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Monte Carlo, Quasi Monte Carlo and Bayesian Monte Carlo

Monte Carlo and Quasi-Monte Carlo

I Monte Carlo (MC) is the base method on image synthesis but
converges slowly: (N−0.5)

I Quasi-Monte Carlo (QMC)

I Deterministic sampling for faster convergence rates:

I N−1(logN)d , d being the dimensionality, for unit hypercube
integration domain

I N−0.75 for d = 3: unit sphere integration domain

I But this convergence rate decreases when the dimensionality
increases

I Implicit assumption: smoothness of the integrand at least C 0

continuous

I Such assumption is often not verified for illumination integrals
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Monte Carlo, Quasi Monte Carlo and Bayesian Monte Carlo

This leads to the following questions:

I Can we characterize the smoothness of integrands so as to
better exploit this knowledge for computing more accurate
integral estimates?

I Can we smooth out integrand discontinuities without loosing
too much in accuracy?
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Monte Carlo, Quasi Monte Carlo and Bayesian Monte Carlo

We wil show:

I Problems arising when prefiltering (for smoothing the
integrand) in the context of QMC,

I Bayesian Monte Carlo (BMC) method provides a
mathematical framework to address this problem
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Monte Carlo, Quasi Monte Carlo and Bayesian Monte Carlo

Problem statement

I Focus on the case of hemispherical integration for illumination
integrals

I Detailed analysis of the factors which determine the quality of
the integral estimate:

I Sample distribution

I Samples’ weight

I Smoothness of the integrand

I Play with those factors to improve the quality of the estimate
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Monte Carlo, Quasi Monte Carlo and Bayesian Monte Carlo

Objective and Applications

Objective: synthesize physically-based photo-realistic images.
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Monte Carlo, Quasi Monte Carlo and Bayesian Monte Carlo

The illumination integral

Lo(x,ωo) = Le(x,ωo) +

∫
Ω2π

Li (x,ωi ) ρ(x,ωi ,ωo) (ωi ·n) dΩ(ωi )

where ω is a spherical direction given by (θ, φ), [Kaj86].

I No analytical solution!

I Common to resort to stochastic methods (e.g., Monte Carlo).

I Massive use of sampling operations.
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Monte Carlo, Quasi Monte Carlo and Bayesian Monte Carlo

Direct and Indirect Light Components

Lo(x,ωo) = Le(x,ωo)+

∫
Ω2π

Lind
i (x,ωi ) ρ(x,ωi ,ωo) (ωi · n) dΩ(ωi )

+

∫
Ω2π

Ldir
i (x,ωi ) ρ(x,ωi ,ωo) (ωi · n) dΩ(ωi )

Direct Indirect Direct + Indirect
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Frequency Domain View
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Frequency domain view of sampling and integration

I How can we relate the integral estimate error and the Fourier
spectrum of the integrand?

I Will consider mainly QMC integration (see Subr and Kautz,
SIGGRAPH 2013 for the stochastic sampling case)

I For clarity, we will base our analysis on the case of circular
functions in R2 instead of spherical functions in R3
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The illumination integral
z = n

x

y

θ

φ

ωo
ωi

dS

dΩ(ωi ) = dS = sin θ dθdφωi ,ωo ∈ S2

S2 unit sphere in R3

Lo(ωo) =

∫
Ω2π

Li (ωi ) ρ(ωi ,ωo) (ωi · n) dΩ(ωi )

Estimate: L̃o(ωo) =
1

N

N∑
j=1

Li (ωj)
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Spherical harmonics and Fourier series

I Frequency view is discrete on the unit sphere S2 (spherical
functions are implicitly periodic)

I Basis functions are the spherical harmonics (SH):
Yl ,m(θ, φ) with|m| ≤ l ∈ N

I Projections of a function f (θ, φ) on the Yl ,m gives the Fourier
coefficients:

fl ,m = (f ,Yl ,m) =

∫ π

0

∫ 2π

0
f (θ, φ)Y ∗l ,m(θ, φ) sin θdθdφ

I Fourier series equivalent to SH for circular functions s(z) in
R2, i.e. z ∈ S1.
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Circular functions and Fourier series
v

u

x

z

cos x

sin x

s(z) = s(u, v) = s(cos x , sin x)

f (x) := s(cos x , sin x) is 2π periodic ⇒ Fourier series:

f (x) =
∞∑

n=−∞
ane jnx

an =
1

2π

∫ π

−π
f (x)e−jnxdx
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Fourier series view of integration
Original

Let: g(x) =
1

K

K−1∑
k=0

f (x + xk), {xk} ∈ [−a

2
,

a

2
] (sampling pattern)

Goal: I =
1

a

∫ a
2

− a
2

f (x)dx , Estimate: Ĩ =
1

K

K−1∑
k=0

f (xk) = g(0)

Fourier

f (x)
F−→ {an} g(x)

F−→ {ancn} with cn =
1

K

K−1∑
k=0

e jnxk

I =
∞∑

n=−∞
an sinc(

na

2
) Ĩ = g(0) =

∞∑
n=−∞

ancn
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Fourier series view of integration

I =
∞∑

n=−∞
an sinc(

na

2
) Ĩ = g(0) =

∞∑
n=−∞

ancn

I
∑∞

n=−∞ ancn represents the frequency distribution of the
integral estimate

I Results from the product of the integrand spectrum ({an})
and the sampling pattern spectrum ({cn})

I In case of uniformly distributed samples on [−a/2, a/2]:

xk =
ka

K
+

a

2

1− K

K

which gives: cn = sinc(na2 )/sinc( na
2K )
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Frequency domain view for uniform sampling

For uniform sampling: cn = sinc(na2 )/sinc( na
2K )

cn ≈ 1 when n = mS , S = 2Kπ
a is the sampling frequency
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High frequency components have much more effect on Ĩ than on I
⇒ The error I − Ĩ mainly depends on the high frequency
components of f (x)
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Special case: a = 2π and uniform sampling (1)
In this case: I = a0 and cn = 1 if n = mK , cn = 0 elsewhere

=⇒ Ĩ =
∞∑

m=−∞
amK

=⇒ I = Ĩ if f (x) band-limited (BL) to N harmonics and N < K .
Example: K = 21 samples and f (x) has N = 20 harmonics

-1
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1

x

f(x)
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cn
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Integration and sampling theorem

Example: f (x) has N = 20 harmonics

0 20 40 60 80

an

n

cn

0 5 10 15 20

0.5

n

an

1

cn

I 42 samples for exact reconstruction but only 21 samples for
exact integration

I a samples set that enables exact integration on Sd in Rd+1 is
a spherical design
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A glimpse at the case of non-periodic integrands

Discrete sums become integrals for non-periodic integrands:

I =
1

2π

∫ ∞
−∞

F (ω)sinc(ωa/2)dω Ĩ =
1

2π

∫ ∞
−∞

F (ω)
sinc(ωa/2)

sinc(ωa/2K )
dω

=⇒ The Fourier transform of the sampling pattern is sinc(ωa/2)
sinc(ωa/2K)

It becomes a Dirac comb only if a→∞ at fixed sampling period
T = a/K and then (Poisson summation formula):∫ ∞

−∞
f (x)dx = T

∞∑
n=−∞

f (nT )

with f (x) band-limited to ωM < 2π/T
=⇒ exact integration impossible in practice
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Special case: a = 2π and uniform sampling (2)

I If f (x) has N harmonics and samples number is K :

I Uniform sampling pattern yields cn = 0 for 0 < |n| < K ,
which enables exact integration of BL functions

I Exact integration of BL function requires K > N

I Exact reconstruction would require K > 2N (Sampling
theorem)

I Exact integration of BL spherical functions also exists on the
S2 sphere with spherical designs [DGS77]
A point set {x0, . . . , xK−1} on S2 is a spherical design if:

1

4π

∫
S2

f (x)dS(x) =
1

K

K−1∑
k=0

f (xk)
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Spherical designs in S2

I In the circular functions case (S1), cn = 0 for 0 < |n| < K
entails:

cn =
1

K

K−1∑
k=0

e jnxk = 0

I Equivalently, in R3, using the SH basis functions Yl ,m(θ, φ)
(cn becomes cl ,m), for spherical designs [ACSW10]:

cl ,m =
1

K

K−1∑
k=0

Yl ,m(θk , φk) = 0 0 < l < L, |m| ≤ l

I For a function band-limited to L harmonics, exact integration
is possible if [DGS77]:

K ≥ (L + 1)(L + 3)

4
if L odd, and K ≥ (L + 2)2

4
if L even
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Error analysis for uniform sampling
When a < 2π:

|I − Ĩ | =

∣∣∣∣∣
∞∑

n=−∞
anbn

∣∣∣∣∣ = 2

∣∣∣∣∣
∞∑
n=1

<(anbn)

∣∣∣∣∣
with: bn = sinc(na2 )− cn cn = sinc(na2 )/sinc( na

2K )

0

1

n

b2
n

S 2S 3S

S = 2Kπ
a

0

a2
nb

2
n

nS 2S

a2
n = O(n−1)

S = 2Kπ
a

The error depends on the sampling frequency S and the rate of
decay of the an
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Frequency distribution of error noise in the case of uniform
scrambling

I Scrambling is often necessary in rendering to avoid regular
patterns

I Uniform scrambling when a = 2π:
Xk = xk + δ ∀k , and δ ∼ U(δ| − π, π)

I Preserves optimality and has no bias.

I Power spectrum of error function: (I − Ĩδ): {|anbn|2}
I Error variance:

E [(I − Ĩδ)
2)] = 2

∞∑
n=1

|anbn|2 = 2
∞∑

m=1

|amk |2
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Optimality of samples set as viewed in the frequency
domain

I Optimality is obtained when, given set size K , cn small in
0 < n < N for the largest possible N

I For uniform sampling, the largest N corresponds to the
sampling frequency S = 2Kπ/a

I When a = 2π, cn = 0 for all n up to n = S = K
I On the S2 sphere, spherical designs are optimal:

cl ,m = 0 up to l = L with L = 2
√

K − 2 at best [DGS77]
I Best sphere packing (min. dist(xi , xj) = δK ) is not generally

a spherical design but has small cl ,m up to the “sampling
frequency” [SK97] (and using the Jeans’ rule):

L ≈ 2π

arccos(1− δ2
K/2)

− 1

2
with δK =

√
8πK√

3
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Modeling the integrand in the frequency domain (1)

I Classic QMC theory uses variation of f in the sense of Hardy
and Krause [Nie92] =⇒ no direct frequency interpretation

I Spherical QMC uses Sobolev spaces Hs(S2) [BSSW12, Sob05]
The parameter s characterizes the smoothness of the function
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Modeling the integrand in the frequency domain (2)

I Sobolev spaces Hs(S2) on the S2 sphere are defined as the
space of functions f ∈ L2(S2) whose Fourier coefficients
satisfy:

∞∑
l=0

m=l∑
m=−l

(1 + l + l2)s |fl ,m|2 <∞

I Spectrum rate of decay:
If f ∈ Hs(S2), al ,m decreases in O(l−s) at least

I Continuity (Embedding theorem): f ∈ C k(S2) if s > k + 1

I If f defined over S2 and (s = 3/2) =⇒ f is continuous

I Hs(S2) ⊂ Hs′(S2) if s > s ′
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Modeling the integrand in the frequency domain (3)

I Alternative approach: model f (x) by a random process fr (x)
characterized by a stationary covariance function k(τ),
τ = x − x ′

I =⇒ the integrand is considered as random but the sampling
pattern is considered as deterministic

I A power spectrum Fr (ω) of fr (x) can be derived by the
Wiener-Khintchine theorem:

Fr (ω) = F(k) =

∫
k(τ)e−jωτdτ

I Common approach in machine learning, image processing and
coding

I Will be used in Bayesian Monte-Carlo
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Worst case error over Hs(S2)

If f ∈ Hs(S2) and s > 1 [ACSW10]:

WCE =

( ∞∑
l=1

a
(s)
l

m=l∑
m=−l

|cl ,m|2
)1/2

{cl ,m} are the Fourier coefficients of the sampling pattern:

cl ,m =
1

K

K−1∑
k=0

Yl ,m(θk , φk)

{a(s)
l } represents the Hs(S2) frequency behavior:

a
(s)
l = ks(1 + l)−2s
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Visualization of spectrum of spherical point sets

The coefficients are averaged in the {m} dimension [LWSF10]:

Cl =
1

2l + 1

m=l∑
m=−l

|cl ,m|2

Spectrum of the sampling pattern: {Cl}, l = 0,∞
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Comparison of spectra of different spherical points
distribution

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5 Fibonacci
Blue noise
Halton

l

Cl

×10−3
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Integration on the hemisphere

I Recall that the illumination integral is over an hemisphere of
S2

I Similar to the S1 case with a = π i.e., all frequency
components of the integrand contribute to the integral value

I The weights on the Fourier coefficients of the integrand are
not given by sinc functions but decrease in O(l−1) as well

I Details will be given in a future paper
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Integration error and smoothness

I Exact integration not possible when a < 2π and so on the
hemisphere in R3

I Estimation error depends on the rate of decrease of an
I Smoothness, continuity and rate of decrease of an are linked

(Sobolev space theory): roughly O(l−3/2) for continuous
function on S2

I Can we cut off high frequencies by a lowpass filter before
integration? [CK07]

I On S1, bandwidth must be lower than S/2 to avoid aliasing

I Additional error if the integration domain is not a full period
(a = 2π in the S1 case)
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Lowpass prefiltering and samples weighting (1)

Lowpass filter: h(x), Prefiltered function: fp(x).

fp(x) =

∫ π

−π
f (x ′)h(x − x ′)dx ′

If I =
∫ a/2
−a/2 f (x)dx ≈

∫ a/2
−a/2 fp(x), then:

I ≈
∫ π

−π
f (x ′)p(x ′)dx ′

with:

p(x ′) =

∫ a
2

− a
2

h(x − x ′)dx

=⇒ amounts to samples weighting with p(x)
but integration is now a full period instead of [−a/2, a/2]
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Lowpass prefiltering and samples weighting (2)

Problem: how to deal with samples outside the integration domain
[−a/2, a/2] ? Tricky compromise:

I Sampling outside [−a/2, a/2] (if possible) means extra
computation

I Setting f (x) = 0 outside the integration domain increases
high frequencies and ignoring them increases the error

I Reducing filter support (i.e. its length) impacts filter efficiency

I Extrapolation could be a solution but prior model is required
=⇒ Bayesian Monte Carlo
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Introduction

Quasi Monte Carlo for Illumination Integrals

[MBR+13a, Mar13]
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Introduction

Spherical Quasi-Monte Carlo: A Brief Presentation

I Classical Monte Carlo (CMC): samples
position is randomly generated.

I Convergence rate: N−1/2

I Quasi-Monte Carlo (QMC): the samples
position is deterministic.

I Resort to low discrepancy sample sets.
I Best theoretical convergence rate:

N−3/4 (spherical integration).
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Introduction

Overview of QMC

I The spherical QMC rules are not well known to the CG
community.

I We give a comprehensive description of such rules.

I Relate upper bound of the error to the sum of distances
between the samples.

I Show that the sum of distances can be used to quickly assess
the quality of a samples set.

I More general metrics than spherical discrepancy.

I Present and apply the spherical Fibonacci point sets [HN04]
to illumination integral evaluation.

I Point sets which minimize the w.c.e. (worst case integration
error)

39 / 116



Introduction Frequency Domain View Quasi Monte Carlo BMC Overall Conclusion Questions

Introduction

The Spherical QMC Estimator

I Given a spherical function f (ω), the QMC estimator for

1

2π

∫
Ω2π

f (ω)dω is given by
1

N

N∑
j=1

f (ωj ,N),

where PN = {ωj ,N ∈ S2, j = 1 . . .N} is a uniformly
distributed samples set.

I The worst case integration error (w.c.e.) of PN is defined as:

w.c.e. := e(PN) = sup
f

∣∣∣∣∣∣ 1

N

N∑
j=1

f (ωj ,N)− 1

4π

∫
S2

f (ω)dΩ(ω)

∣∣∣∣∣∣
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Introduction

Spherical Discrepancy

I Let C(ω, t) be a spherical cap
centered in ω and containing all the
points {ωc ∈ S2 : ωc · ω ≤ t}.

I Given a set PN = {ωj ,N}, the
spherical cap L2 discrepancy is defined
as [BSSW12]:

L2(PN) =

[∫ 1

−1

∫
S2

∣∣∣∣Card{j : ωj ,N ∈ C(ω, t)}
N

− Ω(C(ω, t))

4π

∣∣∣∣2 dΩ(ω)dt

] 1
2
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Introduction

Worst Case (Integration) Error
I In the general case the w.c.e. relates to the sum of all the

distances between samples by [Brauchart 2012]:

e(PN) =

[
Vs(S2)− 1

N2

N∑
r=1

N∑
k=1

|ωr − ωk |2s−2

] 1
2

where s is the smoothness parameter of the Sobolev space
Hs(S2) so that s > n + 1 for f (ω) Cn continuous.

Vs(S2) =

∫
S2

∫
S2

∣∣ω − ω′∣∣2s−2
dσ(ω)dσ(ω′)

I So, minimizing e(PN) amounts to maximizing the sum of the
distances (to the power (2s − 2)) between the samples
position

I If an information on n is known, then we can adapt the
sampling
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Introduction

Stolarsky’s Invariance Principle
I In the particular case where f is C 0 continuous, we have:

e(PN) =

[
4

3
− 1

N2

N∑
r=1

N∑
k=1

|ωr − ωk |

] 1
2

because 2s − 2 = 1 then s = 3/2 and n = 0.
I The Stolarsky’s invariance principle for f C 0 continuous,

states that [Brauchart 2012]:

1

N2

N∑
r=1

N∑
k=1

|ωr − ωk |+ 4L2
2(PN) =

4

3

I Consequently, if f is C 0 continuous (f ∈ Hs(S2)), we have:

e(PN) = 2L2(PN)

I So, in this particular case, minimizing the discrepancy L2(PN)
amounts to minimizing the w.c.e. 43 / 116
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Introduction

Assess the Quality of the Samples Set

I The sum of distances is an interesting criterion to assess the
quality of the distribution of a spherical point set PN .

I Tightly related to the w.c.e.

I Fast to compute.

I We can thus define a distance-based criterion to measure the
quality of the samples set:

EN(PN) =

(
4

3
− 1

N2

N∑
r=1

N∑
k=1

|ωr − ωk |

) 1
2
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Introduction

Related Work: QMC Spherical Integration in CG

I Current approach in CG [Dut03, PH10]:

I Produce a unit square samples set (LD or BN).

I Apply a spherical projection.

I Perform QMC using the resulting spherical samples set.

I Problem: the quality of the distribution is impaired by the
spherical projection!
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Introduction

Spherical Fibonacci: Motivation

I In the following, we present a strategy to generate point sets
directly on the sphere.

I No spherical projection is needed.

I Several spherical point sets have been compared in [BSSW12].

I The spherical Fibonacci are a good compromise between
complexity and efficiency.

I Good behavior regarding w.c.e. [BSSW12].

I Applied in other research fields with promising results [HN04].
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Spherical Fibonacci Point Sets for Illumination Integrals

Spherical Fibonacci Point Sets

I The spherical Fibonacci point sets are directly defined on the
sphere [HN04].

θj = arccos(1− 2j/Fm)

φj = 2π
{

j Fm−1

Fm

} }
0 ≤ j < Fm,

where Fm is the mth Fibonacci number.

I The points are evenly distributed over the vertical axis
z = cos(θ) = 1− 2j/Fm.

I The Fibonacci ratio
(

Fm
Fm−1

)−1
is used to compute the angle

of rotation φ.
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Spherical Fibonacci Point Sets for Illumination Integrals

Spherical Fibonacci Point Sets

I The Fibonacci ratio quickly approaches the golden ratio Φ as
m increases.

lim
m→∞

Fm

Fm−1
= (1 +

√
5)/2 = Φ

I We can thus replace the Fibonacci ratio by Φ (no more need
for N to be a Fibonacci number).

θj = arccos (1− 2j/N)
φj = 2π

{
jΦ−1

} }
0 ≤ j < N
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Spherical Fibonacci Point Sets for Illumination Integrals

Spherical Fibonacci point sets

I By introducing an offset of 1/N to the z coordinates, [SJP06]
achieved a more uniform distribution near the poles.

I The SF point set is then given by:

θj = arccos
(

1− 2j+1
N

)
φj = 2π

{
jΦ−1

} }
0 ≤ j < N
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Spherical Fibonacci Point Sets for Illumination Integrals

Applying SF to Illumination Integrals

I To evaluate the Lind
o (ωo):

I Generate the samples set on the hemisphere.

I Morph the point set to fit the BRDF shape.

I Image synthesis requires computing millions of integrals.

I Using the same point set might result in visible patterns!

I This problem appears if two consecutive pixels have a
correlated noise.

I To avoid a visible structure in the images, we apply a random
rotation to the samples set about the vertical axis.

50 / 116



Introduction Frequency Domain View Quasi Monte Carlo BMC Overall Conclusion Questions

Spherical Fibonacci Point Sets for Illumination Integrals

Applying SF to Illumination Integrals

Without random rotation. With random rotation.
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Spherical Fibonacci Point Sets for Illumination Integrals

A Direct Application of Spherical QMC

I Recall that we want to approximate the value of:

Lind
o (ωo) =

∫
Ω2π

Lind
i (ωi ) ρ(ωi ,ωo) (ωi · n) dΩ(ωi )

I We could directly apply QMC by saying that:

f (ωi ) = Lind
i (ωi ) ρ(ωi ,ωo) (ωi · n)

I Inefficient! Few samples bring an effective contribution.
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Spherical Fibonacci Point Sets for Illumination Integrals

Morphing the Samples Set

I Let ρ(ωi ,ωo) = ks cosn(ωi ,n)/(ωi · n).

I Make an integration variable substitution to distribute the
samples on ρ(ωi ,ωo) (ωi · n).

I Using θ′i = g−1(θi ) = arccos
(
cos1/(n+1)(θi )

)
, we have:

Lind
o (ωo) =

ks
n + 1

∫
Ω2π

Lind
i (g(θ′i ), φ

′
i ) dΩ(ω′i ), ω′i = (θ′i , φ

′
i )

I g(θ′i ) is called morphing function: this is what we learn from
the scene.
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Spherical Fibonacci Point Sets for Illumination Integrals

The QMC Estimator for Illumination Integrals

I We can now use QMC to efficiently estimate Lo(ωo):

Lind
o (ωo) ≈ 2πks

N(n + 1)

N∑
j=1

Lind
i (g(θ′j), φ

′
j)

where {(θ′j , φ′j)} = {ω′j} is asymptotically uniformly
distributed.

I The error of the estimate depends on EN({ω′j}).
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Results

Experimental Set Up
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Results

Minimum Inter-Samples Distance

Lambert Shirley-Chiu

I The distance between closest samples on a SF point set is
larger than in the other tested point sets.
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Results

Energy of the Sample Sets

Lambert Shirley-Chiu

I Spherical Fibonacci yields a smaller energy EN than the other
tested point sets.
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Results

RMSE Glossy Component
Cornell Room Cars
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I The RMSE with SF point sets is consistently smaller.

I The gap is larger when the convergence slope is steeper.

I SF better exploits continuous functions.
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Results

Visual Results: Room Scene

Lambert Shirley-Chiu

Ref Sobol BNOT L-P SF L-P BNOT Sobol

Reference (×4) Close-up views
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Conclusions

Conclusion

I The most important characteristic of an estimation method is
its capacity to incorporate existing information.

I QMC only incorporates deterministic knowledge (but no
probabilistic knowledge).

I Examples:

I Morph a samples set to follow the BRDF shape (QMC).

I Continuity assumption regarding the integrand (QMC).

I Reduction of performance due to discontinuity or lack of
smoothness: use methods to smooth the integrand
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Conclusions

Conclusion

I We have presented the QMC spherical rules to CG
community.

I Put together very recent advances in the field of QMC
spherical integration.

I The obtained results are in line with the presented theory.

I We applied SF point sets to illumination integrals.

I Outperforms traditional QMC point sets.

I Simple to generate and a single point set is needed.

I Limitation: similar to L-P, adaptive sampling with SF is not
possible.
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Introduction and Motivation

Bayesian Monte Carlo

62 / 116



Introduction Frequency Domain View Quasi Monte Carlo BMC Overall Conclusion Questions

Introduction and Motivation

Introduction and Motivation
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Introduction and Motivation

Representing a function using a smooth model

I Consider the evaluation of the integral

I =

∫
f (x)p(x) dx, x ∈ RD ,

where p(x) is analytically known and f (x) is unknown before
any sampling.

I The quality of the integral approximation depends on
integrand smothness [BSSW12, MBR+13a].

I Recall some conclusions from the previous presentations:

I Integration error depends on the rate of decay of the
integrand’s power spectrum (frequency view).

I Discontinuities or lack of smoothness in the integrand impairs
performance (QMC theory view).
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Introduction and Motivation

Representing a function using a smooth model

I =

∫
f (x)p(x) dx, x ∈ RD ,

I In our case:
I f (x) = Li (ω) is the incident radiance, ω being the incident

direction.
I p(x) = brdf× cos(θ), θ being the incident angle.

I Objective: substitute a smooth model f̃ (x) to the original
f (x) while keeping the integration error as small as possible.

I In the following, we show in a progressive way how this can be
done:

I Deterministic, Gaussian and Bayesian linear models.
I Non-parametric Bayesian approach (Gaussian Process model).
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Introduction and Motivation

Linear Basis Functions Model

I Let D = {(xi ,Yi ) | i = 1, . . . , n} be a sample set where
x ∈ RD and Y ∈ R.

I xi is a sample position.

I Yi is the observed function value at f (xi ).

I Let φj : RD → R be a set of smooth functions and w ∈ RF be
a column vector of weights.

I We want to approximate the data D using a linear model

f (x) ≈ wtΦ(x),

where Φ(x) = [φ1(x), . . . , φF (x)]t .

I Question: how to determine w?
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Introduction and Motivation

Deterministic Approach (Least Squares)
Model Parameterization

I We define a quadratic error criterion:

C (w) =
n∑

i=1

‖Yi −wtΦ(xi )‖2 = ‖Y −Φtw‖2

where Φ = [Φ(x1), . . . ,Φ(xn)] and Y = [Y1, . . . ,Yn]t .

I Objective: minimize C (w), also called residual.

I Because we chose a quadratic error criterion
ŵ = arg minw C (w) has a unique solution given by:

ŵ =
(
ΦΦt

)−1
ΦY
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Introduction and Motivation

Gaussian Linear Model (Maximizing Likelihood)
Model Parameterization

I Assumption: Yi contains an i.i.d. Gaussian noise such that:

Yi = wtΦ(xi ) + εi , ε = N (0, σ2
n)

I εi quantifies the part of the observations not explained by the
model (data accommodation).

I This assumption gives rise to the likelihood L(w):

L(w) = p(Y|w; X) =
n∏

i=1

p(Yi |w; xi)

=
n∏

i=1

1√
2πσn

e
− ‖Yi−wtΦ(xi )‖

2

2σ2
n =

1

(2πσn)n/2
e
−C(w)

2σ2
n

I Goal: find the maximum likelihood (ML):

ŵ = arg max
w

L(w) = arg min
w

C (w)
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Introduction and Motivation

Gaussian Linear Model (Maximizing Likelihood)
Predictions

I For a new input value x∗ the model prediction Y∗ is given by:

Y∗ = ŵtΦ(x∗)
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Introduction and Motivation

Bayesian Linear Model

I Bayesian reasoning: all forms of uncertainty are modeled by
probability.

I w is unknown and thus uncertain (considered as random).

I We use the observations Y to make an inference about w:

I Put a prior probability on w.

I Apply the Baye’s rule.

I w is given by the maximum a posteriori (MAP) instead of the
maximum likelihood.

p(w|Y; X) =
p(Y|w; X) p(w)

p(Y; X)
posterior =

likelihood× prior

marginal likelihood
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Introduction and Motivation

Bayesian Linear Model
Model Parameterization

I Let the prior p(w) be a multivariate Gaussian distribution
with mean 0 and covariance matrix Σp.

I The posterior distribution of the weights is then given by:

p(w|Y; X) =
p(Y|w; X) p(w)

p(Y; X)
= N (w̄ = σ−2

n A−1ΦY,A−1)

where A = σ−2
n ΦΦt + Σ−1

p .
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Introduction and Motivation

Bayesian Linear Regression
Predictions

I Since the maximum a posteriori of a Gaussian distribution is
also its expected value, we have:

arg max
w

p(w|Y; X) = w̄

I For a new input value x∗ the model prediction Y∗ has a
Gaussian distribution [Bis06]:

N (w̄tΦ(x∗),Φ(x∗)
tA−1Φ(x∗))

I The most probable value of Y∗ is given by w̄tΦ(x∗).
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Introduction and Motivation

Bayesian Linear Regression
Predictions

Y∗ = w̄tΦ(x∗)
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Introduction and Motivation

Brief Summary

I The Bayesian approach uses more information than the classic
probabilistic approach by resorting to a prior p(w).

I Nevertheless, both approaches share the same limitation:

I Need to choose a family of basis functions.

I Need to specify the number of basis functions (length of w).

I In the following, we will present a Bayesian non-parametric
approach to the problem of regression (Bayesian Regression).

I We will also show how this approach can be used for integral
estimation (Bayesian Monte Carlo).
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Theoretical Background
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Theoretical Background

Bayesian Regression

I Goal: given a set of samples, approximate the value of the
unknown function f (x).

I Since the value of f (x) is uncertain, it is modeled through
probabilities using a Gaussian process (GP).

I No need for basis functions

I Only a mean function and a covariance function are specified.
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Theoretical Background

Gaussian Process

II GP is a collection of random variables, any finite number of
which has a joint Gaussian distribution [RW06].

I A GP is completely defined by its mean function f̄ (x) and its
covariance function k(x, x′), which must be positive definite:

f̄ (x) = E[f (x)]

k(x, x′) = E[(f (x)− f̄ (x))(f (x′)− f̄ (x′))]

I We denote a GP by:

f (x) ∼ GP[f̄ (x), k(x, x′)]
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Theoretical Background

The Prior Gaussian Process

I Covariance function: defines the
smoothness and the variance of the
GP.

I Characterized by a lengthscale l
and a variance σf .

I l and σf are hyperparameters of
the GP model.

Image from [Rasmussen 2006]

I Large lengthscale implies smooth realizations of the GP.

I Large variance implies large uncertainty zone (gray).
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Theoretical Background

The Posterior Gaussian Process

I The posterior GP results
from refining the prior using
a set of observations D.

I Uncertainty region (gray)
smaller than in the prior.

Image from [Rasmussen 2006]

D = {(xi ,Yi ) | i = 1, . . . , n} with Yi = f (xi ) + εi ,

I ε ∼ N (0, σ2
n) accommodates observations to smooth model.

I Besides l and σf , σn is another hyperparameter of the model.

f (x|D) ∼ GP
[
E [f (x) |D] , cov

(
f (x) , f

(
x′
)
|D
)]
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Theoretical Background

Bayesian Regression Equations

I The Bayesian Regression equations result from conditioning
the prior GP to the observations D [RW06].

f̃ (x) = E[f (x)|D] = f̄ (x) + k(x)tQ−1(Y − F̄)

cov[f (x), f (x′)|D] = k(x, x′)− k(x)tQ−1k(x′)

with:

k(x) = (k(x1, x), . . . , k(xn, x))t

Ki ,j = k(xi , xj) with (i , j) ∈ [1, n]2

Q = (K + σ2
nIn)

Y = (Y1, . . . ,Yn)t

F̄ =
(
f̄ (x1), . . . , f̄ (xn)

)t
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Theoretical Background

Bayesian Monte Carlo

I The Bayesian quadrature equations are given by [RG02]:

ÎBMC = E(I |D) =

∫
f̃ (x)p(x) dx

= Ī + ct(Y − F̄)

= Ī + ztQ−1(Y − F̄)

where f̃ (x) is a smooth function resulting from a Bayesian
Regression, and:

Ī =

∫
f̄ (x)p(x)dx z =

∫
k(x)p(x)dx

F̄ =
(
f̄ (x1), . . . , f̄ (xn)

)
Q is the covariance matrix

I In fact, σn and σf are replaced by the ratio σ′n = σn
σf

.
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Theoretical Background

Variance of the Interal Estimate

I The variance of the BMC estimate is given by [RG02]:

Var(I |D) = V̄ − ztQ−1z,

with

V̄ =

∫∫
k(x, x′)p(x)p(x′) dxdx′

I Var(I |D) depends on the location x of the samples and on the
covariance function k .

I We can thus previously select the {xi |i = 1, . . . , n} that
minimizes Var(I |D). Such a set is called optimal samples set.
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Theoretical Background

Theoretical Background: Summary

I BMC allows acting on the three factors which determine the
quality of the estimate.

I Pdf-free: any sample distribution can be used.

I The prior knowledge can be used to determine an optimal
samples set.

I Performs a careful samples weighting.

I Exploits all the information available: prior probabilistic
knowledge and samples location.

I Uses a smooth model of the integrand.

I Leads to better estimates.
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BMC for Rendering (Our Approach)

BMC for Rendering (Our Approach)

[MBR+13b, Mar13]
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BMC for Rendering (Our Approach)

Choosing the model
Mean Function

I Recall:

f (x) ∼ GP[f̄ (x), k(x, x′)]

I The first step to apply BMC is to specify f̄ and k for the prior
model.

I The mean function contains our belief about the value of f

I It can be seen as a rough a priori approximation of f which will
be refined using the observations.

I In our approach we consider f̄ constant [BBL+09, MBR+13b].

I Simplifies the quadrature computation (details later).
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BMC for Rendering (Our Approach)

Choosing the Model
Covariance Function

I The covariance function determines the smoothness of the GP
model.

I It characterizes the power spectrum of the GP:

I Smooth covariance ⇔ higher rate of decay of the power
spectrum

I Exponential decay in case of a Gaussian covariance function.

I We chose a Gaussian covariance function (squared
exponential):

I Smooth (infinitely derivable).
I Leads to a smooth model of f .

I This choice simplifies the quadrature computation (details
later).
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BMC for Rendering (Our Approach)

BMC Algorithm Overview

1. Learn the hyperparameters associated with the covariance function

2. Select the optimal samples set {xi}

3. Compute and invert the covariance matrix Q

4. Compute the vector z =
∫

k(x)p(x) dS(x)

5. Collect the observation Yi for each sampling position xi

6. Compute the prior mean value vector F̄

7. Compute the posterior estimate E(I |D) = Ī + ztQ−1(Y − F̄)
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BMC for Rendering (Our Approach)

1. Learn the Hyperparameters
Problem Statement

I To compute a BMC estimate the hyperparameters l , σf and
σn of the covariance function k must be specified:

k(x, x′) = σ2
f exp(−|x− x′|2

l2
) + σ2

nδ(x, x′),

where δ(x, x′) is the Kronecker delta.

I The hyperparameters can be learned from the observations.

I Problem: learning the hyperparameters for each integration
would be too costly.
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BMC for Rendering (Our Approach)

1. Learn the Hyperparameters
Tackling the Problem

I As we shall see later, the hyperparameters value mainly
depends on the BRDF shape

I Shininess in the case of a Phong model.

I We can thus learn the hyperparameters off-line for different
BRDF shininesses. Example:

I Define a set M of materials with different shininesses.

I Learn the hyperparameters for each m ∈M, when illuminated
by different environment maps.

I To render an object with a given shininess we use interpolated
values of the previously learned hyperparameters.

89 / 116



Introduction Frequency Domain View Quasi Monte Carlo BMC Overall Conclusion Questions

BMC for Rendering (Our Approach)

1. Learn the Hyperparameters
Off-line Learning Algorithm

I The covariance is statistically evaluated across the scene using
a point set distributed on the current BRDF lobe.

I Statistically generate a covariance matrix Q̃.

I The hyperparameters (l , σ′) are then extracted by fitting the
covariance function k(x, x′; l , σ′) to Q̃
[BBL+09, MBR+13b, Mar13].
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BMC for Rendering (Our Approach)

2. Select the Optimal Samples Set

I Recall that Var(I |D) = V̄ − ztQ−1z

I Depends on the samples position {xi};
I And on the hyperparameters (l , σ′) of the covariance function

k(x, x′; l , σ′).

I Since the hyperparameters are already known (see step 1.)
Var(I |D) becomes a function of {xi} only.

I We can thus determine the optimal samples set by computing:

arg min
{xi}

Var(I |D)

I Done for each BRDF in a preprocessing step.
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BMC for Rendering (Our Approach)

2. Select the Optimal Samples Set

I The result is strongly dependent on the lengthscale l of the
covariance function k .

I Stronger covariance (large l) → Larger distance between
samples (each sample brings more information about f (x))

(a) l = 0.05 (b) l = 0.17
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BMC for Rendering (Our Approach)

3. Compute and Invert Q

I The covariance matrix Q accounts for the relative position
between the samples:

I Nearby samples → High correlation → Redundant information

I Highly correlated samples have a lower weight in the
quadrature due to the matrix Q inversion.

I Q only depends on the hyperparameters of the covariance
function (l , σ′) and on the samples position {xi}.

I The hyperparameters are already known (see step 1.).

I So are the samples position (see step 2.).

I We can thus also precompute and invert Q.
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BMC for Rendering (Our Approach)

4. Compute the z Vector

I Recall that z is a vector given by

z =


z(x1)

z(x2)

...

z(xn)

 =


∫

k(x1, x) p(x) dS(x)∫
k(x2, x) p(x) dS(x)

...∫
k(xn, x) p(x) dS(x)


I In the diffuse BRDF case z is precomputed [BBL+09].

I For non-diffuse BRDFs z must be evaluated during rendering.

I ρ(x) becomes dependent on the viewing direction.

I Resort to spherical Gaussian functions (SGF) to model both
the BRDF ρ and the covariance function k
[MBR+13b, Mar13].
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BMC for Rendering (Our Approach)

4. Compute the z Vector

I Each element zi of z becomes:

zi =

∫
Gk(xi − x;σ′2, l) Gρ(r − x; ks ,w) dS(x)

I Since the product of two SGFs is a SGF, each element zj of z
is reduced to a spherical Gaussian integral (SGI).

zi =

∫
G (xm − x; cm, lm) dS(x)

I A SGI varies smoothly, its value can be easily tabulated.

I Computing zi now amounts to querying a 2D look-up table.
I Details in [MBR+13b, Mar13].
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BMC for Rendering (Our Approach)

5. Collect the observations

I The sampling directions are determined by the optimal
samples set {xi}.

I Compute the vector of observations

Y =


Y1

Y2

...

Yn


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BMC for Rendering (Our Approach)

6. Compute the Prior Mean Value

I f̄ (x) is used in the following terms of the Bayesian quadrature:

F̄ =
[
f̄ (x1), . . . , f̄ (xn)

]
Ī =

∫
f̄ (x)p(x) dS(x)

I Recall: we consider a model with a constant mean function
f̄ (x) = f̄ (see slides Choosing the model).

I Such a choice simplifies the computation of F̄ and Ī .

Ī = f̄

∫
Gρ(r − x; ks ,w) dS(x) = f̄ × SGI

I Problem: how to choose the value of the constant mean
function? f̄ = ?
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BMC for Rendering (Our Approach)

6. Compute the Prior Mean Value

I In [RW06] the authors suggest to express f̄ (x) as a weighted
sum of F basis functions hj(x):

f̄ (x) = βth(x), where h(x) = [h1(x), . . . , hF (x)]t

I The weights β are determined based on the observations:

β =
HQ ′−1

HQ ′−1Ht
Y, where H = [h(xn), . . . ,h(xn)]

I Such an approach allows local adaptation of the prior model.

I We use a single basis function h1(x) = 1 in which case:

I H = [1, . . . , 1] and f̄ (x) = β is constant.
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BMC for Rendering (Our Approach)

7. Compute the BMC Estimate

I All the terms of the BMC quadrature are known.

I We only have to apply the BMC equation.

ÎBMC = Ī + ztQ−1(Y − F̄)

I In the particular case in which f̄ is expressed based on the
samples, we can write:

ÎBMC = wt Y =
n∑

i=1

wiYi
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Results

Visual Comparison with QMC Spherical Fibonacci
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Results

RMSE Comparison with QMC

Dragon Horse
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Results

Efficiency Comparison with QMC

Dragon Horse

Same quality Same quality
RMSE rays needed RMSE rays needed

QMC Sobol +38.4% +61.6%(≈ 129) +31.8% +58.5%(≈ 127)

BMC Sobol +30.0% +48.6%(≈ 119) +28.9% +49.9%(≈ 120)

QMC SF +7.0% +9.8%(≈ 88) +5.2% +7.1%(≈ 86)

BMC SF +5.3% +7.2%(≈ 86) +2.9% +4.0%(≈ 83)

I Efficiency of other methods relative to that of BMC using 80
samples per spherical integration with an optimal distribution.
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Overall Conclusion
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Conclusion I

I The most important characteristic of an estimation method is
its capacity to incorporate existing information.

I CMC and QMC only incorporate deterministic knowledge (but
no probabilistic knowledge).

I Examples:

I Information regarding incident radiance for product sampling
(CMC).

I Morph a samples set to follow the BRDF shape (QMC).

I Continuity assumption regarding the integrand (QMC).
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Conclusion II

I BMC has proved to be the most flexible regarding knowledge
introduction.

I Deterministic knowledge:

I Through the known part of the integrand p(x).

I Probabilistic knowledge:

I Through a probabilistic model of unknown part of the
integrand.

I Covariance between the samples.

I Mean function f̄ (x), an approximation of the unknown
function f (x).
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Future Research directions

I Yet many research directions to be explored such as:

I Local adaptation of the hyperparameters.

I Application to problems of higher dimensionality.
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Questions
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