
EUROGRAPHICS 97

Introduction to VRML 97

Lecturer

David R. Nadeau
nadeau@sdsc.edu
http://www.sdsc.edu/~nadeau
San Diego Supercomputer Center

Tutorial notes sections

Abstract
Preface
Lecturer biography
Using the VRML examples
Using the JavaScript examples
Using the Java examples
Tutorial slides
NetscapeWorld article reprints

Introduction to VRML 97

Abstract

VRML (the Virtual Reality Modeling Language) has emerged as the de facto standard for
describing 3-D shapes and scenery on the World Wide Web. VRML’s technology has very broad
applicability, including web-based entertainment, distributed visualization, 3-D user interfaces to
remote web resources, 3-D collaborative environments, interactive simulations for education,
virtual museums, virtual retail spaces, and more. VRML is a key technology shaping the future of
the web.

Participants in this tutorial will learn how to use VRML 97 (a.k.a. ISO VRML, VRML 2.0, and
Moving Worlds) to author their own 3-D virtual worlds on the World Wide Web. Participants will
learn VRML concepts and terminology, and be introduced to VRML’s text format syntax.
Participants also will learn tips and techniques for increasing performance and realism. The tutorial
includes numerous VRML examples and information on where to find out more about VRML
features and use.

Introduction to VRML 97

Preface

Welcome to the EUROGRAPHICS 97 Introduction to VRML 97 tutorial notes! These tutorial
notes have been written to give you a quick, practical, example-driven overview of VRML 97,
the Web’s Virtual Reality Modeling Language. To do this, I’ve included over 500 pages of
tutorial material with nearly 200 images and over 100 VRML examples.

To use these tutorial notes you will need an HTML Web browser with support for viewing
VRML worlds. An up to date list of available VRML browsing and authoring software is
available at:

The VRML Repository
(http://www.sdsc.edu/vrml)

What’s included in these notes

These tutorial notes primarily contain three types of information:

1. General information, such as this preface
2. Tutorial slides and examples
3. Article reprints from NetscapeWorld magazine

The tutorial slides are arranged as a sequence of 400+ hyper-linked pages containing VRML
syntax notes, VRML usage comments, or images of sample VRML worlds. Clicking on a
sample world’s image, or the file name underneath it, loads the VRML world into your
browser for you to examine yourself.

You can view the text for any of the VRML worlds using a text editor and see how we created
a particular effect. In most cases, the VRML files contain extensive comments providing
information about the techniques the file illustrates.

The tutorial notes provide a necessarily terse overview of VRML. A more detailed
introduction to the basic features of VRML is provided in four article reprints courtesy
NetscapeWorld magazine. The articles do not cover all of VRML. I recommend that you
invest in one of the VRML books on the market to get thorough coverage of the language. I
am a co-author of one such VRML book, The VRML 2.0 Sourcebook. Several other good
VRML books are on the market as well.

A word about VRML versions

VRML has evolved through several versions of the language, starting way back in late 1994.
These tutorial notes cover VRML 97, the latest version of the language. To provide context,
the following table provides a quick overview of these VRML versions and the names they
have become known by.

Version Released Comments

VRML
1.0

May 1995 Begun in late 1994, the first version of VRML was largely based
upon the Open Inventor file format developed by Silicon Graphics
Inc. The VRML 1.0 specification was completed in May 1995 and
included support for shape building, lighting, and texturing.

VRML 1.0 browser plug-ins became widely available by late 1995,
though few ever supported the full range of features defined by the
VRML 1.0 specification.

VRML
1.0c

January
1996

As vendors began producing VRML 1.0 browsers, a number of
ambiguities in the VRML 1.0 specification surfaced. These
problems were corrected in a new VRML 1.0c (clarified)
specification released in January 1996. No new features were added
to the language in VRML 1.0c.

VRML
1.1

canceled In late 1995, discussion began on extensions to the VRML 1.0
specification. These extensions were intended to address language
features that made browser implementation difficult or inefficient.
The extended language was tentatively dubbed VRML 1.1. These
enhancements were later dropped in favor of forging ahead on
VRML 2.0 instead.

No VRML 1.1 browsers exist.

Moving
Worlds

January
1996

VRML 1.0 included features for building static, unchanging worlds
suitable for architectural walk-throughs and some scientific
visualization applications. To extend the language to support
animation and interaction, the VRML architecture group made a
call for proposals for a language redesign. Silicon Graphics,
Netscape, and others worked together to create the Moving Worlds
proposal, submitted in January 1996. That proposal was later
accepted and became the starting point for developing VRML 2.0.
The final VRML 2.0 language specification is still sometimes
referred to as the Moving Worlds specification, though it differs
significantly from the original Moving Worlds proposal.

VRML
2.0

August
1996

After seven months of intense effort by the VRML community, the
Moving Worlds proposal evolved to become the final VRML 2.0
specification, released in August 1996. The new specification
redesigned the VRML syntax and added an extensive set of new
features for shape building, animation, interaction, sound, fog,
backgrounds, and language extensions.

Beta versions of VRML 2.0 browser plug-ins have been available
since late 1997. However, as of this writing (May 1997) there are
still no fully-compliant, complete VRML 2.0 browsers available on

the market.

VRML
97

September
1997

In early 1997, efforts got under way to present the VRML 2.0
specification to the International Standards Organization (ISO)
which oversees most of the major language specifications in use in
the computing community. The ISO version of VRML 2.0 was
reviewed and the specification significantly rewritten to clarify
issues. A few minor changes to the language were also made. The
final ISO VRML was dubbed VRML 97. The VRML 97
specification features finalized in March 1997, while the
specification’s text finalized in September 1997.

One beta version of a VRML 97 browser plug-in is available as of
this writing: Silicon Graphics Cosmo Player for SGI platforms.
More VRML 97 compliant browsers are expected within the next
few months.

VRML 1.0 and VRML 2.0 differ radically in syntax and features. A VRML 1.0 browser
cannot display VRML 2.0 worlds. Most VRML 2.0 browsers, however, can display VRML
1.0 worlds.

VRML 97 differs in a few minor ways from VRML 2.0. In most cases, a VRML 2.0 browser
will be able to correctly display VRML 97 files. However, for 100% accuracy, you should
have a VRML 97 compliant browser for viewing the VRML files contained within these
tutorial notes.

How I created these tutorial notes

These tutorial notes were developed primarily on Silicon Graphics High Impact UNIX
workstations. HTML and VRML text was hand-authored using a text editor. A Perl program
script was used to process raw tutorial notes text to produce the 400+ individual HTML files,
one per tutorial slide.

HTML text was displayed using Netscape Navigator 3.01 on Silicon Graphics and PC
systems. Colors were checked for viewability in 24-bit, 16-bit, and 8-bit display modes on a
PC. Text sizes were chosen for viewability at a normal 12 point font on-screen, and at an 18
point font for presentation during the Eurographics 97 tutorial. The large text, white-on-black
colors, and terse language are used to insure that slides are readable when displayed for the
tutorial audience at the Eurographics 97 conference.

VRML worlds were displayed on Silicon Graphics systems using the Silicon Graphics Cosmo
Player 1.02 VRML 97 compliant browser for Netscape Navigator. The same worlds were
displayed on PC systems using three different VRML 2.0 compliant browsers for Netscape
Navigator: Silicon Graphics Cosmo Player 1.0 beta 3a, Intervista WorldView 2.0, and
Newfire Torch alpha 3.

Texture images were created using Adobe PhotoShop 4.0 on a PC with help from KAI’s
PowerTools 3.0 from MetaTools. Image processing was also performed using the Image
Tools suite of applications for UNIX workstations from the San Diego Supercomputer Center.

PDF tutorial notes for printing by Eurographics 97 were created by dumping individual
tutorial slides to PostScript on a Silicon Graphics workstation. The PostScript was transferred
to a PC where it was converted to PDF and assembled into a single PDF file using Adobe’s
Distiller and Exchange.

Use of these tutorial notes

I am often asked if there are any restrictions on use of these tutorial notes. The answer is:

These tutorial notes are copyright (c) 1997 by David R. Nadeau. Users and possessors
of these tutorial notes are hereby granted a nonexclusive, royalty-free copyright and
design patent license to use this material in individual applications. License is not
granted for commercial resale, in whole or in part, without prior written permission
from the authors. This material is provided "AS IS" without express or implied warranty
of any kind.

You are free to use these tutorial notes in whole or in part to help you teach your own VRML
tutorial. You may translate these notes into other languages and you may post copies of these
notes on your own Web site, as long as the above copyright notice is included as well. You
may not, however, sell these tutorial notes for profit or include them on a CD-ROM or other
media product without written permission.

If you use these tutorial notes, I ask that you:

1. Give me credit for the original material
2. Tell me since I like hearing about the use of my material!

If you find bugs in the notes, please tell me. I have worked hard to try and make the notes
bug-free, but if something slipped by, I’d like to fix it before others are confused by my
mistake.

Contact

David R. Nadeau
San Diego Supercomputer Center
P.O. Box 85608
San Diego, CA 92186-9784

UPS, Fed Ex: 10100 Hopkins Dr.
La Jolla, CA 92093-0505

(619) 534-5062
FAX: (619) 534-5152

nadeau@sdsc.edu

Introduction to VRML 97

Lecturer biography

David R. Nadeau
Mr. Nadeau is a principal scientist at the San Diego Supercomputer Center (SDSC),
specializing in scientific visualization and virtual reality. He is an author of technical papers
on graphics and VRML, a co-author of two books on VRML (The VRML Sourcebook, and
The VRML 2.0 Sourcebook), and authors the bi-monthly VRML Technique column for
NetscapeWorld magazine. He has taught VRML courses at conferences including
SIGGRAPH 96, WebNet 96, VRML 97, and SIGGRAPH 97, and is the creator of The VRML
Repository, a principal Web site for information on VRML software and documentation. Mr.
Nadeau co-chaired VRML 95, the first conference on VRML, and the VRML Behavior
Workshop, the first workshop on behavior support for VRML. He is SDSC’s representative in
the VRML Consortium.

Introduction to VRML 97

Using the VRML examples

These tutorial notes include over a hundred VRML files. Almost all of the provided worlds
are linked to from the tutorial slides pages.

VRML support

As noted in the preface to these tutorial notes, this tutorial covers VRML 97, the ISO standard
version of VRML 2.0. There are only minor differences between VRML 97 and VRML 2.0,
so any VRML 97 or VRML 2.0 browser should be able to view any of the VRML worlds
contained within these tutorial notes.

The VRML 97 (and VRML 2.0) language specifications are complex and filled with powerful
features for VRML content authors. Unfortunately, the richness of the language makes
development of a robust VRML browser difficult. As of this writing, there are nearly a dozen
VRML browsers on the market, but none support all features in VRML 97 (despite press
releases to the contrary).

I am reasonably confident that all VRML examples in these tutorial notes are correct, though
of course I could have missed something. Chances are that if one of the VRML examples
doesn’t look right, the problem is with your VRML browser and not with the example. It’s a
good idea to read carefully the release notes for your browser to see what features it does and
does not support. It’s also a good idea to regularly check your VRML browser vendor’s Web
site for updates. The industry is moving very fast and often produces new browser releases
every month or so.

As of this writing, I have found that Silicon Graphics (SGI) Cosmo Player for SGI UNIX
workstations is the most complete and robust VRML 97 browser available. It is this browser
that I used for most of my VRML testing. On the PC, I found found that Intervista’s
WorldView was the most complete and robust browser available, though it still had a number
of flaws and unsupported features. On the Macintosh and non-SGI UNIX workstations, I was
unable to find a usable VRML browser with which to test the VRML tutorial examples.

What if my VRML browser doesn’t support a VRML feature?

If your VRML browser doesn’t support a particular VRML 97 feature, then those worlds that
use the feature will not load properly. Some VRML browsers display an error window when
they encounter an unsupported feature. Other browsers silently ignore features they do not
support yet.

When your VRML browser encounters an unsupported feature, it may elect to reject the entire
VRML file, or it may load only those parts of the world that it understands. When only part of
a VRML file is loaded, those portions of the world that depend upon the unsupported features
will display incorrectly. Shapes may be in the wrong position, have the wrong size, be shaded
incorrectly, or have the wrong texture colors. Animations may not run, sounds may not play,
and interactions may not work correctly.

For most worlds I have captured an image of the world and placed it on the tutorial slide page
to give you an idea of what the world should look like. If your VRML browser’s display
doesn’t look like the picture, chances are the browser is missing support for one or more
features used by the world. Alternately, the browser may simply have a bug or two.

In general, VRML worlds later in the tutorial use features that are harder for vendors to
implement than those features used earlier in the tutorial. So, VRML worlds at the end of the
tutorial are more likely to fail to load properly than VRML worlds early in the tutorial.

Introduction to VRML 97

Using the JavaScript examples

These tutorial notes include several VRML worlds that use JavaScript program scripts within
Script nodes. The text for these program scripts is included directly within the Script node
within the VRML file.

JavaScript support

The VRML 97 specification does not require that a VRML browser support the use of
JavaScript to create program scripts for Script nodes. Fortunately, most VRML browsers do
support JavaScript program scripts, though you should check your VRML browser’s release
notes to be sure it is JavaScript-enabled.

Some VRML browsers, particularly those from Silicon Graphics, support a derivative of
JavaScript called VRMLscript. The language is essentially identical to JavaScript. Because of
Silicon Graphics’ strength in the VRML market, most VRML browser vendors have modified
their VRML browsers to support VRMLscript as well as JavaScript.

JavaScript and VRMLscript program scripts are included as a text within the url field of a
Script node. To indicate the program script’s language, the field value starts with either
"javascript: " for JavaScript, or "vrmlscript: " for VRMLscript, like this:

Script {
 field SFFloat bounceHeight 1.0
 eventIn SFFloat set_fraction
 eventOut SFVec3f value_changed

 url " vrmlscript:
 function set_fraction(frac, tm) {
 y = 4.0 * bounceHeight * frac * (1.0 - frac);
 value_changed[0] = 0.0;
 value_changed[1] = y;
 value_changed[2] = 0.0;
 }"
}

For compatibility with Silicon Graphics VRML browsers, all JavaScript program script
examples in these notes are tagged as "vrmlscript: ", like the above example. If you have a
VRML browser that does not support VRMLscript, but does support JavaScript, then you can
convert our examples to JavaScript simply by changing the tag "vrmlscript: " to
"javascript: " like this:

Script {
 field SFFloat bounceHeight 1.0
 eventIn SFFloat set_fraction
 eventOut SFVec3f value_changed

 url " javascript:
 function set_fraction(frac, tm) {
 y = 4.0 * bounceHeight * frac * (1.0 - frac);
 value_changed[0] = 0.0;
 value_changed[1] = y;

 value_changed[2] = 0.0;
 }"
}

What if my VRML browser doesn’t support JavaScript?

If your VRML browser doesn’t support JavaScript or VRMLscript, then those worlds that use
these languages will produce an error when loaded into your VRML browser. This is
unfortunate since JavaScript or VRMLscript is an essential feature that all VRML browsers
should support. I recommend that you consider getting a different VRML browser.

If you can’t get another VRML browser right now, there are only a few VRML worlds in
these tutorial notes that you will not be able to view. Those worlds are contained as examples
in the following tutorial sections:

Introducing script use
Writing program scripts with JavaScript
Creating new node types

So, if you don’t have a VRML browser with JavaScript or VRMLscript support, just skip the
above sections and everything will be fine.

Introduction to VRML 97

Using the Java examples

These tutorial notes include a few VRML worlds that use Java program scripts within Script

nodes. The text for these program scripts is included in files with .java file name extensions.
Before use, you will need to compile these Java program scripts to Java byte-code contained
in files with .class file name extensions.

Java support

The VRML 97 specification does not require that a VRML browser support the use of Java to
create program scripts for Script nodes. Fortunately, most VRML browsers do support Java
program scripts, though you should check your VRML browser’s release notes to be sure it is
Java-enabled.

In principle, all Java-enabled VRML browsers identically support the VRML Java API as
documented in the VRML 97 specification. Similarly, in principle, a compiled Java program
script using the VRML Java API can be executed on any type of computer within any brand
of VRML browser

In practice, neither of these ideal cases occurs. The Java language is supported somewhat
differently on different platforms, particularly as the community transitions from Java 1.0 to
Java 1.1 and beyond. Additionally, the VRML Java API is implemented somewhat differently
by different VRML browsers, making it difficult to insure that a compiled Java class file will
work for all VRML browsers available now and in the future.

Because of Java incompatibilities observed with current VRML browsers, I have elected to
not include compiled Java class files in these tutorial notes. Instead, I include the uncompiled
Java program scripts. Before use, you will need to compile the Java program scripts yourself
on your platform with your VRML browser and your version of the Java language and
support tools.

Compiling Java

To compile the Java examples, you will need:

The VRML Java API class files for your VRML browser
A Java compiler

All VRML browsers that support Java program scripts supply their own set of VRML Java
API class files. Typically these are automatically installed when you install your VRML
browser.

There are multiple Java compilers available for most platforms. Sun Microsystems provides
the Java Development Kit (JDK) for free from its Web site at http://www.javasoft.com. The
JDK includes the javac compiler and instructions on how to use it. Multiple commercial Java
development environments are available from Microsoft, Silicon Graphics, Symantec, and
others. An up to date list of available Java products is available at Gamelan’s Web site at

http://www.gamelan.com.

Once you have the VRML Java API class files and a Java compiler, you will need to compile
the supplied Java files. Unfortunately, I can’t give you explicit directions on how to do this.
Each platform and Java compiler is different. You’ll have to consult your software’s manuals.

Once compiles, place the .class files in the slides folder along with the other tutorial
slides. Now, when you click on a VRML world using a Java program script, the class files
will be automatically loaded and the example will run.

What if my VRML browser doesn’t support Java ?

If your VRML browser doesn’t support Java, then those worlds that use these languages will
produce an error when loaded into your VRML browser. This is unfortunate since Java is an
essential feature that all VRML browsers should support. I recommend that you consider
getting a different VRML browser.

What if I don’t compile the Java program scripts?

If you have a VRML browser that doesn’t support Java, or if if you don’t compile the Java
program scripts, those worlds that use Java will produce an error when loaded into your
VRML browser. Fortunately, I have kept Java use to a minimum. In fact, Java program scripts
are only used in the Writing program scripts with Java section of the tutorial slides. So, if you
don’t compile the Java program scripts, then just skip the VRML examples in that section and
everything will be fine.

Introduction to VRML 97

Table of contents

Morning

Part 1 - Shapes, geometry, and appearance

Welcome!

Introduction

Building a VRML world

Building primitive shapes

Transforming shapes

Controlling appearance with materials

Grouping nodes

Naming nodes

Summary examples

Part 2 - Animation, sensors, and geometry

Introducing animation

Animating transforms

Sensing viewer actions

Building shapes out of points, lines, and faces

Building elevation grids

Building extruded shapes

Controlling properties of coordinate-based geometry

Summary examples

Afternoon

Part 3 - Textures, lights, and environment

Mapping textures

Controlling how textures are mapped

Lighting your world

Adding backgrounds

Adding fog

Adding sound

Controlling the viewpoint

Controlling navigation

Sensing the viewer

Summary examples

Part 4 - Scripts and prototypes

Controlling detail

Introducing script use

Writing program scripts with JavaScript

Writing program scripts with Java

Creating new node types

Providing information about your world

Summary examples

Miscellaneous extensions

Conclusion

1
Welcome!

Schedule for the day

Tutorial scope

2

Welcome!

Schedule for the day

Part 1 Shapes, geometry, appearance90 minutes

Break 15 minutes

Part 2 Animation, sensors, geometry 105
minutes

Lunch 60 minutes

Part 3 Textures, lights, environment 90 minutes

Break 15 minutes

Part 4 Scripts, prototypes 105
minutes

3

Welcome!

Tutorial scope

This tutorial covers VRML 97
The ISO standard revision of VRML 2.0

You will learn:
VRML file structure
Concepts and terminology
Most shape building syntax
Most sensor and animation syntax
Most program scripting syntax
Where to find out more

4

5
Introduction

What is VRML?

What do I need to use VRML?

Example

How can VRML be used on a Web page?

What do I need to develop in VRML?

Should I use a text editor?

Should I use a world builder?

Should I use a shape generator?

Should I use a modeler and format converter?

How do I get VRML software?

6

Introduction

What is VRML?

VRML is:
A simple text language for describing
3-D shapes and interactive environments

VRML text files use a .wrl extension

7

Introduction

What do I need to use VRML?

You can view VRML files using a VRML
browser:

A VRML helper-application
A VRML plug-in to an HTML browser

You can view VRML files from your local
hard disk, or from the Internet

8

Introduction

Example

[temple.wrl]

9

Introduction

How can VRML be used on a Web page?

Load directly into a Web
browser, filling the page

[boxes.wrl]

Embed into a page, filling
a page rectangle

[boxes1.htm]

Load into a page frame,
filling the frame

[boxes2.htm]

Embed into a page
frame, filling a frame
rectangle

[boxes3.htm]

Embed multiple times
into a page or frame

[boxes4.htm]

10

Introduction

What do I need to develop in VRML?

You can construct VRML files using:
A text editor
A world builder application
A shape generator
A modeler and format converter

11

Introduction

Should I use a text editor?

Pros:
No new software to buy
Access to all VRML features
Detailed control of world efficiency

Cons:
Hard to author complex 3D shapes
Requires knowledge of VRML syntax

12

Introduction

Should I use a world builder?

Pros:
Easy 3-D drawing user interface
Little need to learn VRML syntax

Cons:
May not support all VRML features
May not produce most efficient VRML

13

Introduction

Should I use a shape generator?

Pros:
Easy way to generate complex shapes

Fractal mountains, logos, etc.

Cons:
Only suitable for narrow set of shapes
Best used with other software

14

Introduction

Should I use a modeler and format converter?

Pros:
Very powerful features available
Can make photo-realistic images too

Cons:
May not support all VRML features
Not designed for VRML
One-way path from modeler into VRML
Easy to make shapes that are too
complex

15

Introduction

How do I get VRML software?

The VRML Repository maintains links to
available software:

http://www.sdsc.edu/vrml

16

17
Building a VRML world

VRML file structure

A sample VRML file

Understanding the header

Understanding UTF8

Using comments

Using nodes

Using fields and values

Using fields and values

Summary

18

Building a VRML world

VRML file structure

VRML files contain:
The file header
Comments - notes to yourself
Nodes - nuggets of scene information
Fields - node attributes you can change
Values - attribute values
more. . .

19

Building a VRML world

A sample VRML file

#VRML V2.0 utf8
A Cylinder
Shape {
 appearance Appearance {
 material Material { }
 }
 geometry Cylinder {
 height 2.0
 radius 1.5
 }
}

20

Building a VRML world

Understanding the header

#VRML V2.0 utf8

#VRML: File contains VRML text
V2.0 : Text conforms to version 2.0 syntax
utf8 : Text uses UTF8 character set

21

Building a VRML world

Understanding UTF8

utf8 is an international character set
standard

utf8 stands for:
UCS (Universal Character Set)
Transformation Format, 8-bit

Encodes 24,000+ characters for many
languages

ASCII is a subset

22

Building a VRML world

Using comments

A Cylinder

Comments start with a number-sign (#) and
extend to the end of the line

23

Building a VRML world

Using nodes

Cylinder {
}

Nodes describe shapes, lights, sounds, etc.

Every node has:
A node type (Shape, Cylinder , etc.)
A pair of curly-braces
Zero or more fields inside the
curly-braces

24

Building a VRML world

Using fields and values

Cylinder {
 height 2.0
 radius 1.5
}

Fields describe node attributes

25

Building a VRML world

Using fields and values

height 2.0

Every field has:
A field name
A data type (float, int, etc.)
A default value

Fields are optional and given in any order

Default value used if field not given

26

Building a VRML world

Summary

The file header gives the version and
encoding

Nodes describe scene content

Fields and values specify node attributes

27
Building primitive shapes

Motivation

Example

Syntax: Shape

Specifying geometry

Syntax: Box

Syntax: Cone

Syntax: Cylinder

Syntax: Sphere

Syntax: Text

A sample primitive shape

A sample primitive shape

Building multiple shapes

A sample file with multiple shapes

A sample file with multiple shapes

Syntax: FontStyle

Syntax: FontStyle

Summary

28

Building primitive shapes

Motivation

Shapes are the building blocks of a VRML
world

Primitive Shapes are standard building
blocks:

Box
Cone
Cylinder
Sphere
Text

29

Building primitive shapes

Example

[prim.wrl]

30

Building primitive shapes

Syntax: Shape

A Shape node builds a shape
appearance - color and texture
geometry - form, or structure

Shape {
 appearance . . .
 geometry . . .
}

31

Building primitive shapes

Specifying geometry

Shape geometry is built with geometry
nodes:

Box { . . . }
Cone { . . . }
Cylinder { . . . }
Sphere { . . . }
Text { . . . }

Geometry node fields control dimensions
Dimensions usually in meters, but can be
anything

32

Building primitive shapes

Syntax: Box

A Box geometry node builds a box

[box.wrl]

Box {
 size 2.0 2.0 2.0
}

33

Building primitive shapes

Syntax: Cone

A Cone geometry node builds an upright
cone

[cone.wrl]

Cone {
 height 2.0
 bottomRadius 1.0
}

34

Building primitive shapes

Syntax: Cylinder

A Cylinder geometry node builds an upright
cylinder

[cyl.wrl]

Cylinder {
 height 2.0
 radius 1.0
}

35

Building primitive shapes

Syntax: Sphere

A Sphere geometry node builds a sphere

[sphere.wrl]

Sphere {
 radius 1.0
}

36

Building primitive shapes

Syntax: Text

A Text geometry node builds text

[text.wrl]

Text {
 string ["Text",
 "Shape"]
 fontStyle FontStyle {
 style "BOLD"
 }
}

37

Building primitive shapes

A sample primitive shape

#VRML V2.0 utf8
A cylinder
Shape {
 appearance Appearance {
 material Material { }
 }
 geometry Cylinder {
 height 2.0
 radius 1.5
 }
}

38

Building primitive shapes

A sample primitive shape

[cylinder.wrl]

39

Building primitive shapes

Building multiple shapes

Shapes are built centered in the world

A VRML file can contain multiple shapes

Shapes overlap when built at the same
location

40

Building primitive shapes

A sample file with multiple shapes

#VRML V2.0 utf8
Shape { . . . }
Shape { . . . }
. . .
Shape { . . . }

41

Building primitive shapes

A sample file with multiple shapes

[space.wrl]

42

Building primitive shapes

Syntax: FontStyle

A FontStyle node describes a font
family - SERIF, SANS, or TYPEWRITER
style - BOLD, ITALIC , BOLDITALIC , or PLAIN ,
more . . .

Text {
 string . . .
 fontStyle FontStyle {
 family "SERIF"
 style "BOLD"
 }
}

43

Building primitive shapes

Syntax: FontStyle

A FontStyle node describes a font
size - character height
spacing - row/column spacing
more . . .

Text {
 string . . .
 fontStyle FontStyle {
 size 1.0
 spacing 1.0
 }
}

44

Building primitive shapes

Summary

Shapes are built using a Shape node

Shape geometry is built using geometry
nodes, such as Box, Cone, Cylinder , Sphere ,
and Text

Text fonts are controlled using a FontStyle

node

45
Transforming shapes

Motivation

Example

Using coordinate systems

Visualizing a coordinate system

Transforming a coordinate system

Syntax: Transform

Including children

Translating

Translating

Rotating

Specifying rotation axes

Using the Right-Hand Rule

Using the Right-Hand Rule

Rotating

Scaling

Scaling

Scaling, rotating, and translating

Scaling, rotating, and translating

A sample transform group

A sample transform group

Summary

46

Transforming shapes

Motivation

By default, all shapes are built at the center
of the world

A transform enables you to
Position shapes
Rotate shapes
Scale shapes

47

Transforming shapes

Example

[towers.wrl]

48

Transforming shapes

Using coordinate systems

A VRML file builds components for a world

A file’s world components are built in the
file’s world coordinate system

By default, all shapes are built at the origin
of the world coordinate system

49

Transforming shapes

Visualizing a coordinate system

50

Transforming shapes

Transforming a coordinate system

A transform creates a coordinate system
that is

Positioned
Rotated
Scaled

relative to a parent coordinate system

Shapes built in the new coordinate system
are positioned, rotated, and scaled along
with it

51

Transforming shapes

Syntax: Transform

The Transform group node creates a group
with its own coordinate system

children - shapes to build
translation - position
rotation - orientation
scale - size

Transform {
 translation . . .
 rotation . . .
 scale . . .
 children [. . .]
}

52

Transforming shapes

Including children

The children field includes a list of one or
more nodes

Transform {
 . . .
 children [
 Shape { . . . }
 Transform { . . . }
 . . .
]
}

53

Transforming shapes

Translating

Translation positions a coordinate system in
X, Y, and Z

Transform {
 # X Y Z
 translation 2.0 0.0 0.0
 children [. . .]
}

54

Transforming shapes

Translating

55

Transforming shapes

Rotating

Rotation orients a coordinate system about
a rotation axis by a rotation angle

Angles are measured in radians

Transform {
 # X Y Z Angle
 rotation 0.0 0.0 1.0 0.52
 children [. . .]
}

56

Transforming shapes

Specifying rotation axes

A rotation axis defines a pole to rotate
around

Like the Earth’s North-South pole

Typical rotations are about the X, Y, or Z
axes:

Rotate about Axis

X-Axis 1.0 0.0 0.0

Y-Axis 0.0 1.0 0.0

Z-Axis 0.0 0.0 1.0

57

Transforming shapes

Using the Right-Hand Rule

To help remember positive and negative
rotation directions:

Open your hand
Stick out your thumb
Aim your thumb in an axis positive
direction
Curl your fingers around the axis

The curl direction is a positive rotation

58

Transforming shapes

Using the Right-Hand Rule

59

Transforming shapes

Rotating

60

Transforming shapes

Scaling

Scale grows or shrinks a coordinate system
by a scaling factor in X, Y, and Z

Transform {
 # X Y Z
 scale 0.5 0.5 0.5
 children [. . .]
}

61

Transforming shapes

Scaling

62

Transforming shapes

Scaling, rotating, and translating

Scale, Rotate, and Translate a coordinate
system, one after the other

Transform {
 translation 2.0 0.0 0.0
 rotation 0.0 0.0 1.0 0.52
 scale 0.5 0.5 0.5
 children [. . .]
}

63

Transforming shapes

Scaling, rotating, and translating

64

Transforming shapes

A sample transform group

Transform {
 translation 4.0 0.0 0.0
 rotation 0.0 1.0 0.0 0.785
 scale 0.5 0.5 0.5
 children [. . .]
}

65

Transforming shapes

A sample transform group

[arch.wrl] [arches.wrl]

66

Transforming shapes

Summary

All shapes are built in a coordinate system

The Transform node creates a new
coordinate system relative to its parent

Transform node fields do
translation
rotation
scale

67
Controlling appearance with materials

Motivation

Example

Syntax: Shape

Syntax: Appearance

Syntax: Material

Specifying colors

Syntax: Material

Experimenting with shiny materials

Example

A sample world using appearance

A sample world using appearance

Summary

68

Controlling appearance with materials

Motivation

The primitive shapes have a default
emissive (glowing) white appearance

You can control a shape’s
Shading color
Glow color
Transparency
Shininess
Ambient intensity

69

Controlling appearance with materials

Example

[colors.wrl]

70

Controlling appearance with materials

Syntax: Shape

Recall that Shape nodes describe:
appearance - color and texture
geometry - form, or structure

Shape {
 appearance . . .
 geometry . . .
}

71

Controlling appearance with materials

Syntax: Appearance

An Appearance node describes overall shape
appearance

material properties - color, transparency,
etc.
more . . .

Shape {
 appearance Appearance {
 material . . .
 }
 geometry . . .
}

72

Controlling appearance with materials

Syntax: Material

A Material node controls shape material
attributes

diffuse color - main shading color
emissive color - glowing color
transparency - opaque or not
more . . .

Material {
 diffuseColor . . .
 emissiveColor . . .
 transparency . . .
}

73

Controlling appearance with materials

Specifying colors

Colors specify:
A mixture of red, green, and blue light
Values between 0.0 (none) and 1.0 (lots)

Color Red Green Blue Result

White 1.0 1.0 1.0 (white)

Red 0.0 0.0 0.0 (red)

Yellow 1.0 1.0 0.0 (yellow)

Magenta 1.0 0.0 1.0 (magenta)

Brown 0.5 0.2 0.0 (brown)

74

Controlling appearance with materials

Syntax: Material

A Material node also controls shape
shininess

specular color - highlight color
shininess - highlight size
ambient intensity - ambient lighting
effects

Material {
 . . .
 specularColor 0.71 0.70 0.56
 shininess 0.16
 ambientIntensity 0.4
}

75

Controlling appearance with materials

Experimenting with shiny materials

Description ambient Intensity diffuseColor specularColor shininess

Aluminum 0.3 0.30 0.30 0.50 0.70 0.70 0.80 0.10

Copper 0.26 0.30 0.11 0.00 0.75 0.33 0.00 0.08

Gold 0.4 0.22 0.15 0.00 0.71 0.70 0.56 0.16

Metalic Purple 0.17 0.10 0.03 0.22 0.64 0.00 0.98 0.20

Metalic Red 0.15 0.27 0.00 0.00 0.61 0.13 0.18 0.20

Plastic Blue 0.10 0.20 0.20 0.71 0.83 0.83 0.83 0.12

76

Controlling appearance with materials

Example

[shiny.wrl]

77

Controlling appearance with materials

A sample world using appearance

Shape {
 appearance Appearance {
 material Material {
 diffuseColor 1.0 1.0 1.0
 }
 }
 geometry . . .
}

78

Controlling appearance with materials

A sample world using appearance

[slabs.wrl]

79

Controlling appearance with materials

Summary

The Appearance node controls overall shape
appearance

The Material node controls overall material
properties including:

Shading color
Glow color
Transparency
Shininess
Ambient intensity

80

81
Grouping nodes

Motivation

Syntax: Group

Syntax: Switch

Syntax: Transform

Syntax: Billboard

Billboard rotation axes

A sample billboard group

A sample billboard group

Syntax: Anchor

A Sample Anchor

Syntax: Inline

A sample inlined file

A sample inlined file

Summary

Summary

82

Grouping nodes

Motivation

You can group shapes to compose complex
shapes
VRML has several grouping nodes,
including:

Group { . . . }
Switch { . . . }
Transform { . . . }
Billboard { . . . }
Anchor { . . . }
Inline { . . . }

83

Grouping nodes

Syntax: Group

The Group node creates a basic group
Every child node in the group is
displayed

Group {
 children [. . .]
}

84

Grouping nodes

Syntax: Switch

The Switch group node creates a switched
group

Only one child node in the group is
displayed
You select which child

Switch {
 whichChoice 0
 choice [. . .]
}

85

Grouping nodes

Syntax: Transform

The Transform group node creates a group
with its own coordinate system

Every child node in the group is
displayed

Transform {
 translation . . .
 rotation . . .
 scale . . .
 children [. . .]
}

86

Grouping nodes

Syntax: Billboard

The Billboard group node creates a group
with a special coordinate system

Every child node in the group is
displayed
Coordinate system is turned to face
viewer

Billboard {
 axisOfRotation . . .
 children [. . .]
}

87

Grouping nodes

Billboard rotation axes

A rotation axis defines a pole to rotate
round

Similar to a Transform node’s rotation

field, but no angle (auto computed)

88

Grouping nodes

A sample billboard group

Group {
 children [
 Billboard {
 axisOfRotation 0.0 1.0 0.0
 children [...]
 }
 Transform { . . . }
]
}

89

Grouping nodes

A sample billboard group

[robobill.wrl]

90

Grouping nodes

Syntax: Anchor

An Anchor node creates a group that acts as
a clickable anchor

Every child node in the group is
displayed
Clicking any child follows a URL
A description names the anchor

Anchor {
 url "stairwy.wrl"
 description "Twisty Stairs"
 children [. . .]
}

91

Grouping nodes

A Sample Anchor

[anchor.wrl] [stairwy.wrl]

92

Grouping nodes

Syntax: Inline

An Inline node creates a special group from
another VRML file’s contents

Children read from file selected by a
URL
Every child node in group is displayed

Inline {
 url "table.wrl"
}

93

Grouping nodes

A sample inlined file

Inline { url "table.wrl" }
. . .
Transform {
 translation . . .
 children [
 Inline { url "chair.wrl" }
]
}

94

Grouping nodes

A sample inlined file

[table.wrl, chair.wrl, dinette.wrl]

95

Grouping nodes

Summary

The Group node creates a basic group

The Switch node creates a group with 1
choice used

The Transform node creates a group with a
new coordinate system

96

Grouping nodes

Summary

The Billboard node creates a group with a
coordinate system that rotates to face the
viewer

The Anchor node creates a clickable group
Clicking any child in the group loads a
URL

The Inline node creates a special group
loaded from another VRML file

97
Naming nodes

Motivation

Syntax: DEF

Syntax: USE

Using named nodes

A sample use of node names

Summary

98

Naming nodes

Motivation

If several shapes have the same geometry or
appearance, you must use multiple
duplicate nodes, one for each use

Instead, define a name for the first
occurrence of a node

Later, use that name to share the same node
in a new context

99

Naming nodes

Syntax: DEF

The DEF syntax gives a name to a node

DEF RedColor Material {
 diffuseColor 1.0 0.0 0.0
}

You can name any node
Names can be most any sequence of letters
and numbers

Names must be unique within a file

100

Naming nodes

Syntax: USE

The USE syntax uses a previously named
node

Appearance {
 material USE RedColor
}

A re-use of a named node is called an
instance
A named node can have any number of
instances

Each instance shares the same node
description

101

Naming nodes

Using named nodes

Naming and using nodes:
Saves typing
Reduces file size
Enables rapid changes to shapes with the
same attributes
Speeds browser processing

Names are also necessary for animation...

102

Naming nodes

A sample use of node names

[dinette.wrl]

103

Naming nodes

Summary

DEF names a node

USE uses a named node

104

105
Summary examples

A fairy-tale castle

A bar plot

A simple spaceship

A juggling hand

106

Summary examples

A fairy-tale castle

Cylinder nodes build the towers
Cone nodes build the roofs and tower
bottoms

[castle.wrl]

107

Summary examples

A bar plot

Box nodes create the bars
Text nodes provide bar labels
Billboard nodes keep the labels facing the
viewer

[barplot.wrl]

108

Summary examples

A simple spaceship

Sphere nodes make up all parts of the ship
Transform nodes scale the spheres into ship
parts

[space2.wrl]

109

Summary examples

A juggling hand

Cylinder and Sphere nodes build fingers and
joints
Transform nodes articulate the hand

[hand.wrl]

110

111
Introducing animation

Motivation

Building animation circuits

Examples

Routing events

Using node inputs and outputs

Sample inputs

Sample outputs

Syntax: ROUTE

Event data types

Following naming conventions

A sample animation

A sample animation

Using multiple routes

Summary

112

Introducing animation

Motivation

Nodes like Billboard and Anchor have
built-in behavior

You can create your own behaviors to make
shapes move, rotate, scale, blink, and more

We need a means to trigger, time, and
respond to a sequence of events in order to
provide better user/world interactions

113

Introducing animation

Building animation circuits

Almost every node can be a component in
an animation circuit

Nodes act like virtual electronic parts
Nodes can send and receive events
Wired routes connect nodes together

An event is a message sent between nodes
A data value (such as a translation)
A time stamp (when did the event get
sent)

114

Introducing animation

Examples

To spin a shape:
Connect a node that sends rotation events
to a Transform node’s rotation field

To blink a shape:
Connect a node that sends color events to
a Material node’s diffuseColor field

115

Introducing animation

Routing events

To set up an animation circuit, you need:

A node which sends events
The node must be named with DEF

A node which receives events
The node must be named with DEF

A route connecting them

116

Introducing animation

Using node inputs and outputs

Every node has fields, inputs, and outputs:
field: A stored value
eventIn: An input
eventOut: An output

An exposedField is a short-hand for a field,
eventIn, and eventOut

117

Introducing animation

Sample inputs

Some Transform node inputs:
set_translation
set_rotation
set_scale

Some Material node inputs:
set_diffuseColor
set_emissiveColor
set_transparency

118

Introducing animation

Sample outputs

Some TouchSensor node outputs:
isOver
isActive
touchTime

An OrientationInterpolator node output:
value_changed

A PositionInterpolator node output:
value_changed

119

Introducing animation

Syntax: ROUTE

A ROUTE statement connects two nodes
together using

The sender’s node name and eventOut
name
The receiver’s node name and eventIn
name

ROUTE MySender.rotation_changed
 TO MyReceiver.set_rotation

Event data types must match!

120

Introducing animation

Event data types

SFBool SFRotation /
MFRotation

SFColor / MFColor SFString / MFString

SFFloat / MFFloat SFTime

SFImage SFVec2f / MFVec2f

SFInt32 / MFInt32 SFVec3f / MFVec3f

SFNode / MFNode

121

Introducing animation

Following naming conventions

Most nodes have exposedFields

If the exposed field name is xxx , then:
set_xxx is an eventIn to set the field
xxx_changed is an eventOut that sends
when the field changes
The set_ and _changed sufixes are
optional but recommended for clarity

The Transform node has:
rotation field
set_rotation eventIn
rotation_changed eventOut

122

Introducing animation

A sample animation

DEF RotateMe Transform {
 rotation 0.0 1.0 0.0 0.0
 children [. . .]
}
DEF Rotator OrientationInterpolator { . . .

ROUTE Rotator.value_changed
 TO RotateMe.set_rotation

123

Introducing animation

A sample animation

[colors.wrl]

124

Introducing animation

Using multiple routes

You can have fan-out
Multiple routes out of the same sender

You can have fan-in
Multiple routes into the same receiver

125

Introducing animation

Summary

Connect senders to receivers using routes

eventIns are inputs, and eventOuts are
outputs

A route names the sender.eventOut, and the
receiver.eventIn

Data types must match

You can have multiple routes into or out of
a node

126

127
Animating transforms

Motivation

Example

Controlling time

Using absolute time

Using fractional time

Syntax: TimeSensor

Using timers

Using timers

Using cycling timers

Using timer outputs

A sample time sensor

A sample time sensor

Converting time to position

Interpolating positions

Syntax: PositionInterpolator

Using position interpolator inputs and outputs

A sample using position interpolators

A sample using position interpolators

Using other types of interpolators

Syntax: OrientationInterpolator

Syntax: ColorInterpolator

Syntax: ScalarInterpolator

Syntax: PositionInterpolator

A sample using other interpolators

Summary

Summary

Summary

128

Animating transforms

Motivation

An animation changes something over time:
position - a car driving
orientation - an airplane banking
color - seasons changing

Animation requires control over time:
When to start and stop
How fast to go

129

Animating transforms

Example

[floater.wrl]

130

Animating transforms

Controlling time

A TimeSensor node is similar to a stop watch
You control the start and stop time

The sensor generates time events while it is
running

To animate, route time events into other
nodes

131

Animating transforms

Using absolute time

A TimeSensor node generates absolute and
fractional time events

Absolute time events give the wall-clock
time

Absolute time is measured in seconds
since 12:00am January 1, 1970!
Useful for triggering events at specific
dates and times

132

Animating transforms

Using fractional time

Fractional time events give a number from
0.0 to 1.0

Values cycle from 0.0 to 1.0, then repeat

The number of seconds between 0.0 and
1.0 is controlled by the cycle interval

The sensor can loop forever, or run once
and stop

133

Animating transforms

Syntax: TimeSensor

A TimeSensor node generates events based
upon time

start and stop time - when to run
cycle interval time - how long a cycle is
looping - whether or not to repeat cycles

TimeSensor {
 cycleInterval 1.0
 loop FALSE
 startTime 0.0
 stopTime 0.0
}

134

Animating transforms

Using timers

Create continuously running timers:
loop TRUE
stopTime <= startTime

Run one cycle then stop
loop FALSE
stopTime <= startTime

Run until stopped, or after cycle is over
loop TRUE or FALSE
stopTime > startTime

135

Animating transforms

Using timers

The set_startTime input event:
Sets when the timer should start

The set_stopTime input event:
Sets when the timer should stop

136

Animating transforms

Using cycling timers

The first cycle starts at the start time

The cycle interval is the length (in seconds)
of the cycle

Each cycle varies a fraction from 0.0 to 1.0

If loop is FALSE, there is only one cycle,
otherwise the timer may cycle forever

137

Animating transforms

Using timer outputs

The isActive output event:
Outputs TRUE at timer start
Outputs FALSE at timer stop

The time output event:
Outputs the absolute time

The fraction_changed output event:
Outputs values from 0.0 to 1.0 during a
cycle
Resets to 0.0 at the start of each cycle

138

Animating transforms

A sample time sensor

DEF Monolith1Timer TimeSensor {
 cycleInterval 4.0
 loop FALSE
 startTime 0.0
 stopTime 1.0
}
ROUTE Monolith1Touch.touchTime
 TO Monolith1Timer.set_startTime

ROUTE Monolith1Timer.fraction_changed
 TO Monolith1Light.set_intensity

139

Animating transforms

A sample time sensor

[monolith.wrl]

140

Animating transforms

Converting time to position

To animate the position of a shape you
provide:

A list of key positions for a movement
path
A time at which to be at each position

An interpolator node converts an input time
to an output position

When a time is in between two key
positions, the interpolator computes an
intermediate position

141

Animating transforms

Interpolating positions

Each key position along a path has:
A key value (such as a position)
A key fractional time

Interpolation fills in values between your
key values:
Time Position

0.0 0.0 0.0 0.0

0.1 0.4 0.1 0.0

0.2 0.8 0.2 0.0

.

0.5 4.0 1.0 0.0

.

142

Animating transforms

Syntax: PositionInterpolator

A PositionInterpolator node describes a
position path

keys - key fractional times
key values - key positions

PositionInterpolator {
 key [0.0, . . .]
 keyValue [0.0 0.0 0.0, . . .]
}

Route into a Transform node’s
set_translation input

143

Animating transforms

Using position interpolator inputs and outputs

The set_fraction input:
Sets the current fractional time along the
key path

The value_changed output:
Outputs the position along the path each
time the fraction is set

144

Animating transforms

A sample using position interpolators

DEF Mover PositionInterpolator {
 key [0.0, . . .]
 keyValue [0.0 0.0 0.0, . . .]
}
ROUTE Clock.fraction_changed
 TO Mover.set_fraction

ROUTE Mover.value_changed
 TO Movee.set_translation

145

Animating transforms

A sample using position interpolators

[floater.wrl]

146

Animating transforms

Using other types of interpolators

To animate shape orientation, use an
OrientationInterpolator

To animate shape color, use a
ColorInterpolator

To animate shape transparency, use a
ScalarInterpolator

To animate shape scale, use a trick and use
a PositionInterpolator

147

Animating transforms

Syntax: OrientationInterpolator

A OrientationInterpolator node describes
an orientation path

keys - key fractions
key values - key rotations (axis and angle)

OrientationInterpolator {
 key [0.0, . . .]
 keyValue [0.0 1.0 0.0 0.0, . . .]
}

Route into a Transform node’s set_rotation

input

148

Animating transforms

Syntax: ColorInterpolator

ColorInterpolator node describes a color
path

keys - key fractions
values - key colors (red, green, blue)

ColorInterpolator {
 key [0.0, . . .]
 keyValue [1.0 1.0 0.0, . . .]
}

Route into a Material node’s
set_diffuseColor or set_emissiveColor

inputs

149

Animating transforms

Syntax: ScalarInterpolator

ScalarInterpolator node describes a scalar
path

keys - key fractions
values - key scalars (used for anything)

ScalarInterpolator {
 key [0.0, . . .]
 keyValue [4.5, . . .]
}

Route into a Material node’s
set_transparency input

150

Animating transforms

Syntax: PositionInterpolator

A PositionInterpolator node describes a
position or scale path

keys - key fractional times
key values - key positions (or scales)

PositionInterpolator {
 key [0.0, . . .]
 keyValue [0.0 0.0 0.0, . . .]
}

Route into a Transform node’s set_scale

input

151

Animating transforms

A sample using other interpolators

[squisher.wrl]

152

Animating transforms

Summary

The TimeSensor node’s fields control
Timer start and stop times
The cycle interval
Whether the timer loops or not

The sensor outputs
true/false on isActive at start and stop
absolute time on time while running
fractional time on fraction_changed while
running

153

Animating transforms

Summary

Interpolators use key times and values and
compute intermediate values

All interpolators have:
a set_fraction input to set the fractional
time
a value_changed output to send new
values

154

Animating transforms

Summary

The PositionInterpolator node converts
times to positions (or scales)

The OrientationInterpolator node converts
times to rotations

The ColorInterpolator node converts times
to colors

The ScalarInterpolator node converts times
to scalars (such as transparencies)

155
Sensing viewer actions

Motivation

Using action sensors

Sensing shapes

Syntax: TouchSensor

A sample use of a TouchSensor node

Syntax: SphereSensor

Syntax: CylinderSensor

Syntax: PlaneSensor

Using multiple sensors

A sample use of a multiple sensors

Summary

156

Sensing viewer actions

Motivation

You can sense when the viewer’s cursor:
Is over a shape
Has touched a shape
Is dragging atop a shape

You can trigger animations on a viewer’s
touch

You can enable the viewer to move and
rotate shapes

157

Sensing viewer actions

Using action sensors

There are four main action sensor types:
TouchSensor senses touch
SphereSensor senses drags
CylinderSensor senses drags
PlaneSensor senses drags

The Anchor node is a special-purpose action
sensor with a built-in response

158

Sensing viewer actions

Sensing shapes

All action sensors sense all shapes in the
same group

Sensors trigger when the viewer’s cursor
touches a sensed shape

159

Sensing viewer actions

Syntax: TouchSensor

A TouchSensor node senses the cursor’s
touch

isOver - send true/false when cursor
over/not over
isActive - send true/false when mouse
button pressed/released
touchTime - send time when mouse
button released

Transform {
 children [
 . . .
 DEF Touched TouchSensor { }
]
}

160

Sensing viewer actions

A sample use of a TouchSensor node

[colors.wrl]

161

Sensing viewer actions

Syntax: SphereSensor

A SphereSensor node senses a cursor drag
and generates rotations as if rotating a ball

isActive - sends true/false when mouse
button pressed/released
rotation_changed - sends rotation during
a drag

Transform {
 children [
 DEF RotateMe Transform { . . . }
 DEF Rotator SphereSensor { }
]
}
ROUTE Rotator.rotation_changed
 TO RotateMe.set_rotation

162

Sensing viewer actions

Syntax: CylinderSensor

A CylinderSensor node senses a cursor drag
and generates rotations as if rotating a
cylinder

isActive - sends true/false when mouse
button pressed/released
rotation_changed - sends rotation during
a drag

Transform {
 children [
 DEF RotateMe Transform { . . . }
 DEF Rotator CylinderSensor { }
]
}
ROUTE Rotator.rotation_changed
 TO RotateMe.set_rotation

163

Sensing viewer actions

Syntax: PlaneSensor

A PlaneSensor node senses a cursor drag
and generates translations as if sliding on a
plane

isActive - sends true/false when mouse
button pressed/released
translation_changed - sends translations
during a drag

Transform {
 children [
 DEF MoveMe Transform { . . . }
 DEF Mover PlaneSensor { }
]
}
ROUTE Mover.translation_changed
 TO MoveMe.set_translation

164

Sensing viewer actions

Using multiple sensors

Multiple sensors can sense the same shape
but. . .

If sensors are in the same group:
They all respond

If sensors are at different depths in the
hierarchy:

The deepest sensor responds
The other sensors do not respond

165

Sensing viewer actions

A sample use of a multiple sensors

[lamp.wrl]

166

Sensing viewer actions

Summary

Action sensors sense when the viewer’s
cursor:

is over a shape
has touched a shape
is dragging atop a shape

Sensors convert viewer actions into events
to

Start and stop animations
Orient shapes
Position shapes

167
Building shapes out of points, lines, and faces

Motivation

Example

Building shapes using coordinates

Syntax: Coordinate

Using geometry coordinates

Syntax: PointSet

A sample PointSet node shape

Syntax: IndexedLineSet

Using line set coordinate indexes

Using line set coordinate index lists

A sample IndexedLineSet node shape

Syntax: IndexedFaceSet

Using face set coordinate index lists

A sample IndexedFaceSet node shape

Syntax: CoordinateInterpolator

Summary

Summary

Summary

168

Building shapes out of points, lines, and faces

Motivation

Complex shapes are hard to build with
primitive shapes

Terrain
Animals
Plants
Machinery

Instead, build shapes out of atomic
components:

Points, lines, and faces

169

Building shapes out of points, lines, and faces

Example

170

Building shapes out of points, lines, and faces

Building shapes using coordinates

Shape building is like a 3-D connect-the-dots
game:

Place dots at 3-D locations
Connect-the-dots to form shapes

A coordinate specifies a 3-D dot location
Measured relative to a coordinate system
origin

A geometry node specifies how to connect
the dots

171

Building shapes out of points, lines, and faces

Syntax: Coordinate

A Coordinate node contains a list of
coordinates for use in building a shape

Coordinate {
 point [
X Y Z
 2.0 1.0 3.0,
 4.0 2.5 5.3,
 . . .
]
}

172

Building shapes out of points, lines, and faces

Using geometry coordinates

Build shapes using geometry nodes:
PointSet
IndexedLineSet
IndexedFaceSet

For all three nodes, use a Coordinate node as
the value of the coord field

173

Building shapes out of points, lines, and faces

Syntax: PointSet

A PointSet geometry node creates geometry
out of points

One point (a dot) is placed at each
coordinate

PointSet {
 coord Coordinate {
 point [. . .]
 }
}

174

Building shapes out of points, lines, and faces

A sample PointSet node shape

[ptplot.wrl]

175

Building shapes out of points, lines, and faces

Syntax: IndexedLineSet

An IndexedLineSet geometry node creates
geometry out of lines

A straight line is drawn between pairs of
selected coordinates

IndexedLineSet {
 coord Coordinate {
 point [. . .]
 }
 coordIndex [. . .]
}

176

Building shapes out of points, lines, and faces

Using line set coordinate indexes

Each coordinate in a Coordinate node is
implicitly numbered

Index 0 is the first coordinate
Index 1 is the second coordinate, etc.

To build a line shape
Make a list of coordinates, using their
indexes
Use an IndexedLineSet node to draw a
line from coordinate to coordinate in the
list

177

Building shapes out of points, lines, and faces

Using line set coordinate index lists

1, 0, 3, -1, . . .
1, 0, Draw from 1 to 0
0, 3, Draw from 0 to 3
-1, End line sequence

List coordinate indexes in the coordIndex

field of the IndexedLineSet node

178

Building shapes out of points, lines, and faces

A sample IndexedLineSet node shape

[lnplot.wrl]

179

Building shapes out of points, lines, and faces

Syntax: IndexedFaceSet

An IndexedFaceSet geometry node creates
geometry out of faces

A flat facet (polygon) is drawn using an
outline specified by coordinates

IndexedFaceSet {
 coord Coordinate {
 point [. . .]
 }
 coordIndex [. . .]
}

180

Building shapes out of points, lines, and faces

Using face set coordinate index lists

To build a face shape
Make a list of coordinates, using their
indexes
Use an IndexedFaceSet node to draw a
face outlined by the coordinates in the
list

List coordinate indexes in the coordIndex

field of the IndexedFaceSet node

181

Building shapes out of points, lines, and faces

A sample IndexedFaceSet node shape

[lightng.wrl]

182

Building shapes out of points, lines, and faces

Syntax: CoordinateInterpolator

A CoordinateInterpolator node describes a
coordinate path

keys - key fractions
values - key coordinate lists (X,Y,Z lists)

CoordinateInterpolator {
 key [0.0, . . .]
 keyValue [0.0 1.0 0.0, . . .]
}

183

Building shapes out of points, lines, and faces

Summary

Shapes are built by connecting together
coordinates

Coordinates are listed in a Coordinate node

Coordinates are implicitly numbers starting
at 0

Coordinate index lists give the order in
which to use coordinates

184

Building shapes out of points, lines, and faces

Summary

The PointSet node draws a dot at every
coordinate

The coord field value is a Coordinate node

The IndexedLineSet node draws lines
between coordinates

The coord field value is a Coordinate node
The coordIndex field value is a list of
coordinate indexes

185

Building shapes out of points, lines, and faces

Summary

The IndexedFaceSet node draws faces
outlined by coordinates

The coord field value is a Coordinate node
The coordIndex field value is a list of
coordinate indexes

The CoordinateInterpolator node converts
times to coordinates

186

187
Building elevation grids

Motivation

Example

Syntax: ElevationGrid

Syntax: ElevationGrid

A sample elevation grid

A sample elevation grid

Summary

188

Building elevation grids

Motivation

Building terrains is very common
Hills, valleys, mountains
Other tricky uses...

You can build a terrain using an
IndexedFaceSet node

You can build terrains more efficiently
using an ElevationGrid node

189

Building elevation grids

Example

[mount16.wrl]

[mount32.wrl]

[mount128.wrl]

190

Building elevation grids

Syntax: ElevationGrid

An ElevationGrid geometry node creates
terrains

X & Z dimensions - grid size
X & Z spacings - row and column
distances
more . . .

ElevationGrid {
 xDimension 3
 zDimension 2
 xSpacing 1.0
 zSpacing 1.0
 . . .
}

191

Building elevation grids

Syntax: ElevationGrid

An ElevationGrid geometry node creates
terrains

height - elevations at grid points

ElevationGrid {
 . . .
 height [
 0.0, -0.5, 0.0,
 0.2, 4.0, 0.0
]
}

192

Building elevation grids

A sample elevation grid

Shape {
 . . .
 geometry ElevationGrid {
 xDimension 9
 zDimension 9
 xSpacing 1.0
 zSpacing 1.0
 height [. . .]
 }
}

193

Building elevation grids

A sample elevation grid

[mount.wrl]

194

Building elevation grids

Summary

An ElevationGrid node efficiently creates a
terrain

Grid size is specified in the xDimension and
zDimension fields

Grid spacing is specified in the xSpacing and
zSpacing field

Elevations at each grid point are specified
in the height field

195
Building extruded shapes

Motivation

Examples

Creating extruded shapes

Extruding along a straight line

Extruding around a circle

Extruding along a helix

Syntax: Extrusion

Squishing and twisting extruded shapes

Syntax: Extrusion

Sample extrusions with scale and rotation

Summary

196

Building extruded shapes

Motivation

Extruded shapes are very common
Tubes, pipes, bars, vases, donuts
Other tricky uses...

You can build extruded shapes using an
IndexedFaceSet node

You can build extruded shapes more easily
and efficiently using an Extrusion node

197

Building extruded shapes

Examples

[slide.wrl]

[donut.wrl]

198

Building extruded shapes

Creating extruded shapes

Extruded shapes are described by
A 2-D cross-section
A 3-D spine along which to sweep the
cross-section

Extruded shapes are like long bubbles
created with a bubble wand

The bubble wand’s outline is the
cross-section
The path along which you swing the
wand is the spine

199

Building extruded shapes

Extruding along a straight line

200

Building extruded shapes

Extruding around a circle

201

Building extruded shapes

Extruding along a helix

202

Building extruded shapes

Syntax: Extrusion

An Extrusion geometry node creates
extruded geometry

2-D cross-section - cross-section
3-D spine - sweep path
more . . .

Extrusion {
 crossSection [. . .]
 spine [. . .]
 . . .
}

203

Building extruded shapes

Squishing and twisting extruded shapes

You can scale the cross-section along the
spine

Vases, musical instruments
Surfaces of revolution

You can rotate the cross-section along the
spine

Twisting ribbons

204

Building extruded shapes

Syntax: Extrusion

An Extrusion geometry node creates
geometry using

scales - cross-section scaling per spine
point
rotations - cross-section rotation per
spine point

Extrusion {
 . . .
 scale [. . .]
 orientation [. . .]
}

205

Building extruded shapes

Sample extrusions with scale and rotation

[horn.wrl]

[bartwist.wrl]

206

Building extruded shapes

Summary

An Extrusion node efficiently creates
extruded shapes

The crossSection field specifies the
cross-section

The spine field specifies the sweep path

The scale and orientation fields specify
scaling and rotation at each spine point

207
Controlling properties of coordinate-based geometry

Motivation

Example

Syntax: Color

Binding colors

Syntax: PointSet

A sample PointSet node shape

Syntax: IndexedLineSet

Controlling color binding for line sets

A sample IndexedLineSet node shape

Syntax: IndexedFaceSet

Controlling color binding for face sets

A sample IndexedFaceSet node shape

Syntax: ElevationGrid

Controlling color binding for elevation grids

A sample ElevationGrid node shape

Controlling shading using the crease angle

Selecting crease angles

A sample using crease angles

Syntax: Normal

Syntax: IndexedFaceSet

Controlling normal binding for face sets

Syntax: ElevationGrid

Controlling normal binding for elevation grids

Syntax: NormalInterpolator

Summary

Summary

208

Controlling properties of coordinate-based geometry

Motivation

The Material node gives an entire shape the
same color

You can provide colors for parts of a shape
using a Color node

You can specify smooth or faceted shading
using a creaseAngle field value

209

Controlling properties of coordinate-based geometry

Example

[cmount.wrl]

210

Controlling properties of coordinate-based geometry

Syntax: Color

A Color node contains a list of RGB values

Color {
 color [1.0 0.0 0.0, . . .]
}

Used as the color field value of
IndexedFaceSet , IndexedLineSet , PointSet or
ElevationGrid nodes

211

Controlling properties of coordinate-based geometry

Binding colors

Colors in the Color node override those in
the Material node

You can bind colors
To each point, line, or face
To each coordinate in a line, or face

212

Controlling properties of coordinate-based geometry

Syntax: PointSet

A PointSet geometry node creates geometry
out of points

color - provides a list of colors
Always binds one color to each point, in
order

PointSet {
 coord Coordinate { . . . }
 color Color { . . . }
}

213

Controlling properties of coordinate-based geometry

A sample PointSet node shape

[scatter.wrl]

214

Controlling properties of coordinate-based geometry

Syntax: IndexedLineSet

An IndexedLineSet geometry node creates
geometry out of lines

color - a list of colors
color indexes - selects colors from list
(just like selecting coordinates)
color per vertex - control color binding

IndexedLineSet {
 coord Coordinate { . . . }
 coordIndex [. . .]
 color Color { . . . }
 colorIndex [. . .]
 colorPerVertex TRUE
}

215

Controlling properties of coordinate-based geometry

Controlling color binding for line sets

The colorPerVertex field controls how color
indexes are used

FALSE: one color index to each line
(ending at -1 coordinate indexes)

TRUE: one color index to each coordinate
index of each line (including -1
coordinate indexes)

216

Controlling properties of coordinate-based geometry

A sample IndexedLineSet node shape

[burst.wrl]

217

Controlling properties of coordinate-based geometry

Syntax: IndexedFaceSet

An IndexedFaceSet geometry node creates
geometry out of faces

color - a list of colors
color indexes - selects colors from list
(just like selecting coordinates)
color per vertex - control color binding

IndexedFaceSet {
 coord Coordinate { . . . }
 coordIndex [. . .]
 color Color { . . . }
 colorIndex [. . .]
 colorPerVertex TRUE
}

218

Controlling properties of coordinate-based geometry

Controlling color binding for face sets

The colorPerVertex field controls how color
indexes are used (similar to line sets)

FALSE: one color index to each face
(ending at -1 coordinate indexes)

TRUE: one color index to each coordinate
index of each face (including -1
coordinate indexes)

219

Controlling properties of coordinate-based geometry

A sample IndexedFaceSet node shape

[log.wrl]

220

Controlling properties of coordinate-based geometry

Syntax: ElevationGrid

An ElevationGrid geometry node creates
terrains

color - a list of colors
color per vertex - control color binding

ElevationGrid {
 height [. . .]
 color Color { . . . }
 colorPerVertex TRUE
}

The ElevationGrid node does not use color
indexes

221

Controlling properties of coordinate-based geometry

Controlling color binding for elevation grids

The colorPerVertex field controls how color
indexes are used (similar to line and face
sets)

FALSE: one color to each grid square

TRUE: one color to each height for each
grid square

222

Controlling properties of coordinate-based geometry

A sample ElevationGrid node shape

[cmount.wrl]

223

Controlling properties of coordinate-based geometry

Controlling shading using the crease angle

By default, faces are drawn with faceted
shading

You can do smooth shading using the
creaseAngle field for

IndexedFaceSet
ElevationGrid
Extrusion

224

Controlling properties of coordinate-based geometry

Selecting crease angles

A crease angle is a threshold angle between
two faces

If face angle >= crease
angle, use facet shading

If face angle < crease
angle, use smooth shading

225

Controlling properties of coordinate-based geometry

A sample using crease angles

crease angle = 0 crease angle = 45 deg

226

Controlling properties of coordinate-based geometry

Syntax: Normal

A Normal node contains a list of normal
vectors that override use of a crease angle

Normal {
 vector [0.0 1.0 0.0, . . .]
}

Usually automatically generated normals
are good enough

Normals can be given for IndexedFaceSet

and ElevationGrid nodes

227

Controlling properties of coordinate-based geometry

Syntax: IndexedFaceSet

An IndexedFaceSet geometry node creates
geometry out of faces

Normal vectors - list of normals
Normal indexes - selects normals from
list (just like selecting coordinates)
Normal binding - control normal binding

IndexedFaceSet {
 coord Coordinate { . . . }
 coordIndex [. . .]
 normal Normal { . . . }
 normalIndex [. . .]
 normalPerVertex TRUE
}

228

Controlling properties of coordinate-based geometry

Controlling normal binding for face sets

The normalPerVertex field controls how
normal indexes are used

FALSE: one normal index to each face
(ending at -1 coordinate indexes)

TRUE: one normal index to each
coordinate index of each face (including
-1 coordinate indexes)

229

Controlling properties of coordinate-based geometry

Syntax: ElevationGrid

An ElevationGrid geometry node creates
terrains

Normal vectors - list of normals
Normal indexes - selects normals from
list (just like selecting coordinates)
Normal binding - control normal binding

ElevationGrid {
 height [. . .]
 normal Normal { . . . }
 normalPerVertex TRUE
}

230

Controlling properties of coordinate-based geometry

Controlling normal binding for elevation grids

The normalPerVertex field controls how
normal indexes are used (similar to face
sets)

FALSE: one normal to each grid square

TRUE: one normal to each height for each
grid square

231

Controlling properties of coordinate-based geometry

Syntax: NormalInterpolator

A NormalInterpolator node describes a
normal path

keys - key fractions
values - key normal lists (X,Y,Z lists)

NormalInterpolator {
 key [0.0, . . .]
 keyValue [0.0 1.0 1.0, . . .]
}

232

Controlling properties of coordinate-based geometry

Summary

The Color node lists colors to use for parts
of a shape

Used as the value of the color field
Color indexes select colors to use
Colors override Material node

The colorPerVertex field selects color per
line/face/grid square or color per coordinate

233

Controlling properties of coordinate-based geometry

Summary

The creaseAngle field controls faceted or
smooth shading

The Normal node lists normal vectors to use
for parts of a shape

Used as the value of the normal field
Normal indexes select normals to use
Normals override creaseAngle value

The normalPerVertex field selects normal per
face/grid square or normal per coordinate

The NormalInterpolator node converts times
to normals

234

235
Summary examples

A computed terrain

A twisty ribbon

A real-time clock

A timed timer

A morphing snake

236

Summary examples

A computed terrain

An ElevationGrid node creates a computed
terrain
A Color node provides terrain colors

[terrain1.wrl]

237

Summary examples

A twisty ribbon

An Extrusion node creates a ribbon
orientation and scale fields make the
ribbon twist and change size

[ribbon2.wrl]

238

Summary examples

A real-time clock

A set of TimeSensor nodes watch the time
A set of OrientationInterpolator nodes spin
the clock hands

[stopwtch.wrl]

239

Summary examples

A timed timer

A first TimeSensor node clocks a second
TimeSensor node to create a periodic
animation

[timetime.wrl]

240

Summary examples

A morphing snake

A CoordinateInterpolator node animates the
spine of an Extrusion node

[snake.wrl]

241
Mapping textures

Motivation

Example

Example Textures

Using texture types

Syntax: Appearance

Using materials with textures

Colorizing textures

Syntax: ImageTexture

Syntax: PixelTexture

Syntax: MovieTexture

Using transparent textures

A sample transparent texture

A sample transparent texture

Summary

242

Mapping textures

Motivation

You can model every tiny texture detail of a
world using a vast number of colored faces

Takes a long time to write the VRML
Takes a long time to draw

Use a trick instead
Take a picture of the real thing
Paste that picture on the shape, like
sticking on a decal

This technique is called Texture Mapping

243

Mapping textures

Example

[can.wrl]

244

Mapping textures

Example Textures

245

Mapping textures

Using texture types

Image textures
A single image from a file
JPEG, GIF, or PNG format

Pixel textures
A single image, given in the VRML file
itself

Movie textures
A movie from a file
MPEG format

246

Mapping textures

Syntax: Appearance

An Appearance node describes overall shape
appearance

texture - texture source

Appearance {
 material Material { . . . }
 texture ImageTexture { . . . }
}

247

Mapping textures

Using materials with textures

Color textures override the color in a
Material node

Grayscale textures multiply with the
Material node color

Good for colorizing grayscale textures

248

Mapping textures

Colorizing textures

249

Mapping textures

Syntax: ImageTexture

An ImageTexture node selects a texture
image for texture mapping

url - texture image file URL

ImageTexture {
 url "wood.jpg"
}

250

Mapping textures

Syntax: PixelTexture

A PixelTexture node specifies texture image
pixels for texture mapping

image pixels - texture image pixels
image data - width, height, bytes/pixel,
pixel values

PixelTexture {
 image 2 1 3 0xFFFF00 0xFF0000
}

251

Mapping textures

Syntax: MovieTexture

A MovieTexture node selects a texture movie
for texture mapping

url - texture movie file URL
When to play the movie, and how quickly
(like a TimeSensor node)

MovieTexture {
 url "movie.mpg"
 loop TRUE
 speed 1.0
}

252

Mapping textures

Using transparent textures

Texture images can include color and
transparency values for each pixel

Pixel transparency enables you to make
parts of a shape transparent

Windows, grillwork, holes
Trees, clouds

253

Mapping textures

A sample transparent texture

254

Mapping textures

A sample transparent texture

[treewall.wrl]

255

Mapping textures

Summary

A texture is like a decal pasted to a shape

Specify the texture using an ImageTexture ,
PixelTexture , or MovieTexture node in an
Appearance node

Color textures override material, grayscale
textures multiply

Textures with transparency create holes

256

257
Controlling how textures are mapped

Motivation

Working through the texturing process

Using the texture coordinate system

Texture coordinates and transforms

Working through the texturing process

Syntax: TextureCoordinate

Syntax: IndexedFaceSet

Syntax: ElevationGrid

Syntax: Appearance

Syntax: TextureTransform

A sample using no transform

A sample using translation

A sample using rotation

A sample using scale

A sample using texture coordinates

A sample using scale

A sample using scale and rotation

Summary

258

Controlling how textures are mapped

Motivation

By default, an entire texture image is
mapped once around the shape

You can also:
Extract pieces of interest
Create repeating patterns

259

Controlling how textures are mapped

Working through the texturing process

Imagine the texture image is a big piece of
rubbery cookie dough

Select a texture image piece
Define the shape of a cookie cutter
Position and orient the cookie cutter
Stamp out a piece of texture dough

Stretch the rubbery texture cookie to fit a
face

260

Controlling how textures are mapped

Using the texture coordinate system

Texture images (the dough) are in a texture
coordinate system

S direction is
horizontal
T direction is vertic
(0,0) at lower-left
(1,1) at upper-right

261

Controlling how textures are mapped

Texture coordinates and transforms

Texture coordinates and texture coordinate
indexes specify a texture piece shape (the
cookie cutter shape)

Texture transforms translate, rotate, and
scale the texture coordinates (placing the
cookie cutter)

262

Controlling how textures are mapped

Working through the texturing process

Select piece with texture coordinates and
indexes

Create a cookie cutter

Transform the texture coordinates
Position and orient the cookie cutter

Bind the texture to a face
Stamp out the texture and stick it on a
face

The process is very similar to creating faces!

263

Controlling how textures are mapped

Syntax: TextureCoordinate

A TextureCoordinate node contains a list of
texture coordinates

TextureCoordinate {
 point [0.2 0.2, 0.8 0.2, . . .]
}

Used as the texCoord field value of
IndexedFaceSet or ElevationGrid nodes

264

Controlling how textures are mapped

Syntax: IndexedFaceSet

An IndexedFaceSet geometry node creates
geometry out of faces

Texture coordinates and indexes - specify
texture pieces

IndexedFaceSet {
 coord Coordinate { . . . }
 coordIndex [. . .]
 texCoord TextureCoordinate { . . . }
 texCoordIndex [. . .]
}

265

Controlling how textures are mapped

Syntax: ElevationGrid

An ElevationGrid geometry node creates
terrains

Texture coordinates - specify texture
pieces
Automatically generated texture
coordinate indexes

ElevationGrid {
 height [. . .]
 texCoord TextureCoordinate { . . . }
}

266

Controlling how textures are mapped

Syntax: Appearance

An Appearance node describes overall shape
appearance

textureTransform - the transform

Appearance {
 material Material { . . . }
 textureTransform TextureTransform {
}

267

Controlling how textures are mapped

Syntax: TextureTransform

A TextureTransform node transforms texture
coordinates

translation - position
rotation - orientation
scale - size

TextureTransform {
 translation . . .
 rotation . . .
 scale . . .
}

268

Controlling how textures are mapped

A sample using no transform

269

Controlling how textures are mapped

A sample using translation

270

Controlling how textures are mapped

A sample using rotation

271

Controlling how textures are mapped

A sample using scale

272

Controlling how textures are mapped

A sample using texture coordinates

[pizza.wrl]

273

Controlling how textures are mapped

A sample using scale

[brickb.wrl]

274

Controlling how textures are mapped

A sample using scale and rotation

[fence.wrl]

275

Controlling how textures are mapped

Summary

Texture images are in a texture coordinate
system

Texture coordinates and indexes describe a
texture piece shape

Texture transforms translate, rotate, and
scale the texture coordinates

Use one or both to fit texture to geometry
and desired appearance

276

277
Lighting your world

Motivation

Example

Using types of lights

Using common lighting features

Using common lighting features

Syntax: PointLight

Syntax: DirectionalLight

Syntax: SpotLight

Syntax: SpotLight

Example

Summary

278

Lighting your world

Motivation

By default, you have one light in the scene,
attached to your head

For more realism, you can add multiple
lights

Suns, light bulbs, candles
Flashlights, spotlights, firelight

Lights can be positioned, oriented, and
colored

Lights do not cast shadows

279

Lighting your world

Example

280

Lighting your world

Using types of lights

Theer are three types of VRML lights
Point lights - radiate in all directions
from a point

Directional lights - aim in one direction
from infinitely far away

Spot lights - aim in one direction from a
point, radiating in a cone

281

Lighting your world

Using common lighting features

All lights have several common fields:
on - turn it on or off
intensity - control brightness
ambientIntensity - control ambient effect
color - select color

282

Lighting your world

Using common lighting features

Point lights and spot lights also have:
location - position
radius - maximum lighting distance
attenuation - drop off with distance

Directional lights and spot lights also have
direction - aim direction

283

Lighting your world

Syntax: PointLight

A PointLight node illuminates radially from
a point

PointLight {
 location 0.0 0.0 0. 0
 intensity 1.0
 color 1.0 1.0 1.0
}

284

Lighting your world

Syntax: DirectionalLight

A DirectionalLight node illuminates in one
direction from infinitely far away

DirectionalLight {
 direction 1.0 0.0 0 .
 intensity 1.0
 color 1.0 1.0 1.0
}

285

Lighting your world

Syntax: SpotLight

A SpotLight node illuminates from a point,
in one direction, within a cone

SpotLight {
 location 0.0 0.0 0 .
 direction 1.0 0.0 0 .
 intensity 1.0
 color 1.0 1.0 1.0
}

286

Lighting your world

Syntax: SpotLight

The maximum width of a spot light’s cone is
controlled by the cutOffAngle field

An inner cone region with constant
brightness is controlled by the beamWidth

field

SpotLight {
 . . .
 cutOffAngle 0.785
 beamWidth 1.571
}

287

Lighting your world

Example

[temple.wrl]

288

Lighting your world

Summary

There are three types of lights: point,
directional, and spot

All lights have an on/off, intensity, ambient
effect, and color

Point and spot lights have a location, radius,
and attenuation

Directional and spot lights have a direction

289
Adding backgrounds

Motivation

Using the background components

Using the background components

Syntax: Background

A sample background

Syntax: Background

A sample background image

A sample background

Summary

290

Adding backgrounds

Motivation

Shapes form the foreground of your scene

You can add a background to provide
context

Backgrounds describe:
Sky and ground colors
Panorama images of mountains, cities,
etc

Backgrounds are faster to draw than if you
used shapes to build them

291

Adding backgrounds

Using the background components

A background creates three special shapes:
A sky sphere
A ground sphere inside the sky sphere
A panorama box inside the ground
sphere

The sky and ground spheres are shaded
with a color gradient

The panorama box is texture mapped with
six images

292

Adding backgrounds

Using the background components

Transparent parts of the ground sphere
reveal the sky sphere

Transparent parts of the panorama box
reveal the ground and sky spheres

The viewer can look up, down, and
side-to-side to see different parts of the
background

The viewer can never get closer to the
background

293

Adding backgrounds

Syntax: Background

A Background node describes background
colors

ground colors and angles - ground
gradation
sky colors and angles - sky gradation
more . . .

Background {
 groundColor [0.0 0.2 0.7, . . .]
 groundAngle [1.309, 1.571]
 skyColor [0.1 0.1 0.0, . . .]
 skyAngle [1.309, 1.571]
}

294

Adding backgrounds

A sample background

[back.wrl]

295

Adding backgrounds

Syntax: Background

A Background node describes background
images

frontUrl - texture image URL for box
front
etc . . .

Background {
 . .
 frontUrl "mountns.png"
 backUrl "mountns.png"
 leftUrl "mountns.png"
 rightUrl "mountns.png"
 topUrl "clouds.png"
 bottomUrl "ground.png"
}

296

Adding backgrounds

A sample background image

297

Adding backgrounds

A sample background

[back2.wrl]

298

Adding backgrounds

Summary

Backgrounds describe:
Ground and sky color gradients on
ground and sky spheres

Panorama images on a panorama box

The viewer can look around, but never get
closer to the background

299
Adding fog

Motivation

Examples

Using fog visibility controls

Selecting a fog color

Syntax: Fog

Several fog samples

Summary

300

Adding fog

Motivation

Fog increases realism:
Add fog outside to create hazy worlds
Add fog inside to create dark dungeons
Use fog to set a mood

The further the viewer can see, the more
you have to model and draw

To reduce development time and drawing
time, limit the viewer’s sight by using fog

301

Adding fog

Examples

[fog2.wrl] [fog4.wrl]

302

Adding fog

Using fog visibility controls

The fog type selects linear or exponential
visibility reduction with distance

Linear is easier to control
Exponential is more realistic and
"thicker"

The visibility range selects the distance
where the fog reaches maximum thickness

Fog is "clear" at the viewer, and
gradually reduces visibility

303

Adding fog

Selecting a fog color

Fog has a fog color
White is typical, but black, red, etc. also
possible

Shapes are faded to the fog color with
distance

The background is unaffected
For the best effect, make the background
the fog color

304

Adding fog

Syntax: Fog

A Fog node creates colored fog
color - fog color
type - fog type
visibility range - maximum visibility limit

Fog {
 color 1.0 1.0 1.0
 fogType "LINEAR"
 visibilityRange 0.0
}

305

Adding fog

Several fog samples

[fog1.wrl]

[fog2.wrl]

[fog3.wrl]

306

Adding fog

Summary

Fog has a color, a type, and a visibility
range

Fog can be used to set a mood, even indoors

Fog limits the viewer’s sight:
Reduces the amount of the world you
have to build
Reduces the amount of the world that
must be drawn

307
Adding sound

Motivation

Creating sounds

Syntax: AudioClip

Syntax: MovieTexture

Selecting sound source types

Syntax: Sound

Syntax: Sound

Syntax: Sound

Setting the sound range

Creating triggered sounds

A sample using triggered sound

A sample using triggered sound

Creating continuous localized sounds

Creating continuous background sounds

A sample using continuous localized sound

A sample using continuous localized sound

Summary

308

Adding sound

Motivation

Sounds can be triggered by viewer actions
Clicks, horn honks, door latch noises

Sounds can be continuous in the
background

Wind, crowd noises, elevator music

Sounds emit from a location, in a direction,
within an area

309

Adding sound

Creating sounds

Sounds have two components
A sound source providing a sound signal

Like a stereo component

A sound emitter converts a signal to
virtual sound

Like a stereo speaker

310

Adding sound

Syntax: AudioClip

An AudioClip node creates a digital sound
source

url - a sound file URL
pitch - playback speed
playback controls, like a TimeSensor node

AudioClip {
 url "myfile.wav"
 pitch 1.0
 startTime 0.0
 stopTime 0.0
 loop FALSE
}

311

Adding sound

Syntax: MovieTexture

A MovieTexture node creates a movie sound
source

url - a texture movie file URL
speed - playback speed
playback controls, like a TimeSensor node

MovieTexture {
 startTime 0.0
 stopTime 0.0
 loop FALSE
 speed 1.0
 url "movie.mpg"
}

312

Adding sound

Selecting sound source types

Supported by the AudioClip node:
WAV - digital sound files

Good for sound effects

MIDI - General MIDI musical
performance files

MIDI files are good for background
music

Supported by the MovieTexture node:
MPEG - movie file with sound

Good for virtual TVs

313

Adding sound

Syntax: Sound

A Sound node describes a sound emitter
source - AudioClip or MovieTexture node
location and direction - emitter placement
more . . .

Sound {
 source AudioClip { . . . }
 location 0.0 0.0 0.0
 direction 0.0 0.0 1.0
}

314

Adding sound

Syntax: Sound

A Sound node describes a sound emitter
intensity - volume
spatialize - use spatialize processing
priority - prioritize the sound
more . . .

Sound {
 . . .
 intensity 1.0
 spatialize TRUE
 priority 0.0
}

315

Adding sound

Syntax: Sound

A Sound node describes a sound emitter
minimum and maximum range - area in
which sound can be heard

Sound {
 . . .
 minFront 1.0
 minBack 1.0
 maxFront 10.0
 maxBack 10.0
}

316

Adding sound

Setting the sound range

The sound range fields specify two ellipsoids
minFront and minFront control an inner
ellipsoid
maxFront and maxFront control an outer
ellipsoid

Sound has a constant volume inside the
inner ellipsoid

Sound drops to zero volume from the inner
to the outer ellipsoid

317

Adding sound

Creating triggered sounds

AudioClip node:
loop FALSE
Set startTime from a sensor node

Sound node:
spatialize TRUE
minFront etc. with small values
priority 1.0

318

Adding sound

A sample using triggered sound

Sound {
 source DEF C4 AudioClip {
 url "tone1.wav"
 pitch 1.0
 }
}
ROUTE Touch.touchTime
 TO C4.set_startTime

319

Adding sound

A sample using triggered sound

[kbd.wrl]

320

Adding sound

Creating continuous localized sounds

AudioClip node:
loop TRUE
startTime 0.0 (default)
stopTime 0.0 (default)

Sound node:
spatialize TRUE (default)
minFront etc. with medium values
priority 0.0 (default)

321

Adding sound

Creating continuous background sounds

AudioClip node:
loop TRUE
startTime 0.0 (default)
stopTime 0.0 (default)

Sound node:
spatialize FALSE (default)
minFront etc. with large values
priority 0.0 (default)

322

Adding sound

A sample using continuous localized sound

Sound {
 source AudioClip {
 url "willow1.wav"
 loop TRUE
 }
}

323

Adding sound

A sample using continuous localized sound

[ambient.wrl]

324

Adding sound

Summary

An AudioClip node or a MovieTexture node
describe a sound source

A URL gives the sound file
Looping, start time, and stop time
control playback

A Sound node describes a sound emitter
A source node provides the sound
Range fields describe the sound volume

325
Controlling the viewpoint

Motivation

Creating viewpoints

Syntax: Viewpoint

Summary

326

Controlling the viewpoint

Motivation

By default, the viewer enters a world at (0.0,
0.0, 10.0)

You can provide your own preferred view
points

Select the entry point position
Select favorite views for the viewer
Name the views for a browser menu

327

Controlling the viewpoint

Creating viewpoints

Viewpoints specify a desired location, an
orientation, and a camera field of view lens
angle

Viewpoints can be transformed using a
Transform node

The first viewpoint found in a file is the
entry point

328

Controlling the viewpoint

Syntax: Viewpoint

A Viewpoint node specifies a named viewing
location

position and orientation - viewing
location
fieldOfView - camera lens angle
description - description for viewpoint
menu

Viewpoint {
 position 0.0 0.0 10.0
 orientation 0.0 0.0 1.0 0.0
 fieldOfView 0.785
 description "Entry View"
}

329

Controlling the viewpoint

Summary

Specify favorite viewpoints in Viewpoint

nodes

The first viewpoint in the file is the entry
viewpoint

330

331
Controlling navigation

Motivation

Selecting navigation types

Specifying avatars

Controlling the headlight

Syntax: NavigationInfo

Summary

332

Controlling navigation

Motivation

Different types of worlds require different
styles of navigation

Walk through a dungeon
Fly through a cloud world
Examine shapes in a CAD application

You can select the navigation type

You can describe the size and speed of the
viewer’s avatar

333

Controlling navigation

Selecting navigation types

There are five standard navigation
keywords:

WALK - walk, pulled down by gravity
FLY - fly, unaffected by gravity
EXAMINE - examine an object at "arms
length"
NONE - no navigation, movement
controlled by world not viewer!
ANY - allows user to change navigation
type

Some browsers support additional
navigation types

334

Controlling navigation

Specifying avatars

Avatar size (width, height, step height) and
speed can be specified

335

Controlling navigation

Controlling the headlight

By default, a headlight is placed on the
avatar’s head and aimed in the head
direction

You can turn this headlight on and off
Most browsers provide a menu option to
control the headlight
You can also control the headlight with
the NavigationInfo node

336

Controlling navigation

Syntax: NavigationInfo

A NavigationInfo node selects the
navigation type and avatar characteristics

type - navigation style
avatarSize and speed - avatar
characteristics
headlight - headlight on or off

NavigationInfo {
 type ["WALK", "ANY"]
 avatarSize [0.25, 1.6, 0.75]
 speed 1.0
 headlight TRUE
}

337

Controlling navigation

Summary

The navigation type specifies how a viewer
can move in a world

walk, fly, examine, or none

The avatar overall size and speed specify
the viewer’s avatar characteristics

338

339
Sensing the viewer

Motivation

Sensing the viewer

Using visibility and proximity sensors

Syntax: ProximitySensor

Syntax: ProximitySensor

Syntax: VisibilitySensor

A sample use of a proximity sensor

Detecting viewer-shape collision

Creating collision groups

Syntax: Collision

A sample use of a collision group

Optimizing collision detection

Using multiple sensors

Summary

Summary

Summary

340

Sensing the viewer

Motivation

Sensing the viewer enables you to trigger
animations

when a region is visible to the viewer
when the viewer is within a region
when the viewer collides with a shape

The LOD and Billboard nodes are
special-purpose viewer sensors with built-in
responses

341

Sensing the viewer

Sensing the viewer

There are three types of viewer sensors:
A VisibilitySensor node senses if the
viewer can see a region

A ProximitySensor node senses if the
viewer is within a region

A Collision node senses if the viewer has
collided with shapes

342

Sensing the viewer

Using visibility and proximity sensors

VisibilitySensor and ProximitySensor nodes
sense a box-shaped region

center - region center
size - region dimensions

Both nodes have similar outputs:
enterTime - sends time on visible or
region entry
exitTime - sends time on not visible or
region exit
isActive - sends true on entry, false on
exit

343

Sensing the viewer

Syntax: ProximitySensor

A ProximitySensor node senses if the viewer
enters or leaves a region

center and size - the region’s location and
size
enterTime and exitTime - sends time on
entry/exit
isActive - sends true/false on entry/exit
more . . .

DEF DoorSense ProximitySensor {
 center 0.0 1.75 0.0
 size 6.0 3.5 8.0
}
ROUTE DoorSense.enterTime
 TO OpenSound.set_startTime

344

Sensing the viewer

Syntax: ProximitySensor

A ProximitySensor node senses the viewer
while in a region

position and orientation - sends position
and orientation while viewer is in the
region

DEF DoorSense ProximitySensor {
 . . .
}
ROUTE DoorSense.position_changed
 TO PetRobotFollower.set_translation

345

Sensing the viewer

Syntax: VisibilitySensor

A VisibilitySensor node senses if the viewer
can see a region

center and size - the region’s location and
size
enterTime and exitTime - sends time on
entry/exit
isActive - sends true/false on entry/exit

DEF DoorSense VisibilitySensor {
 center 0.0 1.75 0.0
 size 3.0 2.5 1.0
}
ROUTE DoorSense.enterTime
 TO OpenSound.set_startTime

346

Sensing the viewer

A sample use of a proximity sensor

[prox1.wrl]

347

Sensing the viewer

Detecting viewer-shape collision

A Collision grouping node senses shapes
within the group

Detects if the viewer collides with any
shape in the group
Automatically stops the viewer from
going through the shape

Collision occurs when the viewer’s avatar
gets close to a shape

Collision distance is controlled by the
avatar size in the NavigationInfo node

348

Sensing the viewer

Creating collision groups

Collision checking is expensive so, check for
collision with a proxy shape instead

Proxy shapes are typically extremely
simplified versions of the actual shapes
Proxy shapes are never drawn

A collision group with a proxy shape, but no
children, creates an invisible collidable
shape

Windows and invisible railings
Invisible world limits

349

Sensing the viewer

Syntax: Collision

A Collision grouping node senses if the
viewer collides with group shapes

collide - enable/disable sensor
children - children to sense
proxy - simple shape to sense instead of
children

DEF DoorCollide Collision {
 proxy . . .
 children [. . .]
}
ROUTE DoorCollide.collideTime
 TO OpenSound.set_startTime

350

Sensing the viewer

A sample use of a collision group

[collide1.wrl]

351

Sensing the viewer

Optimizing collision detection

Collision is on by default
Turn it off whenever possible!

However, once a parent turns off collision, a
child can’t turn it back on!

Collision results from viewer colliding with
a shape, but not from a shape colliding with
a viewer

352

Sensing the viewer

Using multiple sensors

Any number of sensors can sense at the
same time

You can have multiple visibility,
proximity, and collision sensors

Sensor areas can overlap

If multiple sensors should trigger, they
do

353

Sensing the viewer

Summary

A VisibilitySensor node checks if a region
is visible to the viewer

The region is described by a center and a
size

Time is sent on entry and exit of visibility

True/false is sent on entry and exit of
visibility

354

Sensing the viewer

Summary

A ProximitySensor node checks if the viewer
is within a region

The region is described by a center and a
size

Time is sent on viewer entry and exit

True/false is sent on viewer entry and
exit

Position and orientation of the viewer is
sent while within the sensed region

355

Sensing the viewer

Summary

A Collision grouping node checks if the
viewer has run into a shape

The shapes are defined by the group’s
children or a proxy

Collision time is sent on contact

356

357
Summary examples

A doorway

A mysterious temple

358

Summary examples

A doorway

A set of ImageTexture nodes add marble
textures
Lighting nodes create dramatic lighting
A Fog node fades distant shapes
A ProximitySensor node controls animation

[doorway.wrl]

359

Summary examples

A mysterious temple

A Background node creates a sky gradient
A Sound node creates a spatialized sound
effect
A set of Viewpoint nodes provide standard
views

[temple.wrl]

360

361
Controlling detail

Motivation

Example

Creating multiple shape versions

Controlling level of detail

Choosing detail ranges

Syntax: LOD

Optimizing a shape

A sample of detail versions

A sample LOD

A sample LOD

Summary

362

Controlling detail

Motivation

The further the viewer can see, the more
there is to draw

If a shape is distant:
The shape is smaller
The viewer can’t see as much detail
So... draw it with less detail

Varying detail with distance reduces
upfront download time, and increases
drawing speed

363

Controlling detail

Example

[prox1.wrl]

364

Controlling detail

Creating multiple shape versions

To control detail, model the same shape
several times

high detail for when the viewer is close
up
medium detail for when the viewer is
nearish
low detail for when the viewer is distant

Usually, two or three different versions is
enough, but you can have as many as you
want

365

Controlling detail

Controlling level of detail

Group the shape versions as levels in an LOD

grouping node
LOD is short for Level of Detail
List them from highest to lowest detail

Give the entire group a center point

366

Controlling detail

Choosing detail ranges

Use a list of ranges for version switch points
If you have 3 versions, you need 2 ranges
Ranges are hints to the browser

range [7.5, 12.0]
viewer < 7.5 1st child used

7.5 <= viewer < 12.02nd child used

12.0 < viewer 3rd child used

367

Controlling detail

Syntax: LOD

An LOD grouping node creates a group of
shapes describing different versions of the
same shape

center - the center of the shape
range - a list of version switch ranges
level - a list of shape versions

LOD {
 center 0.0 0.0 0.0
 range [. . .]
 level [. . .]
}

368

Controlling detail

Optimizing a shape

Suggested procedure to make different
versions:

Make the high detail shape first
Copy it to make a medium detail version
Move the medium detail shape to a
desired switch distance
Delete parts that aren’t dominant
Repeat for a low detail version

Lower detail versions should use simpler
geometry, fewer textures, and no text

369

Controlling detail

A sample of detail versions

[torches3.wrl]

370

Controlling detail

A sample LOD

LOD {
 center 0.0 0.0 0.0
 range [7.5, 12.0]
 level [
 Inline { url "torch1.wrl" }
 Inline { url "torch2.wrl" }
 Inline { url "torch3.wrl" }
]
}

371

Controlling detail

A sample LOD

[torches.wrl]

372

Controlling detail

Summary

Increase performance by making multiple
versions of shapes

High detail for close up viewing
Lower detail for more distant viewing

Group the versions in an LOD node
Ordered from high detail to low detail
Ranges to select switching distances

373
Introducing script use

Motivation

Syntax: Script

Defining the program script interface

A sample using a program script

A sample using a program script

Summary

374

Introducing script use

Motivation

Many actions are too complex for
animation nodes

Computed animation paths (eg. gravity)
Algorithmic shapes (eg. fractals)
Collaborative environments (eg. games)

You can create new sensors, interpolators,
etc., using program scripts written in

Java - powerful general-purpose
language
JavaScript - easy-to-learn language
VRMLscript - same as JavaScript

375

Introducing script use

Syntax: Script

A Script node selects a program script to
run:

url - choice of program script

DEF MyScript Script {
 url "myscript.class"
or...
 url "myscript.js"
or...
 url "javascript: ..."
or...
 url "vrmlscript: ..."
}

376

Introducing script use

Defining the program script interface

A Script node also declares the program
script interface

fields and events - ins and outs
Each has a name and data type
Fields have an initial value

DEF Bouncer Script {
 field SFFloat bounceHeight 3.0
 eventIn SFFloat set_fraction
 eventOut SFVec3f value_changed
}

377

Introducing script use

A sample using a program script

DEF Bouncer Script { . . . }

ROUTE Clock.fraction_changed
 TO Bouncer.set_fraction

ROUTE Bouncer.value_changed
 TO Ball.set_translation

378

Introducing script use

A sample using a program script

[bounce1.wrl]

379

Introducing script use

Summary

The Script node selects a program script,
specified by a URL

Program scripts have field and event
interface declarations, each with

A data type
A name
An initial value (fields only)

380

381
Writing program scripts with JavaScript

Motivation

Declaring a program script interface

Initializing a program script

Shutting down a program script

Responding to events

Processing events in JavaScript

Accessing fields from JavaScript

Accessing eventOuts from JavaScript

A sample JavaScript script

A sample JavaScript script

A sample JavaScript script

A sample JavaScript script

A sample JavaScript script

A sample JavaScript script

A sample JavaScript script

A sample JavaScript script

Building user interfaces

Building a toggle switch

Using a toggle switch

Using a toggle switch

Building a color selector

Using a color selector

Using a color selector

Summary

382

Writing program scripts with JavaScript

Motivation

A program script implements the Script

node using values from the interface
The script responds to inputs and sends
outputs

A program script can be written in Java,
JavaScript, and other languages

JavaScript is easier to program
Java is more powerful

383

Writing program scripts with JavaScript

Declaring a program script interface

For a JavaScript program script, typically
give the script in the Script node’s url field

DEF Bouncer Script {
 field SFFloat bounceHeight 3.0
 eventIn SFFloat set_fraction
 eventOut SFVec3f value_changed
 url "javascript: . . ."
}

384

Writing program scripts with JavaScript

Initializing a program script

The optional initialize function is called
when the script is loaded

function initialize () {
 . . .
}

Initialization occurs when:
the Script node is created (typically when
the browser loads the world)

385

Writing program scripts with JavaScript

Shutting down a program script

The optional shutdown function is called
when the script is unloaded

function shutdown () {
 . . .
}

Shutdown occurs when:
the Script node is deleted
the browser loads a new world

386

Writing program scripts with JavaScript

Responding to events

An eventIn function must be declared for
each eventIn

The eventIn function is called each time an
event is received, passing the event’s

value
time stamp

function set_fraction(value, timestamp)
 . . .
}

387

Writing program scripts with JavaScript

Processing events in JavaScript

If multiple events arrive at once, then
multiple eventIn functions are called

The optional eventsProcessed function is
called after all (or some) eventIn functions
have been called

function eventsProcessed () {
 . . .
}

388

Writing program scripts with JavaScript

Accessing fields from JavaScript

Each interface field is a JavaScript variable
Read a variable to access the field value
Write a variable to change the field value

lastval = bounceHeight; # get field
bounceHeight = newval; # set field

389

Writing program scripts with JavaScript

Accessing eventOuts from JavaScript

Each interface eventOut is a JavaScript
variable

Read a variable to access the last
eventOut value
Write a variable to send an event on the
eventOut

lastval = value_changed[0]; # get last ev
value_changed[0] = newval; # send new ev

390

Writing program scripts with JavaScript

A sample JavaScript script

Create a Bouncing ball interpolator that
computes a gravity-like vertical bouncing
motion from a fractional time input

Fields needed:
Bounce height

DEF Bouncer Script {
 field SFFloat bounceHeight 3.0
 . . .
}

391

Writing program scripts with JavaScript

A sample JavaScript script

Inputs and outputs needed:
Fractional time input
Position value output

DEF Bouncer Script {
 . . .
 eventIn SFFloat set_fraction
 eventOut SFVec3f value_changed
 . . .
}

392

Writing program scripts with JavaScript

A sample JavaScript script

Initialization and shutdown actions needed:
None - all work done in eventIn function

393

Writing program scripts with JavaScript

A sample JavaScript script

Event processing actions needed:
set_fraction eventIn function
No need for eventsProcessed function

DEF Bouncer Script {
 . . .
 url "javascript:
 function set_fraction(frac, tm)
 . . .
 }"
}

394

Writing program scripts with JavaScript

A sample JavaScript script

Calculations needed:
Compute new ball position
Send new position event

Use a ball position equation roughly based
upon Physics

See comments in the VRML file for the
derivation of the equation

395

Writing program scripts with JavaScript

A sample JavaScript script

function set_fraction(frac, tm) {
 y = 4.0 * bounceHeight * frac * (1.0 -
 value_changed[0] = 0.0;
 value_changed[1] = y;
 value_changed[2] = 0.0;
}

396

Writing program scripts with JavaScript

A sample JavaScript script

Routes needed:
Clock into script’s set_fraction
Script’s value_changed into transform

ROUTE Clock.fraction_changed
 TO Bouncer.set_fraction

ROUTE Bouncer.value_changed
 TO Ball.set_translation

397

Writing program scripts with JavaScript

A sample JavaScript script

[bounce1.wrl]

398

Writing program scripts with JavaScript

Building user interfaces

Program scripts can be used to help create
3D user interface widgets

Toggle buttons
Radio buttons
Rotary dials
Scrollbars
Text prompts
Debug message text

399

Writing program scripts with JavaScript

Building a toggle switch

A toggle switch script turns on at the first
touch, and off at the second

A TouchSensor node can supply the touch
events

DEF Toggle Script {
 field SFBool on TRUE
 eventIn SFTime set_active
 eventOut SFBool on_changed
 url "vrmlscript:
 function set_active(b, tm) {
 if (b == FALSE) return;
 if (on == TRUE) on = FALSE;
 else on = TRUE;
 on_changed = on;
 }"
}

400

Writing program scripts with JavaScript

Using a toggle switch

Use the toggle switch to make a lamp turn
on and off

Use a TouchSensor node to sense a switch
shape

Route the sensor node’s isActive

eventOut into the script node’s
set_active eventIn

Route the script node’s on_changed

eventOut into the light node’s set_on

eventIn

401

Writing program scripts with JavaScript

Using a toggle switch

[lamp2a.wrl]

402

Writing program scripts with JavaScript

Building a color selector

The lamp in the previous example turns on
and off, but the light bulb doesn’t change
color!

A color selector script sends an on color on
a TRUE input, and an off color on a FALSE

input

DEF ColorSelector Script {
 field SFColor onColor 1.0 1.0 1.0
 field SFColor offColor 0.0 0.0 0.0
 eventIn SFBool set_selection
 eventOut SFColor color_changed
 url "vrmlscript:
 function set_selection(b, tm) {
 if (b == TRUE) color_changed
 else color_changed
 }"
}

403

Writing program scripts with JavaScript

Using a color selector

Use the color selector to change the lamp
bulb color

Route the toggle script node’s on_changed

eventOut into the selector script node’s
set_selection eventIn

Route the selector script node’s
color_changed eventOut into the bulb
Material node’s set_emissiveColor

eventIn

404

Writing program scripts with JavaScript

Using a color selector

[lamp2.wrl]

405

Writing program scripts with JavaScript

Summary

The initialize and shutdown functions are
called at load and unload

An eventIn function is called when an event
is received

The eventsProcessed function is called after
all (or some) events have been received

Functions can get field values and send
event outputs

406

407
Writing program scripts with Java

Motivation

Declaring a program script interface

Creating the Java class

Initializing a program script

Shutting down a program script

Responding to events

Processing events in Java

Accessing fields from Java

Accessing eventOuts from Java

A sample Java script

A sample Java script

A sample Java script

A sample Java script

A sample Java script

A sample Java script

A sample Java script

A sample Java script

A sample Java script

A sample Java script

Summary

408

Writing program scripts with Java

Motivation

Compared to JavaScript, Java enables:
Better modularity
Better data structures
Potential for faster execution
Access to the network

For simple tasks, use JavaScript
For complex tasks, use Java

409

Writing program scripts with Java

Declaring a program script interface

For a Java program script, give the class
file in the Script node’s url field

A class file is a compiled Java program
script

DEF Bouncer Script {
 field SFFloat bounceHeight 3.0
 eventIn SFFloat set_fraction
 eventOut SFVec3f value_changed
 url "bounce2.class"
}

410

Writing program scripts with Java

Creating the Java class

The program script file must import the
VRML packages:

import vrml.*;
import vrml.field.*;
import vrml.node.*;

The program script must define a public
class that extends the Script class

public class bounce2
 extends Script
{
 . . .
}

411

Writing program scripts with Java

Initializing a program script

The optional initialize method is called
when the script is loaded

public void initialize () {
 . . .
}

Initialization occurs when:
the Script node is created (typically when
the browser loads the world)

412

Writing program scripts with Java

Shutting down a program script

The optional shutdown method is called
when the script is unloaded

public void shutdown () {
 . . .
}

Shutdown occurs when:
the Script node is deleted
the browser loads a new world

413

Writing program scripts with Java

Responding to events

The processEvent method is called each time
an event is received, passing an Event object
containing the event’s

value
time stamp

public void processEvent(Event event) {
 . . .
}

414

Writing program scripts with Java

Processing events in Java

If multiple events arrive at once, then the
processEvent method is called multiple times

The optional eventsProcessed method is
called after all (or some) events have been
handled

public void eventsProcessed () {
 . . .
}

415

Writing program scripts with Java

Accessing fields from Java

Each interface field can be read and written
Call getField to get a field object

obj = (SFFloat) getField("bounceHei g

Call getValue to get a field value

lastval = obj.getValue();

Call setValue to set a field value

obj.setValue(newval);

416

Writing program scripts with Java

Accessing eventOuts from Java

Each interface eventOut can be read and
written

Call getEventOut to get an eventOut
object

obj = (SFVec3f) getEventOut("value_ c

Call getValue to get the last event sent

lastval = obj.getValue();

Call setValue to send an event

obj.setValue(newval);

417

Writing program scripts with Java

A sample Java script

Create a Bouncing ball interpolator that
computes a gravity-like vertical bouncing
motion from a fractional time input

Give it the same interface as the JavaScript
example

DEF Bouncer Script {
 field SFFloat bounceHeight 3.0
 eventIn SFFloat set_fraction
 eventOut SFVec3f value_changed
 url "bounce2.class"
}

418

Writing program scripts with Java

A sample Java script

Imports and class definition needed:

import vrml.*;
import vrml.field.*;
import vrml.node.*;

public class bounce2
 extends Script
{
 . . .
}

419

Writing program scripts with Java

A sample Java script

Class variables needed:
One for the bounceHeight field
One for the value_changed eventOut
object

private float bounceHeight;
private SFVec3f value_changedObj;

420

Writing program scripts with Java

A sample Java script

Initialization actions needed:
Get the value of the bounceHeight field
Get the value_changedObj eventOut object

public void initialize()
{
 SFFloat obj = (SFFloat) getField("bo
 bounceHeight = (float) obj.getValue(
 value_changedObj = (SFVec3f) getEventO
}

421

Writing program scripts with Java

A sample Java script

Shutdown actions needed:
None - all work done in processEvent

method

422

Writing program scripts with Java

A sample Java script

Event processing actions needed:
processEvent event method
No need for eventsProcessed method

public void processEvent(Event event)
{
 . . .
}

423

Writing program scripts with Java

A sample Java script

Calculations needed:
Compute new ball position
Send new position event

424

Writing program scripts with Java

A sample Java script

public void processEvent(Event event)
{
 ConstSFFloat flt = (ConstSFFloat) even
 float frac = (float) flt.getValu

 float y = (float)(4.0 * bounceHeight *

 float[] changed = new float[3];
 changed[0] = (float)0.0;
 changed[1] = y;
 changed[2] = (float)0.0;
 value_changedObj.setValue(changed);
}

425

Writing program scripts with Java

A sample Java script

Routes needed:
Clock into script’s set_fraction
Script’s value_changed into transform

ROUTE Clock.fraction_changed
 TO Bouncer.set_fraction

ROUTE Bouncer.value_changed
 TO Ball.set_translation

426

Writing program scripts with Java

A sample Java script

[bounce2.wrl]

427

Writing program scripts with Java

Summary

The initialize and shutdown methods are
called at load and unload

The processEvent method is called when an
event is received

The eventsProcessed method is called after
all (or some) events have been received

Methods can get field values and send event
outputs

428

429
Creating new node types

Motivation

Syntax: PROTO

Defining prototype bodies

Syntax: IS

Using IS

Using prototyped nodes

Controlling usage rules

Controlling usage rules

A sample prototype use

A sample prototype use

A sample prototype use

A sample prototype use

A sample prototype use

Changing a prototype

A sample prototype use

Syntax: EXTERNPROTO

Summary

430

Creating new node types

Motivation

You can create new node types that
encapsulate:

Shapes
Sensors
Interpolators
Scripts
anything else . . .

This creates high-level nodes
Robots, menus, new shapes, etc.

431

Creating new node types

Syntax: PROTO

A PROTO statement declares a new node type
name - the new node type name
fields and events - interface to the
prototype

PROTO BouncingBall [
 field SFFloat bounceHeight 1.0
 field SFTime cycleInterval 1.0
] { . . . }

432

Creating new node types

Defining prototype bodies

PROTO defines:
body - nodes and routes for the new node
type

PROTO BouncingBall [. . .] {
 Transform {
 children [. . .]
 }
 ROUTE . . .
}

433

Creating new node types

Syntax: IS

The IS syntax connects a prototype
interface field, eventIn, or eventOut to the
body

PROTO BouncingBall [
 field SFFloat bounceHeight 1.0
 field SFTime cycleInterval 1.0
] {
 . . .
 DEF Clock TimeSensor {
 cycleInterval IS cycleInterval
 . . .
 }
 . . .
}

434

Creating new node types

Using IS

Interface

May IS to . . .

Fields
Exposed

fields EventIns EventOu

Fields yes yes no no

Exposed
fields no yes no no

EventIns no yes yes no

EventOuts no yes no yes

435

Creating new node types

Using prototyped nodes

The new node type can be used like any
other type

BouncingBall {
 bounceHeight 3.0
 cycleInterval 2.0
}

436

Creating new node types

Controlling usage rules

Recall that node use must be appropriate
for the context

A Shape node specifies shape, not color
A Material node specifies color, not shape
A Box node specifies geometry, not shape
or color

437

Creating new node types

Controlling usage rules

The context for a new node type depends
upon the first node in the PROTO body

For example, if the first node is a geometry
node:

The prototype creates a new geometry
node type

The new node type can be used wherever
the first node of the prototype body can be
used

438

Creating new node types

A sample prototype use

Create a BouncingBall node type that:
Builds a beachball

Creates an animation clock
Using a PROTO field to select the cycle
interval

Bounces the beachball

Using the bouncing ball program
script
Using a PROTO field to select the bounce
height

439

Creating new node types

A sample prototype use

Fields needed:
Bounce height
Cycle interval

PROTO BouncingBall [
 field SFFloat bounceHeight 1.0
 field SFTime cycleInterval 1.0
] { . . . }

440

Creating new node types

A sample prototype use

Inputs and outputs needed:
None - a TimeSensor node is built in to the
new node

441

Creating new node types

A sample prototype use

Body needed:
A ball shape inside a transform
An animation clock
A bouncing ball program script
Routes connecting it all together

PROTO BouncingBall [. . .] {
 DEF Ball Transform {
 children [
 Shape { . . . }
]
 }
 DEF Clock TimeSensor { . . . }
 DEF Bouncer Script { . . . }
 ROUTE . . .
}

442

Creating new node types

A sample prototype use

[bounce3.wrl]

443

Creating new node types

Changing a prototype

If you change a prototype, all uses of that
prototype change as well

Prototypes enable world modularity
Large worlds make heavy use of
prototypes

For the BouncingBall prototype, adding a
shadow to the prototype makes all balls
have a shadow

444

Creating new node types

A sample prototype use

[bounce4.wrl]

445

Creating new node types

Syntax: EXTERNPROTO

Prototypes are typically in a separate
external file

An EXTERNPROTO declares a new node type in
an external file

name, fields, events - as from PROTO
url - the URL of the prototype file

EXTERNPROTO BouncingBall [
 field SFFloat bounceHeight 1.0
 field SFTime cycleInterval 1.0
] "bounce.wrl#BouncingBall"

446

Creating new node types

Summary

PROTO declares a new node type and defines
its node body

EXTERNPROTO declares a new node type,
specified by URL

The new node anywhere the first node in
the prototype body can be used

447
Providing information about your world

Motivation

Syntax: WorldInfo

448

Providing information about your world

Motivation

After you’ve created a great world, sign it!

You can provide a title and a description
embedded within the file

449

Providing information about your world

Syntax: WorldInfo

A WorldInfo node provides title and
description information for your world

title - the name for your world
info - any additional information

WorldInfo {
 title "My Masterpiece"
 info ["Copyright (c) 1997 Me."]
}

450

451
Summary examples

An animated flame node

A torch node

452

Summary examples

An animated flame node

A Script node cycles between flame textures
A PROTO encapsulates the flame shape,
script, and routes into a Flames node

[match.wrl]

453

Summary examples

A torch node

A Flame node creates animated flame
An LOD node selects among torches using the
flame
A PROTO encapsulates the torches into a
Torch node

[columns.wrl]

454

455
Miscellaneous extensions

Extensions

Using the binary file format

Using the binary file format

Using the external authoring interface

Using the external authoring interface

Using the multi-user framework

456

Miscellaneous extensions

Extensions

Several VRML extensions are in progress
Binary file format
External authoring interface
Multi-user framework

457

Miscellaneous extensions

Using the binary file format

The binary file format enables smaller files
for faster download

The binary file format includes
Binary representation of nodes and fields
Support for prototypes
Geometry compression

458

Miscellaneous extensions

Using the binary file format

Most authoring will be done with world
builders that output binary VRML files
directly

Hand-authored text VRML will be
compiled to the binary format

Converters back to text VRML will become
available

Comments will be lost by translation
WorldInfo nodes will be retained

459

Miscellaneous extensions

Using the external authoring interface

Program scripts in a Script node are
Internal

Inside the world
Connected by routes

External program scripts can be written in
Java using the External Authoring Interface
(EAI)

Outside the world, on an HTML page
No need to use routes!

460

Miscellaneous extensions

Using the external authoring interface

A typical Web page contains:
HTML text
An embedded VRML browser plug-in
A Java applet

The EAI enables the Java applet to "talk"
to the VRML browser

The EAI is not part of the VRML standard
(yet), but it is widely supported

Check your browser’s release notes for
EAI support

461

Miscellaneous extensions

Using the multi-user framework

Several extensions are in progress to create
a framework for multi-user worlds

Shared objects and spaces
Piloted objects (like avatars)
Common avatar descriptions

462

463
Conclusion

Coverage

Coverage

Where to find out more

Introduction to VRML 97

464

Conclusion

Coverage

This morning we covered:
Building primitive shapes
Building complex shapes
Translating, rotating, and scaling shapes
Controlling appearance
Grouping shapes
Animating transforms
Interpolating values
Sensing viewer actions

465

Conclusion

Coverage

This afternoon we covered:
Controlling texture
Controlling shading
Adding lights
Adding backgrounds and fog
Controlling detail
Controlling viewing
Adding sound
Sensing the viewer
Using and writing program scripts
Building new node types

466

Conclusion

Where to find out more

The VRML 2.0 specification
http://vag.vrml.org/VRML2.0/FINAL

The VRML 97 specification
http://vrml.sgi.com/moving-worlds

The VRML Repository
http://www.sdsc.edu/vrml

467

Conclusion

Introduction to VRML 97

Thanks for coming!

Introduction to VRML 97

NetscapeWorld article reprints

IDG’s NetscapeWorld on-line monthly magazine publishes articles on Web technologies and
trends, including articles on Web browsers, Web servers, development tools, push technologies,
HTML, Java, JavaScript, and VRML. In his regular VRML Technique column, David R. Nadeau
writes about VRML world-building technique, market trends, and VRML technology news.

Included here are reprints of four introductory VRML Technique columns published by
NetscapeWorld in December 1996 through March 1997. These articles provide detailed tutorials on
beginning VRML nodes, including those for creating predefined shapes, positioning, orienting, and
scaling shapes, creating animations, and sensing the viewer.

Additional VRML Technique columns, as well as other articles on Web technologies, are available
at NetscapeWorld magazine’s Web site:

http://www.netscapeworld.com

VRML Technique column reprints

Columns
See what VRML 2.0 is all about and start building shapes today
The first in a series, we introduce VRML’s shape-building features to
create boxes, cylinders, cones, and spheres. (December 1996)

Building virtual structures
How to position, orient, and resize shapes in VRML 2.0. (January 1997)

Animating shapes
How to animate the position, orientation, and size of shapes in VRML
2.0. (February 1997)

Sensing the viewer’s touch
How to sense the viewer’s touch to start and stop animations in VRML
2.0. (March 1997)

Sidebars
How to view VRML 2.0
Finding and installing the right VRML browser for your computer

The UTF-8 character set
VRML 2.0’s international character set

VRML 2.0 glossary
The key terms you need to know to get started with VRML

See what VRML 2.0 is all about and start
building shapes today

The first in a series, we introduce VRML’s shape-building features to create
boxes, cylinders, cones, and spheres

By David R. Nadeau

Summary
In August 1996, the members of the VRML community completed the eagerly-anticipated
specification for VRML 2.0 . This latest version dramatically extends the popular 3-D content
language, updating it to enable faster drawing and introducing new features for interaction,
animation, scripting, sounds, and much more!

Beginning with this issue, Netscape World introduces a new monthly column: VRML
Technique. Written for the beginning 3-D content author, each month’s column introduces new
VRML 2.0 features, explains their use and syntax, and provides tips and techniques for efficient
and creative authoring.

This month’s VRML Technique column introduces the VRML 2.0 language, discusses key
language concepts (file header, nodes, fields, and values), and provides syntax and examples for
VRML 2.0’s shape building primitives (box, cone, cylinder, and sphere). (6,000 words)

Table of contents

Building VRML 2.0 worlds

Using VRML 2.0 files

Understanding VRML 2.0 syntax

The VRML 2.0 file header
Comments
Nodes
Fields and field values
Table: Field data types for VRML 2.0
EventIns, eventOuts, fields, and exposed fields

Giving shape dimensions

Building shapes

The Shape node type

Specifying shape geometry

The Box node type
The Cone node type
The Cylinder node type
The Sphere node type

Specifying shape appearance

The Appearance node type
The Material node type
Table: Selected RGB colors

Experimenting with VRML 2.0

Next in the VRML Technique column

Resources

About the author

Sidebar: VRML 2.0 browsers

Sidebar: The UTF-8 character set

Building VRML 2.0 worlds
Version 2.0 of VRML, the Virtual Reality Modeling Language, is a rich text language for the
description of 3-D interactive virtual worlds. Like version 1.0, version 2.0 of VRML enables you
to build complex, realistic 3-D environments, complete with shiny materials, textured surfaces,
and multiple light sources. VRML 2.0’s new features enable you to make your worlds come alive
with embedded animations and sound tracks. VRML 2.0 worlds can sense the viewer’s touch,
position, and gaze direction, trigger sounds and animations on viewer proximity, fly the viewer on
a guided tour of the world, and even communicate with other applications and users on the
Internet.

You can author VRML 2.0 worlds using any text editor or word processor on PCs, Macintoshes,
and Unix systems. World builder applications, just now entering the market, enable you to author
VRML 2.0 worlds within an interactive 3-D drawing environment.

Once authored, you can view your worlds using a VRML browser. VRML browsers are available
as plug-ins to Netscape Navigator, add-ins to Microsoft Internet Explorer, or as stand-alone
helper-applications for any Web browser. Several VRML 2.0 browsers are available now for PCs
running Windows 95 or Windows NT, or for Silicon Graphics Unix workstations. Macintosh
VRML 2.0 browsers are expected within the next few months.

Note: VRML 1.0 browsers, such as Netscape’s Live3D 1.0, cannot load and display
VRML 2.0 worlds. To view the VRML 2.0 worlds in this column you will need to
install a VRML 2.0 browser. See the sidebar on VRML 2.0 Browsers for information
on obtaining and installing VRML 2.0 browsers. Also see the VRML Vendors chart
for a list of VRML browsers and plug-ins.

Figure 1 shows a few sample worlds to try out. All of the sample worlds include animations only

possible with the advent of VRML 2.0. Click on any of the images to load the associated VRML
2.0 world into your VRML 2.0 browser. Beneath each image is a note giving the size of the world,
in bytes, and the expected download time using a 14.4 modem.

(a) Frames that slowly spin when touched,

creating an evolving 3-D spiral pattern
(10kbytes = 6 seconds)

(b) Floating pads that form geometric patterns

as they endlessly slide back and forth
(6kbytes = 4 seconds)

(c) Darkened monoliths that glow when touched

(33kbytes = 23 seconds)

(d) A dungeon hallway with wooden spikes that

slide out when you approach
(53kbytes = 37 seconds)

Figure 1. Sample VRML 2.0 worlds you can view with a VRML 2.0 browser.
Click on an image to load the world.

All four sample worlds have something to explore. In Figure 1a, click on the colored frames to
start them rotating in an evolving 3-D spiral pattern. In Figure 1b, fly through a world of floating
pads that slide back and forth in complex geometric patterns. In Figure 1c, click on any gray
monolith to start it glowing. In Figure 1d, run the gauntlet in a dungeon hallway, avoiding wooden
spikes that shoot out as you approach.

Viewing tip: Once loaded into your VRML 2.0 browser, if these worlds run a little
slowly, try reducing the size of the browser window. A smaller window means there’s
less screen area for the browser to redraw each time something moves in the world.
This reduction in drawing area speeds up the browser and enables it to animate more
smoothly, or respond more quickly to user actions.

Note: These sample worlds use advanced features of VRML 2.0 that may not be fully
supported yet by some VRML 2.0 browsers. Care has been taken to insure that the
worlds load in all VRML 2.0 browsers. Nevertheless, due to different levels of
support, the appearance, interactivity, and animation may be somewhat different from

browser to browser.

These sample worlds illustrate a few of the animation and interaction features available in VRML
2.0. In this month’s column I’ll focus on the basics of shape building. In the months to come, I’ll
return to these examples and explore how you can create animations and interactions, like these,
using VRML 2.0.

Using VRML 2.0 files
VRML 2.0 world files contain text instructions that describe how to build 3-D shapes, where to
put them, what color to make them, how to animate them, and more. By convention, VRML 2.0
files are named with a ".wrl " file name extension (".wrl" is short for "world"). You can load
VRML 2.0 files from your hard disk or off the Web.

Figure 2 shows a simple VRML 2.0 file containing several VRML instructions.

#VRML V2.0 utf8
Build a cylinder shape
Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0.8 0.8 0.8
 }
 }
 geometry Cylinder {
 height 2.0
 radius 1.0
 }
}

Figure 2. A sample VRML 2.0 file

VRML 2.0 syntax is quite intuitive. Just from reading the words within the VRML file in Figure 2,
you can already guess that this file builds a Shape from Appearance and Cylinder descriptions.
The Cylinder description uses height and radius values to select the cylinder’s dimensions, and
the Appearance description uses Material and diffuseColor values to control shape coloration.

When loaded by a VRML browser, the browser follows the VRML file’s instructions, then builds
and displays the virtual world. Using browser menus and buttons, users can move about within the
virtual world, view its shapes from any angle they chose, and interact with its animations. If the
virtual world contains music and sound effects instructions, the browser plays the sounds, varying
their volume and panning to create a 3-D sound experience to match the visuals.

Figure 3 shows three images generated by loading the cylindrical shape world whose VRML 2.0
instructions are shown in Figure 2. Figure 3a shows the world loaded into Netscape Navigator 3.0
using Intervista’s WorldView VRML 2.0 browser plug-in on a PC. Figure 3b shows the same
world loaded into Netscape Navigator 3.0 using Silicon Graphics’ Cosmo Player VRML 2.0
browser plug-in on a PC. Figure 3c shows the world loaded into Sony’s Community Place VRML
2.0 browser helper-application for Netscape Navigator 3.0. Sony also provides a Netscape
Navigator 3.0 plug-in with a similar user interface. (See the sidebar on VRML 2.0 Browsers for
information on obtaining and installing VRML 2.0 browsers. Also see the VRML Vendors chart
for a list of VRML browsers and plug-ins.)

(a) Intervista’s WorldView plug-in for Netscape

Navigator 3.0

(b) Silicon Graphics’ Cosmo Player plug-in for

Netscape Navigator 3.0

(c) Sony’s Community Place helper-application for Netscape Navigator 3.0

Figure 3. The display after loading the VRML 2.0 file in Figure 2 into browsers from Intervista, Silicon
Graphics, and Sony.

Click on an image to load the world into your VRML 2.0 browser.

Understanding VRML 2.0 syntax
VRML 2.0 files contain these main syntactic elements:

The VRML 2.0 file header
Comments
Nodes
Fields and Field Values

The VRML 2.0 file header
The first line of every VRML 2.0 file must be the VRML 2.0 file header. VRML browsers are
case-sensitive, so the header must use upper- and lower-case characters exactly as shown in the
following syntax box.

Syntax: VRML 2.0 File Header
#VRML V2.0 utf8

The VRML file header is a single line indicating that the file is:

A VRML file
Compliant with version 2.0 of the VRML specification
A file using the international UTF-8 character set (see the sidebar The UTF-8 character set)

Comments
A comment is an arbitrary note, copyright message, or other type of extra information included in
a VRML file. Comments begin with a number-sign (#) and end with a line break. VRML browsers
skip past comments wherever they occur in a VRML 2.0 file.

Nodes
Nodes are the basic building-blocks of VRML 2.0 world-building instructions. A VRML 2.0 file
always has at least one node in it, and often contains hundreds or even thousands of nodes.
Individual nodes build shapes, control shape appearance, describe shape geometry, and so on.

Each node in a VRML file contains:

The name of a type of node
An opening curly-brace
Zero or more fields and field values
A closing curly-brace

A node’s type name indicates the kind of information contained within the node. VRML 2.0
supports over 50 built-in node types, plus the ability to define new node types. Some browser
vendors provide additional extension node types for added functionality. Typical node types
include Shape for building a shape, Appearance for describing the appearance of a shape,
Cylinder for describing the geometry of a shape, and so on.

VRML browsers are case-sensitive, so shape and SHAPE are not the same as Shape. By
convention, all built-in node types in VRML 2.0 use an upper-case character at the beginning of
each word in the type name. For instance, Shape, ElevationGrid , and IndexedFaceSet are all
built-in node types in VRML 2.0. Authors of new node types and browser vendor extensions
should follow the same naming convention.

Indentation and curly-brace style is up to you. VRML 2.0 browsers ignore spaces, tabs,
carriage-returns, line-feeds, and commas.

Figure 4 shows a VRML file with the nodes highlighted. Each node type name is followed by an
open curly-brace, zero or more fields and their values, and then a matching closing curly-brace.

#VRML V2.0 utf8
Build a cylinder shape
Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0.8 0.8 0.8
 }
 }
 geometry Cylinder {
 height 2.0
 radius 1.0
 }
}

Figure 4. A VRML 2.0 file with the nodes highlighted

Fields and field values

Fields and their field values provide parameters for a node. A node’s curly-braces group together
the field information associated with the node.

Each field in a node has a name followed by one or more values. Typical values include
floating-point numbers and text strings. Some fields even use nodes as field values.

Different node types have different fields available. The Cylinder node type, for instance, has
radius and height fields, while the FontStyle node type has family , style, and size fields.

When a node type has multiple fields, you can provide them in any order within the curly-braces
of a node. If you give the same field more than once within the same node, then the last one
overrides any given earlier. If you omit a field, the node uses a default value for the field.

Figure 5 shows a VRML file with the fields highlighted. The Shape node has appearance and
geometry fields. The Appearance node has a material field, and the Material node has a
diffuseColor field. The Cylinder node has height and radius fields. Each field’s name is always
followed by a field value.

#VRML V2.0 utf8
Build a cylinder shape
Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0.8 0.8 0.8
 }
 }
 geometry Cylinder {
 height 2.0
 radius 1.0
 }
}

Figure 5. A VRML 2.0 file with the fields highlighted

Each field expects one or more values of a specific field data type. A field data type describes the
kind of value a field expects. The height field of a Cylinder node type, for instance, expects a
floating-point number giving the cylinder’s height. The diffuseColor field of a Material node
type expects a numeric color description, and so forth.

Each field data type has a name, such as SFColor or MFVec3f. Names starting with "SF" indicate
data types that hold a single value, such as a floating-point number or a numeric color description.
Names starting with "MF" indicate data types that hold multiple values, such as a 3-D coordinate
list. The values for multiple value fields must be enclosed within square-brackets when typed into
a VRML 2.0 file.

The table below summarizes the field data types available within VRML 2.0.

Field data types for VRML 2.0

Field type Description

SFBool A Boolean TRUE or FALSE value

SFColor
MFColor

A color specified by three floating-point values selecting the
amount of red, green, and blue to be mixed together to form a

desired color

SFFloat
MFFloat

A floating-point value

SFImage An image described by a series of pixel color values

SFInt32
MFInt32

A 32-bit integer value

SFNode
MFNode

A VRML node value

SFRotation
MFRotation

A rotation specified by four floating-point values selecting a
rotation axis and rotation angle

SFString
MFString

A text string, surrounded by double-quotes

SFTime A time specified as a floating-point value, measured in
seconds

SFVec2f
MFVec2f

A 2-D vector consisting of a pair of floating-point values

SFVec3f
MFVec3f

A 3-D vector consisting of a triple of floating-point values

In this column, each time a new node type is introduced, a syntax box will be provided to show a
quick summary of a node type’s fields, field default values, and field data types. For example, the
following is a syntax box for VRML 2.0’s Cylinder node type.

Syntax: Cylinder
Cylinder {
 radius 1.0 # field SFFloat
 height 2.0 # field SFFloat
 bottom TRUE # field SFBool
 top TRUE # field SFBool
 side TRUE # field SFBool
}

The Cylinder node type’s syntax box indicates that the node type has five fields: radius, height,
bottom, top, and side. Each field has a default value, such as 1.0 for the radius field, and TRUE
for the top field.

Each field line in the syntax box also indicates the field’s data type. For instance, the first two
fields of the Cylinder node type expect single floating-point values, and the last three expect
single Boolean values.

EventIns, eventOuts, fields, and exposed fields
VRML 2.0 provides nodes for building shapes, creating lights, placing sounds, and more. To make
a virtual world come alive, you can connect nodes together, wiring them into an animation circuit.
Each connected node in the circuit acts like an electronic component with its own input and output
connection points. By wiring the output of one node into the input of another, you can establish a
route along which can flow data values, or events.

For example, to make a light blink you can wire the on/off switch input of a lighting node to a
node that outputs on/off events. Each time an "on" event flows along the route to the light, the
light turns on. Each time an "off" event flows along the route, the light turns off. You can
construct similar circuits to make shapes move, rotate, change color, and so on.

An eventIn is an input connection point for a node. An eventOut is an output connection point.
Like fields, eventIns and eventOuts have names and data types. Different node types have
different eventIns and eventOuts available. The SpotLight node type, for instance, has a set_on
eventIn for turning the light on and off. The PositionInterpolator node type has a value_changed
eventOut that outputs positions you can use to animation the position of a shape.

An exposed field is a special type of field that combines together a standard field, an eventIn to set
that field, and an eventOut that outputs the field value each time the field is set. The on exposed
field of a SpotLight node type, for example, has an implicit set_on eventIn and an implicit
on_changed eventOut.

Animation circuits, exposed fields, eventIns, and eventOuts will be discussed in greater depth in
future columns. To enable this month’s column to be used later as a syntax reference, the syntax
box for each node type discussed below indicates fields, exposed fields, eventIns, and eventOuts.

Giving shape dimensions
Many node types include fields for setting the dimensions of a shape. The Cylinder node type, for
instance, has height and radius fields to specify the height of the cylinder, and its radius. By
convention, these dimensions should be given in meters. The default values for the Cylinder node
type, for instance, create a cylinder 2.0 meters tall with a 1.0 meter radius.

For some worlds, using meters is awkward or inappropriate. A world depicting a model of a
molecule, for instance, may measure dimensions in Angstroms instead of meters. A world
depicting a spiral galaxy may use dimensions measured in lightyears. Because of these special
needs of some worlds, VRML 2.0 does not impose any required unit of measure for shape
dimensions. The interpretation of dimension numbers is largely up to you.

In this column, all shape dimensions are expressed generically in terms of units. So, instead of
saying a cylinder is 2.0 meters high, I’ll say it is 2.0 units high and let you and your VRML 2.0
application decide if units are meters, Angstroms, lightyears, or whatever.

Building shapes
Most VRML 2.0 files build one or more shapes. Each VRML 2.0 shape is described by specifying
the shape’s geometry and appearance. Shape geometry attributes provide the form, or structure of
the shape. Shape appearance attributes provide the coloring of the shape. A car tire shape, for
instance, has a cylindrical geometry and a black appearance. A planet shape has a spherical
geometry and a multi-colored cloudy appearance.

The Shape node type
All shapes are built using the Shape node type. Each Shape node combines together your choices
for geometry and appearance via the node’s geometry and appearance fields.

Syntax: Shape
Shape {
 geometry NULL # exposedField SFNode
 appearance NULL # exposedField SFNode
}

The value of the geometry field specifies a node that defines the 3-D form, or geometry, of the
shape. Typical geometry field values include primitive geometry Box, Cone, Cylinder , and
Sphere node types discussed below. The default NULL value for this field indicates the absence
of shape geometry.

The value of the appearance field specifies a node defining the coloration of the shape. Typical
appearance field values include the Appearance node type discussed below. The default NULL
value for this field indicates a black appearance.

Note: Currently there is wide variability in how VRML 2.0 browsers treat the NULL
value case for the appearance field. Some browsers draw null-appearance shapes in
black, while others draw such shapes in flat white, or in shaded white. To guarantee
consistent treatment in all browsers, you should always provide an Appearance node
value for the appearance field, thereby avoiding null-appearance issues.

Notice that the geometry and appearance fields both use entire nodes as their values. Those
nodes may, in turn, use further nodes as field values, and so on. This node within a node structure
of VRML 2.0 helps to group features together in logical building-blocks, making the syntax easier
to learn and use. For example, Figure 6 shows a Shape node using an Appearance node to specify
the shape coloration, and a Box node to create a 3-D rectangular box shape geometry.

#VRML V2.0 utf8
Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0.8 0.8 0.8
 }
 }
 geometry Box {
 size 2.0 2.0 2.0
 }
}

Figure 6. A shape built using a Shape node.

Specifying shape geometry
VRML 2.0 provides several geometry node types that you can use with a Shape node’s geometry
field to specify the form and structure of a shape. Geometry node types include the Box, Cone,
Cylinder , and Sphere node types, as well as more advanced geometry node types. Each geometry
node type has one or more fields that enable you to specify geometry dimensions, such as the
height of a cylinder, or the radius of a sphere.

The Box node type
The Box geometry node type creates a 3-D rectangular box when used as the value of the
geometry field in a Shape node.

Syntax: Box
Box {
 size 2.0 2.0 2.0 # field SFVec3f
}

The value of the Box node type’s size field specifies the dimensions of the box. The first value in
the field is the box’s width, the second its height, and the third its depth. All three dimensions
must be greater than 0.0. The default size field values build a box 2.0 units wide, tall, and deep.

A Box node can be used as a value for the geometry field of a Shape node, like that shown in
Figure 7.

#VRML V2.0 utf8
Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0.8 0.8 0.8
 }
 }
 geometry Box {
 size 2.0 2.0 2.0
 }
}

Figure 7. A box shape built using Shape and Box nodes.
Click on the image to load the world.

The Cone node type
The Cone geometry node type creates a 3-D upright cone when used as the value of the geometry
field in a Shape node.

Syntax: Cone
Cone {
 height 2.0 # field SFFloat
 bottomRadius 1.0 # field SFFloat
 side TRUE # field SFBool
 bottom TRUE # field SFBool
}

The values of the Cone node type’s height and bottomRadius fields specify the height of a cone,
and the radius of its bottom. Both values must be greater than 0.0. The default values create a cone
with a height of 2.0 units, and a bottom radius of 1.0 unit.

The values of the side and bottom fields specify whether or not the sloping sides and bottom of
the cone are built. If a field value is TRUE, the corresponding part of the cone is built. If a field
value is FALSE, the corresponding cone part is not built. The default value for both fields is
TRUE.

A Cone node can be used as a value for the geometry field of a Shape node, like that shown in
Figure 8.

#VRML V2.0 utf8
Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0.8 0.8 0.8
 }
 }
 geometry Cone {
 height 2.0
 bottomRadius 1.0
 side TRUE
 bottom TRUE
 }
}

Figure 8. A cone shape built using Shape and Cone nodes.
Click on the image to load the world.

The Cylinder node type
The Cylinder geometry node type creates a 3-D upright cylinder when used as the value of the
geometry field in a Shape node.

Syntax: Cylinder
Cylinder {
 radius 1.0 # field SFFloat
 height 2.0 # field SFFloat
 bottom TRUE # field SFBool
 top TRUE # field SFBool
 side TRUE # field SFBool
}

The values of the Cylinder node type’s height and radius fields specify the height and radius of a
cylinder. Both values must be greater than 0.0. The default values create a cylinder with a height
of 2.0 units, and a radius of 1.0 unit.

The values of the side, bottom, and top fields specify whether or not the curved sides, bottom, and
top of the cylinder are built. If a field value is TRUE, the corresponding part of the cylinder is
built. If a field value is FALSE, the corresponding cylinder part is not built. The default value for
all three fields is TRUE.

A Cylinder node can be used as a value for the geometry field of a Shape node, like that shown
in Figure 9.

#VRML V2.0 utf8
Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0.8 0.8 0.8
 }
 }
 geometry Cylinder {
 height 2.0
 radius 1.0
 bottom TRUE
 top TRUE
 side TRUE
 }
}

Figure 9. A cylinder shape built using Shape and Cylinder nodes.
Click on the image to load the world.

The Sphere node type
The Sphere geometry node type creates a 3-D sphere, or ball, when used as the value of the
geometry field in a Shape node.

Syntax: Sphere
Sphere {
 radius 1.0 # field SFFloat
}

The value of the Sphere node type’s radius field specifies the radius of a sphere. The radius field
value must be greater than 0.0. The default value builds a sphere with a radius of 1.0 unit.

A Sphere node can be used as a value for the geometry field of a Shape node, like that shown in
Figure 10.

#VRML V2.0 utf8
Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0.8 0.8 0.8
 }
 }
 geometry Sphere {
 radius 1.0
 }
}

Figure 10. A sphere shape built using Shape and Sphere nodes.
Click on the image to load the world.

Specifying shape appearance
The Shape node type’s appearance field is used to specify the appearance of a shape. VRML
2.0’s rich set of appearance controls enable you to select shape color, glow color, material finish,
and transparency levels. With VRML 2.0’s texture mapping features, you can place an image from
an image file onto the sides of a shape, like sticking a decal on a model airplane. Using advanced
appearance controls, you can color individual shape parts and create color gradients across the
sides of a shape.

In this month’s column, I’ll take a first look at two of the node types available for controlling
shape appearance: Appearance and Material .

The Appearance node type
The Appearance node type specifies the appearance attributes of a shape, and may be used as the
value of the appearance field of a Shape node.

Syntax: Appearance
Appearance {
 material NULL # exposedField SFNode
 texture NULL # exposedField SFNode
 textureTransform NULL # exposedField SFNode
}

The value of the Appearance node type’s material field specifies a node that defines the material

coloration and finish attributes of the appearance. Typical material field values include the
Material node type. The default NULL value for this field indicates a black material.

The texture and textureTransform fields enable you to paste a texture image on to the sides of a
shape. These features are discussed in a future column.

Note: As with the NULL value case for the appearance field of a Shape node, there is
also wide variability in how VRML 2.0 browsers treat the NULL value case for the
material field of an Appearance node. Some browsers draw null-material shapes in
black, while others draw such shapes in flat white, or in shaded white. To guarantee
consistent treatment in all browsers, you should always provide a Material node value
for the material field, thereby avoiding null-material issues.

The Material node type
The Material node type specifies the material color attributes of a shape appearance, and may be
used as the value of the material field of an Appearance node.

Syntax: Material
Material {
 diffuseColor 0.8 0.8 0.8 # exposedField SFColor
 ambientIntensity 0.2 # exposedField SFFloat
 emissiveColor 0.0 0.0 0.0 # exposedField SFColor
 shininess 0.2 # exposedField SFFloat
 specularColor 0.0 0.0 0.0 # exposedField SFColor
 transparency 0.0 # exposedField SFFloat
}

The value of the Material node type’s diffuseColor field specifies a color for the material. A
material color is specified using three floating-point values between 0.0 and 1.0 that indicate the
amount of red, green, and blue light to be mixed together to form a color. A value of 0.0 for a red,
green, or blue amount means that color is turned off. A value of 1.0 for a red, green, or blue
amount means that color is turned on completely. Values between 0.0 and 1.0 mean a color is
partially turned on. The default value for this field is a medium-bright white created by mixing
together 0.8 of red light, 0.8 of green light, and 0.8 of blue light.

Colors created by mixing together red, green, and blue light are called RGB colors ("RGB" comes
from the first letters of the three color components). The table below provides a brief list of a few
RGB colors and their corresponding red, green, and blue values used in a diffuseColor field.

Selected RGB colors

Red Green Blue Description

1.0 0.0 0.0 Pure red

0.0 1.0 0.0 Pure green

0.0 0.0 1.0 Pure blue

1.0 1.0 1.0 White

0.0 0.0 0.0 Black

1.0 1.0 0.0 Yellow

0.0 1.0 1.0 Cyan

1.0 0.0 1.0 Magenta

0.75 0.75 0.75 Light gray

0.5 0.5 0.5 Medium gray

0.25 0.25 0.25 Dark gray

0.5 0.0 0.0 Dark red

0.0 0.5 0.0 Dark green

0.0 0.0 0.5 Dark blue

Note: Whereas VRML 2.0 uses red, green, and blue color values between 0.0 (off) and
1.0 (on), many drawing and painting applications instead use red, green, and blue
values between 0 (off) and 255 (on). These two value ranges are equivalent. You can
convert from a 0-255 RGB color to a VRML 2.0 RGB color by dividing each red,
green, and blue value by 255.0.

To give shapes a 3-D look, the VRML browser automatically computes darker colors as it shades
the sides of a shape, gradually darkening the shading color as it progresses from the lighted side of
a shape to the unlighted sides.

The remaining fields of the Material node type enable you to control the emissive (glowing)
color, vary its transparency, and specify its material finish. These features are discussed in a future
column.

The Appearance and Material node types are always used together with a Shape node. An
Appearance node is used as the value of the Shape node’s appearance field, and a Material
node is used as the value of the Appearance node’s material field. Figure 11 shows a sample use
of these node types.

#VRML V2.0 utf8
Shape {
 appearance Appearance {
 material Material {
 diffuseColor 1.0 0.0 0.0
 }
 }
 geometry Sphere {
 radius 1.0
 }
}

Figure 11. A red sphere shape with appearance controlled by Appearance and Material nodes.
Click on the image to load the world.

Experimenting with VRML 2.0
With VRML 2.0’s shape building tools in hand, it’s time to experiment! Each of the VRML
examples in Figures 7 through 11 used a single Shape node to build a single shape in a virtual
world. Figure 11, for instance, built a single red sphere. To make more interesting worlds, you can
combine together multiple Shape nodes within the same VRML 2.0 file.

Figure 12 builds a multi-colored 3-D plus-sign by building three box shapes within the same
VRML 2.0 file. The first box is 8.0 units wide, 0.5 units tall and deep, and shaded with a dark blue
appearance. The second box is 8.0 units tall, 0.5 units wide and deep, and shaded with a cyan
appearance. The third box is 8.0 units deep, 0.5 units tall and wide, and shaded with a purple
appearance.

#VRML V2.0 utf8
Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0.0 0.0 1.0
 }
 }
 geometry Box {
 size 8.0 0.5 0.5
 }
}
Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0.0 0.5 1.0
 }
 }
 geometry Box {
 size 0.5 8.0 0.5
 }
}
Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0.5 0.0 1.0
 }
 }
 geometry Box {
 size 0.5 0.5 8.0
 }
}

Figure 12. A 3-D plus-sign built out of three box shapes.
Click on the image to load the world.

By default, all shapes are built at the center of the world. If you build multiple shapes at the same
location, then they overlap and intersect each other. You can use this feature of VRML 2.0 to
create complex 3-D shapes by using multiple overlapping shapes.

Figure 13 builds a stair-stepped tetrahedron out of a series of overlapping box shapes, all placed at

the center of the world. The first box is wide, flat, and yellow. Successive boxes decrease in width,
increase in height, and turn more red. The last box is narrow, tall, and red.

#VRML V2.0 utf8
Shape {
 appearance Appearance {
 material Material {
 diffuseColor 1.0 1.0 0.0
 }
 }
 geometry Box {
 size 8.0 1.0 8.0
 }
}
Shape {
 appearance Appearance {
 material Material {
 diffuseColor 1.0 0.9 0.0
 }
 }
 geometry Box {
 size 7.0 2.0 7.0
 }
}
Shape {
 appearance Appearance {
 material Material {
 diffuseColor 1.0 0.8 0.0
 }
 }
 geometry Box {
 size 6.0 3.0 6.0
 }
}
Shape {
 appearance Appearance {
 material Material {
 diffuseColor 1.0 0.7 0.0
 }
 }
 geometry Box {
 size 5.0 4.0 5.0
 }
}
Shape {
 appearance Appearance {
 material Material {
 diffuseColor 1.0 0.6 0.0
 }
 }
 geometry Box {
 size 4.0 5.0 4.0
 }

}
Shape {
 appearance Appearance {
 material Material {
 diffuseColor 1.0 0.5 0.0
 }
 }
 geometry Box {
 size 3.0 6.0 3.0
 }
}
Shape {
 appearance Appearance {
 material Material {
 diffuseColor 1.0 0.4 0.0
 }
 }
 geometry Box {
 size 2.0 7.0 2.0
 }
}
Shape {
 appearance Appearance {
 material Material {
 diffuseColor 1.0 0.3 0.0
 }
 }
 geometry Box {
 size 1.0 8.0 1.0
 }
}

Figure 13. A stair-stepped tetrahedron made from multiple overlapping boxes.
Click on the image to load the world.

You can build complex shapes by using a variety of geometry node types. For example, Figure 14
creates a "space-probe" using a series of shapes of varying sizes and colors.

#VRML V2.0 utf8
Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0.0 1.0 0.0
 }
 }
 geometry Box {
 size 1.0 1.0 1.0
 }
}
Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0.0 1.0 0.5
 }
 }
 geometry Sphere {
 radius 0.7
 }
}
Shape {
 appearance Appearance {
 material Material {
 diffuseColor 1.0 1.0 0.0
 }
 }
 geometry Cylinder {
 radius 1.25
 height 0.05
 }
}
Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0.0 1.0 1.0
 }
 }
 geometry Cylinder {
 radius 0.4
 height 2.0
 }
}
Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0.0 0.5 1.0
 }
 }
 geometry Cylinder {
 radius 0.3
 height 3.0
 }
}
Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0.0 0.0 1.0
 }
 }
 geometry Cylinder {
 radius 0.1
 height 6.0
 }
}

Figure 14. A "space-probe" made from multiple overlapping shapes.
Click on the image to load the world.

Next in the VRML Technique column
Next month I’ll continue discussing shape building and introduce VRML 2.0 features for
positioning, orienting, and scaling shapes using the Transform node type. I’ll also continue
discussing the Material node type and discuss how you can make shapes semi-transparent or
make them appear to glow.

make them appear to glow.

Resources

A list of David Nadeau’s VRML Technique columns in NetscapeWorld
VRML 2.0 browsers NetscapeWorld’s guide to finding and installing a VRML browser on
your computer.
VRML 2.0 glossary
NetscapeWorld’s VRML vendors chart A handy reference of VRML browser and server
companies including their plug-ins to Web browsers -- with updated items in bold to aid
your review -- and links to all the vendors.
http://www.netscapeworld.com/netscapeworld/common/nw.vrmltable.html
The UTF-8 character set sidebar accompanying the first VRML Technique column.

Specifications

VRML 2.0 specification http://vag.vrml.org/VRML2.0/FINAL/
ISO 10646-1:1993 Universal Character Set (UCS) specification sales information
http://www.iso.ch/cate/d18741.html
UTF-8 character encoding scheme for UCS
http://www.dkuug.dk/JTC1/SC2/WG2/docs/n1335

Sites

The VRML Repository http://www.sdsc.edu/vrml
VRML Architecture Group http://vag.vrml.org

About the author
David R. Nadeau is a co-author of The VRML 2.0 Sourcebook, published by John Wiley & Sons
and written with Andrea L. Ames and John L. Moreland. David is a staff researcher at the San
Diego Supercomputer Center where he is a specialist in 3-D computer graphics, virtual reality, and
scientific visualization. He is also the creator of The VRML Repository, a Web site providing
extensive information on VRML software, documentation, and 3-D worlds.

You can buy David R. Nadeau’s The VRML 2.0 Sourcebook at a 20% discount from
Amazon.com Books.

Feedback: editors@netscapeworld.com

URL:
http://www.netscapeworld.com/netscapeworld/nw-12-1996/nw-12-vrmltechnique.html
Last updated: Tuesday, March 11, 1997

Building virtual structures
How to position, orient, and resize shapes in VRML 2.0

By David R. Nadeau

Summary
VRML 2.0 features enable you to build complex virtual structures, including castles,
skyscrapers, spacecraft, and futuristic cities. A VRML 2.0 file provides the blueprint for your
structures by describing their component shapes and how the shapes fit together.

This month’s VRML Technique column introduces the use of coordinate systems and shows
how you can use the Transform node type to position, orient, and resize shapes to build virtual
structures. Along the way, I discuss VRML 2.0’s DEF and USE features that enable you to use
the same shape repeatedly to build structural patterns, such as a row of identical marble columns
or a grid of windows on a skyscraper. (4,700 words)

Table of contents

Building virtual structures

Repeating nodes using defined names

Defining and using node names
The syntax of DEF and USE
Experimenting with DEF and USE

Building shapes in three dimensions

Using the right-hand rule for axis directions
Determining 3-D coordinates

Using the world’s default coordinate system

Creating and positioning coordinate systems

Parent and child coordinate systems
The Transform node type
Experimenting with coordinate system
translation

Orienting coordinate systems

Specifying a rotation axis
Table: Common rotation axes
Specifying a rotation angle
Table: Common rotation angles
Using the right-hand rule for rotations
The Transform node type, revisited
Experimenting with coordinate system rotation

Scaling coordinate systems

The Transform node type, revisited again
Experimenting with coordinate system scaling

Next in the VRML Technique column

Resources

About the author

Building virtual structures
Last month’s column introduced VRML 2.0’s shape building features, including the Shape node

type, and four of VRML’s geometry node types: Box, Cone, Cylinder , and Sphere. Using these
node types, you can create 3-D shapes and view them interactively within a VRML 2.0 browser.

(See NetscapeWorld’s sidebar on VRML 2.0 Browsers for information on obtaining and installing
VRML 2.0 browsers. Also see the NetscapeWorld VRML Vendors chart for a list of VRML
browsers and plug-ins, and our glossary of VRML 2.0 terms. You need a VRML browser or
plug-in to view the 3D examples presented in this series.)

By combining multiple shapes, you can create complex virtual structures. Figure 1 shows two
sample structures built by positioning, orienting, and resizing multiple shapes. Click on an image
to load the associated VRML 2.0 world into your VRML 2.0 browser. The captions below each
figure give the size of the world in bytes, and the expected download time.

(a) A fairy-tale castle built from cylinders and

cones
(15 kilobytes = 10 seconds @ 14.4bps)

(b) A structure with a complex ceiling built from

boxes
(11 kilobytes = 8 seconds @ 14.4bps)

Figure 1. Sample VRML 2.0 structures built using boxes, cones, cylinders, and spheres.
Click on an image to load the world.

Viewing tip: Once loaded into your VRML 2.0 browser, if these worlds run a little
slowly, try reducing the size of the browser window. A smaller window means there is
less screen area for the browser to redraw each time you move in the world. This
reduction in drawing area speeds up the browser and enables it to animate more
smoothly, or respond more quickly to user actions.

Repeating nodes using defined names
Last month’s column ("Building Shapes") discussed key syntactic features of VRML 2.0,
including the VRML file header, comments, nodes, fields, and field values. A VRML 2.0 file, for
instance, always starts with a VRML file header, followed by one or more nodes. Each node has a
node type name, such as Shape, followed by an opening curly-brace, zero or more fields and
values, and a closing curly-brace. The fields within the curly-braces provide values for named
attributes of a node. The Shape node type, for instance, has fields to describe the appearance and
geometry of a 3-D shape. The Box node type has a field to describe the width, height, and depth of
a 3-D box.

The VRML world shown in Figure 2 builds a 3-D "plus-sign" from three red box shapes. Each
Shape node builds a box using a Box node. The Appearance and Material nodes specify a red
appearance for the boxes.

#VRML V2.0 utf8
Shape {
 appearance Appearance {
 material Material {
 diffuseColor 1.0 0.0 0.0
 }
 }
 geometry Box { size 8.0 0.5 0.5 }
}
Shape {
 appearance Appearance {
 material Material {
 diffuseColor 1.0 0.0 0.0
 }
 }
 geometry Box { size 0.5 8.0 0.5 }
}
Shape {
 appearance Appearance {
 material Material {
 diffuseColor 1.0 0.0 0.0
 }
 }
 geometry Box { size 0.5 0.5 8.0 }
}

Figure 2. Three red box shapes forming a 3-D plus-sign.
Click on the image to load the world.

In Figure 2, notice that all three box shapes use identical Appearance and Material nodes to
achieve a uniform red appearance. Repeatedly specifying the same set of nodes and values is
tedious. Such repetition also makes it awkward to make global changes to a set of shapes, such as
to turn all three red boxes blue.

Defining and using node names
To reduce redundancy, you can define a name for any node in a VRML 2.0 file. Once a node has a
name, you can re-use that same node later in the file without retyping the node’s description.

For example, you can give the name Red to the Appearance node used to describe the red color of
the first box in Figure 2. Then, you can re-use the same Red node twice more to shade the
remaining two boxes the same shade of red.

A node with a defined name is called an original node, and each re-use of that node is called an
instance. You can have any number of named original nodes in a VRML world, and each original
can be instanced any number of times.

Fields and their values are only specified when creating an original node. Each instance re-uses the
original’s field values without change. This enables you to define once the node that makes up,

say, a red appearance, then later create an instance of that red appearance node each time you need
to make another shape red. Later, if you make a change to the original red appearance node, all of
the instances of the red appearance change as well. This feature enables you to make rapid
changes throughout your world by only modifying the original nodes.

The syntax of DEF and USE
To define a node for use in instancing, precede the node type name with the word "DEF" and a
node name of your choosing. While a VRML 2.0 file may contain any number of named nodes, no
two may have the same name.

Syntax: DEF
DEF node_name node_type { . . . }

For example, you can give the name Red to an Appearance node like this:

. . .
Shape {
 appearance DEF Red Appearance {
 material Material {
 diffuseColor 1.0 0.0 0.0
 }
 }
 geometry Box { size 8.0 0.5 0.5 }
}
. . .

Once you have defined a name for a node, you can re-use that node again and again within the
same file by typing only the word "USE" and the node name. There is no need to re-specify the
node type, curly-braces, fields, or field values: The VRML browser automatically fills these in
from the original node.

Syntax: USE
USE node_name

For example, you can use a named node Red in place of an Appearance node like this:

. . .
Shape {
 appearance USE Red
 geometry Box { size 0.5 8.0 0.5 }
}
. . .

Node names may be any convenient sequence of characters, and are case-sensitive. For example,
"RED" and "red" are different names. Node names may include letters, numbers, and underscores.
The following are examples of legal node names:

Red WallColor3 my_chair
PianoKey GurgleSound Kitchen_Design
NCC1701 BrightLight MarbleTexture

Node names cannot start with a number and cannot include non-printing ASCII characters, like

spaces, tabs, line-feeds, form-feeds, and carriage-returns. Names also cannot include double or
single quotes, number signs, plus signs, minus signs, commas, periods, square brackets, back
slashes, or curly braces. The following names are prohibited, since they are words used for other,
specific purposes within VRML 2.0:

DEF EXTERNPROTO FALSE
IS NULL PROTO
ROUTE TO TRUE
USE eventIn eventOut
exposedField field

Experimenting with DEF and USE
You can use DEF and USE to simplify the red box world shown in Figure 2. Start by adding DEF

Red to define a name for the Appearance node for the first box shape. For each of the remaining
two box shapes, substitute the full Appearance node specification with USE Red. Figure 3 shows
the simplified world that results.

#VRML V2.0 utf8
Shape {
 appearance DEF Red Appearance {
 material Material {
 diffuseColor 1.0 0.0 0.0
 }
 }
 geometry Box { size 8.0 0.5 0.5 }
}
Shape {
 appearance USE Red
 geometry Box { size 0.5 8.0 0.5 }
}
Shape {
 appearance USE Red
 geometry Box { size 0.5 0.5 8.0 }
}

Figure 3. An Appearance node, with a defined name, used twice more later in the file.
Click on the image to load the world.

You can name and instance any node in a VRML 2.0 file, including Appearance, Material ,
Shape, and geometry nodes. Node instancing eliminates redundancy and decreases the size of a
VRML file. Additionally, node instancing increases the performance of a VRML browser by
enabling it to share node descriptions and the processing associated with them.

Building shapes in three dimensions

Like the real world, 3-D shapes built in a VRML 2.0 virtual world have width, height, and depth.
To provide reference directions along which to measure these shape dimensions, you can imagine
a trio of arrows drawn through the middle of a shape extending left-to-right, bottom-to-top, and
back-to-front. Figure 4 shows such a set of arrows drawn through a box shape.

Figure 4. A box shape with reference arrows for width, height, and depth measurement.

A direction arrow, like any of those shown in Figure 4, is called an axis. Conventionally, the
left-to-right arrow, shown in red, is called the X axis, the bottom-to-top arrow, shown in green, is
called the Y axis, and the back-to-front arrow, shown in blue, is called the Z axis. Using these axes,
you can measure the width of a shape along the X axis, the height along the Y axis, and the depth
along the Z axis.

The center point where all three axes cross is called the origin. VRML 2.0 browsers build all
shapes so that their centers are at the origin.

You can treat each axis like a ruler along which to measure positive and negative distances from
the origin. A positive distance extends in the direction of the axis arrow, while a negative distance
extends in the reverse direction.

Using the right-hand rule for axis directions
While building complex worlds, it can be surprisingly hard to remember which axis points in
which direction. To help keep the axis positive directions straight, you can use the right-hand rule.
For this rule, hold up your right hand, stick your thumb out as if hitch-hiking, point your index
finger straight up, and point your second finger straight forward. Curl your other fingers under. In
this configuration, your thumb points in the positive X direction, your index finger in the positive
Y direction, and your second finger in the positive Z direction. Figure 5 shows this hand
configuration.

Figure 5. The right-hand rule used to indicate the positive directions for the X, Y, and Z axes.

Determining 3-D Coordinates
A triple of X, Y, and Z distance measurements uniquely describe a location in 3-D. Such a triple
of distances is called a 3-D coordinate. You can use 3-D coordinates to describe the location of
key features of a shape, such as the corners of a box. Figure 6 and the table below, for example,
show the 3-D coordinates for the eight corners of a box with a width, height, and depth of 2.0
units.

Figure 6. A box shape with 3-D coordinates shown for its eight corners.

3-D coordinates for a box shape

Corner X Y Z

Front, top, right 1.0 1.0 1.0

Front, top, left -1.0 1.0 1.0

Front, bottom, right 1.0 -1.0 1.0

Front, bottom, left -1.0 -1.0 1.0

Back, top, right 1.0 1.0 -1.0

Back, top, left -1.0 1.0 -1.0

Back, bottom, right 1.0 -1.0 -1.0

Back, bottom, left -1.0 -1.0 -1.0

Building 3-D shapes in VRML 2.0 is like playing a child’s game of connect-the-dots. A geometry
node, such as a Box node, places 3-D coordinates and connects them together to form the faces of
a shape. The four geometry node types discussed in last month’s column, Box, Cone, Cylinder ,
and Sphere, each automatically computes a set of 3-D coordinates and connecting faces.

Using the world’s default coordinate system
A set of reference X, Y, and Z axes define a coordinate system in which you can measure
distances to locate 3-D coordinates. Shapes whose coordinates are measured with respect to a
particular coordinate system are said to be in that coordinate system.

Every VRML 2.0 world file has a default coordinate system in which to build the world’s shapes.
That coordinate system is called, simply, the world coordinate system. By default, all shapes are
built centered at the origin of this world coordinate system. For example, all three red boxes in
Figures 2 and 3 are built centered in the world coordinate system by default.

Creating and positioning coordinate systems
VRML 2.0 enables you to position shapes through the creation of new coordinate systems using
the Transform node type. The origin of a new coordinate system is positioned by you at a 3-D
coordinate measured relative to the origin of another coordinate system, such as the world
coordinate system. Any shape you build in the new coordinate system is centered at the new
coordinate system origin instead of at the world origin.

Using new coordinate systems, you can build and position shapes anywhere in the world. For
example, to position a shape 4.0 units to the right of the world origin, create a new coordinate
system 4.0 units to the right, then build the shape centered within that new coordinate system.
Later, if you want the shape 6.0 units to the right instead, change the position of the shape’s
coordinate system. When the coordinate system moves, the shape built within it moves as well.

Tip: You can think of a coordinate system as an imaginary box that can contain shapes.
If you move a coordinate system box about, then the shapes within the box move as
well.

Figure 7 shows a series of images illustrating steps in creating a row of marble columns. Figure 7a
starts the series with a set of axes indicating the world coordinate system. Figure 7b shows a
marble column built at the world coordinate system origin. Figure 7c shows a new coordinate
system positioned to the right relative to the world coordinate system, and Figure 7d shows a
column centered in the new coordinate system. Figures 7e, 7f, 7g, and 7h repeat the process,
showing two more coordinate systems and a column built in each one.

(a) The world coordinate system alone, indicated

by a set of axes.

(b) A marble column built at the center of the

world coordinate system.

(c) A second coordinate system positioned to the

right relative to the world coordinate system
origin.

(d) A marble column built at the center of the

second coordinate system.

(e) A third coordinate system positioned behind

the world coordinate system origin.

(f) A marble column built at the center of the

third coordinate system.

(g) A fourth coordinate system positioned to the
right and behind the world coordinate system

origin.

(h) A marble column built at the center of the

fourth coordinate system.

Figure 7. Eight steps in building a row of marble columns using the world coordinate system, three new
coordinate systems, and a marble column built at the center of each coordinate system.

Parent and child coordinate systems
When a shape is built within a particular coordinate system, we say that the shape is a child of that
coordinate system. The coordinate system enclosing the children is a parent coordinate system.
Each of the marble columns above, for instance, are children of their respective parent coordinate
systems.

Similarly, when a new coordinate system is positioned relative to another, we say that the new
coordinate system is a child coordinate system. Each of the marble column coordinate systems
used in Figures 7c through Figure 7h are positioned relative to the world coordinate system, and
are therefore children of that coordinate system.

Parent coordinate systems can, in turn, be children of other parent coordinate systems, and so on.
This parent-child relationship of coordinate systems and shapes creates a family tree of world
scenery. The top-most parent of the family tree is the VRML file’s world coordinate system. The
entire family tree is called a scene graph.

Figure 8 shows a diagram of the scene graph for the columns in Figure 7. The first column is a
child of the world coordinate system at the top of the family tree. The second, third, and fourth
columns are children of three new coordinate systems that are, themselves, children of the world
coordinate system.

Figure 8. A scene graph diagram for the column shapes and coordinate systems in Figure 7.

Typical VRML 2.0 worlds contain dozens or even thousands of coordinate systems in the scene
graph. It is common, for instance, to use a new coordinate system for each shape in a world. If the
world individually positions thousands of shapes, then there will be thousands of coordinate
systems as well.

The Transform node type
The Transform node type creates a new coordinate system relative to its parent coordinate
system. Shapes created as children of a Transform node are built relative to that new coordinate
system’s origin.

Syntax: Transform
Transform {
 children [] # exposedField MFNode
 translation 0.0 0.0 0.0 # exposedField SFVec3f
 . . .
}

The values in the children field provide child nodes to be built within the new coordinate system
and centered at its origin. The list of children is enclosed within square-brackets. The default value
for this field is an empty list of children.

Typical children field values include Shape and Transform nodes. A Transform node may be
the child of another Transform node, which may be a child again, and so on up the family tree of
coordinate systems.

The values of the translation field specify the positive or negative distances in the X, Y, and Z
directions between the parent’s coordinate system origin and the origin of the new coordinate
system. The default zero values for this field cause no translation in X, Y, or Z. This places the
new coordinate system in exactly the same place as the parent coordinate system.

Experimenting with coordinate system translation
Figure 9 shows a castle tower built using a white cylinder and a red cone. The cylinder is built
centered within the world coordinate system. The cone is built centered within a new coordinate
system positioned 25.0 units up the Y axis. In the VRML text, notice that the cone shape is
described within the children list of the Transform node. That child list, like all VRML 2.0 value
lists, is enclosed within square-brackets.

#VRML V2.0 utf8

Tower
Shape {
 appearance Appearance {
 material Material { }
 }
 geometry Cylinder {
 radius 5.0
 height 30.0
 top FALSE
 }
}

Roof
Transform {
 translation 0.0 25.0 0.0
 children [
 Shape {
 appearance Appearance {
 material Material {
 diffuseColor 1.0 0.0 0.0
 }
 }
 geometry Cone {
 bottomRadius 8.0
 height 20.0
 }
 }
]
}

Figure 9. A castle tower built using a cylinder in the world coordinate system and a cone in a new translated
coordinate system.

Click on the image to load the world.

You can use any number of Transform nodes within the same VRML 2.0 file and provide any
number of child shapes and coordinate systems within the children field. Figure 10, for example,
uses multiple Transform nodes to build a castle using four towers and a central box. Notice that
shapes can overlap, even when built within separate coordinate systems. Also notice the use of
DEF and USE to share appearance and shape definitions.

#VRML V2.0 utf8

Walls
Transform {
 translation 0.0 10.0 0.0
 children [
 Shape {
 appearance DEF White Appearance {
 material Material { }
 }
 geometry Box { size 30.0 20.0 30.0 }
 }
]
}

Towers
Transform {
 translation -15.0 15.0 15.0
 children [
 # Tower
 DEF Tower Shape {
 appearance USE White
 geometry Cylinder {
 radius 5.0
 height 30.0
 top FALSE
 }
 }

 # Roof
 DEF Roof Transform {
 translation 0.0 25.0 0.0
 children [
 Shape {
 appearance Appearance {
 material Material {
 diffuseColor 1.0 0.0 0.0
 }
 }
 geometry Cone {
 bottomRadius 8.0
 height 20.0
 }
 }
]
 }
]
}
Transform {
 translation 15.0 15.0 15.0
 children [
 USE Tower
 USE Roof
]
}
Transform {
 translation 15.0 15.0 -15.0
 children [
 USE Tower
 USE Roof
]
}
Transform {
 translation -15.0 15.0 -15.0
 children [
 USE Tower
 USE Roof
]
}

Figure 10. A castle built using multiple shapes in multiple coordinate systems.
Click on the image to load the world.

Orienting coordinate systems
VRML 2.0’s Transform node type enables you to create and position a new coordinate system
anywhere in your world. Imagine, for instance, that you create an airplane shape within the new
coordinate system. Using the translation field of the coordinate system’s Transform node, you
can "fly" the airplane about.

To make the airplane’s flight more realistic, you can control the airplane’s orientation by rotating
the airplane’s coordinate system. You can tilt the airplane upward during take-off, turn it to face
the direction in which it is flying, or bank it in a turn.

Specifying a rotation axis
Coordinate system rotation is described by a rotation axis and a rotation angle specified in the
rotation field of a Transform node. The rotation axis defines an imaginary line about which to
rotate the coordinate system. The rotation angle indicates the amount to rotate about the axis.

A rotation axis can point in any direction. For example, the rotation axis for a toy top is vertical,
while that for a car wheel is horizontal. To specify a rotation axis, imagine drawing a line between
two 3-D coordinates. One coordinate is always the origin of a new coordinate system. The second
coordinate’s X, Y, and Z values are specified in the Transform node’s rotation field. The
imaginary line between these two coordinates defines a rotation axis.

For example, to define a vertical rotation axis for a toy top, use a rotation axis that points straight
up from the origin. The second coordinate for such an axis is directly above the origin, such as
(0.0, 1.0, 0.0).

The distance between the origin and the second coordinate does not matter. Any point on the
imaginary line is valid. To define a rotation axis that points straight up along the Y axis, (0.0, 2.0,
0.0), (0.0, 0.589, 0.0), (0.0, 1823789.0, 0.0), and (0.0, 1.0, 0.0) are all equivalent because they all
point straight up.

Note: Technically, the rotation axis is a vector whose direction orients the rotation.
The magnitude of the vector is ignored.

While you can specify a rotation axis in any direction, in practice most rotation axes aim to the
right along the X axis, up along the Y axis, or out along the Z axis. The table below provides the

rotation axis values used to create these common axes.

Common rotation axes

Direction Rotation axis values

To the right along the X axis1.0 0.0 0.0

Up along the Y axis 0.0 1.0 0.0

Out along the Z axis 0.0 0.0 1.0

For example, airplane orientation is typically described using three rotations: pitch, yaw, and roll .
Pitch rotations tilt an airplane’s nose up or down with rotation about the X axis. Yaw rotations
spin an airplane around the Y axis. Roll rotations turn an airplane about the Z axis. Figure 11
shows these three rotation axes for an airplane model.

(a) X-axis rotation to control airplane pitch

(b) Y-axis rotation to control airplane yaw

(c) Z-axis rotation to control airplane roll

Figure 11. Airplane rotation about X, Y, and Z axes.

Specifying a rotation angle
Along with a rotation axis, a rotation angle specifies the amount by which to rotate around the
chosen axis. Rotation angles may be positive or negative and are measured in radians, instead of
the more familiar degrees.

Recall that an angle measurement in degrees varies from 0.0 to 360.0 in a full circle. Half way
around the circle is 180.0 degrees, and a quarter of the way is 90.0 degrees. An angle measurement
in radians varies from 0.0 to 2 = 6.283 in a full circle. Halfway around the circle is = 3.142
radians, and a quarter of the way is 0.5 = 1.57 radians.

You can convert between degrees and radians using these simple formulae:

radians = degrees * 3.142 / 180.0
degrees = radians * 180.0 / 3.142

The table below shows several common rotation angles in degrees and radians.

Common rotation angles

Degrees Radians

0.0 0.0

10.0 0.175

45.0 0.785

90.0 1.571

180.0 3.142

270.0 4.712

Using the right-hand rule for rotations
If you look down an axis from the arrow end, a positive rotation angle turns in a counter-clockwise
direction. When worlds get complex, it can be hard to decide if a positive or negative rotation is
needed to get a desired rotation. To help keep rotation directions straight, you can use a variation
of the right-hand rule introduced earlier. Hold up your right hand, and stick your thumb out as if
hitch-hiking. Orient your hand so that your thumb points in the positive direction of the X, Y, or Z
axis. Curl your fingers around as if gripping the axis. The circular direction in which your fingers
curl is a positive rotation direction around that axis. Figure 12 shows a hand illustrating the
positive rotation directions for the X, Y, and Z axes.

(a) Positive X-axis rotation

(b) Positive Y-axis rotation

(c) Positive Z-axis rotation

Figure 12. Positive rotations using the right-hand rule

The Transform node type, revisited
As before, the Transform node type creates a new coordinate system relative to its parent
coordinate system.

Syntax: Transform
Transform {
 translation 0.0 0.0 0.0 # exposedField SFVec3f
 rotation 0.0 0.0 1.0 0.0 # exposedField SFRotation
 . . .
 children [] # exposedField MFNode
}

The values of the rotation field provide a rotation axis and rotation angle with which to orient the
new coordinate system. The first three values in the field specify the X, Y, and Z values for a
rotation axis. The last field value specifies a rotation angle, measured in radians. All field values
may be positive or negative. The default field values specify a rotation axis aimed outward along
the Z axis with a zero radian rotation angle.

Rotation and translation can be used together to first orient a new coordinate system, then position
it relative to a parent coordinate system.

Experimenting with coordinate system rotation
Figure 13 shows an archway built using two vertical columns, a horizontal cross-piece, and two
tilted roof blocks. Each shape is built within its own coordinate system and translated into
position. Each roof piece is tilted using a rotation field with a Z-axis rotation by 0.524 radians =
30.0 degrees. Notice the use of DEF and USE to share shapes and appearances.

#VRML V2.0 utf8

Left and right columns
Transform {
 translation -2.0 3.0 0.0
 children [
 DEF Column Shape {
 appearance DEF White Appearance {
 material Material { }
 }
 geometry Cylinder {
 radius 0.3
 height 6.0
 top FALSE
 }
 }
]
}
Transform {
 translation 2.0 3.0 0.0
 children [USE Column]
}

Cross-piece
Transform {
 translation 0.0 6.05 0.0
 children [
 Shape {
 appearance USE White
 geometry Box { size 4.6 0.4 0.6 }
 }
]
}

Roof pieces
Transform {
 translation -1.15 7.12 0.0
 rotation 0.0 0.0 1.0 0.524
 children [
 DEF Roof Shape {
 appearance USE White
 geometry Box { size 2.86 0.4 0.6 }
 }
]
}
Transform {
 translation 1.15 7.12 0.0
 rotation 0.0 0.0 1.0 -0.524
 children [USE Roof]
}

Figure 13. An archway built from two columns, a cross-piece, and two tilted roof pieces.
Click on the image to load the world.

You can use multiple Transform nodes, and Transform nodes as children of Transform nodes
to build complex structures. Figure 14, for instance, extends Figure 13 by repeating the same arch
structure three times. Each repetition turns the arch further around the Y axis. With a floor added,
the resulting structure is a rotunda, or gazebo-like building.

#VRML V2.0 utf8

DEF Arch Transform {
 children [
 # Left and right columns
 Transform {
 translation -2.0 3.0 0.0
 children [
 DEF Column Shape {
 appearance DEF White Appearance {
 material Material { }
 }
 geometry Cylinder {
 radius 0.3
 height 6.0
 top FALSE

 bottom FALSE
 }
 }
]
 }
 Transform {
 translation 2.0 3.0 0.0
 children [USE Column]
 }
 # Archway span
 Transform {
 translation 0.0 6.05 0.0
 children [
 Shape {
 appearance USE White
 geometry Box { size 4.6 0.4 0.6 }
 }
]
 }
 # Roof pieces
 Transform {
 translation -1.15 7.12 0.0
 rotation 0.0 0.0 1.0 0.524
 children [
 DEF Roof Shape {
 appearance USE White
 geometry Box { size 2.86 0.4 0.6 }
 }
]
 }
 Transform {
 translation 1.15 7.12 0.0
 rotation 0.0 0.0 1.0 -0.524
 children [USE Roof]
 }
]
}
Transform {
 rotation 0.0 1.0 0.0 0.785
 children [USE Arch]
}
Transform {
 rotation 0.0 1.0 0.0 -0.785
 children [USE Arch]
}
Transform {
 rotation 0.0 1.0 0.0 1.571
 children [USE Arch]
}

Floor
Transform {
 translation 0.0 -0.125 0.0
 children [
 Shape {
 appearance USE White
 geometry Cylinder {
 radius 3.0
 height 0.25
 bottom FALSE
 }
 }
]
}
Transform {
 translation 0.0 -0.375 0.0
 children [
 Shape {
 appearance USE White
 geometry Cylinder {
 radius 4.0
 height 0.25
 }
 }
]
}

Figure 14. A rotunda created by using four archways, rotated about the Y axis.

Click on the image to load the world.

Scaling coordinate systems
The Transform node type’s translation and rotation fields enable you to create a new coordinate
system that is positioned and oriented as you desire. In addition, you can change the size of shapes
within a new coordinate system using a Transform node type’s scale field.

In the real world, construction blueprints provide a scaling factor that indicates a ratio between the
size of the desired construction, and that described by the blueprints. For instance, a scaling factor
of 10.0 indicates that the desired construction is 10.0 times larger than that depicted in the
blueprints. Similarly, a scaling factor of 0.5 indicates construction should be half the size of that
shown in the blueprints.

VRML 2.0’s Transform node type uses a similar scaling factor to indicate the amount to increase
or decrease the size of shapes within a new coordinate system. A scaling factor of 10.0 increases
shape sizes, growing them ten-fold. A scaling factor of 0.5 reduces shapes to half-size.

You can scale a coordinate system’s shapes by any positive factor. Factors between 0.0 and 1.0
decrease shape size, while those greater than 1.0 increase the size of shapes. A scaling factor of
1.0 leaves shape sizes unchanged.

To enable you to warp shapes, you can provide different scaling factors for the X, Y, and Z
directions. For instance, you can stretch a sphere into an ellipsoid, or flatten a cone into a triangle.

The Transform node type, yet again
As before, the Transform node type creates a new coordinate system relative to its parent
coordinate system.

Syntax: Transform
Transform {
 translation 0.0 0.0 0.0 # exposedField SFVec3f
 rotation 0.0 0.0 1.0 0.0 # exposedField SFRotation
 scale 1.0 1.0 1.0 # exposedField SFVec3f
 . . .
 children [] # exposedField MFNode
}

The values of the scale field specify positive X, Y, and Z scaling factors with which to increase or
decrease the size of the new coordinate system and any shapes built within it. The default field
values specify a 1.0 scaling factor for the X, Y, and Z directions and result in no size change.

Scaling, rotation, and translation can be used together first to scale a coordinate system, then orient
it and position it relative to a parent coordinate system.

There are several more fields in the Transform node type. Discussion of these less commonly
used fields is left to a future column.

Experimenting with coordinate system scaling
Figure 15 shows a spacecraft built entirely with spheres. Two spheres are scaled nearly flat,
rotated, and positioned to form swept-back wings. Another sphere is elongated to form the

fuselage. A final sphere is scaled and positioned to form a cockpit dome.

#VRML V2.0 utf8

Wing
Transform {
 translation 0.0 0.0 -0.9
 rotation 0.0 1.0 0.0 0.52
 scale 0.4 0.035 1.5
 children [
 DEF WingSphere Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0.7 0.7 1.0
 }
 }
 geometry Sphere { }
 }
]
}
Transform {
 translation 0.0 0.0 0.9
 rotation 0.0 1.0 0.0 -0.52
 scale 0.4 0.035 1.5
 children [USE WingSphere]
}

Fuselage
Transform {
 scale 2.0 0.2 0.5
 children [
 Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0.5 0.5 1.0
 }
 }
 geometry Sphere { }
 }
]
}

Dome
Transform {
 scale 0.6 0.4 0.375
 children [
 Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0.7 0.5 1.0
 }
 }
 geometry Sphere { }
 }
]
}

Figure 15. A spacecraft built by scaling, rotating, and translating four spheres.
Click on the image to load the world.

You can use multiple Transform nodes to create complex structures, scaling, rotating, and
translating each new coordinate system. Figure 16, for example, extends Figure 15 by adding a tail
and engines to the spacecraft. The tail is formed by repeating the wing and fuselage shapes, scaled
down and translated into position. The engines use two more scaled and translated spheres.

#VRML V2.0 utf8

Wing
DEF LeftWing Transform {
 translation 0.0 0.0 -0.9
 rotation 0.0 1.0 0.0 0.52
 scale 0.4 0.035 1.5
 children [
 DEF WingSphere Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0.7 0.7 1.0
 }
 }
 geometry Sphere { }
 }
]
}
DEF RightWing Transform {
 translation 0.0 0.0 0.9
 rotation 0.0 1.0 0.0 -0.52
 scale 0.4 0.035 1.5
 children [USE WingSphere]
}

Fuselage
DEF Fuselage Transform {
 scale 2.0 0.2 0.5
 children [
 DEF FuselageSphere Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0.5 0.5 1.0
 }
 }
 geometry Sphere { }
 }
]
}

Dome

Transform {
 scale 0.6 0.4 0.375
 children [
 Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0.7 0.5 1.0
 }
 }
 geometry Sphere { }
 }
]
}

Engines
Transform {
 translation -0.6 0.0 -1.5
 scale 0.6 0.06 0.1
 children [
 DEF EngineSphere Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0.3 0.3 0.7
 }
 }
 geometry Sphere { }
 }
]
}
Transform {
 translation -0.6 0.0 1.5
 scale 0.6 0.06 0.1
 children [USE EngineSphere]
}

Tail
Transform {
 translation -2.0 0.5 0.0
 scale 0.4 0.4 0.4
 children [
 USE LeftWing
 USE RightWing
 USE Fuselage
]
}
Transform {
 translation -1.5 0.25 0.0
 rotation 0.0 0.0 1.0 -0.6
 scale 0.5 0.2 0.075
 children [USE FuselageSphere]
}

Figure 16. The spacecraft of Figure 15 extended to include engines and a tail.
Click on the image to load the world.

Next in the VRML Technique column
The Transform node type is clearly a powerful and essential VRML 2.0 feature enabling you to
construct complex structures in your virtual world. Next month I will continue discussion of the
Transform node type and introduce VRML 2.0 features for animating the position, orientation,
and scale of coordinate systems and their shapes.

Resources

A list of David Nadeau’s VRML Technique columns in NetscapeWorld
VRML 2.0 browsers NetscapeWorld’s guide to finding and installing a VRML browser on
your computer.
VRML 2.0 glossary
NetscapeWorld’s VRML vendors chart A handy reference of VRML browser and server
companies including their plug-ins to Web browsers -- with updated items in bold to aid
your review -- and links to all the vendors.
http://www.netscapeworld.com/netscapeworld/common/nw.vrmltable.html
The UTF-8 character set sidebar accompanying the first VRML Technique column.

Specifications

VRML 2.0 specification http://vag.vrml.org/VRML2.0/FINAL/
ISO 10646-1:1993 Universal Character Set (UCS) specification sales information
http://www.iso.ch/cate/d18741.html
UTF-8 character encoding scheme for UCS
http://www.dkuug.dk/JTC1/SC2/WG2/docs/n1335

Sites

The VRML Repository http://www.sdsc.edu/vrml
VRML Architecture Group http://vag.vrml.org

About the author
David R. Nadeau is a co-author of The VRML 2.0 Sourcebook, published by John Wiley & Sons
and written with Andrea L. Ames and John L. Moreland. David is a staff researcher at the San
Diego Supercomputer Center where he is a specialist in 3-D computer graphics, virtual reality, and
scientific visualization. He is also the creator of The VRML Repository, a Web site providing
extensive information on VRML software, documentation, and 3-D worlds.

You can buy David R. Nadeau’s The VRML 2.0 Sourcebook at a 20% discount from
Amazon.com Books.

Feedback: nweditors@netscapeworld.com
URL : http://www.netscapeworld.com/netscapeworld/nw-01-1997/nw-01-vrmltechnique.html
Last updated: Tuesday, March 11, 1997

Animating shapes
How to animate the position, orientation, and size of shapes in VRML 2.0

By David R. Nadeau

Summary
Perhaps the most exciting aspects of VRML 2.0 are features that enable you to create dynamic,
animated virtual environments. You can make shapes fly hither and yon, spin about, grow and
shrink, change color, fade in and out, morph from one form to another, and much more.

This month’s VRML Technique column introduces VRML 2.0’s animation features and shows
how you can use them together with the Transform node type to create animations that
position, orient, and resize shapes. Along the way, I introduce VRML 2.0’s animation circuit
concept, explain events, and present the ROUTE statement. (5,300 words)

Table of contents

Animating shapes

Describing animations

Understanding events and animation circuits

Inputs and outputs
EventIn and eventOut data types

Building animation circuits

The ROUTE statement

Describing when to animate

The TimeSensor node type
Using TimeSensor nodes
Using start and stop times

Describing how to animate

Keyframe animation
Linear interpolation
The PositionInterpolator node type
The OrientationInterpolator node type
Using a PositionInterpolator node

Experimenting with VRML 2.0 animation

Using an OrientationInterpolator node
Animating multiple shapes using the same
interpolator
Using multiple TimeSensor nodes
Using longer motion paths
Animating the size of a shape
Combining together multiple interpolators

Next in the VRML Technique column

Resources

About the author

Animating shapes
Last month’s column ("Building virtual structures") introduced VRML 2.0’s Transform node
type and discussed its use in creating new coordinate systems. Using the translation, rotation ,

and scale fields of a Transform node, you can position, orient, and resize shapes built within a
new coordinate system. These features enable you to create 3D virtual structures and walk through
them interactively within a VRML 2.0 browser.

(See NetscapeWorld’s sidebar on VRML 2.0 Browsers for information on obtaining and installing
VRML 2.0 browsers. Also see the NetscapeWorld VRML Vendors chart for a list of VRML
browsers and plug-ins, and our glossary of VRML 2.0 terms. You need a VRML browser or
plug-in to view the 3D examples presented in this series.)

With VRML 2.0’s animation features, you can create virtual structures with moving parts. A
windmill’s sails can rotate and an escalator’s stairs can slide up or down. Cars can move endlessly
in a virtual city’s traffic patterns, a sun can rise and set daily, clouds can slide across the sky, and
much more. Figure 1 shows two sample animated virtual worlds. Click on an image to load the
associated VRML 2.0 world into your VRML 2.0 browser. The captions below each figure give
the size of the world in bytes, and the expected download time.

(a) A windmill with rotating sails

(11 kilobytes = 7 seconds @ 14.4bps)

(b) A bouncing ball and glowing rings
(18 kilobytes = 13 seconds @ 14.4bps)

Figure 1. Sample VRML 2.0 worlds containing automatic continuous animations
Click on an image to load the world.

Viewing tip: Once loaded into your VRML 2.0 browser, if these worlds run a little
slowly, try reducing the size of the browser window. A smaller window means there is
less screen area for the browser to redraw each time you move in the world. This
reduction in drawing area speeds up the browser and enables it to animate more
smoothly, or respond more quickly to user actions.

Describing animations
To build an animation for your VRML 2.0 virtual world, you need to describe:

what to animate
how to animate
when to animate

For example, if you want to animate an elevator going up and down all day, then the "elevator" is
what to animate, the "up and down" motion is how to animate, and "all day" is when to animate.
The what, how, and when parts of a VRML 2.0 animation are fairly independent. For instance,
you can increase the up and down range of the elevator animation without changing the elevator

shape or "all day" time frame.

The independence of what, how, and when parts of a VRML 2.0 animation description also enable
you to create new animations by re-using parts of prior animations. For example, you can create a
dramatically bouncing pogo-stick animation by combining a new pogo-stick shape with the "up
and down" and "all day" parts of the elevator animation.

To enable this kind of easy mix-and-match animation creation, VRML 2.0 provides separate nodes
dedicated to describing the what, how, and when parts of an animation. Together with these nodes,
VRML 2.0 provides a special ROUTE statement that hooks what, how, and when nodes together
into a complete animation description.

You can describe the what part of an animation using the Shape and Transform node types
discussed in previous columns. To enable you to describe how and when to animate, this column
introduces three new node types: TimeSensor, PositionInterpolator , and
OrientationInterpolator .

For instance, the VRML 2.0 example in Figure 2 builds an elevator that continually moves up and
down. To describe what to animate, the VRML file uses several Box, Shape, and Transform
nodes to build and position the floor, ceiling, and three walls of a simple elevator. The how and
when parts of the elevator’s animation are described by TimeSensor and PositionInterpolator
nodes discussed in the next few sections.

#VRML V2.0 utf8
DEF Elevator Transform {
 children [
 # Elevator floor
 DEF FloorCeiling Shape {
 appearance DEF ElevatorColor Appearance {
 material Material { }
 }
 geometry Box { size 1.5 0.05 1.5 }
 }
 # Elevator walls
 Transform {
 translation -0.725 1.0 0.0
 children DEF SideWall Shape {
 appearance USE ElevatorColor
 geometry Box { size 0.05 1.95 1.5 }
 }
 }
 Transform {
 translation 0.725 1.0 0.0
 children USE SideWall
 }
 Transform {
 translation 0.0 1.0 -0.725
 children Shape {
 appearance USE ElevatorColor
 geometry Box { size 1.5 1.95 0.05 }
 }
 }
 # Elevator ceiling
 Transform {
 translation 0.0 2.0 0.0
 children USE FloorCeiling
 }
]
}
DEF AllDay TimeSensor { . . . }
DEF UpAndDown PositionInterpolator { . . . }
. . .

Figure 2. An animated elevator built using Shape, Box, and Transform nodes
Click on the image to load the world.

Understanding events and animation circuits
To build an animation out of what, how, and when nodes, VRML 2.0 enables you to wire nodes
together into an animation circuit. Each node in the circuit acts like an electronic component with
its own input and output connection points. By wiring the output of one node into the input of
another node, you can create a route along which can flow data values called events.

For example, to make an elevator go up and down you can wire the output of a node that generates
up and down events into a node that creates an elevator shape. Each time an up or down event
flows along the wired route to the elevator, the elevator moves up or down. If the events stop
flowing, the elevator stops moving. Using animation circuits like this you can animate the
position, orientation, and size of shapes or change other shape attributes.

Inputs and outputs
An eventIn is an input connection point for a node. An eventOut is an output connection point.
Like fields, a node type’s eventIns and eventOuts have names. Different node types have different
eventIns and eventOuts available. The Material node type, for instance, has a set_diffuseColor
eventIn for changing the shading color of a shape. The PositionInterpolator node type, discussed
later in this column, has a value_changed eventOut that outputs position events.

An exposed field is a special type of field that combines together a standard field, an eventIn to set

that field, and an eventOut that outputs the field value each time the field is set. The translation
exposed field of a Transform node, for example, has an implicit set_translation eventIn, and an
implicit translation_changed eventOut.

The syntax boxes used in this column provide a quick summary of a node type’s fields, exposed
fields, eventIns, and eventOuts. The syntax box below, for instance, describes the Transform
node type introduced in last month’s column. Notice that each of the node type’s fields are
exposed fields and therefore have implicit eventIns and eventOuts.

Syntax: Transform
Transform {
 translation 0.0 0.0 0.0 # exposedField SFVec3f
 rotation 0.0 0.0 1.0 0.0 # exposedField SFRotation
 scale 1.0 1.0 1.0 # exposedField SFVec3f
 . . .
 children [] # exposedField MFNode
}

EventIn and eventOut data types
Like fields, eventIns and eventOuts have a data type. The data type of an eventOut indicates the
kind of event data it sends when wired into an animation circuit. The data type of an eventIn
indicates the kind of event data it expects from a circuit.

When wiring an animation circuit from an eventOut to an eventIn, the data types of the eventOut
and eventIn must match. It is inappropriate, for instance, to wire an eventOut that generates color
data into an eventIn that expects positions.

Building animation circuits
Like a computer circuit board, a virtual world’s animation circuitry is built by wiring components
together one at a time. Each VRML 2.0 wire, or route, connects two nodes together, enabling
events to flow between the nodes.

The ROUTE statement
VRML 2.0’s ROUTE statement wires a route between an eventOut of one node and the eventIn of
another.

Syntax: ROUTE
ROUTE outName.eventOutName TO inName.eventInName

Every ROUTE statement includes four pieces:

outName the name of a node that sends events

eventOutName the name of an eventOut for the sending node

inName the name of a node that receives events

eventInName the name of an eventIn for the receiving node

To wire a route between sending and receiving nodes, both nodes must have names. You can give

a node a name using the DEF syntax introduced in last month’s column.

Along with the names of sending and receiving nodes, the ROUTE statement selects the sender’s
eventOut and the receiver’s eventIn to connect together. For example, the following ROUTE
statement connects the value_changed eventOut of a node named HowToMove to the
set_translation eventIn of a node named WhatToMove.

ROUTE HowToMove.value_changed TO WhatToMove.set_translation

The example in Figure 3, below, extends the elevator example shown in Figure 2. The example
wires routes between two pairs of nodes. The first ROUTE statement wires a route between
AllDay node’s fraction_changed eventOut and the UpAndDown node’s set_fraction eventIn.
The second ROUTE statement wires a route between the UpAndDown node’s value_changed
eventOut and the Elevator node’s set_translation eventIn. This completed animation circuit
enables events to flow from AllDay into UpAndDown, and then from UpAndDown into
Elevator, causing the elevator to animate.

#VRML V2.0 utf8
DEF Elevator Transform { . . . }
DEF AllDay TimeSensor { . . . }
DEF UpAndDown PositionInterpolator { . . . }

ROUTE AllDay.fraction_changed TO UpAndDown.set_fraction
ROUTE UpAndDown.value_changed TO Elevator.set_translation

Figure 3. What, how, and when parts of an elevator animation wired together using two routes
Click on the image to load the world.

A VRML 2.0 file may contain any number of ROUTE statements, each one of which adds another
wire into an animation circuit. The same node inputs and outputs may be wired into multiple
routes, enabling a single eventOut to connect to multiple eventIns, or a single eventIn to connect to
multiple eventOuts.

ROUTE statements may be placed anywhere within a VRML 2.0 file. Typically ROUTE
statements are placed at the end of the VRML 2.0 file to make it easy to find them while editing

the file.

Describing when to animate
To indicate when to animate, an animation needs to sense the passage of time. Such time sensing
abilities are provided by VRML 2.0’s TimeSensor node type.

The TimeSensor node type
In an animation circuit, a TimeSensor node provides eventOuts that can be wired into other
nodes. As time ticks away, the sensor outputs a variety of time-related values that you can use to
start and stop animations and control their playback speed.

Syntax: TimeSensor
TimeSensor {
 enabled TRUE # exposedField SFBool
 startTime 0.0 # exposedField SFTime
 stopTime 0.0 # exposedField SFTime
 cycleInterval 1.0 # exposedField SFTime
 loop FALSE # exposedField SFBool
 isActive # eventOut SFBool
 time # eventOut SFTime
 cycleTime # eventOut SFTime
 fraction_changed # eventOut SFFloat
}

A TimeSensor node acts a little like an electronic stop-watch. When turned on, a TimeSensor
node starts and stops when you tell it to, only generating outputs between the start and stop times.

The TRUE or FALSE value of the enabled exposed field turns the sensor on and off. The values
of the startTime and stopTime exposed fields tell the sensor when to start generating events, and
when to stop.

Start and stop time values are measured in seconds, counting from 12:00 midnight, GMT, January
1st, 1970. This seemingly odd basis for measuring time is an artifact of the computer’s internal
way of measuring time. In practice, this is not a problem since the values of the startTime and
stopTime fields are usually not set explicitly within a VRML 2.0 file. Instead, these fields are
typically wired into an animation circuit and set automatically via the output from some other
node.

When the sensor’s stop time is later than the start time, the sensor runs from the start time to the
stop time, then stops, just like a stop-watch. However, if the stop time is earlier than the start time,
then the stop time is ignored and the sensor runs forever.

Sensors that run forever are common in VRML worlds. Such sensors are used to control
animations that play back continually, such as animations that make the sun rise and fall, or that
cycle stop lights.

The isActive eventOut sends a TRUE event at the start time, and a FALSE event at the stop time.
Using these output events, you can use a TimeSensor node like an alarm clock and trigger
animation actions at specific times.

The time eventOut repeatedly sends the current time while the sensor is running. Output time
values are measured in seconds since 12:00 midnight, GMT, January 1st, 1970.

The remaining exposed fields and eventOuts work together to enable a TimeSensor node to
manage a concept of fractional time. Normal, absolute time, like that in the real world, always
marches forward. By contrast, VRML’s fractional time is cyclical: it starts at a given time,
advances for awhile, then starts over. This kind of fractional time is particularly useful for creating
repeating, cyclical animations. A windmill animation, for instance, requires that the windmill’s
sails rotate 360.0 degrees, then start over in a repeating cycle. Similarly, an orbiting virtual planet
repeatedly rotates around a sun, cycle after cycle. The fractional time abilities of the TimeSensor
node type are the principal mechanism by which VRML animations like these are controlled. All
of the examples in the rest of this column use fractional times to control cyclical animations.

The value of the cycleInterval exposed field specifies the length of a single cycle, measured in
seconds. The first cycle starts at the start time selected by the startTime exposed field.

The value of the loop exposed field indicates if the sensor should run for a single cycle or continue
to cycle indefinitely. When the loop exposed field value is FALSE, the sensor runs for a single
cycle then stops, even if the time in the stopTime field hasn’t been reached yet. When the loop
exposed field value is TRUE, the sensor runs for a potentially infinite number of cycles, halting
only when the stop time is reached, if ever.

The cycleTime eventOut sends the current time each time a cycle is started. Like the time
eventOut, the time output by the cycleTime eventOut is measured in seconds since 12:00
midnight, GMT, January 1st, 1970.

The fraction_changed eventOut is the most important output of a TimeSensor node. During each
cycle of the sensor, the fraction_changed eventOut sends floating-point number events that vary
from 0.0 at the start of a cycle to 1.0 at the end. At the end of a cycle, the sensor’s fractional time
resets back to 0.0, ready for the next cycle.

The fractional time outputs of a TimeSensor node are almost always wired into one of the
interpolator node types discussed in the next section. In such an animation circuit, the
TimeSensor node controls when to animate, and the interpolator nodes control how to animate.

Using TimeSensor nodes
The example in Figure 4 shows an expanded version of the elevator example from Figures 2 and 3.
To describe when to animate the elevator, the VRML file uses a TimeSensor node named AllDay .
The node’s fields indicate it should loop through 4.0 second long cycles starting at 1.0 second after
12:00 midnight, GMT, January 1st, 1970. Since the stop time is 1.0 second earlier than the start
time, the sensor ignores the stop time and cycles forever.

At each tick of the TimeSensor node, a fractional time event is output from the node’s
fraction_changed eventOut and routed into an interpolator. The interpolator uses these fractional
time values to compute positions with which to animate the elevator.

#VRML V2.0 utf8
DEF Elevator Transform { . . . }
DEF AllDay TimeSensor {
 cycleInterval 4.0
 loop TRUE
 startTime 1.0
 stopTime 0.0
}
DEF UpAndDown PositionInterpolator { . . . }

ROUTE AllDay.fraction_changed TO UpAndDown.set_fraction
ROUTE UpAndDown.value_changed TO Elevator.set_translation

Figure 4. A TimeSensor node used to animate an elevator through an infinite number of 4.0 second cycles
Click on the image to load the world.

Using start and stop times
The use of start and stop times measured since 12:00 midnight, GMT, January 1st, 1970, may
seem confusing at first. This is, however, a very powerful feature of VRML 2.0.

Conceptually, a VRML 2.0 virtual world exists independent from the real world. Your virtual
world has its own shapes, and its own activities going on, even if you aren’t watching them right
now. The animation circuits you wire together describe these activities. Once wired, you can let go
and the animations continue on without you.

When you set up a looping TimeSensor node, the sensor cycles over and over from the start time
to the stop time. That cycling continues, conceptually, whether or not the world is currently loaded
into your VRML 2.0 browser. Each time you load your world into your browser, the browser
computes what is currently happening in your virtual world and displays it.

For example, imagine that you set up a TimeSensor node so that an animation starts at 12:00
midnight, PST, the morning of February 1st, 1997, and stops at the same time on February 28th,
1997. If you load this virtual world any time in February, you’ll see the animation. However, if
you load the world in January, the animation won’t have started yet, and if you load it in March,
the animation will already have completed.

The use of start and stop times for animations enables you to give your virtual worlds a history and
a future. You can specify exactly what has happened, and what will happen in your world.

For example, the elevator VRML file shown in Figure 4 above uses a TimeSensor node that
started its cycling 27 years ago, 1 second after midnight, GMT, January 1st, 1970. Since then, the
sensor has cycled over and over every 4.0 seconds until the present day. Since the sensor has a
stop time earlier than its start time, the stop time is ignored and the sensor will continue cycling
forever. When you load this world into your browser, you experience a brief portion of this
elevator’s continuing up and down existence.

VRML 2.0’s use of 12:00 midnight, GMT, January 1st, 1970 as the beginning of your virtual
world calendar is arbitrary. This calendar starting date and time is one commonly used by other
computer time measurements, making it a convenient choice for VRML 2.0.

Describing how to animate
To describe how to animate, VRML 2.0 provides a variety of interpolator node types. Two of the
most common interpolators are the PositionInterpolator and the OrientationInterpolator node
types. Both of these node types use a TimeSensor node’s fractional time output to help them
compute and output position or orientation values for your animations. By wiring a route from an
interpolator node into a shape’s Transform node, you can use an interpolator’s position or
orientation outputs to animate the position or orientation of a shape.

Keyframe animation
To animate a shape’s position or orientation, your animation description must provide a new
position or orientation for every moment during which the shape is animating. For cyclical
animations using a TimeSensor node’s fractional time, you only need to provide a new position or
orientation for every fractional time value between 0.0 and 1.0.

The most straightforward approach for an animation description is to use a table of positions or
orientations, one for each possible fractional time between 0.0 and 1.0. Unfortunately, there are an
infinite number of possible fractional time values between 0.0 and 1.0, which makes a table like
this impractical.

Instead, animation descriptions use a technique called keyframe animation, where a position or
orientation is specified for only a few, key fractional times. The position or orientation values at
these times are called key values. VRML 2.0’s interpolator nodes use these key fractional times
and key values as a rough sketch of the animation and fill in the values between those specified as
needed. Using keyframe animation, an animation description specifies only a few positions and
orientations, instead of an infinite number of them.

For example, to cause an elevator to rise from the bottom floor to the top floor as fractional time
proceeds from 0.0 to 1.0, a keyframe animation can use just two key fractional times, 0.0 and 1.0,
and just two key values, the bottom and top of the elevator shaft. An interpolator node can
automatically compute positions between these two key positions for fractional times between 0.0
and 1.0. At fractional time 0.5, for instance, an interpolator computes the elevator’s position as
exactly halfway between the bottom and top floors.

Linear interpolation
All VRML 2.0 interpolator nodes use linear interpolation to compute intermediate values between
the key values you provide. Linear interpolation can be visualized by first imagining two
key-value positions plotted as dots on a piece of graph paper. Next, using an imaginary ruler, draw
a linear, or straight line between the two dots. All points along the drawn line are intermediate

positions between the first key-value position and the second.

A linear interpolator computes an intermediate position or orientation each time an output is
needed. Any number of intermediate values can be computed between your key positions and
orientations.

The use of interpolation is especially important when playing an animation at different speeds. For
a quick animation, your VRML browser may only have time to draw the world a few times
between the time the animation starts and the time it stops. In this case, your browser may only
need to linearly interpolate values at a few fractional times between the key fractional times you
provide.

For a slow animation, your VRML browser may have the time to draw the world many times and
may need a large number of interpolated positions or orientations. In this case, your browser may
interpolate values at many fractional times between your key fractional times.

Using keyframe animation and linear interpolation, you can describe an animation independent of
the playback speed of the animation. During playback, an appropriate number of intermediate
values are computed automatically.

The PositionInterpolator node type
The PositionInterpolator node type describes a linear interpolator for use in the keyframe
animation of shape positions.

Syntax: PositionInterpolator
PositionInterpolator {
 key [] # exposedField MFFloat
 keyValue [] # exposedField MFVec3f
 set_fraction # eventIn SFFloat
 value_changed # eventOut SFVec3f
}

The value of the key exposed field specifies a list of key fractional times. Typically, fractional
times are between 0.0 and 1.0, such as those output by a TimeSensor node’s fraction_changed
eventOut. Key fractional times, however, may be positive or negative floating-point numbers of
any size as long as they are listed in non-decreasing order.

The value of the keyValue exposed field specifies a list of key positions. Each key position is a
3D coordinate composed of an X, a Y, and a Z distance.

The key fractional times and positions are used together so that the first key fractional time
specifies the time for the first key position, the second key fractional time for the second key
position, and so forth. The lists, together, may provide any number of fractional times and
positions, but both lists must contain the same number of values.

The set_fraction eventIn accepts floating-point fractional time events, such as those output by a
TimeSensor node’s fraction_changed eventOut. Each time a fractional time event is received,
the PositionInterpolator node computes by linear interpolation a new position based upon the list
of key positions and their corresponding key fractional times. The new computed position is
output via the value_changed eventOut.

In typical use, the value_changed eventOut of a PositionInterpolator node is routed into a
Transform node’s set_translation eventIn. Each time the interpolator outputs a new position
event, the Transform node sets its translation field, causing the shapes built within the
Transform node’s coordinate system to change position.

The OrientationInterpolator node type
The OrientationInterpolator node type describes a linear interpolator for use in keyframe
animation of shape orientations.

Syntax: OrientationInterpolator
OrientationInterpolator {
 key [] # exposedField MFFloat
 keyValue [] # exposedField MFRotation
 set_fraction # eventIn SFFloat
 value_changed # eventOut SFRotation
}

The OrientationInterpolator node type performs in a way analogous to the PositionInterpolator
node type. The key exposed field specifies a list of key fractional times, while the keyValue
exposed field specifies a list of key rotations. Each key rotation is a set of four floating-point
numbers where the first three values describe a rotation axis, and the last value describes a rotation
angle about that axis, measured in radians. OrientationInterpolator node type rotations are
identical to those used in the rotation field of the Transform node type described in last month’s
column.

Similar to the PositionInterpolator node type, the set_fraction eventIn accepts a fractional time
event and causes the interpolator to compute and output a new rotation value via the
value_changed eventOut. Output rotations are computed by linearly interpolating between the list
of key rotations.

Using a PositionInterpolator node
Figure 5 expands upon the elevator example used in Figures 2, 3, and 4 earlier. To describe how
the elevator moves up and down, this example uses a PositionInterpolator node with three key
fractional times and three key positions. At fractional time 0.0, the associate key position is at the
origin: 0.0 0.0 0.0. At fractional time 0.5, the associated position is 2.0 units up the Y axis from
the origin. At fractional time 1.0, the associated position is again at the origin. When this
animation plays back, the interpolator automatically generates intermediate positions up and down
the elevator’s path.

#VRML V2.0 utf8
DEF Elevator Transform { . . . }
DEF AllDay TimeSensor { . . . }
DEF UpAndDown PositionInterpolator {
 key [0.0, 0.5, 1.0]
 keyValue [
 0.0 0.0 0.0,
 0.0 2.0 0.0,
 0.0 0.0 0.0,
]
}

ROUTE AllDay.fraction_changed TO UpAndDown.set_fraction
ROUTE UpAndDown.value_changed TO Elevator.set_translation

Figure 5. A PositionInterpolator node used to animate the vertical position of an elevator
Click on the image to load the world.

Experimenting with VRML 2.0 animation
The elevator example shown in Figures 2 through 5 uses a TimeSensor node to control a
PositionInterpolator node. On each TimeSensor node output, the interpolator computes a new
3D position and sends it into the translation field of a Transform node. In response, the
Transform node adjusts the position of its coordinate system, thereby moving the shapes making
up the elevator.

You can use interpolators to create a variety of animations, varying positions and orientations of
multiple shapes in your world. The examples below illustrate a few uses of VRML interpolators.

Using an OrientationInterpolator node
You can use an OrientationInterpolator node to cause a shape to spin. The example in Figure 6,
for instance, uses a TimeSensor node to control an OrientationInterpolator node, which in turn
changes the rotation field value of a purple bar’s Transform node. As the TimeSensor node ticks
away, the interpolator computes new rotations and the purple bar spins.

#VRML V2.0 utf8
DEF Bar Transform {
 children Shape {
 appearance Appearance {
 material Material { diffuseColor 0.5 0.0 1.0 }
 }
 geometry Box { size 0.5 3.0 0.5 }
 }
}
DEF Forever TimeSensor {
 cycleInterval 6.0
 loop TRUE
 startTime 1.0
 stopTime 0.0
}
DEF FullCircle OrientationInterpolator {
 key [0.0, 0.5, 1.0]
 keyValue [
 0.0 0.0 1.0 0.0,
 0.0 0.0 1.0 3.14,
 0.0 0.0 1.0 6.28,
]
}

ROUTE Forever.fraction_changed TO FullCircle.set_fraction
ROUTE FullCircle.value_changed TO Bar.set_rotation

Figure 6. An animation circuit to spin a purple bar
Click on the image to load the world.

Animating multiple shapes using the same interpolator
You can use a single interpolator node to animate the position or orientation of more than one
shape. For instance, Figure 7 extends the spinning purple bar example of Figure 6, adding five
more spinning purple bars arranged on the six sides of a cube. A single TimeSensor node controls
a single OrientationInterpolator node. The interpolator’s rotation value outputs are routed into
all six purple bars, causing them all to rotate in synch.

#VRML V2.0 utf8
#
Rotating bars positioned as six faces of a cube
#
DEF Bar1 Transform {
 translation 0.0 0.0 1.5
 children DEF PurpleBar Shape {
 appearance Appearance {
 material Material { diffuseColor 0.5 0.0 1.0 }
 }
 geometry Box { size 0.5 3.0 0.5 }
 }
}
Transform {
 rotation 0.0 1.0 0.0 1.57
 children DEF Bar2 Transform {
 translation 0.0 0.0 1.5
 children USE PurpleBar
 }
}
Transform {
 rotation 0.0 1.0 0.0 3.14
 children DEF Bar3 Transform {
 translation 0.0 0.0 1.5
 children USE PurpleBar
 }
}
Transform {
 rotation 0.0 1.0 0.0 -1.57
 children DEF Bar4 Transform {
 translation 0.0 0.0 1.5
 children USE PurpleBar
 }
}
Transform {
 translation 0.0 1.5 0.0
 rotation 1.0 0.0 0.0 -1.57
 children DEF Bar5 Transform {
 children USE PurpleBar
 }
}
Transform {
 translation 0.0 -1.5 0.0
 rotation 1.0 0.0 0.0 1.57
 children DEF Bar6 Transform {
 children USE PurpleBar
 }
}

#
Master timer used for all rotating bars
#
DEF Forever TimeSensor {
 cycleInterval 6.0
 loop TRUE

 startTime 1.0
 stopTime 0.0
}

#
Master spinner used for all rotating bars
#
DEF FullCircle OrientationInterpolator {
 key [0.0, 0.5, 1.0]
 keyValue [
 0.0 0.0 1.0 0.0,
 0.0 0.0 1.0 3.14,
 0.0 0.0 1.0 6.28,
]
}

ROUTE Forever.fraction_changed TO FullCircle.set_fraction
ROUTE FullCircle.value_changed TO Bar1.set_rotation
ROUTE FullCircle.value_changed TO Bar2.set_rotation
ROUTE FullCircle.value_changed TO Bar3.set_rotation
ROUTE FullCircle.value_changed TO Bar4.set_rotation
ROUTE FullCircle.value_changed TO Bar5.set_rotation
ROUTE FullCircle.value_changed TO Bar6.set_rotation

Figure 7. An animation circuit to spin six purple bars using a single OrientationInterpolator
Click on the image to load the world.

Using multiple TimeSensor nodes
Each of the previous examples use a single TimeSensor node to control all the motion in the
world. You can also create animation circuits with multiple TimeSensor nodes.

The example in Figure 8 creates an abbreviated model of the Solar System. The model includes a
stationary central Sun, and three orbiting planets: Mercury, Venus, and Earth. Each planet has a
different color, size, and orbital radius. To make the planets orbit the Sun, each planet is animated
by the output from a separate OrientationInterpolator node describing a circular path for the
planet. To simulate (very roughly) the different orbital speeds of the planets, each planet’s
OrientationInterpolator node is controlled by a separate TimeSensor node with its own cycle
length. In this virtual world, Mercury’s TimeSensor node takes 2.0 seconds to complete a cycle,
while Venus’ takes 3.5 seconds and Earth’s takes 5.0 seconds.

#VRML V2.0 utf8
#
Stationary sun and three orbiting planets

#
Shape {
 appearance Appearance {
 material Material { diffuseColor 1.0 1.0 0.0 }
 }
 geometry Sphere { }
}
DEF Mercury Transform {
 children Transform {
 translation 2.0 0.0 0.0
 children Shape {
 appearance Appearance {
 material Material { diffuseColor 0.9 0.2 0.0 }
 }
 geometry Sphere { radius 0.2 }
 }
 }
}
DEF Venus Transform {
 children Transform {
 translation 3.0 0.0 0.0
 children Shape {
 appearance Appearance {
 material Material { diffuseColor 0.5 0.5 0.8 }
 }
 geometry Sphere { radius 0.25 }
 }
 }
}
DEF Earth Transform {
 children Transform {
 translation 4.0 0.0 0.0
 children Shape {
 appearance Appearance {
 material Material { diffuseColor 0.0 0.5 1.0 }
 }
 geometry Sphere { radius 0.4 }
 }
 }
}

#
Timers, one per planet
#
DEF MercuryForever TimeSensor {
 cycleInterval 2.0
 loop TRUE
 startTime 1.0
 stopTime 0.0
}
DEF VenusForever TimeSensor {
 cycleInterval 3.5
 loop TRUE
 startTime 1.0
 stopTime 0.0
}
DEF EarthForever TimeSensor {
 cycleInterval 5.0
 loop TRUE
 startTime 1.0
 stopTime 0.0
}

#
Orbital paths, one per planet (all identical)
#
DEF MercuryOrbit OrientationInterpolator {
 key [0.0, 0.5, 1.0]
 keyValue [
 0.0 1.0 0.0 0.0,
 0.0 1.0 0.0 3.14,
 0.0 1.0 0.0 6.28,
]
}
DEF VenusOrbit OrientationInterpolator {
 key [0.0, 0.5, 1.0]
 keyValue [
 0.0 1.0 0.0 0.0,
 0.0 1.0 0.0 3.14,
 0.0 1.0 0.0 6.28,
]
}

DEF EarthOrbit OrientationInterpolator {
 key [0.0, 0.5, 1.0]
 keyValue [
 0.0 1.0 0.0 0.0,
 0.0 1.0 0.0 3.14,
 0.0 1.0 0.0 6.28,
]
}

ROUTE MercuryForever.fraction_changed TO MercuryOrbit.set_fraction
ROUTE MercuryOrbit.value_changed TO Mercury.set_rotation
ROUTE VenusForever.fraction_changed TO VenusOrbit.set_fraction
ROUTE VenusOrbit.value_changed TO Venus.set_rotation
ROUTE EarthForever.fraction_changed TO EarthOrbit.set_fraction
ROUTE EarthOrbit.value_changed TO Earth.set_rotation

Figure 8. An animation circuit to simulate the orbits of three planets around a stationary Sun
Click on the image to load the world.

Using longer motion paths
In the elevator example shown earlier, the PositionInterpolator node uses only three key
positions to describe the up and down motion path of the elevator. Similarly, each of the examples
using OrientationInterpolator nodes use only three key orientations. You can, however, use any
number of positions or orientations in the key value list for an interpolator. For very complex
motion paths, you may have hundreds, or even thousands of separate positions or orientations
listed in an interpolator.

The example shown in Figure 9 builds a simple escalator with four stairs. Each stair is identical
and follows an identical motion path containing seven positions. The motion path positions
describe a diagonal, upward path for an escalator stair. At the top of the escalator, the stair drops
down and returns to the bottom of the escalator, ready to travel upwards again on the next cycle.
An identical motion path is specified in each of four PositionInterpolator nodes, one per stair. To
cause the four stairs to travel upwards, offset from each other, each stair uses its own TimeSensor
node with an offset start time.

#VRML V2.0 utf8
#
Four escalator stairs (all identical)
#
DEF Stair1 Transform {
 children DEF Platform Shape {

 appearance Appearance {
 material Material { diffuseColor 0.0 0.5 1.0 }
 }
 geometry Box { size 1.0 0.1 2.0 }
 }
}
DEF Stair2 Transform { children USE Platform }
DEF Stair3 Transform { children USE Platform }
DEF Stair4 Transform { children USE Platform }

#
Four timers, one per stair (each offset by 1 second)
#
DEF Forever1 TimeSensor {
 cycleInterval 4.0
 loop TRUE
 startTime 1.0
 stopTime 0.0
}
DEF Forever2 TimeSensor {
 cycleInterval 4.0
 loop TRUE
 startTime 2.0
 stopTime 0.0
}
DEF Forever3 TimeSensor {
 cycleInterval 4.0
 loop TRUE
 startTime 3.0
 stopTime 0.0
}
DEF Forever4 TimeSensor {
 cycleInterval 4.0
 loop TRUE
 startTime 4.0
 stopTime 0.0
}

#
Four animation paths, one per stair (all identical)
#
DEF Diagonal1 PositionInterpolator {
 key [0.0, 0.4, 0.45, 0.5, 0.9, 0.95, 1.0]
 keyValue [
 0.0 0.0 0.0, 4.0 2.0 0.0,
 4.5 2.0 0.0, 4.5 1.8 0.0,
 0.5 -0.2 0.0, 0.0 -0.2 0.0,
 0.0 0.0 0.0,
]
}
DEF Diagonal2 PositionInterpolator {
 key [0.0, 0.4, 0.45, 0.5, 0.9, 0.95, 1.0]
 keyValue [
 0.0 0.0 0.0, 4.0 2.0 0.0,
 4.5 2.0 0.0, 4.5 1.8 0.0,
 0.5 -0.2 0.0, 0.0 -0.2 0.0,
 0.0 0.0 0.0,
]
}
DEF Diagonal3 PositionInterpolator {
 key [0.0, 0.4, 0.45, 0.5, 0.9, 0.95, 1.0]
 keyValue [
 0.0 0.0 0.0, 4.0 2.0 0.0,
 4.5 2.0 0.0, 4.5 1.8 0.0,
 0.5 -0.2 0.0, 0.0 -0.2 0.0,
 0.0 0.0 0.0,
]
}
DEF Diagonal4 PositionInterpolator {
 key [0.0, 0.4, 0.45, 0.5, 0.9, 0.95, 1.0]
 keyValue [
 0.0 0.0 0.0, 4.0 2.0 0.0,
 4.5 2.0 0.0, 4.5 1.8 0.0,
 0.5 -0.2 0.0, 0.0 -0.2 0.0,
 0.0 0.0 0.0,
]
}

ROUTE Forever1.fraction_changed TO Diagonal1.set_fraction
ROUTE Forever2.fraction_changed TO Diagonal2.set_fraction
ROUTE Forever3.fraction_changed TO Diagonal3.set_fraction
ROUTE Forever4.fraction_changed TO Diagonal4.set_fraction

ROUTE Diagonal1.value_changed TO Stair1.set_translation
ROUTE Diagonal2.value_changed TO Stair2.set_translation
ROUTE Diagonal3.value_changed TO Stair3.set_translation
ROUTE Diagonal4.value_changed TO Stair4.set_translation

Figure 9. A simple escalator containing four identical stairs traveling along identical diagonal paths, offset in
time

Click on the image to load the world.

Animating the size of a shape
The PositionInterpolator node can be used to vary the position of a shape, and the
OrientationInterpolator node used to vary a shape’s orientation. VRML 2.0 does not include an
interpolator dedicated to animating a shape’s size. However, you can use a PositionInterpolator
node to achieve this purpose.

Output events of a PositionInterpolator node include X, Y, and Z values with an SFVec3f data
type. This data type is appropriate for use in animating a Transform node’s translation field
value, as in the elevator examples. This data type is also appropriate for use in animating the scale
field value of a Transform node.

The example in Figure 10 uses a PositionInterpolator node to animate the scale field value of a
yellow sphere’s Transform node. Key values in the PositionInterpolator node are set to be X, Y,
and Z scaling factors instead of 3D positions. Each output from the interpolator is routed into the
Transform node’s scale field and changes the X, Y, and Z scaling factors for the yellow sphere.
The effect of the animation is to repeatedly squish the yellow sphere.

#VRML V2.0 utf8
DEF Squishy Transform {
 children Shape {
 appearance Appearance {
 material Material { diffuseColor 1.0 1.0 0.0 }
 }
 geometry Sphere { }
 }
}
DEF Forever TimeSensor {
 cycleInterval 2.0
 loop TRUE
 startTime 1.0
 stopTime 0.0
}
DEF Squisher PositionInterpolator {
 key [0.0, 0.5, 1.0]
 keyValue [
 # Scaling factors, not positions...
 1.0 1.0 1.0,
 0.5 1.4 1.4,
 1.0 1.0 1.0,
]
}

ROUTE Forever.fraction_changed TO Squisher.set_fraction
ROUTE Squisher.value_changed TO Squishy.set_scale

Figure 10. An animation that repeatedly squishes a yellow sphere by animating scaling factors using a
PositionInterpolator.

Click on the image to load the world.

Combining together multiple interpolators
You can create complex animations by combining together multiple interpolators. The example in
Figure 11 extends the squishy yellow sphere example in Figure 10, creating a whimsical rotating
gadget that repeatedly moves a yellow ball within reach of a pair of plunger shafts that slide in and
squish the ball.

An OrientationInterpolator node rotates the gadget. A pair of PositionInterpolator nodes slide
the plunger shafts in and out. Four more PositionInterpolator nodes squish one each of the
yellow spheres on the gadget. A single TimeSensor node controls all of the interpolators.

#VRML V2.0 utf8
#

Weird rotating gadget with four squishable balls
#
DEF Gadget Transform {
 children [
 # Four squishable balls positioned around a circle
 DEF Squishy1 Transform {
 translation 0.0 0.0 4.0
 children DEF Ball Shape {
 appearance Appearance {
 material Material { diffuseColor 1.0 1.0 0.0 }
 }
 geometry Sphere { }
 }
 }
 DEF Squishy2 Transform {
 translation 0.0 4.0 0.0
 children USE Ball
 }
 DEF Squishy3 Transform {
 translation 0.0 0.0 -4.0
 children USE Ball
 }
 DEF Squishy4 Transform {
 translation 0.0 -4.0 0.0
 children USE Ball
 }
 # A central plate and spokes for the gadget
 Transform {
 rotation 0.0 0.0 1.0 1.57
 children Shape {
 appearance DEF Gray Appearance {
 material Material { }
 }
 geometry Cylinder {
 radius 2.0
 height 0.2
 }
 }
 }
 DEF Spoke Shape {
 appearance USE Gray
 geometry Cylinder {
 height 6.0
 radius 0.3
 }
 }
 Transform {
 rotation 1.0 0.0 0.0 1.57
 children USE Spoke
 }
]
}

#
Sliding squishing apparatus with two shafts
#
Transform {
 translation 0.0 0.0 4.0
 children [
 # Left shaft
 DEF Left Transform {
 rotation 0.0 0.0 1.0 -1.57
 children DEF Shaft Transform {
 translation 0.0 -1.25 0.0
 children [
 # Main shaft
 Shape {
 appearance USE Gray
 geometry Cylinder {
 height 2.0
 radius 0.4
 }
 }
 # Squishing head on the shaft
 Transform {
 translation 0.0 1.125 0.0
 children Shape {
 appearance USE Gray
 geometry Cylinder {
 height 0.25
 radius 0.6
 }

 }
 }
]
 }
 }
 # Right shaft
 DEF Right Transform {
 translation 0.0 0.0 4.0
 rotation 0.0 0.0 1.0 1.57
 children USE Shaft
 }
]
}

#
Animation timer
#
DEF Forever TimeSensor {
 cycleInterval 10.0
 loop TRUE
 startTime 1.0
 stopTime 0.0
}

#
Rotation path for the ball-holder gadget
#
DEF Rotater OrientationInterpolator {
 key [
 0.00, 0.0625, 0.125,
 0.25, 0.3125, 0.375,
 0.50, 0.5625, 0.625,
 0.75, 0.8125, 0.875,
 1.0
]
 keyValue [
 1.0 0.0 0.0 0.0, 1.0 0.0 0.0 0.0, 1.0 0.0 0.0 0.0,
 1.0 0.0 0.0 1.57, 1.0 0.0 0.0 1.57, 1.0 0.0 0.0 1.57,
 1.0 0.0 0.0 3.14, 1.0 0.0 0.0 3.14, 1.0 0.0 0.0 3.14,
 1.0 0.0 0.0 4.71, 1.0 0.0 0.0 4.71, 1.0 0.0 0.0 4.71,
 1.0 0.0 0.0 6.28,
]
}

#
Scaling for the four squishable balls
#
DEF Squisher1 PositionInterpolator {
 key [
 0.00, 0.0625, 0.125,
 0.25, 0.3125, 0.375,
 0.50, 0.5625, 0.625,
 0.75, 0.8125, 0.875,
 1.0
]
 keyValue [
 # Scaling factors, not positions...
 1.0 1.0 1.0, 0.5 1.4 1.4, 1.0 1.0 1.0,
 1.0 1.0 1.0, 1.0 1.0 1.0, 1.0 1.0 1.0,
 1.0 1.0 1.0, 1.0 1.0 1.0, 1.0 1.0 1.0,
 1.0 1.0 1.0, 1.0 1.0 1.0, 1.0 1.0 1.0,
 1.0 1.0 1.0,
]
}
DEF Squisher2 PositionInterpolator {
 key [
 0.00, 0.0625, 0.125,
 0.25, 0.3125, 0.375,
 0.50, 0.5625, 0.625,
 0.75, 0.8125, 0.875,
 1.0
]
 keyValue [
 # Scaling factors, not positions...
 1.0 1.0 1.0, 1.0 1.0 1.0, 1.0 1.0 1.0,
 1.0 1.0 1.0, 0.5 1.4 1.4, 1.0 1.0 1.0,
 1.0 1.0 1.0, 1.0 1.0 1.0, 1.0 1.0 1.0,
 1.0 1.0 1.0, 1.0 1.0 1.0, 1.0 1.0 1.0,
 1.0 1.0 1.0,
]
}
DEF Squisher3 PositionInterpolator {

 key [
 0.00, 0.0625, 0.125,
 0.25, 0.3125, 0.375,
 0.50, 0.5625, 0.625,
 0.75, 0.8125, 0.875,
 1.0
]
 keyValue [
 # Scaling factors, not positions...
 1.0 1.0 1.0, 1.0 1.0 1.0, 1.0 1.0 1.0,
 1.0 1.0 1.0, 1.0 1.0 1.0, 1.0 1.0 1.0,
 1.0 1.0 1.0, 0.5 1.4 1.4, 1.0 1.0 1.0,
 1.0 1.0 1.0, 1.0 1.0 1.0, 1.0 1.0 1.0,
 1.0 1.0 1.0,
]
}
DEF Squisher4 PositionInterpolator {
 key [
 0.00, 0.0625, 0.125,
 0.25, 0.3125, 0.375,
 0.50, 0.5625, 0.625,
 0.75, 0.8125, 0.875,
 1.0
]
 keyValue [
 # Scaling factors, not positions...
 1.0 1.0 1.0, 1.0 1.0 1.0, 1.0 1.0 1.0,
 1.0 1.0 1.0, 1.0 1.0 1.0, 1.0 1.0 1.0,
 1.0 1.0 1.0, 1.0 1.0 1.0, 1.0 1.0 1.0,
 1.0 1.0 1.0, 0.5 1.4 1.4, 1.0 1.0 1.0,
 1.0 1.0 1.0,
]
}

#
Paths for the left and right squisher shafts
#
DEF LeftToRight PositionInterpolator {
 key [
 0.00, 0.0625, 0.125,
 0.25, 0.3125, 0.375,
 0.50, 0.5625, 0.625,
 0.75, 0.8125, 0.875,
 1.0
]
 keyValue [
 -1.0 0.0 0.0, -0.4 0.0 0.0, -1.0 0.0 0.0,
 -1.0 0.0 0.0, -0.4 0.0 0.0, -1.0 0.0 0.0,
 -1.0 0.0 0.0, -0.4 0.0 0.0, -1.0 0.0 0.0,
 -1.0 0.0 0.0, -0.4 0.0 0.0, -1.0 0.0 0.0,
 -1.0 0.0 0.0,
]
}
DEF RightToLeft PositionInterpolator {
 key [
 0.00, 0.0625, 0.125,
 0.25, 0.3125, 0.375,
 0.50, 0.5625, 0.625,
 0.75, 0.8125, 0.875,
 1.0
]
 keyValue [
 1.0 0.0 0.0, 0.4 0.0 0.0, 1.0 0.0 0.0,
 1.0 0.0 0.0, 0.4 0.0 0.0, 1.0 0.0 0.0,
 1.0 0.0 0.0, 0.4 0.0 0.0, 1.0 0.0 0.0,
 1.0 0.0 0.0, 0.4 0.0 0.0, 1.0 0.0 0.0,
 1.0 0.0 0.0,
]
}

ROUTE Forever.fraction_changed TO Rotater.set_fraction
ROUTE Rotater.value_changed TO Gadget.set_rotation

ROUTE Forever.fraction_changed TO Squisher1.set_fraction
ROUTE Forever.fraction_changed TO Squisher2.set_fraction
ROUTE Forever.fraction_changed TO Squisher3.set_fraction
ROUTE Forever.fraction_changed TO Squisher4.set_fraction
ROUTE Squisher1.value_changed TO Squishy1.set_scale
ROUTE Squisher2.value_changed TO Squishy2.set_scale
ROUTE Squisher3.value_changed TO Squishy3.set_scale
ROUTE Squisher4.value_changed TO Squishy4.set_scale

ROUTE Forever.fraction_changed TO LeftToRight.set_fraction
ROUTE Forever.fraction_changed TO RightToLeft.set_fraction
ROUTE LeftToRight.value_changed TO Left.set_translation
ROUTE RightToLeft.value_changed TO Right.set_translation

Figure 11. A whimsical gadget to repeatedly squish four yellow balls
Click on the image to load the world.

Next in the VRML Technique column
VRML 2.0’s animation features enable you to make your worlds come alive with animating
shapes whose position, orientation, and size change as time progresses. All of the examples in this
column use looping animations that repeat forever. In next month’s column I’ll introduce the
TouchSensor node type with which you can start and stop animations at the user’s touch.

Resources

A list of David Nadeau’s VRML Technique columns in NetscapeWorld
VRML 2.0 browsers NetscapeWorld’s guide to finding and installing a VRML browser on
your computer.
VRML 2.0 glossary
NetscapeWorld’s VRML vendors chart A handy reference of VRML browser and server
companies including their plug-ins to Web browsers -- with updated items in bold to aid
your review -- and links to all the vendors.
http://www.netscapeworld.com/netscapeworld/common/nw.vrmltable.html
The UTF-8 character set sidebar accompanying the first VRML Technique column.

Specifications

VRML 2.0 specification http://vag.vrml.org/VRML2.0/FINAL/
ISO 10646-1:1993 Universal Character Set (UCS) specification sales information
http://www.iso.ch/cate/d18741.html
UTF-8 character encoding scheme for UCS
http://www.dkuug.dk/JTC1/SC2/WG2/docs/n1335

Sites

The VRML Repository http://www.sdsc.edu/vrml
VRML Architecture Group http://vag.vrml.org

About the author
David R. Nadeau is a co-author of The VRML 2.0 Sourcebook, published by John Wiley & Sons
and written with Andrea L. Ames and John L. Moreland. David is a staff researcher at the San
Diego Supercomputer Center where he is a specialist in 3-D computer graphics, virtual reality, and
scientific visualization. He is also the creator of The VRML Repository, a Web site providing
extensive information on VRML software, documentation, and 3-D worlds.

You can buy David R. Nadeau’s The VRML 2.0 Sourcebook at a 20% discount from
Amazon.com Books.

Feedback: nweditors@netscapeworld.com
URL : http://www.netscapeworld.com/netscapeworld/nw-02-1997/nw-02-vrmltechnique.html
Last updated: Tuesday, March 11, 1997

Sensing the viewer’s touch
How to sense the viewer’s touch to start and stop animations in VRML 2.0

By David R. Nadeau

Summary
To enable your virtual worlds to come alive and interact with the viewer, VRML 2.0 provides
nodes that sense the viewer’s actions. Using sensor nodes, you can create doors that open and
close at the viewer’s knock. Virtual control panels can steer virtual space craft or direct the
movements of a virtual robot. Gizmos can whir to life and virtual creatures scuttle away at the
viewer’s touch.

In this month’s VRML Technique column I’ll introduce VRML 2.0’s TouchSensor node type
with which you can author worlds that sense the touch of the viewer’s cursor. Along the way I’ll
discuss advanced uses of VRML 2.0’s TimeSensor node and show how you can create
animations that run periodically, run for a selected number of cycles, or keep track of wall-clock
time. (4,500 words)

Table of contents

Animating at the viewer’s touch

Sensing touch

The TouchSensor node type

Experimenting with touch sensors

Triggering animations with cursor proximity
Triggering animations using proxy shapes
Triggering animations with mouse button
presses
Triggering animations with touch time
Creating 3D buttons

Experimenting with time sensors

Counting timer cycles
Creating periodic animations
Creating a stop-watch

Next in the VRML Technique column

Resources

About the author

Animating at the viewer’s touch
Last month’s column ("Animating shapes") introduced VRML 2.0’s animation features,
discussing animation circuits, events, routes, and the TimeSensor, PositionInterpolator , and
OrientationInterpolator node types. Using these nodes, you can animate the position,
orientation, and scale of shapes. You can create spinning sails on a windmill, orbit planets about a
sun, and construct all sorts of virtual mechanical gadgets.

To make your world interactive, you can attach to a shape a sensor that senses viewer actions with
a pointing device, such as a mouse. When the viewer clicks on a shape with an attached sensor, the
sensor outputs events that can be routed into other nodes to start and stop animations. Using shape
sensors you can create shapes that react to the touch of the viewer’s cursor.

Figure 1 shows a sample virtual world containing a robot and control panel. Pressing control panel
buttons activate the robot. Click on the image to load the robot world into your VRML 2.0
browser. The caption below the figure gives the size of the world in bytes, and the expected
download time.

(See NetscapeWorld’s sidebar on VRML 2.0 Browsers for information on obtaining and installing
VRML 2.0 browsers. Also see the NetscapeWorld VRML Vendors chart for a list of VRML
browsers and plug-ins, and our glossary of VRML 2.0 terms. You need a VRML browser or
plug-in to view the 3D examples presented in this series.)

Figure 1. A sample VRML 2.0 world containing touch sensitive shapes
(45 kilobytes = 31 seconds @ 14.4bps)
Click on the image to load the world.

Viewing tip: Once loaded into your VRML 2.0 browser, if these worlds run a little
slowly, try reducing the size of the browser window. A smaller window means there is
less screen area for the browser to redraw each time you move in the world. This
reduction in drawing area speeds up the browser and enables it to animate more
smoothly, or respond more quickly to user actions.

Sensing touch
Most computers today provide a pointing device to move the cursor on the screen. A mouse with
one, two, or three buttons is probably the most common pointing device, but joysticks, trackballs,
touchpads, and other such devices are also available. To interact with an application, the viewer
moves the cursor about to point at items of interest. When an interesting item is found, the viewer
can perform one of three actions:

Move: without pressing a mouse button, move the cursor over an item.
Click: while the cursor is over an item, press the mouse button, then immediately

release the button without moving the mouse.
Drag: while the cursor is over an item, press the mouse button, move the mouse, then
release the button.

In most applications, each of these familiar actions causes something specific to happen. In
Microsoft Windows, for instance, movement of the cursor so that it rests on a button causes a
message to pop up telling a viewer what will happen if they press the button. In a drawing
application, clicking on a shape selects the shape so that its size or color can be changed.
Similarly, in a drawing application, a drag action moves a shape across the screen.

In VRML 2.0, you can attach a sensor node to a shape to detect move, click, and drag viewer
actions. You can wire the outputs of a sensor node into a circuit to cause shapes to move and
animations to play when the viewer interacts with a sensed shape.

The number of buttons available on a pointing device, like a mouse, varies from computer to
computer. Macintoshes typically have one-button mice, PCs have two-button mice, and UNIX
workstations usually have three-button mice. To insure that VRML 2.0 worlds can be viewed on
any type of computer, VRML 2.0 sensors assume there is only a single mouse button available. On
a computer with a multiple-button mouse, the left mouse button is usually the button sensed. The
remaining mouse buttons, if any, may be used by a VRML browser to select among menu items or
steer the viewer as they move through your world.

The TouchSensor node type
VRML 2.0’s TouchSensor node detects move, click, and drag actions by the viewer’s pointing
device, such as a mouse. The sensor can be included within any group of shapes, such as that
managed by a Transform node. When in such a group, a TouchSensor node senses when the
viewer’s cursor moves over or clicks on any shape built in that group.

The ability of a TouchSensor node to sense all the shapes in a group enables you to create
complex sensed shapes. You can, for instance, build an entire car within a group, then add to the
group a TouchSensor node. When the viewer clicks anywhere on the car, the sensor detects the
touch and sends events out its outputs. You could use such outputs to control an animation that
drives the car about within a virtual city.

Syntax: TouchSensor
TouchSensor {
 enabled TRUE # exposedField SFBool
 isOver # eventOut SFBool
 isActive # eventOut SFBool
 touchTime # eventOut SFBool
 hitPoint_changed # eventOut SFVec3f
 hitNormal_changed # eventOut SFVec3f
 hitTexCoord_changed # eventOut SFVec2f
}

The value of the enabled exposed field turns the sensor on and off. When TRUE, the sensor
actively monitors the viewer and generates outputs on one or more of its eventOuts. When
FALSE, the sensor is disabled and ignores viewer actions.

When the viewer moves the cursor over a shape sensed by a TouchSensor node, the sensor node
outputs a TRUE event using the isOver eventOut. When the viewer moves the cursor off the
sensed shape, a FALSE event is output using the isOver eventOut. You can use this TRUE or

FALSE output to cause a shape to highlight, blink, or wiggle whenever the viewer’s cursor is
moved over the shape.

When the viewer presses a mouse button while the cursor is over a sensed shape, the sensor node
outputs a TRUE event using the isActive eventOut. Later, when the viewer releases the mouse
button, a FALSE event is output using the isActive eventOut and the current time is output using
the touchTime eventOut. You can use the isActive eventOut to make a 3D button click in and out
when the viewer presses it. You can use the touchTime eventOut to start and stop animations at
the viewer’s touch.

The remaining three eventOuts of the TouchSensor node, hitPoint_changed,
hitNormal_changed, and hitTexCoord_changed, are primarily used along with advanced
VRML 2.0 features, such as Script nodes. Discussion of these eventOuts is left to a future column.

Experimenting with touch sensors
The TouchSensor node type enables you to create virtual control panels with buttons the viewer
can press, and shapes that animate in response. Each of the node’s outputs are designed for use in
creating a different user interface effect.

Triggering animations with cursor proximity
Recall from last month’s VRML Technique column that a TimeSensor node has an enabled field.
When this field’s value is FALSE, the timer is silent and outputs no values. If this field’s value is
set to TRUE, the timer starts running when the timer’s start time is reached. If you wire a
TouchSensor node’s isOver eventOut into the enabled field of a TimeSensor node, you can
automatically enable and disable the timer whenever the viewer’s cursor moves over and off a
sensed shape.

The VRML text in Figure 2 builds a pair of box shapes forming two spokes on a wheel. Both
spokes are built within a Transform node group and sensed by a TouchSensor node included in
that group. The TouchSensor node’s isOver eventOut is routed into a TimeSensor node’s
enabled field. The TimeSensor node’s output is routed into an OrientationInterpolator node,
whose output is routed into the rotation field of the Transform node for the spokes.

When the viewer’s cursor moves over a spoke, the TouchSensor node outputs TRUE using its
isOver eventOut. This enables the TimeSensor node and starts the spokes rotating. When the
viewer’s cursor moves off a spoke, a FALSE is sent using the TouchSensor node’s isOver
eventOut, disabling the TimeSensor and stoping the spoke animation.

#VRML V2.0 utf8
#
Spin while the cursor is over the spokes
#
DEF Spokes Transform {
 # rotation animated
 children [
 DEF Start TouchSensor { }
 Shape {
 appearance DEF SpokeColor Appearance {
 material Material { diffuseColor 1.0 1.0 0.0 }
 }
 geometry Box { size 0.5 4.0 0.5 }
 }
 Shape {
 appearance USE SpokeColor
 geometry Box { size 4.0 0.5 0.5 }
 }
]
}
DEF Clock TimeSensor {
 enabled FALSE
 # enabled set on over
 cycleInterval 4.0
 loop TRUE
 startTime 1.0
 stopTime 0.0
}
DEF Spinner OrientationInterpolator {
 key [0.0, 0.5, 1.0]
 keyValue [
 0.0 0.0 1.0 0.0,
 0.0 0.0 1.0 -3.14,
 0.0 0.0 1.0 -6.28
]
}
ROUTE Start.isOver TO Clock.set_enabled
ROUTE Clock.fraction_changed TO Spinner.set_fraction
ROUTE Spinner.value_changed TO Spokes.set_rotation

Figure 2. A pair of wheel spokes that spin when the viewer’s cursor moves over them
Click on the image to load the world.

As you experiment with the example in Figure 2, notice that the animation stops if you move the
cursor off a spoke. But what happens if a spoke rotates out from under the cursor?

The TouchSensor node only checks if the cursor is over a shape each time the cursor is moved. If
the viewer leaves the cursor still and the spokes rotate out from under the cursor, then the

TouchSensor node won’t notice the change and won’t send a FALSE to stop the animation.
Later, if the viewer jiggles the cursor, the TouchSensor node will notice the change, check the
cursor’s new location, and stop the animation if the cursor is no longer over the sensed shape.

Triggering animations using proxy shapes
To avoid problems with a shape animating out from under the cursor, you can use a proxy shape
instead to control the animation. A proxy shape is an invisible stand-in for a normal shape, sensed
but not seen. Like any other shape, a proxy shape is built with a Shape node, positioned using a
Transform node, and can be sensed by a TouchSensor node. The only difference is that the
proxy shape is typically made invisible by setting the transparency field value to 1.0 for the
shape’s Material node.

Proxy shapes can be used to create touch sensitive invisible areas in your world. For example, the
VRML text in Figure 3 uses an invisible box proxy shape to make the rectangular area around the
spinning spokes touch sensitive. Movement of the viewer’s cursor over the invisible proxy shape
starts the spokes spinning. The proxy shape is stationary, enabling the animation to continue to run
even if the spokes rotate out from under the viewer’s cursor. Only movement of the viewer’s
cursor off the stationary proxy shape stops the animation.

#VRML V2.0 utf8
#
Spin while the cursor is over the proxy shape
#
DEF Spokes Transform {
 # rotation animated
 children [
 Shape {
 appearance DEF SpokeColor Appearance {
 material Material { diffuseColor 1.0 1.0 0.0 }
 }
 geometry Box { size 0.5 4.0 0.5 }
 }
 Shape {
 appearance USE SpokeColor
 geometry Box { size 4.0 0.5 0.5 }
 }
]
}
#
Proxy shape
#
Transform {
 children [
 DEF Start TouchSensor { }
 Shape {
 appearance DEF SpokeColor Appearance {
 material Material { transparency 1.0 }
 }
 geometry Box { size 4.0 4.0 0.5 }
 }
]
}
DEF Clock TimeSensor {
 enabled FALSE
 # enabled set on over
 cycleInterval 4.0
 loop TRUE
 startTime 1.0
 stopTime 0.0
}
DEF Spinner OrientationInterpolator {
 key [0.0, 0.5, 1.0]
 keyValue [
 0.0 0.0 1.0 0.0,
 0.0 0.0 1.0 -3.14,
 0.0 0.0 1.0 -6.28
]
}
ROUTE Start.isOver TO Clock.set_enabled
ROUTE Clock.fraction_changed TO Spinner.set_fraction
ROUTE Spinner.value_changed TO Spokes.set_rotation

Figure 3. A pair of wheel spokes that spin when the viewer’s cursor moves over an invisible box proxy shape
Click on the image to load the world.

While building a world, it can be helpful to make proxy shapes partially visible by setting their
Material node’s transparency field value to a number between 0.0 (opaque) and 1.0 (fully
transparent). Figure 4 shows a partially visible view of the proxy shape used in Figure 3.

Figure 4. The proxy shape of Figure 3 made partially visible

Triggering animations with mouse button presses
The isOver eventOut of a TouchSensor node sends TRUE and FALSE values when the viewer’s
cursor moves over and off a sensed shape. The isActive eventOut, however, sends TRUE and
FALSE values when the viewer presses and releases a mouse button over a sensed shape.

The VRML text in Figure 5 builds a ball that bounces when the viewer presses the mouse button
over the shape, and stops bouncing when the mouse button is released. A TouchSensor node
senses the ball shape. The sensor’s isActive eventOut is routed into a TimeSensor node’s enabled
field, and the TimeSensor node’s output routed into interpolators to bounce the ball, squishing it a
bit each time it lands.

When the viewer’s cursor moves over the ball and the mouse button is pressed, the TouchSensor
node sends a TRUE using its isActive eventOut, starting the bouncing animation. When the
mouse button is released, a FALSE is sent using the isActive eventOut, stoping the animation.

#VRML V2.0 utf8

#
Ball that bounces while the cursor is over it
and the mouse button is pressed
#
DEF Ball Transform {
 # translation animated
 # scale animated
 children [
 DEF Touch TouchSensor { }
 Shape {
 appearance Appearance {
 material Material { diffuseColor 0.0 0.7 1.0 }
 }
 geometry Sphere { }
 }
]
}
DEF BounceClock TimeSensor {
 enabled FALSE
 # enabled set on mouse button press
 cycleInterval 1.0
 loop TRUE
 startTime 1.0
 stopTime 0.0
}
DEF BouncePosition PositionInterpolator {
 key [
 # Squish and leap...
 0.0, 0.055, 0.11,
 # Parabolic arc up and down...
 0.22, 0.33, 0.44, 0.55, 0.66, 0.77, 0.88,
 # Land...
 1.0
]
 keyValue [
 # Squish and leap...
 0.00 0.00 0.00, # 0.0
 0.00 -0.20 0.00, # 0.055
 0.00 0.00 0.00, # 0.11
 # Parabolic arc up and down...
 0.00 0.35 0.00, # 0.22
 0.00 0.59 0.00, # 0.33
 0.00 0.73 0.00, # 0.44
 0.00 0.78 0.00, # 0.55
 0.00 0.73 0.00, # 0.66
 0.00 0.59 0.00, # 0.77
 0.00 0.35 0.00, # 0.88
 # Land...
 0.00 0.00 0.00, # 1.0
]
}
DEF BounceSquish PositionInterpolator {
 key [
 # Squish and leap...
 0.0, 0.055, 0.11,
 # Parabolic arc up and down...
 # Land...
 1.0
]
 # Values are scaling factors, not positions
 keyValue [
 # Squish and leap...
 1.0 1.0 1.0, # 0.0
 1.1 0.8 1.1, # 0.055
 1.0 1.0 1.0, # 0.11
 # Parabolic arc up and down...
 # Land...
 1.0 1.0 1.0, # 1.0
]
}
ROUTE Touch.isActive TO BounceClock.set_enabled
ROUTE BounceClock.fraction_changed TO BouncePosition.set_fraction
ROUTE BounceClock.fraction_changed TO BounceSquish.set_fraction
ROUTE BouncePosition.value_changed TO Ball.set_translation
ROUTE BounceSquish.value_changed TO Ball.set_scale

Figure 5. A ball that bounces when the viewer’s mouse button is pressed
Click on the image to load the world.

As you experiment with the bouncing ball, notice that the ball stops its bouncing when you release
the mouse button. However, the next time you press the mouse button the ball does not start where
it left off. Why?

A TimeSensor node senses the passage of time even when its enabled field value is FALSE.
While disabled, the sensor continues computing new fractional time values as if it were enabled,
but doesn’t output them. Later, if the sensor is enabled, the values again flow out of the sensor.

The effect seen by disabling and enabling a TimeSensor node is similar to fiddling with the
volume knob on your stereo while a cassette tape is playing. Disabling a TimeSensor node is like
turning down the volume knob: the output is disabled, but the cassette tape continues to play.
Enabling a TimeSensor node is like turning the volume back up: the output returns to normal,
joining the cassette tape’s playback in progress.

The VRML examples in Figures 3 and 5 both use TouchSensor node outputs to enable and
disable a running TimeSensor node. Each time the node is enabled, the viewer joins the animation
in progress. This causes a jump in the animated shape’s position as it leaps from its old position to
where it should be in the in-progress animation. If this isn’t the effect you want, you can use the
touchTime eventOut of a TouchSensor instead.

Triggering animations with touch time
Recall that a TimeSensor node has a start time and a stop time. If the start time is set to a time
greater than the stop time, then the timer starts running at the start time and continues forever (if
the loop field value is TRUE), or runs only for a single cycle (if the loop field value is FALSE).
If you wire a circuit into a TimeSensor node’s startTime field, you can set the time at which the
sensor starts running, and thereby control the start time of any animation to which the TimeSensor
node is wired.

The VRML text in Figure 6 builds three boxes that spin 90.0 degrees when animated. To start the
animation, the touchTime eventOut of a TouchSensor node is routed into the startTime field of
a TimeSensor node. The TimeSensor node’s output is then routed into three
OrientationInterpolator nodes which are, in turn, routed into three Transform nodes for the
three boxes.

When the viewer clicks the mouse button atop the sensed shape, the TouchSensor node sends the
time at which the shape was touched using its touchTime eventOut. The touch time sets the
TimeSensor node’s start time, and the animation begins. By using a FALSE value for the
TimeSensor node’s loop field, the timer runs for a single cycle then stops. When the viewer clicks
the mouse button atop the sensed shape again, the TimeSensor node starts again, and the
animation runs through another cycle.

#VRML V2.0 utf8
#
Boxes that spin when touched
#
Transform {
 children [
 DEF Start TouchSensor { }
 DEF SpinMe1 Transform {
 children Shape {
 appearance Appearance {
 material Material { diffuseColor 0.0 0.5 1.0 }
 }
 geometry Box { size 4.0 4.0 4.0 }
 }
 }
 DEF SpinMe2 Transform {
 children Shape {
 appearance Appearance {
 material Material { diffuseColor 1.0 0.0 1.0 }
 }
 geometry Box { size 3.9 3.9 3.9 }
 }
 }
 DEF SpinMe3 Transform {
 children Shape {
 appearance Appearance {
 material Material { diffuseColor 0.5 0.0 1.0 }
 }
 geometry Box { size 3.8 3.8 3.8 }
 }
 }
]
}
DEF Clock TimeSensor {
 cycleInterval 2.0
 loop FALSE
 startTime 0.0
 stopTime 1.0
 # start time set on touch
}
DEF Spinner1 OrientationInterpolator {
 key [0.0, 1.0]
 keyValue [0.0 1.0 0.0 0.0, 0.0 1.0 0.0 1.57]
}
DEF Spinner2 OrientationInterpolator {
 key [0.0, 1.0]
 keyValue [1.0 0.0 0.0 0.0, 1.0 0.0 0.0 1.57]
}
DEF Spinner3 OrientationInterpolator {
 key [0.0, 1.0]
 keyValue [0.0 0.0 1.0 0.0, 0.0 0.0 1.0 1.57]
}
ROUTE Start.touchTime TO Clock.set_startTime
ROUTE Clock.fraction_changed TO Spinner1.set_fraction
ROUTE Clock.fraction_changed TO Spinner2.set_fraction
ROUTE Clock.fraction_changed TO Spinner3.set_fraction
ROUTE Spinner1.value_changed TO SpinMe1.set_rotation
ROUTE Spinner2.value_changed TO SpinMe2.set_rotation
ROUTE Spinner3.value_changed TO SpinMe3.set_rotation

Figure 6. Three boxes that spin when the viewer clicks on them
Click on the image to load the world.

Creating 3D buttons
Recall that the stopTime field of a TimeSensor node sets the time at which the timer stops. By
wiring an animation circuit into a TimeSensor node’s startTime and stopTime fields, you can
start and stop the timer and thereby start and stop any animation controlled by the timer.

The VRML text in Figure 7 builds a simple control panel with two buttons. A TouchSensor node
senses a green "on" button that, when pressed, sets a TimeSensor node’s start time. Similarly, a
second TouchSensor node senses a red "off" button that, when pressed, sets the timer’s stop time.

#VRML V2.0 utf8
#
Start and stop buttons
#
Transform {
 translation -5.0 1.0 0.0
 children [
 DEF Start TouchSensor { }
 Shape {
 appearance Appearance {
 material Material { diffuseColor 0.0 1.0 0.0 }
 }
 geometry Box { size 2.0 1.0 0.25 }
 }
]
}
Transform {
 translation -5.0 -1.0 0.0
 children [
 DEF Stop TouchSensor { }
 Shape {
 appearance Appearance {
 material Material { diffuseColor 1.0 0.0 0.0 }
 }
 geometry Box { size 2.0 1.0 0.25 }
 }
]
}
#
Spinning boxes
#
DEF SpinMe1 Transform {
 children Shape {
 appearance Appearance {
 material Material { diffuseColor 0.0 0.5 1.0 }
 }
 geometry Box { size 4.0 4.0 4.0 }
 }
}
DEF SpinMe2 Transform {
 children Shape {
 appearance Appearance {
 material Material { diffuseColor 1.0 0.0 1.0 }
 }
 geometry Box { size 3.9 3.9 3.9 }
 }
}
DEF SpinMe3 Transform {
 children Shape {
 appearance Appearance {
 material Material { diffuseColor 0.5 0.0 1.0 }
 }
 geometry Box { size 3.8 3.8 3.8 }
 }
}

DEF Clock TimeSensor {
 cycleInterval 2.0
 loop TRUE
 startTime 0.0
 stopTime 1.0
 # start time set on touch
}
DEF Spinner1 OrientationInterpolator {
 key [0.0, 1.0]
 keyValue [0.0 1.0 0.0 0.0, 0.0 1.0 0.0 1.57]
}
DEF Spinner2 OrientationInterpolator {
 key [0.0, 1.0]
 keyValue [1.0 0.0 0.0 0.0, 1.0 0.0 0.0 1.57]
}
DEF Spinner3 OrientationInterpolator {
 key [0.0, 1.0]
 keyValue [0.0 0.0 1.0 0.0, 0.0 0.0 1.0 1.57]
}
ROUTE Start.touchTime TO Clock.set_startTime
ROUTE Stop.touchTime TO Clock.set_stopTime
ROUTE Clock.fraction_changed TO Spinner1.set_fraction
ROUTE Clock.fraction_changed TO Spinner2.set_fraction
ROUTE Clock.fraction_changed TO Spinner3.set_fraction
ROUTE Spinner1.value_changed TO SpinMe1.set_rotation
ROUTE Spinner2.value_changed TO SpinMe2.set_rotation
ROUTE Spinner3.value_changed TO SpinMe3.set_rotation

Figure 7. Three boxes that start spinning when the green button is pressed, and stop when the red button is
pressed

Click on the image to load the world.

As you experiment with the example in Figure 7, notice that the animation starts over from the
beginning each time you press the green start button. Why doesn’t it continue from where it left
off the last time you pressed the red stop button?

Animations in VRML 2.0 are typically controlled by the fractional time output of a TimeSensor
node, like that used in Figure 7. Each time the timer starts, its fractional time output resets to 0.0
and the timer begins a new cycle. This behavior of a TimeSensor node insures that starting the
sensor always starts an animation from the beginning, not somewhere in the middle.

You can create animation pause buttons, toggle buttons, and a variety of user interface widgets by
wiring animation circuits using TouchSensor and TimeSensor nodes and VRML 2.0’s advanced
Script node. The Script node enables you to write small program scripts in the Java, JavaScript,
or VRMLScript programming languages. By writing your own program scripts you can gain
access to advanced VRML 2.0 features and implement pause buttons, toggle buttons, and other
behaviors not supported directly by the stock VRML 2.0 nodes. The advanced abilities of the
Script node will be discussed in a future column.

Experimenting with time sensors
The TimeSensor node forms the foundation atop which virtually all VRML 2.0 animations are
built. Each of the examples in this column, and last month’s, illustrate standard uses of
TimeSensor nodes. To create more advanced timing effects, you can wire together multiple
TimeSensor nodes in the same circuit.

Counting timer cycles
Each of the examples shown so far create one of two types of animations:

Infinitely repeating animations that start and stop under viewer control

Animations that run a single cycle then stop automatically

What if you want an animation to run for four cycles then stop? How would you do it?

The TimeSensor node does not include a built-in feature to run for a preset number of cycles.
However, you can create such a behavior using two TimeSensor nodes.

Recall that the enabled field of a TimeSensor node enables and disables the outputs of the timer.
Recall also that the TimeSensor node’s isActive eventOut sends a TRUE event value when the
timer starts, and a FALSE event value when the timer stops. If you route the isActive eventOut of
one timer into the enabled field of a second timer, then the first timer can start and stop the second
timer, and thereby start and stop any animation controlled by the second timer. If you set the cycle
interval of the first timer to be an integer multiple of the cycle interval of the second timer, then
the first timer acts like a cycle counter that only lets the second timer run for a selected number of
cycles.

The VRML text in Figure 8 builds a bouncing blue ball controlled by two TimeSensor nodes
configured so that the first timer starts and stops the second timer. When the blue ball is touched,
the touch time of a TouchSensor node sets the start time for both timers. The first timer,
configured as a cycle counter, starts immediately and enables the second timer. In response, the
second timer starts and begins bouncing the blue ball. When the first timer reaches the end of its
cycle, it stops and disables the second timer, which stops the animation. To let the ball bounce four
times, the first timer’s cycle interval is set to be four times that of the second timer.

#VRML V2.0 utf8
#
Ball that bounces four times when touched
#
DEF Ball Transform {
 # translation animated
 # scale animated
 children [
 DEF Touch TouchSensor { }
 Shape {
 appearance Appearance {
 material Material { diffuseColor 0.0 0.7 1.0 }
 }
 geometry Sphere { }
 }
]

}
#
Two clocks: one counts cycles while the
other animates a bouncing ball
#
DEF CycleClock TimeSensor {
 enabled TRUE
 cycleInterval 4.0 # 4 cycles
 loop FALSE
 startTime 0.0
 # start time set on mouse button press
 stopTime 1.0
}
DEF BounceClock TimeSensor {
 enabled FALSE
 # enabled set by cycle clock
 cycleInterval 1.0
 loop TRUE
 startTime 1.0
 # start time set on mouse button press
 stopTime 0.0
}
DEF BouncePosition PositionInterpolator {
 key [
 # Squish and leap...
 0.0, 0.055, 0.11,
 # Parabolic arc up and down...
 0.22, 0.33, 0.44, 0.55, 0.66, 0.77, 0.88,
 # Land...
 1.0
]
 keyValue [
 # Squish and leap...
 0.00 0.00 0.00, # 0.0
 0.00 -0.20 0.00, # 0.055
 0.00 0.00 0.00, # 0.11
 # Parabolic arc up and down...
 0.00 0.35 0.00, # 0.22
 0.00 0.59 0.00, # 0.33
 0.00 0.73 0.00, # 0.44
 0.00 0.78 0.00, # 0.55
 0.00 0.73 0.00, # 0.66
 0.00 0.59 0.00, # 0.77
 0.00 0.35 0.00, # 0.88
 # Land...
 0.00 0.00 0.00, # 1.0
]
}
DEF BounceSquish PositionInterpolator {
 key [
 # Squish and leap...
 0.0, 0.055, 0.11,
 # Parabolic arc up and down...
 # Land...
 1.0
]
 # Values are scaling factors, not positions
 keyValue [
 # Squish and leap...
 1.0 1.0 1.0, # 0.0
 1.1 0.8 1.1, # 0.055
 1.0 1.0 1.0, # 0.11
 # Parabolic arc up and down...
 # Land...
 1.0 1.0 1.0, # 1.0
]
}
ROUTE Touch.touchTime TO CycleClock.set_startTime
ROUTE Touch.touchTime TO BounceClock.set_startTime
ROUTE CycleClock.isActive TO BounceClock.set_enabled
ROUTE BounceClock.fraction_changed TO BouncePosition.set_fraction
ROUTE BounceClock.fraction_changed TO BounceSquish.set_fraction
ROUTE BouncePosition.value_changed TO Ball.set_translation
ROUTE BounceSquish.value_changed TO Ball.set_scale

Figure 8. Two timers configured so that one timer starts and stops the other
Click on the image to load the world.

Creating periodic animations
A periodic animation is one that starts, stops, sleeps, then starts over again on a regular basis. The
cuckoo movement of a cuckoo clock, for instance, is periodic: it runs once every hour and is
dormant in between. You can create periodic animations using two TimeSensor nodes configured
in a manner similar to that in Figure 8.

Recall that the cycleTime eventOut of a TimeSensor node sends the current time each time the
sensor starts a new cycle. If you route this time into the startTime field of a second TimeSensor
node, then the second timer will start each time the first node begins a new cycle.

The VRML text in Figure 9 uses two TimeSensor nodes to create a periodic leap-frog motion for
two box shapes. A first timer, named PeriodicTimer, runs through 4.0 second long cycles,
repeating indefinitely. The timer’s cycleTime eventOut is routed into a second timer, named
LeapFrogTimer, that runs for a single 2.0 second long cycle each time it is started. The second
timer controls two interpolators which, in turn, control the position of the two leap-frogging boxes.

Each time the PeriodicTimer starts a new 4.0 second long cycle, its cycleTime eventOut sets the
start time of the LeapFrogTimer. That timer starts, runs for 2.0 seconds, causes the boxes to leap
frog, then stops. In another 2.0 seconds, the PeriodicTimer finishes another 4.0 second cycle,
sends another time out its cycleTime eventOut, and the whole thing repeats.

#VRML V2.0 utf8
#
Leap-frogging boxes
#
DEF RightBox Transform {
 # translation animated
 children [
 DEF Part1 Shape {
 appearance Appearance {
 material Material { diffuseColor 1.0 1.0 0.0 }
 }
 geometry Box { }
 }
 DEF Part2 Shape {
 appearance DEF Orange Appearance {
 material Material { diffuseColor 1.0 0.4 0.0 }
 }
 geometry Box { size 2.4 1.6 1.6 }
 }
 DEF Part3 Shape {
 appearance USE Orange
 geometry Box { size 1.6 2.4 1.6 }
 }
 DEF Part4 Shape {
 appearance USE Orange
 geometry Box { size 1.6 1.6 2.4 }
 }
]
}
DEF LeftBox Transform {
 # translation animated
 children [USE Part1, USE Part2, USE Part3, USE Part4]
}

#
Timers and interpolators
#
DEF PeriodicTimer TimeSensor {
 cycleInterval 4.0
 loop TRUE
 startTime 1.0
 stopTime 0.0
}
DEF LeapFrogTimer TimeSensor {
 cycleInterval 2.0
 loop FALSE
 startTime 0.0
 # start time set by periodic timer
 stopTime 1.0
}

DEF LeftToRight PositionInterpolator {
 key [0.0, 1.0]
 keyValue [-3.0 0.0 0.0, 3.0 0.0 0.0]
}
DEF RightToLeft PositionInterpolator {
 key [0.0, 0.17, 0.33, 0.5, 0.66, 0.83, 1.0]
 keyValue [
 3.0 0.0 0.0, 2.6 1.5 0.0, 1.5 2.6 0.0, 0.0 3.0 0.0,
 -1.5 2.6 0.0, -2.6 1.5 0.0, -3.0 0.0 0.0,
]
}

ROUTE PeriodicTimer.cycleTime TO LeapFrogTimer.set_startTime
ROUTE LeapFrogTimer.fraction_changed TO LeftToRight.set_fraction
ROUTE LeapFrogTimer.fraction_changed TO RightToLeft.set_fraction
ROUTE LeftToRight.value_changed TO LeftBox.set_translation
ROUTE RightToLeft.value_changed TO RightBox.set_translation

Figure 9. Two timers configured so that one timer periodically starts the second timer
Click on the image to load the world.

The animation in Figure 9 runs forever. You could add TouchSensor nodes to start the animation
when either of the boxes are touched. To make the animation run only for a chosen number of
leap-frogs, then stop, you could add a third TimeSensor node to automatically start and stop the

PeriodicTimer sensor by using exactly the same technique illustrated in the VRML text in Figure
8!

Creating a stop watch
By using multiple time and touch sensor techniques you can create complex interactive animated
shapes. The VRML text in Figure 10 builds a stop watch with these characteristics:

Hour, minute, and second hands animate continuously, always showing the current
time of day in Pacific Standard Time
A red sweep hand starts and stops when the viewer touches green and red buttons
Every 15 minutes, a periodic animation puts on a show

To create the hour, minute, and second hand motion, three separate TimeSensor nodes tick
through 60.0 second (1 minute), 3600.0 second (1 hour), and 43200.0 second (12 hour) cycles.
Each hand timer is routed to an OrientationInterpolator node to rotate the appropriate hand.

A red stop watch sweep hand uses another TimeSensor node and OrientationInterpolator node.
The timer’s start and stop time values are set by start and stop buttons, each sensed by a
TouchSensor node.

A periodic animation runs every 15 minutes, controlled by a pair of TimeSensor nodes. The first
timer controls the animation period, automatically starting the second timer every 900.0 seconds
(15 minutes). The second timer controls OrientationInterpolator and PositionInterpolator
nodes to spin and scale the clock.

#VRML V2.0 utf8
#
A stop-watch with automatically moving second, minute,
and hour hands, start and stop buttons, and a stop-watch sweep
second hand
#
DEF StopWatch Transform {
 # rotation animated
 # scale animated
 children [
 # Frame and face
 Transform {
 rotation 1.0 0.0 0.0 1.571
 children [
 # Frame

 Shape {
 appearance Appearance {
 material Material { diffuseColor 0.7 0.3 0.0 }
 }
 geometry Cylinder {
 radius 4.8
 height 0.8
 }
 }
 # Face
 Shape {
 appearance Appearance {
 material Material { diffuseColor 1.0 1.0 1.0 }
 }
 geometry Cylinder {
 radius 4.0
 height 0.9
 }
 }
]
 }
 # Start button
 Transform {
 translation 3.5 3.5 0.0
 rotation 0.0 0.0 1.0 -0.71
 children [
 DEF Start TouchSensor { }
 Shape {
 appearance Appearance {
 material Material { diffuseColor 0.0 1.0 0.0 }
 }
 geometry Cylinder {
 radius 0.38
 height 0.3
 }
 }
]
 }
 # Stop button
 Transform {
 translation -3.5 3.5 0.0
 rotation 0.0 0.0 1.0 0.71
 children [
 DEF Stop TouchSensor { }
 Shape {
 appearance Appearance {
 material Material { diffuseColor 1.0 0.0 0.0 }
 }
 geometry Cylinder {
 radius 0.38
 height 0.3
 }
 }
]
 }
 # Hands
 DEF MinuteHand Transform {
 translation 0.0 1.5 0.6
 center 0.0 -1.5 0.6
 # animated rotation
 children [
 # Arm
 DEF Arm Shape {
 appearance DEF Black Appearance {
 material Material { diffuseColor 0.2 0.2 0.2 }
 }
 geometry Cylinder {
 radius 0.17
 height 3.0
 }
 }
 # Pointy end
 DEF ArrowHead Transform {
 translation 0.0 1.9 0.0
 children Shape {
 appearance USE Black
 geometry Cone {
 bottomRadius 0.4
 height 0.8
 }
 }
 }

]
 }
 DEF HourHand Transform {
 translation 0.0 1.5 0.6
 center 0.0 -1.5 0.6
 # animated rotation
 scale 1.0 0.7 1.0
 children [USE Arm, USE ArrowHead]
 }
 DEF SecondHand Transform {
 translation 0.0 1.5 0.6
 center 0.0 -1.5 0.6
 # animated rotation
 scale 0.6 1.0 0.6
 children [USE Arm, USE ArrowHead]
 }
 DEF SweepHand Transform {
 translation 0.0 1.9 0.6
 center 0.0 -1.9 0.6
 # animated rotation
 scale 0.6 1.0 0.6
 children Shape {
 appearance DEF Black Appearance {
 material Material { diffuseColor 1.0 0.0 0.0 }
 }
 geometry Cylinder {
 radius 0.17
 height 3.8
 }
 }
 }
]
}

#
Timers and interpolators to spin hands
#
DEF SecondTimer TimeSensor {
 cycleInterval 60.0 # 60 seconds per sweep
 loop TRUE
 startTime 0.0
 stopTime -1.0
}
DEF MinuteTimer TimeSensor {
 cycleInterval 3600.0 # 60*60 seconds per sweep
 loop TRUE
 startTime 0.0
 stopTime -1.0
}
DEF HourTimer TimeSensor {
 cycleInterval 43200.0 # 60*60*12 seconds per sweep
 loop TRUE
 startTime 28800.0 # Adjust for Pacific Standard Time
 # start time of 0 is midnight Grenwich Mean Time (GMT)
 # Pacific Mean Time (PST) is 8 hours behind GMT
 stopTime -1.0
}

DEF SecondSpinner OrientationInterpolator {
 key [0.0, 0.5, 1.0]
 keyValue [0.0 0.0 1.0 0.0, 0.0 0.0 1.0 -3.14, 0.0 0.0 1.0 -6.28]
}
DEF MinuteSpinner OrientationInterpolator {
 key [0.0, 0.5, 1.0]
 keyValue [0.0 0.0 1.0 0.0, 0.0 0.0 1.0 -3.14, 0.0 0.0 1.0 -6.28]
}
DEF HourSpinner OrientationInterpolator {
 key [0.0, 0.5, 1.0]
 keyValue [0.0 0.0 1.0 0.0, 0.0 0.0 1.0 -3.14, 0.0 0.0 1.0 -6.28]
}

ROUTE SecondTimer.fraction_changed TO SecondSpinner.set_fraction
ROUTE MinuteTimer.fraction_changed TO MinuteSpinner.set_fraction
ROUTE HourTimer.fraction_changed TO HourSpinner.set_fraction
ROUTE SecondSpinner.value_changed TO SecondHand.set_rotation
ROUTE MinuteSpinner.value_changed TO MinuteHand.set_rotation
ROUTE HourSpinner.value_changed TO HourHand.set_rotation

#
Timer and interpolators to spin stop watch hand
#
DEF SweepTimer TimeSensor {

 cycleInterval 60.0 # 60 seconds per sweep
 loop TRUE
 startTime 0.0
 # start time set on start button press
 stopTime 1.0
 # stop time set on stop button press
}
DEF SweepSpinner OrientationInterpolator {
 key [0.0, 0.5, 1.0]
 keyValue [0.0 0.0 1.0 0.0, 0.0 0.0 1.0 -3.14, 0.0 0.0 1.0 -6.28]
}

ROUTE Start.touchTime TO SweepTimer.set_startTime
ROUTE Stop.touchTime TO SweepTimer.set_stopTime
ROUTE SweepTimer.fraction_changed TO SweepSpinner.set_fraction
ROUTE SweepSpinner.value_changed TO SweepHand.set_rotation

#
Timers and interpolators for quarter-hour animations
#
DEF QuarterHour TimeSensor {
 cycleInterval 900.0 # 60*15 seconds per action
 loop TRUE
 startTime 28800.0 # PST
 stopTime -1.0
}
DEF QuarterAnimation TimeSensor {
 cycleInterval 3.0
 loop FALSE
 startTime -1.0
 # start time set by quarter-hour clock
 stopTime 0.0
}

DEF QuarterSpinner OrientationInterpolator {
 key [0.0, 0.5, 1.0]
 keyValue [1.0 1.0 0.0 0.0, 1.0 1.0 0.0 -3.14, 1.0 1.0 0.0 -6.28]
}
DEF QuarterSquisher PositionInterpolator {
 key [0.0, 0.25, 0.5, 0.75, 1.0]
 keyValue [
 1.0 1.0 1.0, 0.1 3.0 1.2, 3.0 0.1 1.0, 0.3 2.0 1.2,
 1.0 1.0 1.0,
]
}

ROUTE QuarterHour.cycleTime TO QuarterAnimation.set_startTime
ROUTE QuarterAnimation.fraction_changed TO QuarterSpinner.set_fraction
ROUTE QuarterAnimation.fraction_changed TO QuarterSquisher.set_fraction
ROUTE QuarterSpinner.value_changed TO StopWatch.set_rotation
ROUTE QuarterSquisher.value_changed TO StopWatch.set_scale

Figure 10. A stop watch with continuous animation, periodic animation, and animation started and stopped by
the viewer’s touch

Click on the image to load the world.

Notice that the stop watch shows the correct time (if you live in the Pacific Standard Time (PST)
time zone)! How is this done?

Recall that a TimeSensor node uses start and stop times measured since 12:00 midnight,
Grenwich Mean Time (GMT), January 1st, 1970. So, a startTime field value of 0.0 starts a timer
at midnight on this date, and a value of 1.0 starts it 1 second later.

To start a timer at a specific time in the history or future of your world, compute the number of
seconds since 12:00 midnight, GMT, January 1st, 1970. There are 3600 seconds in an hour,
86,400 seconds in a day, 31,536,000 seconds in a year of 365 days, and so on.

Times computed in this manner are always in GMT. To convert to another time zone, add or
subtract the appropriate number of hours. Pacific Standard Time (PST), for instance, is eight hours

behind GMT.

The stop watch in Figure 10 uses these time calculations to start the stop watch hands moving at 8
hours after 12:00 midnight, GMT, January 1st, 1970. This insures that the timers are synchronized
to PST, 8 hours delayed from GMT.

Next in the VRML Technique column
This month’s column concludes this series introducing VRML 2.0’s shape-building, animation,
and interaction features. Next month I’ll take a look at what’s happening in the VRML industry.
I’ll report on the recent WorldMovers and VRML ’97 conferences, highlight a few of the
announcements made at those conferences, and provide some perspective on where the industry is
going and what might happen next.

Resources

A list of David Nadeau’s VRML Technique columns in NetscapeWorld
VRML 2.0 browsers NetscapeWorld’s guide to finding and installing a VRML browser on
your computer.
VRML 2.0 glossary
NetscapeWorld’s VRML vendors chart A handy reference of VRML browser and server
companies including their plug-ins to Web browsers -- with updated items in bold to aid
your review -- and links to all the vendors.
http://www.netscapeworld.com/netscapeworld/common/nw.vrmltable.html
The UTF-8 character set sidebar accompanying the first VRML Technique column.

Specifications

VRML 2.0 specification http://vag.vrml.org/VRML2.0/FINAL/
ISO 10646-1:1993 Universal Character Set (UCS) specification sales information
http://www.iso.ch/cate/d18741.html
UTF-8 character encoding scheme for UCS
http://www.dkuug.dk/JTC1/SC2/WG2/docs/n1335

Sites

The VRML Repository http://www.sdsc.edu/vrml
VRML Architecture Group http://vag.vrml.org

About the author
David R. Nadeau is a co-author of The VRML 2.0 Sourcebook, published by John Wiley & Sons
and written with Andrea L. Ames and John L. Moreland. David is a staff researcher at the San
Diego Supercomputer Center where he is a specialist in 3-D computer graphics, virtual reality, and
scientific visualization. He is also the creator of The VRML Repository, a Web site providing
extensive information on VRML software, documentation, and 3-D worlds.

You can buy David R. Nadeau’s The VRML 2.0 Sourcebook at a 20% discount from
Amazon.com Books.

Feedback: nweditors@netscapeworld.com

URL : http://www.netscapeworld.com/netscapeworld/nw-03-1997/nw-03-vrmltechnique.html
Last updated: Monday, March 31, 1997

How to view VRML 2.0
Finding and installing the right VRML browser for your computer

By David R. Nadeau

Table of contents

Obtaining a VRML 2.0 browser

Installing a VRML 2.0 browser

Installing DimensionX’s LiquidReality
Installing Intervista’s WorldView
Installing Netscape’s Live3D
Installing Silicon Graphics’ Cosmo Player
Installing Sony’s Community Place

Switching among VRML 2.0 browser plug-ins

Configuring your system

Obtaining a VRML 2.0 browser
DimensionX, Intervista, Newfire, Netscape, Silicon Graphics (SGI), and Sony each provide
freely-downloadable VRML 2.0 browser plug-ins for use with Netscape Navigator or Microsoft
Intenet Explorer.

DimensionX, Intervista, Netscape, SGI, and Sony browsers run on PCs with Windows 95. SGI
also provides a version of their browser that runs on their Unix workstations. DimensionX
provides versions of their browser that work on SGI, Sun, and Linux platforms. The latest version
of Netscape Navigator, Netscape Communicator, or Microsoft Internet Explorer is required by
most VRML browser plug-ins.

You can obtain information on Netscape Navigator and Communicator from Netscape’s web site
at:

http://www.netscape.com

You can obtain information on Microsoft Internet Explorer from Microsoft’s web site at:

http://www.microsoft.com

Installing a VRML 2.0 browser
All VRML 2.0 browsers load and display VRML 2.0 worlds. Browsers differ in their user
interfaces, drawing speed, image quality, documentation, and completeness of their VRML 2.0
feature support. To find the browser that’s right for you, download them all and try them out.

Installing DimensionX’s LiquidReality
Unlike other VRML 2.0 browsers, DimensionX’s LiquidReality VRML 2.0 browser is written
primarily in Java and runs as a Java applet. You can download the LiquidReality Java applet and
support files from DimensionX’s Web site at:

http://www.dimensionx.com

LiquidReality is currently available in a 1.0 beta release for PCs running Windows 95, Windows
NT 4.0, and Linux, as well as Sun workstations running Solaris, and SGI workstations running
IRIX.

Note: The beta release of LiquidReality does not yet support all VRML 2.0 features.
See the product’s release notes for feature support details.

Detailed installation instructions for a variety of platforms are available at DimensionX’s Web
site.

Installing Intervista’s WorldView
You can download the WorldView VRML 2.0 browser plug-in from Intervista’s Web site at:

http://www.intervista.com

WorldView is currently available in a beta release for PCs running Windows 95.

Note: The beta release of WorldView does not yet support all VRML 2.0 features. See
the product’s release notes for feature support details.

To install WorldView, download the release from Intervista’s Web site, then double-click on the
file to run the installation wizard to walk you through the rest of the installation procedure.

Intervista’s WorldView installation automatically installs the browser, plus Intel’s RSX II
software. RSX provides advanced sound playback features used by WorldView to enhance the
realism of sounds played within VRML 2.0 worlds.

Once installed, WorldView acts as a plug-in for Netscape Navigator. To load a VRML 2.0 world,
open the world’s file or URL within Navigator. The WorldView plug-in is automatically invoked
and the VRML world displayed within the Navigator window.

Installing Netscape’s Live3D
Netscape’s Communicator preview release includes the Live3D 2.0 browser plug-in. Unlike the
prior Live3D 1.0, the new version supports VRML 2.0. You can download the Netscape
Communicator preview release from Netscape’s Web site at:

http://www.netscape.com

Live3D is currently available in a beta release for PCs running Windows 95.

Note: The beta release of Live3D does not yet support all VRML 2.0 features. See the
product’s release notes for feature support details.

To install Netscape Communicator, download the release from Netscape’s Web site, then
double-click on the file to run the installation wizard to walk you through the rest of the
installation procedure.

Installing Silicon Graphics’ Cosmo Player
You can download the Cosmo Player VRML 2.0 browser plug-in from Silicon Graphics’ (SGI’s)

Web site at:

http://vrml.sgi.com

Cosmo Player is currently available in a beta release for PCs running Windows 95 or Windows
NT. Cosmo Player is also available in a full release for SGI workstations running IRIX 5.3 or
IRIX 6.2.

Note: The beta and full releases of Cosmo Player do not yet support all VRML 2.0
features. See the product’s release notes for feature support details.

To install Cosmo Player on a PC, download the release from SGI’s Web site, then double-click on
the file to run the installation wizard to walk you through the rest of the installation procedure.

SGI’s Cosmo Player PC installation automatically installs the browser, plus Intel’s RSX II
software. RSX provides advanced sound playback features used by Cosmo Player to enhance the
realism of sounds played within VRML 2.0 worlds.

To install Cosmo Player on an SGI Unix workstation, download the release tar archives from
SGI’s Web site. SGI also recommends that you download and install 18 Mbytes of operating
system patches. Using tar , extract the distribution files from the downloaded tar archive, then
install the distribution using inst or swmgr. You will need the root password to install the files.

Once installed, Cosmo Player acts as a plug-in for Netscape Navigator. To load a VRML 2.0
world, open the world’s file or URL within Navigator. The Cosmo Player plug-in is automatically
invoked and the VRML world displayed within the Navigator window.

Installing Sony’s Community Place
You can download the Community Place VRML 2.0 browser plug-in and helper application from
Sony’s Web site at:

http://vs.spiw.com/vs

Community Place is currently available in a full 1.0 release for PCs running Windows 95 or
Windows NT.

Note: The full release of Community Place does not yet support all VRML 2.0
features. See the product’s release notes for feature support details.

Sony provides two versions of Community Place: one that acts as a helper-application, and one
that acts as a plug-in for Netscape Navigator 3.0. Both versions provide identical functionality.
Most users will probably find that the plug-in version is more convenient since it can display
VRML 2.0 worlds directly within the Navigator window. The helper-application version instead
uses a separate application window for the display of VRML 2.0 worlds.

To install the Community Place helper-application or plug-in, download the release file then
double-click the downloaded file to run a ZIP file self-extractor that extracts the distribution into a
temporary folder of your choosing. Once extracted, double-click on Setup.exe to run the
installation wizard to walk you through the rest of the installation procedure.

Once installed, the Community Place helper-application acts as a slave application for Netscape

Navigator. To load a VRML 2.0 world, open the world’s file or URL within Navigator. The
Community Place helper-application is automatically invoked and the VRML world displayed in a
separate application window.

The Community Place plug-in works as a plug-in for Netscape Navigator. To load a VRML 2.0
world, open the world’s file or URL within Navigator. The Community Place plug-in is
automatically invoked and the VRML world displayed within the Navigator window.

Switching among VRML 2.0 browser plug-ins
Each time a VRML world is loaded into Netscape Navigator, the application looks for a VRML
plug-in to display the world. If you have more than one VRML plug-in installed, only the first
plug-in found by Navigator is used. If you want to install multiple VRML plug-ins and switch
among them, you will need to trick Navigator into loading the one you want.

On a PC, Netscape Navigator plug-ins are stored as DLL (Dynamically Loaded Library) files in a
plugins folder within the application’s folder. You can view your current set of plug-ins by
following these steps:

Open the plugins folder for Netscape Navigator

Open the Netscape application folder on your hard disk. This is often found in your
Program Files folder. Within the Netscape folder, open the Navigator folder (or Navigator
Gold), then the Program folder, and finally the plugins folder.

Show all hidden files

Using the View menu on any file and folder window, select Options to bring up an options
window. On the window’s View tab, click on Show all files, then click OK to close the
window.

By showing all files, you reveal the hidden plug-in DLL files in the plugins folder.

If you’ve installed all of the VRML 2.0 plug-ins from Intervista, Netscape, SGI, and Sony, you
should have a DLL file from each one in your plugins folder.

The table below shows the names of several VRML plug-in DLL files.

DLL file Plug-in

npcosmop.dll SGI Cosmo Player

npl3d32.dll Netscape Live3D

npvscp.dll Sony Community Place

npWorldView.dll Intervista WorldView

When Netscape Navigator looks for a VRML plug-in to display a VRML world, it selects the first
plug-in alphabetically. So, if you have all of the above plug-ins installed, SGI’s Cosmo Player will
always be selected. The plug-ins from Netscape, Sony, and Intervista will be ignored.

You can trick Navigator into selecting one of the other VRML plug-ins by one of three methods:

Drag unwanted plug-ins to another folder

For each plug-in you don’t want, move the plug-in’s DLL file to another folder. For
instance, you can create an unplugged folder within the Netscape Navigator Program
folder. If you don’t want the Live3D plug-in loaded, drag its DLL file out of the plugins
folder and into the unplugged folder:

Add an underscore to names of unwanted plug-ins

For each plug-in you don’t want, add an underscore (_) to the front of the plug-in’s DLL
file name. Leave unchanged the name of the VRML plug-in you do want.

The added underscore in the names of unwanted plug-in DLL files changes the alphabetic
sort order of the plug-ins. Plug-ins without underscores are sorted to the top of the list and
are chosen by Navigator in preference to those with underscores. For instance, if you don’t
want Cosmo Player, Live3D, or WorldView to load (leaving only Community Place), add
underscores to their DLL file names.

Use Sony’s plug-in chooser to deactivate unwanted plug-ins

Sony provides a plug-in chooser application which you can download from Sony’s Web site.
To install the application, download the file npc10.zip (112 Kbytes) and unzip it into a new
application folder. Double-click on the file NpChooser.exe to start the application and bring
up a plug-in chooser window.

The chooser window has an upper area that provides a scrolling list of content-types (also
known as MIME types). If you select one of the content types, the lower part of the chooser
window displays lists of active and inactive plug-ins for that content type. Clicking on the
name of an active or inactive plug-in displays information about that plug-in in the area to
the right.

To enable or disable VRML plug-ins, scroll through the content type list and look for one or
more entries with VRML’s type code: x-world/x-vrml . Click on the content type to display
active and inactive plug-ins in the lower part of the chooser window.

For each active plug-in you don’t want, click on the plug-in’s name in the active list, then
click on the red down-arrow to slide the plug-in to the inactive list. The chooser application
automatically adds an underscore (_) to the plug-in’s DLL name. Similarly, to activate an
inactive plug-in, click on the plug-in’s name in the inactive list, then click on the red
up-arrow to slide the plug-in to the active list.

In the future, choosing among different VRML plug-ins will probably be easier. A plug-in chooser
like Sony’s is expected to be integrated into the next version of Netscape Navigator.

Configuring your system
Once you have a VRML 2.0 browser installed, you should also adjust your screen settings to use
16-bit colors (also called High Color or 65535 colors). Do not use 8-bit colors (also called 256
colors), 24-bit colors or 32-bit colors (also called True colors). 8-bit colors give you too few
colors to achieve smooth realistic shading when VRML worlds are drawn. 24-bit and 32-bit colors
give you plenty of colors for shading, but the added colors require extra processing in your VRML
2.0 browser. That extra processing can significantly slow down the browser, reducing its
interactivity.

On a PC running Windows 95 or Windows NT, open your Display control panel and select the
Settings tab. Adjust the Color palette menu to select 65535 Colors (16-bit colors). Finally, click
the OK button. On some systems, you may be prompted to restart your computer to make the
changes take effect.

Feedback: nweditors@netscapeworld.com
URL : http://www.netscapeworld.com/nw-12-1996/sidebars/browsers.html
Last updated: Wednesday, February 19, 1997

The UTF-8 character set
VRML 2.0’s international character set

By David R. Nadeau

To enable VRML 2.0 browsers to display any character in any of the world’s languages, VRML
2.0 uses the UTF-8 Character Set Encoding defined by the International Standards Organization
(ISO) in the ISO 10646-1:1993 specification and the specification’s pDAM 1-5 extension.
VRML’s use of this character set standard enables you to use VRML features to build shapes for
any English alphabet character, as well as characters in Japanese, Arabic, Cyrillic, and other
languages.

UTF-8 is short for "UCS Transformation Format 8," and UCS is short for "Universal
Character Set." Putting these together, UTF-8 is a computer-encoding scheme (transformation
format) for storing characters in a file. The "8" in the UTF-8 name indicates that the basic unit of
encoding is an 8-bit byte.

The UTF-8 character set encoding includes, as a subset, all of the characters found in the ASCII
character set used by most computers. So, to put an "A" in a VRML 2.0 file, just type an "A."
International characters not found on the standard computer keyboard may be entered by typing in
their UTF-8 codes. This requires special features in your text editor or in a VRML world-building
application.

Note: For maximum portability of your VRML worlds, restrict your use of UTF-8
characters to only those found on the computer keyboard. There are over 24,000
characters defined in the ISO 10646-1:1993 standard, but only 127 in the ASCII
character set. Many VRML browsers will not support the full range of characters
theoretically available within VRML 2.0. Additionally, because the UTF-8 encoding
requires the use of 8-bit characters, instead of the more common 7-bit ASCII
characters, many text editing applications will be unable to create UTF-8 characters or
display them properly.

Feedback: nweditors@netscapeworld.com
URL : http://www.netscapeworld.com/netscapeworld/nw-12-1996/sidebars/utf8.html
Last updated: Wednesday, February 19, 1997

VRML 2.0 glossary
The key terms you need to know to get started with VRML

By David R. Nadeau

Appearance
A description of the coloration of a shape. Appearance is described by an Appearance node
type. [see Appearance node type, material, Material node type, and shape]

Appearance node type
A node type used to describe the coloration of a shape. Node fields specify the shape
material, texture, and texture transform (position, orientation, and scaling of the texture).
[see appearance, material, and Material node type]

Axis
An imaginary line establishing a direction in 3-D space. Three axes, labeled X, Y, and Z,
are typically used to indicate three orthogonal directions for a coordinate system. A rotation
axis is used when specifying an orientation for a coordinate system. [see coordinate system
and rotation axis]

Box node type
A geometry node type that builds a 3-D box or cube. A node field specifies the box width,
height, and depth. [see geometry and Shape node type]

Child coordinate system
A coordinate system built within the child list of a parent coordinate system. As the parent
coordinate system moves, orients, or scales, so does the child coordinate system. [see
coordinate system, parent coordinate system, rotation, scaling, and translation]

Click
A press, and immediate release of a pointing device button (such as a mouse button),
without movement of the cursor. [see drag, move, pointing device, and touch sensor node
type]

Comment
An arbitrary note included in a VRML file. A comment begins with a number-sign (#) and
extends to the line end. Comments are skipped by VRML browsers.

Cone node type
A geometry node type that builds a 3-D, upright cone. Node fields specify the cone height
and bottom radius. [see geometry and Shape node type]

Coordinate system
A center point and set of orthogonal reference axes used as a reference for measuring
distances and shape sizes. In a 3-D coordinate system, the axes are labeled X (side-to-side),
Y (up-and-down), and Z (front-to-back). The center point at which the three axes cross is
coordinate system origin. A new coordinate system is created by the Transform node type.

[see axis, child coordinate system, origin, parent coordinate system, and Transform node
type]

Cycle interval
The length of time, measured in seconds, that a TimeSensor node requires to vary its
fractional time output from 0.0 to 1.0. [see fractional time, time, and TimeSensor node type]

Cylinder node type
A geometry node type that builds a 3-D, upright cylinder. Node fields specify the cylinder
height and radius. [see geometry and Shape node type]

Data type
A description of a type of data, including floating-point numbers, integers, text strings,
colors, and more. Every field, exposed field, eventIn, and eventOut of a node has a data
type. Each event sent between eventOut and eventIn has a data type that matches that of the
eventOut and eventIn. [see event, eventIn, eventOut, exposed field, field, node, and route]

Defined name
A name given to a node using the DEF syntax. [see node name]

Degrees
A system for measuring angles wherein a full circle is 360.0 degrees. A value in degrees can
be converted to radians by this formula: radians = degrees * 3.142 / 180.0 . [see
radians and rotation angle]

Diffuse color
The basic color of a shape, resulting from the random scattering of light that falls on the
shape. A diffuse color is specified in the diffuseColor field of a Material node. [see Material
node type and RGB color]

Drag
A press of a pointing device button (such as a mouse button) followed by movement of the
cursor and a later release of the button. [see click, move, pointing device, and touch sensor
node type]

Emissive color
A glow color for a shape, resulting from the shape’s own emission of light. An emissive
color is specified in the emissiveColor field of a Material node. [see Material node type and
RGB color]

Event
A message sent from one node to another along an animation circuit route. Every event
contains a value, with a data type, and a time-stamp. [see data type, eventIn, eventOut,
route, and time-stamp]

EventIn
An input to a node used when wiring a route for an animation circuit. An eventIn has a
name and a data type. When wiring an animation circuit route, the data type of the eventIn
and eventOut on either end of the route must match. [see data type, event, eventOut,
exposed field, field, node, and route]

EventOut
An output from a node used when wiring a route for an animation circuit. An eventOut has a
name and a data type. When wiring an animation circuit route, the data type of the eventIn
and eventOut on either end of the route must match. [see data type, event, eventIn, exposed
field, field, node, and route]

Exposed field
A combination of a field, an eventIn, and an eventOut for a node. An exposed field has a
field name, a field data type, and a value. For an exposed field named xyz, the associated
eventIn and eventOut are named set_xyz and xyz_changed, respectively. [see data type,
field, field value, eventIn, eventOut, and node]

Field
A node parameter that provides a shape dimension, color, or other form of node attribute. A
field has a field name, a field data type, and a value. [see data type, exposed field, field
value, and node]

Field value
A value, such as a number, given to a node’s field to specify a shape dimension or other
node attribute. [see field and data type]

Fractional time
Fractional time is an abstract notion of time that indicates the start of an event with a
fractional value of 0.0, and the end of the event with a value of 1.0. Intermediate fractional
time values are computed as needed so that half-way through the event, the fractional time
is 0.5, three-quarters through has a fractional time of 0.75, and so on. The TimeSensor node
computes fractional times and binds their starting and ending values to selected start and
stop times. If the time between start and stop times is 10 seconds, for example, then
fractional time values will vary from 0.0 to 1.0, but take 10 seconds. If this interval is
increased to 100 seconds, then fractional time values will still vary from 0.0 to 1.0, but now
take 100 seconds to do so. Fractional times are typically used to control animations
described by interpolator nodes. [see interpolator, time and TimeSensor node type]

Geometry
A description of the form, or structure of a shape. Geometry may be described by any of
several geometry node types, including Box, Cone, Cylinder, and Sphere node types. [see
Box node type, Cone node type, Cylinder node type, Sphere node type, shape, and Shape
node type]

Instance
A repeated use of a node previously given a defined name. An instance of a node shares the
same node type, fields, and field values as the original node given the defined name. A node
is named by preceding the node type with DEF myName. A node is instanced by typing
USE myName anywhere a node value can be used. [see node name and original]

Intepolator
A node that computes position, orientation, scale, and other types of animation values based
upon a list of key values. Computed values are calculated by linearly interpolating between
the key values. [see OrientationInterpolator node type and PositionInterpolator node type]

Material

A description of the overall color and transparency of a shape. Material is described by a
Material node type. [see appearance, diffuse color, and emissive color]

Material node type
A node type that specifies a set of colors used to shade a shape. Node fields describe the
diffuse color, emissive color, specular color, ambient intensity, and transparency of a
shading material. [see appearance, diffuse color, and emissive color]

Move
Movement of a pointing device (such as a mouse) without a button held down. [see click,
drag, pointing device, and touch sensor node type]

Node
A basic building-block used in VRML 2.0 world-building instructions. A VRML 2.0 file
always has at least one node in it, and often contains hundreds or even thousands of nodes.
Individual nodes build shapes, describe appearance, control animation, etc. Every node has
a node type. The fields and exposed fields of a node are enclosed within curly-braces. [see
node type]

Node name
A name given to a node so that the node may be repeatedly used (instanced) elsewhere
within the same VRML file. Node names may be any sequence of letters and numbers, but
may not start with a number or contain most punctuation characters. [see instance and
original]

Node type
A description of a variety of node, including a node type name and a list of zero or more
fields, exposed fields, eventIns, and eventOuts. VRML 2.0 supports 50+ built-in node types.
Typical node types include those to build shapes, specify geometry, select appearance,
choose sounds, and so on. [see eventIn, eventOut, exposed field, field, and node]

OrientationInterpolator node type
An interpolator node that computes rotation axis and angle values based upon a list of key
values and fractional times. The rotation output of the interpolator is often routed into the
rotation input of a Transform node. [see PositionInterpolator node type and Transform
node type]

Origin
The center of a coordinate system; the point where the X, Y, and Z axes cross. [see axis and
coordinate system]

Original
A node given a defined name so that it may be repeatedly used (instanced) later in the same
VRML file. The original node’s node type, fields, and field values are re-used each time the
node is instanced. A node is named by preceding the node type with DEF myName. A node
is instanced by typing USE myName anywhere a node value can be used. [see instance and
node name]

Parent coordinate system
A coordinate system with one or more shapes or coordinate systems built within it. Such
child coordinate systems move, orient, and scale along with the parent coordinate system.

[see child coordinate system, coordinate system, rotation, scaling, and translation]

Pointing device
A device to enable the user to move a cursor about on the screen and perform move, click,
and drag operations. Most computers use a mouse pointing device, but joysticks, trackballs,
trackpads, and similar devices are equally usable. The user’s pointing device can be sensed
by a TouchSensor node. [see click, drag, move, and touch sensor node type]

PositionInterpolator node type
An interpolator node that computes 3D positions, translations, or 3D scaling factors based
upon a list of key values and fractional times. The output of the interpolator is often routed
into the translation or scale inputs of a Transform node. [see OrientationInterpolator node
type and Transform node type]

Radians
A system for measuring angles wherein a full circle is 2 PI = 6.28 radians. The system of
measuring angles in radians is common in mathematics and science, though use of degrees
is more common outside these fields. Angles measured in radians are used to specify
rotation angles. A value in radians can be converted to degrees by this formula: degrees =

radians * 180.0 / 3.142 . [see degrees and rotation angle]

RGB color
A triple of floating-point numbers that specify the amount of red, green, and blue light to be
mixed together to form a desired color. Each red, green, or blue amount is given as a value
between 0.0 (none) and 1.0 (lots). RGB colors are used to specify colors for shape
appearance, lighting, and more. [see appearance]

Rotation
Orientation of a coordinate system by spinning it about an axis by an angle. Rotation is
controlled by the Transform node type. [see child coordinate system, parent coordinate
system, rotation axis, rotation angle, scaling, translation, and Transform node type]

Rotation angle
An angular measurement used to indicate the amount by which to rotate a coordinate system
about a rotation axis. Rotation angles are measured in radians. [see radians, rotation,
rotation axis, and Transform node type]

Rotation axis
An imaginary line (vector) about which a coordinate system is turned. One endpoint of the
line is always the origin of the coordinate system, while the second endpoint is any 3-D
coordinate. [see axis, rotation, rotation angle, and Transform node type]

Route
A connection between an eventOut of one node and an eventIn of another. Routes form the
wires of an animation circuit. Event values flow along a route, from eventOut to eventIn.
[see event, eventIn, and eventOut]

Scaling
A change in the size of shapes within a coordinate system. Scaling increases or decreases
shape size by scaling factors for the X, Y, and Z directions. Scaling is controlled by the
Transform node type. [see child coordinate system, parent coordinate system, rotation,

scaling factor, translation, and Transform node type]

Scaling factor
A positive multiplicative factor used to indicate the degree by which a coordinate system’s
shapes are increased or decreased in size. Scaling factors between 0.0 and 1.0 decrease
shape size, while those above 1.0 increase shape size. A scaling factor of 1.0 leaves shape
size unchanged. [see scaling and Transform node type]

Scene graph
A family tree of coordinate systems and shapes that collectively describe a VRML world.
The top-most item in the scene family tree is the world coordinate system. That coordinate
system acts as the parent for one or more child coordinate systems and shapes. Those child
coordinate systems may, in turn, be parents to further child coordinate systems and shapes.
[see child coordinate system, coordinate system, parent coordinate system, shape, and world
coordinate system]

Sensor
A node type that senses a change in the environment. Typical sensor nodes sense the
passage of time, movement of the user’s cursor, the press of the user’s mouse button, the
user’s proximity, collision of the user with a shape, and so forth. [see pointing device,
TimeSensor node type, TouchSensor node type]

Shape
A 3-D object in a world, described by its geometry and its appearance. All VRML shapes
are built using a Shape node type. [see appearance, geometry, and Shape node type]

Shape node type
A node type that builds a 3-D shape centered at the origin of the parent coordinate system.
Node fields specify the geometry and appearance of the shape. [see appearance, coordinate
system, geometry, origin, and parent coordinate system]

Sphere node type
A geometry node type that builds a 3-D ball. A node field specifies the ball radius. [see
geometry and Shape node type]

Start time
The time at which an animation begins. An animation may be started at a specific time in
the history or future of a virtual world. Alternately, animations may be started when a shape
is touched, or when some other environment change is sensed. [see fractional time, sensor,
stop time, time, TimeSensor node type, and TouchSensor node type]

Stop time
The time at which an animation ends. An animation may be stopped at a specific time in the
history or future of a virtual world or allowed to run forever. Animations also may be
stopped when a shape is touched, or when some other environment change is sensed. [see
fractional time, sensor, start time, time, TimeSensor node type, and TouchSensor node type]

TimeSensor node type
A sensor node type that senses the passage of time. Node fields enable and disable sensor
node event outputs, set the start and stop time for those outputs, indicate if the sensor should
generate infinitely repeating cyclic outputs, and specify the duration of each cycle. Event

outputs include the current time and fractional times. TimeSensor node outputs are
frequently routed into one or more interpolator nodes. TimeSensor nodes are often started
and stopped using TouchSensor nodes. [see cycle interval, fractional time, interpolator,
route, sensor, start time, stop time, time, and TouchSensor node type]

Time
VRML times are measured in seconds measured in seconds since 12:00 midnight, Grenwich
Mean Time (GMT), January 1st, 1970. [see fractional time and TimeSensor node type]

Time-stamp
A time, measured in seconds, that indicates the moment at which an event was generated
and sent along a route. [see event, route, and time]

TouchSensor
A sensor node type that senses motion and button presses on the user’s pointing device
(such as a mouse). A node field enables and disables the sensor’s outputs. Event outputs
include flags indicating when the cursor is over a sensed shape, when a button is pressed,
and when a button is released. TouchSensor node outputs are often routed into TimeSensor
nodes. [see pointing device, route, sensor, time, and TimeSensor node type]

Transform node type
A node type that creates a new coordinate system in which to build zero or more shapes.
The new coordinate system is positioned (translated), oriented (rotated), and resized (scaled)
based upon values specified in node fields. [see coordinate system, rotation, scaling, and
translation]

Translation
Positioning of a coordinate system at a 3-D coordinate relative to the origin of a parent
coordinate system. Translation is controlled by the Transform node type. [see child
coordinate system, parent coordinate system, rotation, scaling, and Transform node type]

UTF-8
An international character set used in VRML 2.0 files. The ASCII characters of a standard
computer keyboard form a subset of UTF-8.

VRML
An acronym for Virtual Reality Modeling Language. VRML is a rich text language for the
description of 3-D interactive worlds. The original proposal from Silicon Graphics that led
to the development of VRML 2.0 was titled Moving Worlds. [see VRML browser and
world-builder]

VRML browser
A stand-alone helper application or Web browser plug-in that displays VRML worlds. [see
world-builder, and the VRML Vendors chart for a list of VRML browsers and plug-ins]

VRML file header
The first line of every VRML file. The header line identifies the file as containing VRML
content, indicates the version of the language used, and the character set of the file. VRML
1.0 files use the ASCII character set, while VRML 2.0 files use the UTF-8 character set.
[see UTF-8]

World-builder
An application that enables VRML world authoring within an interactive 3-D drawing
environment. [see VRML browser]

Feedback: nweditors@netscapeworld.com
URL : http://www.netscapeworld.com/netscapeworld/common/nw-vrmlglossary.html
Last updated: Wednesday, February 19, 1997

