Shape node type]

Child coordinate system
A coordinate system built within the child list of a parent coordinate system. As the parent
coordinate system moves, orients, or scales, so does the child coordinate system. [see
coordinate system, parent coordinate system, rotation, scaling, and translation]

Click
A press, and immediate release of a pointing device button (such as a mouse button),
without movement of the cursor. [see drag, move, pointing device, and touch sensor node

type]

Comment
An arbitrary note included in a VRML file. A comment begins with a number-sign (#) and
extends to the line end. Comments are skipped by VRML browsers.

Cone node type
A geometry node type that builds a 3-D, upright cone. Node fields specify the cone height
and bottom radius. [see geometry and Shape node type]

Coordinate system
A center point and set of orthogonal reference axes used as a reference for measuring
distances and shape sizes. In a 3-D coordinate system, the axes are labeled X (side-to-side),
Y (up-and-down), and Z (front-to-back). The center point at which the three axes cross is
coordinate system origin. A new coordinate system is created by the Transform node type.

[see axis, child coordinate system, origin, parent coordinate system, and Transform node
type]

Cycle interval
The length of time, measured in seconds, tHatreeSensornode requires to vary its
fractional time output from 0.0 to 1.0. [see fractional time, time, and TimeSensor node type]

Cylinder node type
A geometry node type that builds a 3-D, upright cylinder. Node fields specify the cylinder
height and radius. [see geometry and Shape node type]

Data type
A description of a type of data, including floating-point numbers, integers, text strings,
colors, and more. Every field, exposed field, eventin, and eventOut of a hode has a data
type. Each event sent between eventOut and eventin has a data type that matches that of the
eventOut and eventln. [see event, eventln, eventOut, exposed field, field, node, and route]

Defined name
A name given to a node using the DEF syntax. [see node hame]

Degrees
A system for measuring angles wherein a full circle is 360.0 degrees. A value in degrees can
be converted to radians by this formutatians = degrees * 3.142 / 180.0 . [see

radians and rotation angle]

Diffuse color
The basic color of a shape, resulting from the random scattering of light that falls on the
shape. A diffuse color is specified in the diffuseColor field of a Material node. [see Material
node type and RGB color]

Drag
A press of a pointing device button (such as a mouse button) followed by movement of the
cursor and a later release of the button. [see click, move, pointing device, and touch sensor
node type]

Emissive color
A glow color for a shape, resulting from the shape’s own emission of light. An emissive
color is specified in the emissiveColor field of a Material node. [see Material node type and
RGB color]

Event
A message sent from one node to another along an animation circuit route. Every event
contains a value, with a data type, and a time-stamp. [see data type, eventin, eventOut,
route, and time-stamp]

Eventin
An input to a node used when wiring a route for an animation circuit. An eventin has a
name and a data type. When wiring an animation circuit route, the data type of the eventin
and eventOut on either end of the route must match. [see data type, event, eventOut,
exposed field, field, node, and route]

EventOut
An output from a node used when wiring a route for an animation circuit. An eventOut has a
name and a data type. When wiring an animation circuit route, the data type of the eventin
and eventOut on either end of the route must match. [see data type, event, eventin, exposed
field, field, node, and route]

Exposed field
A combination of a field, an eventin, and an eventOut for a node. An exposed field has a
field name, a field data type, and a value. For an exposed field named xyz, the associated
eventln and eventOut are named set_xyz and xyz_changed, respectively. [see data type,
field, field value, eventln, eventOut, and node]

Field
A node parameter that provides a shape dimension, color, or other form of node attribute. A
field has a field name, a field data type, and a value. [see data type, exposed field, field
value, and node]

Field value
A value, such as a number, given to a node’s field to specify a shape dimension or other
node attribute. [see field and data type]

Fractional time
Fractional time is an abstract notion of time that indicates the start of an event with a
fractional value of 0.0, and the end of the event with a value of 1.0. Intermediate fractional
time values are computed as needed so that half-way through the event, the fractional time
is 0.5, three-quarters through has a fractional time of 0.75, and so ofinfé®ensornode
computes fractional times and binds their starting and ending values to selected start and
stop times. If the time between start and stop times is 10 seconds, for example, then
fractional time values will vary from 0.0 to 1.0, but take 10 seconds. If this interval is
increased to 100 seconds, then fractional time values will still vary from 0.0 to 1.0, but now
take 100 seconds to do so. Fractional times are typically used to control animations
described by interpolator nodes. [see interpolator, time and TimeSensor node type]

Geometry
A description of the form, or structure of a shape. Geometry may be described by any of
several geometry node types, including Box, Cone, Cylinder, and Sphere node types. [see
Box node type, Cone node type, Cylinder node type, Sphere node type, shape, and Shape
node type]

Instance
A repeated use of a node previously given a defined name. An instance of a node shares the
same node type, fields, and field values as the original node given the defined name. A node
is named by preceding the node type with DEMNameA node is instanced by typing
USEmyNamenywhere a node value can be used. [see node name and original]

Intepolator
A node that computes position, orientation, scale, and other types of animation values based
upon a list of key values. Computed values are calculated by linearly interpolating between
the key values. [see Orientationinterpolator node type and Positioninterpolator node type]

Material

A description of the overall color and transparency of a shape. Material is described by a
Material node type. [see appearance, diffuse color, and emissive color]

Material node type
A node type that specifies a set of colors used to shade a shape. Node fields describe the
diffuse color, emissive color, specular color, ambient intensity, and transparency of a
shading material. [see appearance, diffuse color, and emissive color]

Move

Movement of a pointing device (such as a mouse) without a button held down. [see click,
drag, pointing device, and touch sensor node type]

Node
A basic building-block used in VRML 2.0 world-building instructions. A VRML 2.0 file
always has at least one node in it, and often contains hundreds or even thousands of nodes.
Individual nodes build shapes, describe appearance, control animation, etc. Every node has
a node type. The fields and exposed fields of a node are enclosed within curly-braces. [see
node type]

Node name
A name given to a node so that the node may be repeatedly used (instanced) elsewhere
within the same VRML file. Node names may be any sequence of letters and numbers, but
may not start with a number or contain most punctuation characters. [see instance and
original]

Node type
A description of a variety of node, including a node type name and a list of zero or more
fields, exposed fields, eventins, and eventOuts. VRML 2.0 supports 50+ built-in node types.
Typical node types include those to build shapes, specify geometry, select appearance,
choose sounds, and so on. [see eventIn, eventOut, exposed field, field, and node]

Orientationinterpolator node type
An interpolator node that computes rotation axis and angle values based upon a list of key
values and fractional times. The rotation output of the interpolator is often routed into the
rotation input of a'ransform node. [see Positioninterpolator node type and Transform
node type]

Origin
The center of a coordinate system; the point where the X, Y, and Z axes cross. [see axis and
coordinate system]

Original
A node given a defined name so that it may be repeatedly used (instanced) later in the same
VRML file. The original node’s node type, fields, and field values are re-used each time the
node is instanced. A node is hamed by preceding the node type wit{N&meA node
is instanced by typing USEByNameanywhere a node value can be used. [see instance and
node name]

Parent coordinate system
A coordinate system with one or more shapes or coordinate systems built within it. Such
child coordinate systems move, orient, and scale along with the parent coordinate system.

[see child coordinate system, coordinate system, rotation, scaling, and translation]

Pointing device
A device to enable the user to move a cursor about on the screen and perform move, click,
and drag operations. Most computers use a mouse pointing device, but joysticks, trackballs,
trackpads, and similar devices are equally usable. The user’s pointing device can be sensed
by aTouchSensornode. [see click, drag, move, and touch sensor node type]

Positioninterpolator node type
An interpolator node that computes 3D positions, translations, or 3D scaling factors based
upon a list of key values and fractional times. The output of the interpolator is often routed
into the translation or scale inputs of @nsform node. [see Orientationinterpolator node
type and Transform node type]

Radians
A system for measuring angles wherein a full circle is 2 Pl = 6.28 radians. The system of
measuring angles in radians is common in mathematics and science, though use of degrees
is more common outside these fields. Angles measured in radians are used to specify
rotation angles. A value in radians can be converted to degrees by this fakapeks =
radians * 180.0 / 3.142 . [see degrees and rotation angle]

RGB color
A triple of floating-point numbers that specify the amount of red, green, and blue light to be
mixed together to form a desired color. Each red, green, or blue amount is given as a value
between 0.0 (none) and 1.0 (lots). RGB colors are used to specify colors for shape
appearance, lighting, and more. [see appearance]

Rotation
Orientation of a coordinate system by spinning it about an axis by an angle. Rotation is
controlled by the Transform node type. [see child coordinate system, parent coordinate
system, rotation axis, rotation angle, scaling, translation, and Transform node type]

Rotation angle
An angular measurement used to indicate the amount by which to rotate a coordinate system
about a rotation axis. Rotation angles are measured in radians. [see radians, rotation,
rotation axis, and Transform node type]

Rotation axis
An imaginary line (vector) about which a coordinate system is turned. One endpoint of the
line is always the origin of the coordinate system, while the second endpoint is any 3-D
coordinate. [see axis, rotation, rotation angle, and Transform node type]

Route
A connection between an eventOut of one node and an eventln of another. Routes form the
wires of an animation circuit. Event values flow along a route, from eventOut to eventin.
[see event, eventin, and eventOut]

Scaling
A change in the size of shapes within a coordinate system. Scaling increases or decreases
shape size by scaling factors for the X, Y, and Z directions. Scaling is controlled by the
Transform node type. [see child coordinate system, parent coordinate system, rotation,

scaling factor, translation, and Transform node type]

Scaling factor
A positive multiplicative factor used to indicate the degree by which a coordinate system’s
shapes are increased or decreased in size. Scaling factors between 0.0 and 1.0 decrease
shape size, while those above 1.0 increase shape size. A scaling factor of 1.0 leaves shape
size unchanged. [see scaling and Transform node type]

Scene graph
A family tree of coordinate systems and shapes that collectively describe a VRML world.
The top-most item in the scene family tree is the world coordinate system. That coordinate
system acts as the parent for one or more child coordinate systems and shapes. Those child
coordinate systems may, in turn, be parents to further child coordinate systems and shapes.
[see child coordinate system, coordinate system, parent coordinate system, shape, and world
coordinate system]

Sensor
A node type that senses a change in the environment. Typical sensor nodes sense the
passage of time, movement of the user’s cursor, the press of the user’s mouse button, the
user’s proximity, collision of the user with a shape, and so forth. [see pointing device,
TimeSensor node type, TouchSensor node type]

Shape
A 3-D object in a world, described by its geometry and its appearance. All VRML shapes
are built using a Shape node type. [see appearance, geometry, and Shape node type]

Shape node type
A node type that builds a 3-D shape centered at the origin of the parent coordinate system.
Node fields specify the geometry and appearance of the shape. [see appearance, coordinate
system, geometry, origin, and parent coordinate system|]

Sphere node type
A geometry node type that builds a 3-D ball. A node field specifies the ball radius. [see
geometry and Shape node type]

Start time
The time at which an animation begins. An animation may be started at a specific time in
the history or future of a virtual world. Alternately, animations may be started when a shape
is touched, or when some other environment change is sensed. [see fractional time, sensor,
stop time, time, TimeSensor node type, and TouchSensor node type]

Stop time
The time at which an animation ends. An animation may be stopped at a specific time in the
history or future of a virtual world or allowed to run forever. Animations also may be
stopped when a shape is touched, or when some other environment change is sensed. [see
fractional time, sensor, start time, time, TimeSensor node type, and TouchSensor node type]

TimeSensor node type
A sensor node type that senses the passage of time. Node fields enable and disable sensor
node event outputs, set the start and stop time for those outputs, indicate if the sensor should
generate infinitely repeating cyclic outputs, and specify the duration of each cycle. Event

outputs include the current time and fractional tifi@seSensornode outputs are
frequently routed into one or more interpolator nod@meSensornodes are often started
and stopped usingouchSensomodes. [see cycle interval, fractional time, interpolator,
route, sensor, start time, stop time, time, and TouchSensor node type]

Time
VRML times are measured in seconds measured in seconds since 12:00 midnight, Grenwich
Mean Time (GMT), January 1st, 1970. [see fractional time and TimeSensor node type]

Time-stamp
A time, measured in seconds, that indicates the moment at which an event was generated
and sent along a route. [see event, route, and time]

TouchSensor
A sensor node type that senses motion and button presses on the user’s pointing device
(such as a mouse). A node field enables and disables the sensor’s outputs. Event outputs
include flags indicating when the cursor is over a sensed shape, when a button is pressed,
and when a button is releas@@duchSensornode outputs are often routed ifioneSensor
nodes. [see pointing device, route, sensor, time, and TimeSensor node type]

Transform node type
A node type that creates a new coordinate system in which to build zero or more shapes.
The new coordinate system is positioned (translated), oriented (rotated), and resized (scaled)
based upon values specified in node fields. [see coordinate system, rotation, scaling, and
translation]

Translation
Positioning of a coordinate system at a 3-D coordinate relative to the origin of a parent
coordinate system. Translation is controlled by the Transform node type. [see child
coordinate system, parent coordinate system, rotation, scaling, and Transform node type]

UTF-8
An international character set used in VRML 2.0 files. The ASCII characters of a standard
computer keyboard form a subset of UTF-8.

VRML
An acronym foVirtual Reality Modeling Languag&RML is a rich text language for the
description of 3-D interactive worlds. The original proposal from Silicon Graphics that led
to the development of VRML 2.0 was titlétbving Worlds [see VRML browser and
world-builder]

VRML browser
A stand-alone helper application or Web browser plug-in that displays VRML worlds. [see
world-builder, and the VRML Vendors chart for a list of VRML browsers and plug-ins]

VRML file header
The first line of every VRML file. The header line identifies the file as containing VRML
content, indicates the version of the language used, and the character set of the file. VRML
1.0 files use the ASCII character set, while VRML 2.0 files use the UTF-8 character set.
[see UTF-8]

World-builder
An application that enables VRML world authoring within an interactive 3-D drawing
environment. [see VRML browser]

© Feedback nweditors@netscapeworld.com
1996-1997 | URL: http://www.netscapeworld.com/netscapeworld/common/nw-vrmiglossary.html

:ﬁé Last updated Wednesday, February 19, 1997
Communications
Companmy

