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Tutorial Outline

Overview
e Partl: Introduction
e Part ll: Local Registration
Part Ill: Global Matching
e Part IV: Animation Reconstruction

e Conclusions and Wrap up
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Part I: Introduction

Introduction (Vlichael)
e Problem statement and motivation
e Example data sets and applications

Differential geometry and deformation modeling (Mark)
e Differential geometry Background
e Brief introduction to deformation modeling

Kinematic 4D surfaces (Niloy)
e Rigid motion in space-time
e Kinematic 4D surfaces
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Part Il: Local Registration

ICP and of rigid motions (Niloy)
e Rigid ICP, geometric optimization perspective
e Dynamic geometry registration (Intro)

Deformable Registration (Vichael)
e Avariational model for deformable shape matching
e Variants of deformable ICP

Subspace Deformation, Robust Registration (Hao)
e Subspace deformations / deformation graphs
e Robust local matching
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Part lll: Global Matching

Features (Will)
e Key point detection and feature descriptors

Isometric Matching and Quadratic Assignment (Vichael)
e Extrinsic vs. intrinsic geometry
e Global matching techniques with example algorithms

Advanced Global Matching (\Will)
e Global registration algorithms

Probabilistic Techniques (Michael)
e Ransac and forward search

Articulated Registration (\Will)
e Articulated registration with graph cuts
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Part IV: Animation Reconstruction

Dynamic Geometry Registration (Niloy)
e Multi-piece alignment

Deformable Reconstruction (Viichael)
e Basic numerical algorithm
e Urshape/Deformation Factorization

Improved Algorithm (Hz0)
e Efficient implementation
e Detail transfer
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Part V: Conclusions and Wrap-up

Conclusions and Wrap-up
e Conclusions
e Future work and open problems

After every part:
e Q&A session with all speakers
e Feel free to ask questions at any time
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Problem Statement
and Motivation



Deformable Shape Matching

What is the problem?

Settings:
e We have two or more shapes
e The same object, but deformed
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Deformable Shape Matching

What is the problem?

Settings:
e We have two or more shapes
e The same object, but deformed

Question:
e What points correspond?
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Applications

Why is this an interesting problem?

Building Block:

e Correspondences are a building block for
higher level geometry processing algorithms

Example Applications:
e Scanner data registration
e Animation reconstruction & 3D video
e Statistical shape analysis (shape spaces)
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Deformable Scan Registration

Scan registration
 Rigid registration is standard

Why deformation?

e Scanner miscalibrations

= Sometimes unavoidable, esp. for large acquisition volumes
e Scanned Object might be deformable
= Elastic / plastic objects

e In particular: Scanning people, animals
= Need multiple scans
= Impossible to maintain constant pose
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Example: Full Body Scanner

Full Body Scanning
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Applications

Why is this an interesting problem?

Building Block:

e Correspondences are a building block for
higher level geometry processing algorithms

Example Applications:
e Scanner data registration
e Animation reconstruction & 3D video
e Statistical shape analysis (shape spaces)
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3D Animation Scanner

New technology
e 3D animation scanners
e Record 3D video
e Active research area

Ultimate goal
e 3D movie making
e New creative perspectives
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Structured Light Scanners

Pif{{ w zs‘--& m Sl

space-time color-coded motion compensated
stereo structured light structured light

courtesy of James Davis, courtesy of Phil Fong, courtesy of Séren Konig,
UC Santa Cruz Stanford University TU Dresden
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Passive Multi-Camera Acquisition

segmentation & photo-consistent
belief propagation space carving
[Zitnick et al. 2004] Christian Theobald
Microsoft Research MPI-Informatik
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Time-of-Flight / PMD Devices

Swiss Ranger Time-of-flight camera
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Animation Reconstruction

Problems
e Noisy data
e Incomplete data (acquisition holes)
* No correspondences

Y L
‘\ ?

missing correspondences
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Animation Reconstruction

Remove noise, outliers

Fill-in holes
(from all frames)

Dense correspondences
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Applications

Why is this an interesting problem?

Building Block:

e Correspondences are a building block for
higher level geometry processing algorithms

Example Applications:
e Scanner data registration
e Animation reconstruction & 3D video
e Statistical shape analysis (shape spaces)
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Statistical Shape Spaces

Morphable Shape Models

e Scan a large number of individuals
= Different pose
= Different people

e Compute correspondences
e Build shape statistics (PCA, non-linear embedding)

Eurographics 2010 Course — Geometric Registration for Deformable Shapes

25



Statistical Shape Spaces

Numerous Applications:

e Fitting to ambiguous data
(prior knowledge)

e Constraint-based
editing

e Recognition,
classification, 5
regression / >\

Building such models
requires correspondences

—
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Data Characteristics



Scanner Data — Challenges

“Real world data” is more challenging
e 3D Scanners have artifacts

Rules of thumb:
e The faster the worse (real time vs. static scans)

e Active techniques are more accurate
(passive stereo is more difficult than laser triangulation)

e There is more than just “Gaussian noise”...
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Challanges

“Noise”

e “Standard” noise types:
= Gaussian noise (analog signal processing)
= Quantization noise

e More problematic: Structured noise
= Structured noise (spatio-temporally correlated)
= Structured outliers
= Reflective / transparent surfaces
e Incomplete Acquisition
= Missing parts
= Topological noise
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Outlook



This Tutorial

Different aspects of the problem:
e Shape deformation and matching

= How to quantify deformation?
= How to define deformable shape matching?

e Local matching

= Known initialization
e Global matching
= No initialization
e Animation Reconstruction

= Matching temporal sequences of scans
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Problem Statement

Given:

e Two surfaces S,, S, < R?
e Discretization:

= Pointclouds S={s,,...,s.},s,€ R3or
= Triangle meshes

We are looking for:

e A deformation function f, ,: 5, - R?
that brings S, close to S,
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Problem Statement

We are looking for:

e A deformation function f, ,: 5, - R?
that brings S, close to S,

Open Questions:
e What does “close” mean?
e What properties should f have?

Next part:
e We will now look at these questions more in detail
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Differential Geometry
of Curves & Surfaces (Overview)



Part I: Curves



Parametric Curves

Parametric Curves:
e A differentiable function

f:(a, b) > R"

describes a parametric curve
C=f((a, b)), CCR".
e The parametrization is called regular if f’(t) # O for all t.

e If ||f'(t)||=1forallt, fis called a unit-speed
parametrization of the curve C.
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Length of a Curve

The length of a curve:

e The length of a regular curve Cis defined as:
b
length(C) = [|£'(t)]d¢

e This definition is independent of the parametrization
(integral transformation theorem).

e Alternatively, the length of the curve can be defined as
length(C) = | b —a| for a unit-speed parametrization
C = f((a, b)); this obviously yields the same result.
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Reparametrization

Enforcing unit-speed parametrization:
e Assume:||f’(t)||# O for all t.

* We have:
length(C):j”f'(t)”dt (invertible, because f’(t) > 0)

e Concatenating f olength ' (C) yields a unit-speed
parametrization of the curve

%Iength(t)
Q— length1(t)
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Tangents

Unit Tangents:
e The unit tangent vector at x € (a, b) is given by:
'(t

tangent(t) = ||;'Et§”

e For curves Cc R?, the unit normal vector of the curve is
defined as:
normal(t) = 0 -1} /(1)
tooJlfe)
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Curvature

Curvature:
e First derivatives show curve direction / speed of
movement.
e Curvature is encoded in 2nd order information.
e Why not just use f”’?
e Two problems:

= Depends on parametrization (different velocity yields different

results)
= Have to distinguish between acceleration in tangential and non-
tangential directions.
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Curvature & 2nd Derivatives

C=f((a, b)) normal(t)

(t)  tangent(t)

Definition of curvature

 We want only the non-tangential component of f”.

e Braking / accelerating does not matter for curvature
of the traced out curve C.

 Need to normalize speed.
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Curvature

Curvature of a Curve C € R?%;
nen [0 =1 4,
<f (t),(1 ) jf (t)>
@)

e Normalization factor:
= Divide by ||f’|| to obtain unit tangent vector

K2(t)=

= Divide again twice to normalize f”
— Taylor expansion / chain rule:

FUAE) = F(t)+ AF(6,)(E —to)+%izf”(t)(t ) +0(E)

— Second derivative scales quadratically with speed
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Unit-speed parametrization

Unit-speed parametrization:
e Assume a unit-speed parametrization, i.e. Hf'Hzl.
e Then, k2 simplifies to:

K2(t)=|f"(t)
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Radius of Curvature

Easy to see:

e Curvature of a circle is constant, k2= + 1/r (r = radius).
(see problem sets)

e Accordingly: Define radius of curvature as 1/x2.

e Osculating circle:

= Radius: 1 /2
- Center:f(t)+inormal(t)

K2
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Theorems

Definition:
e Rigid motion: x —> Ax+b with orthogonal A

= Orientation preserving (no mirroring) if det(A) = +1
= Mirroring leads to det(A) = -1

Theorems for plane curves:

e Curvature is invariant under rigid motion
= Absolute value is invariant

= Signed value is invariant for orientation preserving rigid motion

e Two unit speed parameterized curves with identical
sighed curvature function differ only in a orientation
preserving rigid motion.
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Space Curves

General case: Curvature of a Curve Cc R”

e W.l.o.g.: Assume we are given a unit-speed
parametrization f of C

e The curvature of C at parameter value t is defined as:

k(t)=|f"(t)

e For a general, regular curve C ¢ 3 (any regular
parametrization):

k() = |f(£)x f';(t)”
7@
« General curvature is unsigned e (e
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Torsion

Characteristics of Space Curves in R3:
e Curvature not sufficient
e Curve may “bend” in space
e Curvature is a 2nd order property
e 2nd order curves are always flat

= Quadratic curves are specified by 3 points in space,
which always lie in a plane

= Cannot capture out-of-plane bends

Missing property: Torsion
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Torsion

Definition:

o Let fbe a regular parametrization of a curve Cc R3 with
non-zero curvature

e The torsion of f at t is defined as

() = fre)xfe)- f(E) det(f'(t), £ (), f"' (1))
TRGESH G IGEIEO
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lllustration

()= det(£'(6), (), £ (1))

f(t) L)< £ )
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Theorem

Fundamental Theorem of Space Curves

e Two unit speed parameterized curves C < R3 with
identical, positive curvature and identical torsion are
identical up to a rigid motion.
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Part ll: Surfaces



Parametric Patches

Parametric Surface Patches:
A smoothly differentiable function

fi RPoQ—>R"
describes a parametric surface patch

P=f(QQ), PcR".
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Parametric Patches

Parametric Surface Patches:

d
* The vectors tangent, (r) :Eﬂxo +tr)=V_f(x,) are tangent
vectors of the surface. In particular, there are canonical

tangents 0, f(u,v), 0, f(u,v) in principal parameter

directions.
e Regular parametrization: 0,f, 0,f linearly independent.

e For a regularly parametrized patch in R3, the unit normal

vector is given by:
g y normal(u,v) - o, f(u,v)xo, f(u,v)
0, f(uv)xo, f(u,v)
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lllustration

A 1(u,
vl QC R? PC RS ‘norma (u,v)
o0, f(u,v)

f f(u, v)

0,f(u,v)

(&, )
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Tangents

Computing Tangents:

e General tangents can be computed from principal
tangents:

| |
tangent, (r) :Vf(XO)I‘ = 0,f(X,) 0,f(X,) [ruj
| |
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Surface Area

Surface Area:
e Computation is simple

e For apatch f: R?2> Q — R", integrate over a constant
function (one everywhere) over the surface area:

e Then just apply integral transformation theorem:

0,f(x)x0, f(x)|dx, x= (uj

area(P) :i .
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Fundamental Forms

Fundamental Forms:
e Describe the local parametrized surface

e Measure...
= ...distortion of length (first fundamental form)

= ...surface curvature (second fundamental form)

e Parametrization independent surface curvature
measures will be derived from this

Eurographics 2010 Course — Geometric Registration for Deformable Shapes
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First Fundamental Form

First Fundamental Form
e Also known as metric tensor.
e Given a regular parametric patch f: R2> Q — R3.
e fwill distort angles and distances

 We will look at a local first order Taylor approximation to
measure the effect:

)= F(x,)+ VF(x,)(x X, ) 0uf o
 Length changes become visible ‘_/_\ Z

X
in the scalar product... Ouf (Xo)
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First Fundamental Form

First Fundamental Form
0
e First order Taylor approximation: J o

fX) = f(xo)+ V(X)X —X, ) ‘4\ Z

flx) 0, f (%)
e Scalar product of vectors a, b € R?: °

(flox+a) = (), £ (x+ )~ £() = (Vf(x,)a,Vf(x,)b)
=a" (V/(x,)" V/(x, )b

first fundamental form

, fla+x,)
N

Xo u f(xo)
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First Fundamental Form

First Fundamental Form

e The first fundamental form can be written as a
2 X 2 matrix:

o\ [0SO 8O\ _(E F o
o ):[@ufﬁvf avfavfj::(F G] )=/ )y

e The matrix is symmetric and positive definite
(for a regular parametrization)

e Defines a generalized scalar product that measures
lengths and angles on the surface.
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Second Fundamental Form

Problems:
e The first fundamental form measures length changes only
e A cylinder looks like a flat sheet in this view
 We need a tool to measure curvature of a surface as well

e Again, we will need second order information
(any first order approximation is inherently flat)
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Second Fundamental Form

Definition:
e Given a regular parametric patch f: R2> Q — R3.

e The second fundamental form (also known as shape
operator, or curvature tensor) is the matrix:

8uuf(XO)'n auvf(xo)'n]

S(XO):[ﬁuvf(Xo)'n Ow f(X,)m

e Notation:

I(x,y) = XT(&,uf(XO)-n 8uvf(x0).nj

0, f(X,)m By f(x,)m)

Eurographics 2010 Course — Geometric Registration for Deformable Shapes

29



Second Fundamental Form

Basic Idea:
e Compute second derivative vectors

e Project in normal direction (remove tangential
acceleration)
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Alternative Computation

Alternative Formulation (Gauss):
e Local height field parameterization f(x,y) = z

e Orthonormal x,y coordinates tangential to surface,
z in normal direction, origin at zero

e 2nd order Taylor representation:

fx)~ % f1O0x* 4 fx)xf(0)
2 0

Y4

— ex? +2fxy+ gy

e Second fundamental form: Matrix of second derivatives

0uf 0yf _,(e fj
axyf a)’)’f h f g
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Basic Idea

In other words:

e The first fundamental form is the
linear part (squared) of local
Taylor approximation.

e The second fundamental form is
the quadratic part of a local
qguadratic approximation of the

heightfield

e The matrix is symmetric. So next
thing to try is eigenanalysis, of
course...
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Principal Curvature

Eigenanalysis:
e The eigenvalues of the shape operator for an orthonormal
tangent basis are called principal curvatures k4, K,.

e The corresponding eigenvectors (which are orthogonal)
are called principal directions of curvature.

e Again, we get different cases...:

K,=0,%x;,>0 K,=0,x,=0

Eurographics 2010 Course — Geometric Registration for Deformable Shapes 33



Normal Curvature

Definition:

e The normal curvature k(r) in direction r for a unit length
direction vector r at parameter position x, is given by:

k, (r)=II, (r,r)=r'S(x,)r

Relation to Curvature of Plane Curves: }ma‘l’

e Intersect the surface locally with plane ]
spanned by normal and r through point x,,.
e The curvature of the curve at x, is equal
.O - q /a/au
to the normal curvature up to its sign.
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Principal Curvatures

Relation to principal curvature:

e The maximum principal cuvature k, is the maximum of
the normal curvature

e The minimum principal cuvature k, is the minimum of the
normal curvature
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Gaussian & Mean Curvature

More Definitions:

e The Gaussian curvature K is the product of the principal
curvatures: K = KK,

e The mean curvature H is the average: H=0.5-(k, + K,)

Theorems:

o 1’(()(0):det(5(x0)):}Z‘Z—_]I;2

eG-2fF +gE
2(EG - F?)

. H(XO):%tr(S(XO))z
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Global Properties

Definition:

e Anisometry is a mapping between surfaces that preserves
distances on the surface (geodesics)

e A developable surface is a surface with Gaussian curvature
zero everywhere (i.e. no curvature in at least one
direction)

= Examples: Cylinder, Cone, Plane

e A developable surface can be locally mapped to a plane
isometrically (flattening out, unroll).
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Theorema Egregium

Theorema egregium (Gauss):

 Any isometric mapping preservers Gaussian curvature, i.e.
Gaussian curvature is invariant under isometric maps
(“intrinsic surface property”)

e Consequence: The earth (= sphere) cannot be mapped in
an exactly length preserving way.
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Gauss Bonnet Theorem

Gauss Bonnet Theorem:

For a compact, orientable surface without boundary in R3, the
area integral of the mean curvature is related to the genus g of
the surface:

jH(x)dx = 411(1 — g)

g=0 g=1

Eurographics 2010 Course — Geometric Registration for Deformable Shapes

39



Fundamental Theorem of Surfaces

Theorem:

e Given two parametric patches in R3 defined on the same
domain Q.

e Assume that the first and second fundamental form are
identical.

e Then there exists a rigid motion that maps on surface to
the other.
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Summary

Objects are the same up to a rigid motion, if...:
e Curves R — R?%: Same speed, same curvature
e Curves R — R3: Same speed, same curvature, torsion
e Surfaces R? — R3: Same first & second fundamental form
e Volumetric Objects R3 — R3: Same first fundamental form

L1 [LIs2 [ 45
| | §> / | i/’—
4 ’@ p =
“\_/ L\ ‘ y: ; 4
plane curve space curve surface space warp
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Deformation Models

What if this does not hold?

e Deviation in fundamental forms is a measure of
deformation

A

e Example: Surfaces
= Diagonals of I - I,: scaling (stretching) > —
= Off-diagonals of I, - I,: sheering _’ - L
= Elements of Il - II,: bending

—

e This is the basis of deformation models.

Reference: D. Terzopoulos, J. Platt, A. Barr, K. Fleischer: Elastically
Deformable Models. In: Siggraph '87 Conference Proceedings (Computer
Graphics 21(4)), 1987.
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Geometric Registration for
Deformable Shapes

1.3 4D Kinematic Surfaces

3lst Annual Conference of the
European Association for Computer

euro
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Rigid Motion
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Scanning Moving Objects
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Space-time Surface
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Time Ordered Scans

........
----------------

tj tj+1 tj+2

N .

PJ

(p/} := {(p/.),p] e Rt/ e R}
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Space-time Surface

SRR A BRI
T e e

L A A ]
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Kinematic Surfaces
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Geometric Registration for
Deformable Shapes

2.1 ICP + Tangent Space optimization for
Rigid Motions

3lst Annual Conference of the
European Association for Computer

euro

graph1cs2010



Rigid Motion
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Registration Problem

Given

Two point cloud data sets P (model) and Q (data) sampled from surfaces
®, and O, respectively.

data model

Assume @, is a part of O,
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Registration Problem

Given
Two point cloud data sets P and Q.

Goal

Register Q against P by minimizing the squared distance between the
underlying surfaces using only rigid transforms.

data model
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Notations

P:{pi}
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Notations

D,
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Squared Distance Function (F)
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Squared Distance Function (F)

F(X,(DP) —d°*
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Registration Problem

Rigid transform « that takes points 0. — a(Q,).

Our goal is to solve for,

min ¥ F(a(q,). ;)
“ 0q;€Q

An optimization problem in the squared distance field of P,
the model PCD.
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Registration Problem

a =rotation (R) + translation(t)

Our goal is to solve for,

min q;gF(qu +1,D,)

Optimize for R and t.
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Overview of Our Approach

Construct approximate F*(x,®,) such that,
F (x,®,)=~F(x,D,) to second order.
Linearize a.
Solve

m|n > F(Rg; +t, ;)

q;€Q
to get a linear system.

Apply a to data PCD (Q) and iterate.
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Registration in 2D

e Quadratic Approximant

F'(x) = Ax* +Bxy +Cy” +Dx +Ey +F

=[x y 1Q,[x y 1
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Registration in 2D

. F'(x) =[x vy 1Q.x y 1

e Linearize rigid transform

a=(R,t)
/ \

function of & [t t]
sin(@) = 0 X—>X—-0y+t,
—
cos(d) =1 y—>0Xx+y+t,
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Registration in 2D

. Fi(x) =[x y 1Q,[x y T
X>X-0y+t,
y >0 x+y+i,

e Residual error

SF (Rq, +1,0,) = £(0,t,,)
q;€Q
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Registration in 2D

e Minimize residual error

M,

Depends on F* and data PCD (Q).

g(0,t,, ty)

M,
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Registration in 2D

e Minimize residual error 8(6’, tx,ty)
e Solve for Rand t.
e Apply a fraction of the computed motion

e F* valid locally
e Step size determined by Armijo condition

e Fractional transforms [Alexa et al. 2002]
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Registration in 3D

e Quadratic Approximant FFix) =[x vy z 1Q,Ix y z 1
Linearize rigid transform

e Residual error

ela, p.r.t,.1,.1,)

Minimize to get a linear system
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Approximate Squared Distance

F(X, @) valid in the neighborhood of x

Two methods for estimating F
1. d2Tree based computation

2. On-demand computation
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F(x, @) using d2Tree

A kd-tree like data structure for storing approximants of the squared
distance function.

Each cell (c) stores a quadratic approximant as a matrix Q.

Efficient to query.

[ Leopoldseder et al. 2003]
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F(x, @) using d2Tree

Simple bottom-up construction

Pre-computed for a given PCD.

Closest point information implicitly embedded in the
squared distance function.
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Example d2trees
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Approximate Squared Distance

For a curve W,

F(x, LP):%n2 +X5 = O0X2 + X5
1

[ Pottmann and Hofer 2003 |
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Approximate Squared Distance

For a curve W,

F(x, ‘{’):ix12 +X5 = 5X5 + X5

d-p,
For a surface O,
F(x, ®) :ix12 +ix§ + X2 = OX2 4+ 0,X5 + X5
d'pl d'pz

[ Pottmann and Hofer 2003 |
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On-demand Computation

Given a PCD, at each point p we pre-compute,

e alocal frame
e normal (n)
e principal direction of curvatures  (€;ande,)

e radii of principal curvature (p, and p,)
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On-demand Computation

Given a PCD, at each point p we pre-compute,

e alocal frame
e normal (n)
e principal direction of curvatures  (€;ande,)

e radii of principal curvature (p, and p,)

Estimated from a PCD using local analysis

® covariance analysis for local frame

e quadric fitting for principal curvatures
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On-demand Computation

Given a point x,

nearest neighbor (p) computed using approximate
nearest neighbor (ANN) data structure

F (X, @) = 5,(&, (X =P))° +5,(€;, - (x —p))” + (- (X —p))’

d/(d—pj) if d<0O
where SJ- =
0 otherwise.
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Iterated Closest Point (ICP)

Iterate
1. Find correspondence between P and Q.
e closest point (point-to-point).

e tangent plane of closest point (point-to-plane).

2. Solve for the best rigid transform given the
correspondence.
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ICP in Our Framework

e Point-to-point ICP (good for large d)

F(x,®:)=(x-p)* = ¢ =1

e Point-to-plane ICP (good for small d)

F(x,®,)=(n-(x-p))* = &, =0
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Convergence Properties

Gradient decent over the error landscape
Gauss -Newton Iteration

Zero residue problem (model and data PCD-s match)
Quadratic Convergence

For fractional steps, Armijo condition used
Damped Gauss-Newton Iteration
Linear convergence

= can be improved by quadratic motion approximation
(not currently used)
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Convergence Funnel

Set of all initial poses of the data PCD with respect to

the model PCD that is successfully aligned using the
algorithm.

Desirable properties

* broad

e stable
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Convergence Funnel

Translation in x-z plane.
Rotation about y-axis.

[ Converges

[ ] Does not converge
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Convergence Funnel
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Plane-to-plane ICP Our algorithm
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Convergence Rate |

0.025

0.02f

o
[=]
—_
19, ]

Residual Error

0.005¢

0.01r

0 it TR

% point—point ICP
-% - on—demand sqg. dist. approx
-©- d2Tree sq. dist. approx.

—+— point—plane ICP

Bad Initial Alignment
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Convergence Rate i

35— @ . : ‘ .
Vv - | % point—point ICP

i - | -*- on—demand sq. dist. approx

x | -© d2Tree sq. dist. approx.

25t | '%, | —— point—plane ICP g

Residual Error

[teration Count

Good Initial Alignment
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Partial Alignment

Starting Position
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Partial Alignment

&%

After 6 iterations
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Partial Alignment

Different sampling density After 6 iterations
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Closed Form Solution
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How to Establish Correspondence?
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When Objects are Almost Aligned
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ICP
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Convergence Funnel
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Convergence Rate
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Improvements
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Tangent Space
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Instantaneous Formulation
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Geometric Registration for
Deformable Shapes

2.2 Deformable Registration
Variational Model - Deformable ICP
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Variational Model
What is deformable shape matching?



Example

What are the Correspondences?
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What are we looking for?

Problem Statement:

Given:

e Two surfaces S,, S, < R?

We are looking for:

* A reasonable deformation function f, ,: 5, — IR?
that brings S, close to S,
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Example

* X

Correspondences?

“A too much deformation
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This is a Trade-Off

Deformable Shape Matching is a Trade-Off:

e We can match any two shapes
using a weird deformation field

e We need to trade off

= Shape matching (close to data)
= Regularity of the deformation field (reasonable match)
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Variational Model

Components:

Matching Distance:
A

Deformation / rigidity:

ﬁ(
/
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Variational Model

Variational Problem:

e Formulate as an energy minimization problem:

E( 1: ) _ E(match) ( f ) 4 E(regularizer) ( 1: )

(—A —
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Part 1: Shape Matching

Assume:
e Objective Function:

EMeW (£ = dist(f(S,),S,)

e Example: least squares distance

E (mateh) (£ = j dist(x,, S,)%dx,

Xl ESl

e Other distance measures:
Hausdorf distance, Lp-distances, etc.

(LN}
s v,

""""
.......

e L, measure is frequently used (models Gaussian noise)
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Point Cloud Matching

Implementation example: Scan matching

e Given:S,, S, as point clouds

= S =1{s,", ..., 5,1} el o

. S2 = {51(2)1 Ry Sm(Z)} { Si(Z)
e Energy function: f,'(51)

E ™ (f) = %Z dist(S,, s f
=1

e How to measure dist(Sl,x)?

= Estimate distance to a point sampled surface
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Surface approximation

Solution #1: Closest point matching

e “Point-to-point” energy

E(match) ( f) _ | 81 | ZdiSt(Si(2)1 NNin S (Si(Z)))z
m 1
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Surface approximation

O: - %O ....... 5 S 2)
0 f(s,)

Solution #2: Linear approximation
e “Point-to-plane” energy
e Fit plane to k-nearest neighbors
e k proportional to noise level, typically k = 6...20
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Surface approximation

........ O o
%0 0
O R O O uy, Si
O .
O O
o f(S,)

Solution #3: Higher order approximation
e Higher order fitting (e.g. quadratic)

= Moving least squares
e Rarely used: No close form solution for distance
e Point-to-plane recommended in practice
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Variational Model

Variational Problem:

e Formulate as an energy minimization problem:

E( 1: ) _ E(match) ( f ) 4 E(regularizer) ( 1: )

'

ﬁ(
/
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Part ll: Deformation Model

What is a “nice” deformation field? E(regularizer) ( f )

e |sometric energies

= Extrinsic (“volumetric deformation”)
. . “« . . /
= Intrinsic (“as-isometric-as _
possible embedding”) _—

e Elastic energy

= Physical model: The model is made of rubber
e Thin-plate splines

= Allowing strong deformations, but keep shape

e Approximations

= Laplacian surface deformation
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Volume Model

Extrinsic Volumetric “As-Rigid-As Possible”
e Embedd source surface S, in volume
e fshould preserve 3x3 metric tensor (least squares)

(regularlzer)(f) HVfo _1] dx

metric tensor (R3)

Vf
ambient space f (Vl)

>
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Volume Model

Variant: Thin-Plate-Splines
e Use regularizer that penalizes curved deformation

E(regularizer) (f) _ ij (X) 2 dX
41

second derivative (R3)

H,=V(Vf)

ambient space f (Vl)

>
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Isometric Regularizer

Intrinsic Matching (2-Manifold)

e Target shape is given and complete
e [sometric embedding

f (regularizer) [ £y _ J‘[vaf —I] dx

metric tensor (S,, intrinsic)

vf

f{t \‘/\/
angent space
Sl\/\i

>
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Elastic Regularizer

Elastic Regularizer
e Differential geometry point of view

= Preserve metric tensor (least sgaures)
= Preserve curvature tensor (least squares)
= Thin-shell model”

e Complicated to implement
e Usually approximated

= Volumetric shells (as shown before)
= Other approximation (next slide)
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Example Implementation

Example: elastic / as-rigid-as possible model

e |dee: associate local rigid transformation with surface
points

e Optimize simultaneously with deformed surface

e Transformation is implicitly defined by deformed surface
(and vice versa)

Eurographics 2010 Course — Geometric Registration for Deformable Shapes 20



Parameterization

Parameterization of S,
e Surfel graph
e This could be a mesh, but does not need to

edges encode
topology

surfel graph
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Deformation

frame t frame t+1

prediction

A L"L

Orthonormal Matrix A,

per surfel (neighborhood),
latent variable
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Deformation

frame t frame t+1
prediction

A L"L

...................................................................... Orthonormal Matrix A

per surfel (neighborhood),
latent variable

=
e
st
st
]
e
ws®
ws®
ws
----
.
.
st
ws®
s
P
ws®
ws®
.

2
(regularizer) t|(t) (t) (t+1) (t+1)
E N Z Z[Al (Si _Sij )_ (Si _Sij )]

surfels neighbors
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Unconstrained Optimization

Orthonormal matrices

e Local, 1st order, non-degenerate parametrization:

0
t) @ F A=A eXp(Cxi)
: t
B -y 0 = A,(I+ C")

e Optimize parameters a, [3, v, then recompute A,
e Compute initial estimate using [Horn 87]
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Variational Model

Variational Problem:

e Formulate as an energy minimization problem:

E( f ) _ E(match) ( f ) 4 E(regularizer) ( 1: )

A j <2¥
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Deformable ICP



Deformable ICP

How to build a deformable ICP algorithm
e Pick a surface distance measure
e Pick an deformation model / regularizer

E( f ) _ E(match) ( f ) 4 E(regularizer) ( 1: )

—A j <2¥
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Deformable ICP

How to build a deformable ICP algorithm

e Pick a surface distance measure

Pick an deformation model / regularizer
Initialize f(S,) with S,
Pick a non-linear optimization algorithm

= Gradient decent (easy, but bad performance)

= Preconditioned conjugate gradients (better)
= Newton or Gauss Newton (recommended, but more work)

= Always use analytical derivatives!

Run optimization
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Example

Example
e Elastic model

e Local rigid coordinate
frames

e Align A>B, BSA
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Robust Local Registration

ETH Zurich / EPFL



Robust Local Registration

Hao /0

C,

ETH Zurich / EPFL










Pairwise
Non-Rigid Registration



Initial Alignment




framen —

Initial Alignment
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Initial Alignment

frame n+/



Source and Target




Source and Target




Deformation and Occlusion




Deformation and Occlusion

— missing data




Deformation and Occlusion

— missing data

C;, overlapping regions



No Explicit Prior Knowledge




No Explicit Prior Knowledge
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No Explicit Prior Knowledge
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e full 3-D model




No Explicit Prior Knowledge

no knowledge about

e full 3-D model

* correspondences




No Explicit Prior Knowledge

no knowledge about

e full 3-D model

* correspondences

* regions of overlap




Goal: Automatic Local Registration
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Ingredients for Non-Rigid Registration



Ingredients for Non-Rigid Registration
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Ingredients for Non-Rigid Registration

..... A

~

N

target

( 2 partial overlap correspondence

S

\

\



Ingredients for Non-Rigid Registration

registration

( 2 partial overlap correspondence deformation



Chicken & Egg Dillema



Chicken & Egg Dillema

correspondence

region of overlap deformation



Chicken & Egg Dillema

correspondence

22N

region of overlap deformation

N



Chicken & Egg Dillema

correspondence

solve within a single
optimization problem

region of overlap deformation

N



Embedded Deformation
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Deformation Model

Embedded Deformation
[Sumner et al.’0/]
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Deformation Model

Embedded Deformation
[Sumner et al.’0/]
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Deformation Model

Embedded Deformation
[Sumner et al.’0/]

e efficiency
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Deformation Model

Embedded Deformation
[Sumner et al.’0/]

e efficiency

e generality

e natural deformation

* detail preservation
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Deformation Model
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Embedded Deformation
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Embedded Deformation
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deformed
source



Embedded Deformation
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source




Embedded Deformation
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Embedded Deformation

source

deformed
source

Egnooth = D 9 wi(x;)[|Ai(x; — x;) +x; + b; — (x; + b;)|3

C; Erigid Esmooth




Global Optimal
Correspondence Optimization



Minimize Alignment Error

source

deformed
source

target ",‘—-‘--‘-.8_‘_ ’

o =
-
s



Correspondences as Unknowns

deformed
source

(. Py = Z 19, — el



Partial Data




Confidence Weights




Continuous Representation

hole region ‘









Eg = ZWQHVJ —c(1) |3 Econt = ) _(1—w?)’







Depth-Scan Parameterization
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raw depth map depth scan weighted least squares
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Optimization

Etot = Yrigidrigid T %smoothsmooth T At Lxt + AeonfPeont

* Minimize deformation energy
* Minimize alignment error

e Maximize regions of overlap



Optimization

Etot = | %igid Prigid T ¥smooth Fsmooth +

* Minimize deformation energy
* Minimize alignment error

e Maximize regions of overlap



Regularization Relaxation

Etot = Yrigidrigid T %smoothsmooth T At Lxt + AeonfPeont

Arigid = 1000 — 1 agfe = 0.1
Asmooth = 100 — 0.1 Aeonf = 100 — 1
stiffness reduction confidence adaptation



Results
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Elephant (329 nodes, 21k vertices
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Comparison to

21K vertices 329 nodes

M max

B min

(‘) Registration Correspondence Error




Scans

|20 K vertices 336 nodes
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Scans

|20 K vertices 336 nodes
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Optimization
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Visualization
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Deformation

44 K vertices 798 nodes
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Comparison to Previous Techniques
on Non-Rigid ICP
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Comparison with Non-Rigid ICP
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Robust De-Coupling



Robust Non-Rigid ICP
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Optimization

Non-Linear Optimization

Etot = afig gt + CVlrigidlErigid * Agmooth Psmooth

Too few nodes:
® inaccurate

Too many nodes:

¢ inefficient
e less robust

Extension of [Li et al.’08]
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Global Matching

Part I: Introduction to geometric key point
detection and feature descriptors



The story so far

Problem statement

e Given pair of shapes/scans, produce an alignment

Local registration

e Solves for an alignment assuming that pose is similar or
motion is small between shapes / scans

e Like “tracking” of motion in this respect

In this session: Global matching
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What is Global Matching?

Problem statement

e Find the globally optimal alignment between a pair of
shapes
e Search space = set of all possible correspondences

e Same sense as local minimum vs global minimum in
optimization

e Don’t get confused with global registration

= “Global registration” is commonly used to refer to aligning
multiple scans together to make a single shape
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Local vs Global

Local Registration VS.

e Search in space of
transformations,

minimize alignment energy

e Relatively small search
space... relatively easy

Global Registration

e Search in the space of all
possible correspondences,
minimize alignment energy

e Incredibly large search
space... nearly impossible?

=» Features to the rescue!
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Our eyes recognize features

Face # Arm

e Why? |t looks different!

e Can dramatically reduce space of possible solutions

e How can we directly compare the geometric content to
recognize similarity/dissimilarity?
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Types of features

Welcome to the world of feature descriptors..

Spherical Harmonic Heat diffusion
: Local Surface : .
Shape Signature . RIFT descriptor Signature
[Kazhdan et al. 03] Sl_gnature [Skelly and Sclaroff 07] [Sun et al. 09]
[Li and Guskov 05]
Point Signatures 3D Shape Context Slippage Features
[Chua & Jarvis 97] [Frome et al. 04] [Bokeloh et al. 08]
Year
| >
Spin Images 3D Tensor Descriptor | | Multi-scale Scale dependent/
[Johnson 97] [Mian et al. 04] Principal Curvature Invariant features
) [Yang et al. 06] [Novatnack & Nishino 08]
Multi-scale [Kalogerakis et al. 07]
Line features HMM Descriptor
[Pauly et al. 03] [Castellani et al. 08]

e Many more exist... possibly with different objectives
= ex) Matching whole shape vs. local patches
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An Example: Spin Images

One of the earliest feature descriptors

e Established, simple, well analyzed
e Clearly illustrates the process of how this type of
recognition works

e Also illustrates potential problems & drawbacks common
to any type of feature descriptor
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Spin Image Construction

e Converts a local patch of geometry into an image, which
we can directly compare to determine similarity

rotate @A

Images from [Johnson 97]
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Spin Image Matching

Compare images directly to obtain similarity score
e Linear correlation coefficient = Similarity measure
e Compute only in “overlap”: when both bins have a value

Match points by
matching spin-images

i SRt
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i
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Images from [Johnson 97]
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Compressing Spin Images

Spin images from the same model are similar
e Reduce redundancy with PCA compression

e Save space and matching time

" 7

v

Y
Yo
™

Images from [Johnson 97]
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Problem #1: False positive/negative

False positive
e Saying that two points match when in fact they don’t

False negative
e Saying that two points don’t match when in fact they do

Aka “noise” or “outliers”
e Occurs with any type of descriptor
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Problem #2: Parameter Selection

Examples of parameters in spin images
e Bin size
e Image width
e Support angle
e Mesh resolution

How to pick the best parameters?
e Fortunately well analyzed for spin images
e Not so well-analyzed for others
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Problem #3: Non-unique patches

What to do in flat/spherical/cylindrical regions?
e In this case, the region is not “unique” or distinctive
e Doesn’t make sense to compare such regions..
e Ordoes it?

= |Increasing the scale/support

Multi-scale features, select scale automatically

“Global” features — ex) heat diffusion signature

Eurographics 2010 Course — Geometric Registration for Deformable Shapes
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Conclusion

Feature descriptors
e Very useful for narrowing down search space
e Does not solve the problem completely

e Additional optimization in the (reduced) search space is
needed = explored in the next few talks!

Eurographics 2010 Course — Geometric Registration for Deformable Shapes
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Geometric Registration for
Deformable Shapes

3.2 Isometric Matching
and Quadratic Assighment
Quadratic Assighnment - Spectral Matching - MRF Model

3lst Annual Conference of the
European Association for Computer Graphics

euro

sraphics2010



Overview and Motivation



Global Isometric Matching

Goal

e We want to compute correspondences between
deformable shape

e Global algorithm, no initilization
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Global Isometric Matching

Approach & Problems
e Consistency criterion: global isometry

Problem

 How to find globally consistent matches?

Model

e Quadratic assignment problem
= General QA-problem is NP-hard

= But it turns out: solution can usually be computed
in polynomial time (using a randomized technique, later)

Eurographics 2010 Course — Geometric Registration for Deformable Shapes



Isometric Matching

(vs. extrinsic matching)



Invariants

Rigid Matching
e Invariants: All Euclidean distances are preserved

Eurographics 2010 Course — Geometric Registration for Deformable Shapes



Invariants

Intrinsisc Matching
e Invariants: All geodesic distances are preserved
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Invariants

Intrinsisc Matching

» Presevation of geodesic distances
(,,intrinsic distances”)

e Approximation
= Cloth is almost unstretchable
= Skin does not stretch a lot
= Most live objects show approximately isometric surfaces

e Accepted model for deformable shape matching
= In cases where one subject is presented in different poses

= Accross different subjects: Other assumptions necessary
= Then: global matching is an open problem
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Feature Based Matching

Quadratic Assighment Model



Problem Statement

Deformable Matching
e Two shapes: original, deformed
e How to establish correspondences?

e Looking for global optimum
= Arbitrary pose

Assumption

e Approximately isometric
deformation

[data set: S. Konig, TU Dresden]
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Algorithm

Feature-Matching
e Detect feature points

e Local matching: potential correspondences

e Global filtering: correct subset

Eurographics 2010 Course — Geometric Registration for Deformable Shapes
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Algorithm

Feature-Matching

e Detect feature points
= Locally unique points
= Such as: maxima of Gaussian curvature
= E.g.: Geometric MLS-SIFT Features

e Local matching: potential correspondences

e Global filtering: correct subset
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Algorithm

Feature-Matching

e Detect feature points
= Locally unique points
= Such as: maxima of Gaussian curvature
= E.g.: Geometric MLS-SIFT Features

e Local matching: potential correspondences

= Descriptors
= E.g. curvature histograms

e Global filtering: correct subset
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Algorithm

Feature-Matching

e Detect feature points
= Locally unique points
= Such as: maxima of Gaussian curvature
= E.g.: Geometric MLS-SIFT Features

e Local matching: potential correspondences

= Descriptors
= E.g. curvature histograms

e Global filtering: correct subset
= Quadratic assignment

= Spectral relaxation [Leordeanu et al. 05]
= RANSAC
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Quadratic Assignment

Most difficult part: Global filtering
e Find a consistent subset
e Pairwise consistency:

= Correspondence pair must preserve intrinsic distance

e Maximize number of pairwise consistent pairs
= Quadratic assignment (in general: NP-hard)
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Quadratic Assignment Model

Quadratic Assighnment

e n potential

correspondences

e Each one can be
turned on or off

 Label with variables x;
e Compatibility score:

P(match)(xl’ WX ) Hp(smgle)HP(compauble) X,' c {0’1}

i,j=1
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Quadratic Assignment Model

Quadratic Assighnment

e Compatibility score:

= Singeltons:
Descriptor match

P(match)(xl’ WX ) HP(smgle)HP(compatlble) Xi c {0,1}

iI,j=1
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Quadratic Assignment Model

Quadratic Assighnment

e Compatibility score:

= Singeltons:
Descriptor match

= Doubles:
Compatibility

P(match)(xl’ WX ) HP(smgle) HP(compatlble) Xi c {0,1}

i,j=1
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Quadratic Assignment Model

Quadratic Assighnment
e Matrix notation:

(match)(X1’ X ) Hp(smgle) Hp(compatlble)

i,j=1

- XS + X'Dx

e Quadratic scores are encoded in Matrix D
e Linear scores are encoded in Vector s
e Task: find optimal binary vector x

Eurographics 2010 Course — Geometric Registration for Deformable Shapes
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Spectral Matching

Approximate Quadratic Assighment



Spectral Matching

Simple & Effective Approximation:
e Spectral matching [Leordeanu & Hebert 05]

e Form compatibility matrix:

P
(ay,| ay; |as, |
A= ay; Uy | \
a, .
L T ;

- Diagonal:

Descriptor match

~—_ Off-Diagonal:

__—" Pairwise compatibility

All entries within [0..1]
= [no match...perfect match]

Eurographics 2010 Course — Geometric Registration for Deformable Shapes

21



Spectral Matching

Approximate largest clique:
e Compute eigenvector with largest eigenvalue
e Maximizes Rayleigh quotient:
x ' AX
2
x|
e “Best yield” for bounded norm

= The more consistent pairs (rows of 1s), the better

arg max

= Approximates largest clique

e Implementation

= For example: power iteration
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Spectral Matching

Postprocessing

e Greedy quantization
= Select largest remaining entry, setitto 1

= Set all entries to O that are not pairwise consistent
with current set

= |terate until all entries are quantized

In practice...
e This algorithm turns out to work quite well.
e Very easy to implement
e Limited to (approx.) quadratic assignment model

Eurographics 2010 Course — Geometric Registration for Deformable Shapes
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Spectral Matching Example

Application to Animations

e Feature points:
Geometric MLS-SIFT
features [Li et al. 2005]

e Descriptors:
Curvature & color
ring histograms

» Global Filtering:
Spectral matching

e Pairwise animation matching:
Low precision passive stereo data

Eurographics 2010 Course — Geometric Registration for Deformable Shapes

24




Markov Random Field Model

Probabilistic Interpretation



Direct MRF Approach

Bayesian interpretation S;e——» 1
e Probability Space 1
e Q={f:(s,.5,) > {Lk}"] .
= Exponential size!
S, k
e Markov-Random Field / graphical model
e Distribution: ol
1| 7 5 0) () &l )
P(f)=— HP (s;, f(s;)) HP (Si’sj'f(si)'f(sj)) (]
Al (i,j)eG 'S »
[ ) o] o
match local shape preserve local distance o o
.-" @
I Eurographics 2010 Course — Geometric Registration for Deformable Shapes 26 I



Direct MRF Approach

Solution

e Posterior distribution is exponential
, P(f(s;)=1J)
e Instead, we compute marginals:

“Average” of all solutions

P(f(s)=1)= D D P(f = (i e frrewii)

i1=1 In=

Postprocessing: ~ .
e Extract solutions solution #3
-
e Few solutions in a very large space Q  solution#
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Direct MRF Approach

Inference
P(f(si)=j)=2---ZP(f=(il ,,,,, frei))

e Representation is polynomial,
but computation is still NP hard

e Heuristic approximation: Loopy belief propagation
e Works well in practice

Eurographics 2010 Course — Geometric Registration for Deformable Shapes
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Example Result

Self-matching: Deformable Symmetries
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Advanced Global Matching

Correlated correspondences [ASP*04]
A complete registration system [HAW*08]



In this session...

Advanced Global Matching

How it’s the same as last session

How it’s different

- What I’'m going to talk about (overview)

Figures in the next slides are from the respective
papers
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Correlated correspondences

e Correspondence between data and model meshes
» Model mesh is a template; i.e. data is a subset of model

] o |
Template (Model) Data Result
e Not a registration method; just computes corresponding points
between data/model meshes
= Non-rigid ICP [Hanhel et al. 2003] (using the outputted

correspondences) used to actually generate the registration results
seen in the paper
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Basic Approach

Search (in the set of all possible correspondences) for
the best correspondence set that “makes sense”
e Define what you mean by “makes sense”?
= Minimize the amount of deformation induced by the corresp.

= Preserve the same geodesic distances in model and data

= Corresponding points have same feature descriptor values
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Mathematical Technique

4

A joint probability model encodes this “makes sense’
criteria

e Define a “probability” of each correspondence set
between data/model meshes

e Find the correspondence with the highest probability
using Loopy Belief Propagation (LBP) [Yedidia et al. 2003]

2 main components (next parts of the talk)
e Probability model

e Optimization
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Joint Probability model

Given a correspondence, measure how much it
“makes sense”

A. Minimize the amount of deformation induced by the corresp.
B. Preserve the same geodesic distances in model and data

C. Corresponding points have same feature descriptor values

A, B are probabilities involving pairs of correspondences
e Call this a “pairwise potential”

e Represents prior knowledge of what “makes sense”

C involves only a single correspondence
e A “pointwise potential”
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Deformation potential

Penalize unnatural deformations
» Edges lengths should stay the same |, = |

X
')
by

In model mesh Corresponding points
in data mesh
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Deformation potential

Penalize unnatural deformations
e Edges should twist little as possible d,_,; = d;

I— ]

dj—)izd"

j—l

° de s the direction from X;to X; in X;’s coord system

In model mesh Corresponding points
in data mesh
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Encoding the preference

e Zero-mean Gaussian noise model for length and twists
» Define potential w for each edge (z,,Z,) in the data mesh

= (C,,C,) are “correspondence variables” indicating what is the
corresponding point in the model mesh for Z, , Z, respectively

¥ (Ck _I CI o J) G(I |I )G(d|—>1 |dl—>J)G(dj—)l | j—)i)

e Caveat: additional rotation needed to measure twist

= For each possibility of C, = | precompute aligning rotation
matrices via rigid ICP on surrounding local patch

= Expand corresp. variables to be site/rotation pairs
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Geodesic distance potential

Penalize large changes in geodesic distance

e Geodesically nearby points should stay nearby \
= Enforced for each edge in the data mesh jf

—

o/. :
Zk

diStGeodesic(Zk’ ZI) ~ p

Adjacent points
in data mesh

—>

X A diStGeodesic (Xi , Xj )

If >3.5p = prob assigned O
otherwise = prob assigned 1

Corresponding points

in model mesh
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Geodesic distance potential

Penalize large changes in geodesic distance

e Geodesically far points should stay far away

\

= Enforced for each pair of points in the data mesh whose jf

~ geodesic distance is > 5p 2}
X. )

J

Zk./. ZI » Xi A dIStGeodesic (Xi ’ Xj)

- If <2p —> prob assigned 0
dist - (z2,,2,)>5
GeodeS'C( K ') P otherwise = prob assigned 1

—_—

Adjacent points Corresponding points
in data mesh in model mesh
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Local surface signhature potential

Spin images gives matching score for each individual
correspondence
e Compute spin images & compress using PCA
—> gives surface signature Sxiat each point X
e Discrepancy between Szk (data) and SXi (model)
e Zero-mean Gaussian noise model

Compare Spin Images "
L .
£ W

Data mesh Model rﬁesh

Eurographics 2010 Course — Geometric Registration for Deformable Shapes
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Model summary

Get Pairwise Markov Random Field (MRF)

e Pointwise potential for each pt in data

e Pairwise potential for each edge in data
= Far geodesic potentials for each pair of points > 5p apart

Data mesh Model mesh
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Quick intro: Markov Random Fields

Joint probability function visualized by a graph
e Prob. = Product of the potentials at all edges

®—O w,(C) < (ex)Surface signature potential
O——=CO W (Ck , C,) < (ex) Deformation, geodesic distance potential

C/. /’/. ”f @/. P({C}):%ijkl (Ck’CI)HWk(Ck)

{. @® Observed” nodes

f. O “Hidden” nodes
p

-

o e e

Tol e e
o e “\.

~

C
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Loopy Belief Propagation (LBP)

Usual way to compute marginal probabilities
(tabulate and sum up) takes exponential time

e BP is a dynamic programming approach to efficiently
compute marginal probabilities

e Exact for tree MRFs, approximate for general MRFs
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Loopy Belief Propagation (LBP)

Basic idea

e Marginals at node proportional to product of pointwise
potential and incoming messages

bk (Ck) = k¢k (Ck) H m,_,, (Ck)

leN (k)

/.
S“b/g“@
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Loopy Belief Propagation (LBP)

Basic idea
e Compute these messages (at each edge) and we are done

m,_, (C) < Z¢| (€)wa(c. ) qu—>| (c)

all values of c geN (H\k
X;
c Z¢| (€)v(C.C) C,
| all values of c — _O
ml—)k
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Loopy Belief Propagation (LBP)

Basic idea
e Compute these messages (at each edge) and we are done

ml—)k (Ck) < Z ¢I (CI )Wkl (Ck ! CI ) H mq—>| (CI )

all values of c geN (1)\k

Z¢| (c)wu(c.c) Ck
all values of c — _O
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Loopy Belief Propagation (LBP)

Basic idea
e Compute these messages (at each edge) and we are done

m,_,, (C,) < Z ¢ (¢c)w (S, C) H m,_, (c)

all values of c geN (H\k

” IZ%(CI)WH (. C) Ck
all values or ¢, ‘) _O

e Recursive formulation
e Start at ends and work your way towards the rest
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Loopy Belief Propagation (LBP)

Loops: iterate until messages converge
e Start with initial values (ex: 2. %.(C.)¥u(C..C,) )

all values of c,

e Apply message update rule until convergence

e Convergence not guaranteed, but works well in practice
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Results & Applications

e Efficient, coarse-to-fine implementation

e Xeon 2.4 GHz CPU, 1.5 mins for arm, 10 mins for puppet

‘99 » (14 10%
e iy

138 814
Correspondences on
human body models

P =" N R |

Finding articulated parts

Interpolation between poses
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Conclusion

Correlated correspondence
e Robust method for matching correspondences
e Measure how much the correspondence “makes sense”
e Probability model = optimized using LBP
e Requires a template

= If model is incomplete, then there is no “correct” corresponding
point to assign

Questions?
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Next topic: HAW*08

An application to the spectral matching method of
last session

e A good illustration of how a matching method fits into a
real registration pipeline

A pairwise method

e Deform the source shape to match the target shape

Source + Target Source Samples Correspondences Rigid Clusters Registration Result

@

»
@ q o . i ¥ g
' e L/ ;
4 I
& |
: a \ /l
1 3 L v, /
L. ’ J
- . -

|
£ Ty

4

e’
|
y
#
i

N

naifin

5\"
F

“ Gray = source
Yellow = target

Eurographics 2010 Course — Geometric Registration for Deformable Shapes



Overview

Performs both correspondence and deformation

1

o After finding correspondences, to move shapes
closer together

[ Correspondence }é{ Deformation

e Correspondences based on

e Re-take correspondences from the deformed position

e Deform again, and repeat until convergence
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Overview

Performs both correspondence and deformation

J

[ Correspondence }é{ Deformation

— 3

(s )

1.Closest points
2.Improve by feature matching
3.Filter by spectral matching
4.Expand sparse set
\S.Flne-tune target locations /
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Overview

Performs both correspondence and deformation
[ Correspondence }é{ Deformation

|
> ‘L_' N

1.Fit per-cluster rigid transformation
2.Sparse least-squares solve for
deformed positions

\ Increase cluster size /
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Detailed Overview

Sampling

 Whole process works with reduced sample set

Correspondence & Deformation
e Examine each step in more detail

Discussion
e Discuss pros/cons

Eurographics 2010 Course — Geometric Registration for Deformable Shapes
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Sample for robustness & efficiency

Coarse to fine approach
e Use uniform subsampling of the surface and its normals
e Improve efficiency, can improve robustness to local

m | N | ma Source + Target Source Samples
074 [} {
Let’s make it more concrete \ ' /s 4
» Sample set denoted S ¢ J

e In correspondence: for each §;, fmd corresponding target
points t,

e In deformation: given ’[i , find deformed sample positions
Si' that match '[i while preserving local shape detail
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Correspondence Step #1

Target (yellow) € Source (gray)

Find closest points

e For each source sample, find
the closest target sample

= s =sample point on source
= t=sample point on target

. 2
argmin |s —t|
teT

e Usually pretty bad

Closest point correspondences
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Correspondence Step #2

Improve by feature matching

e Search target’s neighbors to
see if there’s better feature
match, replace target

= Let f(s) be feature value of s

2

t «—argmin | f(s)- f(t)
t'eN (t)
e |terate until we stop moving

e |f we move too much, discard
correspondence

e Much better, but still outliers

Target (yellow) €= Source (gray)

PO
i

’__ 1 Q -:-':f
\.)C‘} i r

s e

e
e

Feature-matched correspondences
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Correspondence Step #3

Target (yellow) €= Source (gray)

Filter by spectral matching
e (First some preprocessing)

e Construct k-nn graph on both
src & tgt sample set (k = 15)

e Length of shortest path on
graph gives approx. geodesic
distances on src & tgt

dg(si,sj) dg(ti,tj)
e Goalis to filter these -----——---- ->

and keep a subset which is
geodesically consistent

Feature-matched correspondences
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Correspondence Step #3

Target (yellow) €= Source (gray)

Filter by spectral matching

e Construct affinity matrix M
using these shortest path
distances

e Consistency term & matrix
d,(s;,s;) d,(t.t;)

c. = min{ , } ¢ =1
' 1
dg(ti’tj) dg(si1sj)
M. ((.‘i'j__(;l} )2 Cii > Cp.
! 0 otherwise,

= Threshold ¢, = 0.7 gives how

much error in consistency we are _
willing to accept Feature-matched correspondences
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Correspondence Step #3

Target (yellow) € Source (gray)

Filter by spectral matching

e Apply spectral matching: find
eigenvector with largest
eigenvalue = score for each
correspondence

e |teratively add corresp. with
largest score while consistency
with the rest is above c_ 0

e Gives kernel correspondences

e Filtered matches usually sparse

Filtered correspondences
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Correspondence Step #4

Target (yellow) € Source (gray)

Expand sparse set
e Lots of samples have no target
position

e For these, find best target
position that respects geodesic
distances to kernel set

t. =argmine, (s;,t)
teN, (t;.T)

e s t)= Y [d,(55)-d,tt)]

(sg .ty )eK

Expanded correspondences
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Correspondence Step #4

Target (yellow) € Source (gray)

Expand sparse set
e Lots of samples have no target
position

e Compute confidence weight
based only how well it respects
geodesic distances to kernel set

Tt 1
w—oxp- 2ty o= 3 ecsat) BF
2e ‘ ‘ (5.t )eK .

Red = not consistent ---=> ¥
Blue = very consistent '

.
Expanded correspondences
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Correspondence Step #5

Target (yellow) € Source (gray)

Fine-tuning

e So far, target points restricted
to be points in target samples

e Not accurate when shapes are
close together

e Relax this restriction and let
target points become any point
in the original point cloud

e Replace target sample with a
closer neighbor in the original
point cloud

Expanded correspondences
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Deformation

Solved by energy minimization (least squares)
* Last step gave target positions 1.

 Now find deformed sample positions Si' that match
target positions t,

Two basic criteria:
* Match correspondences: S; should be close to '[i
e Shape should preserve detail (as-rigid-as-possible)
e Combine to give energy term:

E=A_E _+1

corr —corr rigid

E

rigid
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Correspondence matching term

Combination of point-to-point (a=0.6) and point-to-
plane (B=0.4) metrics

e Weighted by w; of the target position
Cuar = 20 s -t [+ A -t
Point-to-point Point-to-plane

Eurographics 2010 Course — Geometric Registration for Deformable Shapes
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Shape preservation term

Deformed positions should preserve shape detail

e Form an extended cluster C, for each sample point: the
sample itself and its neighbors

e For each ék find the rigid transformation (R,T) from
sample positions to their deformed locations

E, = ZC: Rs, + T, —s

e When solving for Si’ , constrain them to move rigidly
according to each cluster that it’s associated with

ngld—ZEk—Z Z HRkSl‘l'Tk SIH
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Clusters for local rigidity

e Initially each cluster contains a single sample point

e Every 10 iterations (of correspondence & deformation),
combine clusters that have similar rigid transformations
(forming larger rigid parts)
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Advantages of features & clustering

Source + Target Without Features = Without Clustering With Both
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Results

Efficient, robust method

data set #poses #pairs |S| |S| pre time reg time
Horse 10 45 80k 2500 7.4s 13.6s
Armadillo 12 66 332k 2500 7.6 14.8s
Arms 36 630 80k 600 2.1s 1.18
Shoulder 33 528 117k 800 34s 1.9s
Torso 27 231 325k 1100 4.5s 4.5s
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Conclusion

Non-rigid registration under isometric deformations

Improve closest point correspondences using features and
spectral matching

Deform shape while preserving local rigidity of clusters

Iteratively estimate correspondences and deformation
until convergence

Robust, efficient method

Relies on geodesic distances (problematic when holes are
too large)

Questions?
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3.4 Probabilistic Techniques
RANSAC - Forward Search - Efficiency Guarantees
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Ransac and Forward Search
The Basic Idea



Random Sampling Algorithms

Estimation subject to outliers: !

 We have candidate
correspondences B

e But most of them are bad - -

e Standard vision problem

e Standard tools:
Ransac & forward search
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RANSAC

. / 4 j
data o pickrnd.2 s data 8/
o o / o/
© (@) © // o) ° / ’ o)
°0 0 o O oo Lo o/ ¥/ 0 o
y o) Y
o} § © 800 P/ § © 8oQ }D/ 8 © 8OO
/ //
data o pickrnd. 2 o data . °
o - o ~<
o T Q. o Bl S o
3 0%0_0 o %5%G~~° 0 %‘.‘9‘%0\?"5‘\
00 o O ve-.0 0 e~ Q0 o
o & S 0\09“8 I “oo~8 ‘
o ° 8 & o) ON&(.)Q\ 1o Tl D‘gbo\
o o o o) o) o =

yStandard” RANSAC line fitting example:
e Randomly pick two points
e Verify how many others fit

e Repeat many times and pick the best one (most matches)
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Forward Search

~start ° -iteration ° Iteration... ©
\\Q\ (0] ..N"QN (e} \‘NN\\O O
8095 %0 ° 8095 %- ° 808%-
°"o 080 o °"o O%‘*eNQ © 0 6%-a
R 3 T
o NG*SNSO fo) ‘860\ o %~Q
o o SSd (0] o o o
result . °
Forward Search: I S
. ° d~°%‘69~00
e Ransac variant . o,
o (o]
e Like ransac,

but refine model by ,,growing”

Pick best match, then recalculate

Repeat until threshold is reached
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Ransac-Based
Correspondence Estimation



RANSAC Algorithm

RANSAC Idea

e Starting correspondence
e Add more that are consistent

= Preserve intrinsic distances

e Importance sampling algorithm 1

Advantages
e Efficient (small initial set)
e General (arbitrary criteria)

Eurographics 2010 Course — Geometric Registration for Deformable Shapes



Ransac Details

Algorithm: Simple Idea

e Select correspondences with probability proportional to
their plausibility

e First correspondence: Descriptors
e Second: Preserve distance (distribution peaks)
e Third: Preserve distance (even fewer choices)

e Rapidly becomes deterministic
e Repeat multiple times (typ.: 100x)

= Choose the largest solution (larges #correspondences)
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Ransac Details

Provably Efficient:

e Optimal solution in expected O(n3 log n)
for n candidate correspondences and sphere topology

e Much faster in practice (using descriptors)

Flexible:

e |n later iterations (> 3 correspondences), allow for outlier
geodesics

e Can handle topological noise
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Foreward Search Algorithm

Refined Version: Forward Search
e Add correspondences incrementally

e Compute match probabilities given the information
already decided on

e |[terate until no more matches can found that meet a
certain error threshold
e Quter Loop:

= |terate the algorithm with random choices
= Pick the best (i.e., largest) solution

Eurographics 2010 Course — Geometric Registration for Deformable Shapes
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Foreward Search Algorithm

Descriptor
matching
scores

Step 1.

e Start with one correspondence

= Target side importance sampling:
prefer good descriptor matches

= Optional source side imp. sampl: prefer unique descriptors

Eurographics 2010 Course — Geometric Registration for Deformable Shapes
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Foreward Search Algorithm

posterior
(distance)

Step 2.

e Compute ,posterior” incorporating geodesic distance

= Target side importance sampling:
sample according to descriptor match x distance score

= Again: optional source side imp. sampl: prefer unique descriptors

Eurographics 2010 Course — Geometric Registration for Deformable Shapes
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Foreward Search Algorithm

posterior
(distance &
descriptors)

Step 2.

e Compute , posterior” incorporating geodesic distance

= Target side importance sampling:
sample according to descriptor match x distance score

= Again: optional source side imp. sampl: prefer unique descriptors
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Foreward Search Algorithm

Step 3:

e Same as step 2, continue sampling...

posterior
(distance &
descriptors)
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Foreward Search Algorithm

Step 3:

e Same as step 2, continue sampling...

posterior
(distance &
descriptors)
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Another View

Landmark Coordinates

e Distance to already established points give a charting of
the manifold

e How many correspondences are necessary to find a
unigue map?

Eurographics 2010 Course — Geometric Registration for Deformable Shapes
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Results: Topological Noise

Spectral Quadratic Assignment Ransac Algorithm
[Leordeanu et al. 05] [Tevs et al. 09]
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Results

[data sets: Stanford 3D Scanning Repository / Carsten Stoll]
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Complexity



How expensive is all of this?

Cost analysis:

e How many rounds of sampling are necessary?

Constraints [Lipman et al. 2009]:
e Assume disc or sphere topology

e An isometric mapping is in particular a conformal
mapping

e A conformal mapping is determined by 3 point-to-point
correspondences
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How expensive is it..?

First correspondence:
e Worst case: n trials (n feature points)

e In practice: k <<n good descriptor matches
(typically k ~ 5-20)

Second correspondence:

e Worst case: n trials, expected: \n trials

e |n practice: very few (due to
descriptor matching, maybe 1-3)

Last match:

e At most two matches

Eurographics 2010 Course — Geometric Registration for Deformable Shapes

21



Costs...

Overall costs:
o Worst case: O(n?) matches to explore
e Typical: O(n'~) matches to explore

Randomization:
e Exploring m items costs expected O(m log m) trials
o Worst case bound of O(n? log n) trials

e Asymptotically sharp: O(c)-times more trials for shrinking
failure probability to O(exp(-c?))

Eurographics 2010 Course — Geometric Registration for Deformable Shapes
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Costs...

Surface discretization:

e Assume &-sampling of the manifold (no features):
O(&2%) sample points

e Worst case O(s™* log £1) sample correspondences
for finding a match with accuracy &.

o Expected: O(c3 log £1).

In practice:
e Importance sampling by descriptors is very effective
e Typically: Good results after 100 iterations

Eurographics 2010 Course — Geometric Registration for Deformable Shapes
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General Case

Numerical errors:

e Noise surfaces, imprecise features: reflected in probability
maps (we know how little we might know)

Topological noise:
e Use robust constraint potentials
e For example: account for 5 best matches only

Topologically complex cases:
e No analysis beyond disc/spherical topology

e However: the algorithm will work in the general case
(potentially, at additional costs)

Eurographics 2010 Course — Geometric Registration for Deformable Shapes
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Articulated Registration

Graph cuts and piecewise-rigid registration [CZ08]
Articulated registration [CZ09]
Implementation issues and alternatives



Overview

Examine recent articulated registration methods
e [CZ08]: Global method able to deal with partial data

e [CZ09]: Local method to determine a deformable model,
similar to multi-part ICP but with joint constraints

Articulation assumption simplifies non-rigid
registration

Eurographics 2010 Course — Geometric Registration for Deformable Shapes



Problem Statement

Solve pairwise registration problem
e Develop robust method independent of initial pose

* Do not require markers, template, or user-painted
segmentation
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[CZ08] Algorithm Overview

Articulated motion = small set of transformations
Predetermine a set of transformations describing the motion

Optimize assignment of transformations to the points
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Motion Sampling lllustration

Find transformations that move parts of the source
to parts of the target

) )

L

Source Shape Target Shape
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Motion Sampling lllustration

Find transformations that move parts of the source
to parts of the target

ST O™

C
L _— Sampled Points

ST

Q
T 01

Source Shape Target Shape
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Motion Sampling lllustration

Find transformations that move parts of the source
to parts of the target

ST O™

S

Source Shape Target Shape

O

)
/
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Motion Sampling lllustration

Find transformations that move parts of the source
to parts of the target

Translate
— \
}—) T

Rotations

A

(]
O
@) o0 —
I_; Rotate and|Translate] Translations
Translate 7 °
= 1 T =
ns
rotate and 11
Source Shape Target Shape Transformation Space
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Motion Sampling lllustration

Find transformations that move parts of the source

to parts of the target 50 150
Rotations /
T SR ‘ °
sl tl ° ® o® >
® *.0 Translations
t2 e o .
>2 »*
\_ J . ° ®
° ‘ °
s2>t2 s2>tl
Source Shape Target Shape Transformation Space
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Limitations of Motion Sampling

Final Output: finite set of rigid transformations

If there are multiple similar parts
e Does not figure out the correct part
e Disambiguate in the optimization step

/ y . [

Candidate Transformations

y, M
4 L 2
e

Source with Selected Region Visualized Transformations

(k.
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Global Motion Optimization

Optimize an assignment from a finite set of transformations

argmin + Smoothness Cost
Assignment from
a set of transformations

A discrete labelling problem = Graph Cuts for optimization

Vs

\\N \. /r;—“i\\\/m \‘
Transformations 7 \ \ y
from finite set - ‘

J f\ W,
Y &
Source Shape P Target Shape 4
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Data Term

Move all points as close as possible to the target

How to measure distance to target?
e Apply selected transformation fpr all P Jfp (p)
e Measure distance to closest point il target
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Smoothness Term

Preserve edge length between neighboring points
VP, fo fa) = ||l = all = 11o(P) = fal@)]

Original Length Transformed Length

Disambiguates multiple possible mappings

- [ /K

¥ a

o k /p
- q .

Eurographics 2010 Course — Geometric Registration for Deformable Shapes 13



Symmetric Cost Function

Swapping source / target can give different results

e Optimize assignment in both meshes (forward &
backward)

e Enforce consistent assighment: penalty when Ir Z fu

To % Tc orsRentatgnalty
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Optimization Using Graph Cuts

argmin + +
Assignment from a set
of transformations + +
O and terms apply to both shapes
0 Additional

0 Weights to control relative influence of each term

0 Use “graph cuts” to optimize assignment
o0 [Boykov, Veksler & Zabih PAMI '01]
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Horse Dataset Results

12 poses of galloping horse: total of 66 pairs. correct

——— e \ et \ = \ AW \\ 7]- T J \ )/' > - ‘ 2 \

Histogram of Error in Galloping Horse Dataset (minimum over 3 trials)
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Number of Examples
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T
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|
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Tr——) Syinmetrlc Hausdorff Distance (% of bbox diagonal)



Synthetic Dataset Example

Aligned Result
1.5%I

O%I

Motion Segmentation (from Graph Cuts) Registration Error
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Synthetic Dataset w/ Holes

Aligned Result Distance (from Target) to the closest point
(% bounding box diagonal)

Eurographics 2010 Course — Geometric Registration for Deformable Shapes

18



Arm Dataset Results

12 poses of arm scans: total of 66 pairs, arm & hand orientation matched in all pairs

/ \
G
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€ 2 i
>
P
1 TLL LT {
0
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. . . . ‘9—
Eurographics 20 Symmetric Hausdorff Distance (% of bbox diagonal) +



Arm Dataset Example

Missing Data \

Source

Missing Data

Noisy Target
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Arm Dataset Example

IO%

Distance (from Target) to the closest point
(% bounding box diagonal)

2N Ve’

Aligned Result Motion Segmentation
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Hand Dataset Example

Source

Missing Data

Target
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Hand Dataset Example

IO%

Distance (from Target) to the closest poil
(% bounding box diagonal)

Aligned Result
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Performance

Dataset #Points # Labels Matching Clustering Pruning
Horse 8431 1500 2.1 min 3.0 sec (skip) 1.6 sec
Arm 11865 1000 55.0 sec 0.9 sec 12.4 min
Hand (Front) | 8339 1500 14.5 sec 0.7 sec 7.4 min
Hand (Back) | 6773 1500 17.3 sec 0.9 sec 9.4 min

Graph cuts optimization is most time-consuming step

e Symmetric optimization doubles variable count

e Symmetric consistency term introduces many edges

Eurographics 2010 Course — Geometric Registration for Deformable Shapes
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Limitations

Errors in registration

e Trade-off between data and smoothness costs
= Data weight too high 2 May break smoothness
= Smoothness weight too high = Prefer bad alighnment

Source Registration
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Limitations

Errors in registration

e Motion sampling: may fail to sample properly when too
much missing data, non-rigid motion

e Hard assignment of transformations

Eurographics 2010 Course — Geometric Registration for Deformable Shapes
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Compare to CC algorithm

Correlated correspondence This method

e Template required e No template required

e No articulation needed e Articulation needed

e Optimizes assignment of e Optimizes assignment of
corresponding points transformations

[

Template Model Partial Registered Ground Truth
Example result (from Anguelov et al. 2004)
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Implementation Issues

Computing principal curvatures
e See papers by Rusinkiewicz, Kalogerakis et al.

Best-candidate sampling
e Speed boosted by using ANN library
e Further speed up by reconstructing kd-tree every 100 pts

Mean-shift clustering
e Clustering performed directly on transformations in se(3)

Verification using ICP
o See Mitra et al. (partial symmetry detection)
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Implementation Issues

Setting up symmetric graph instance
e Graph sites include vertices in both source and target

e For each label L, edge between source pt and closest

corresponding target pt (when source pt is transformed
using L)

Performing graph-cut optimization

e Use publicly downloadable implementation by Boykov,
Veksler, Kolmogorov
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Conclusions

Automatic method for registering articulated shapes
 No template, markers, or manual segmentation needed
e Explicitly sample a discrete set of motion
e Optimize the assignment of transformations
e Graph cut result gives intuitive segmentation

Useful for obtaining a robust initialization of the
registration

e Does not provide an articulated motion model
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Range Scan Registration
Using
Reduced Deformable Models
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Problem Statement

Fit a model of the surface motion to a pair of scans
e Articulated model (e.g. joints, smooth weights)
e Serves as the basis for fitting on multiple frames

\—‘ T] ;[
\ ™
T,
>
I
Y, ) - o
N_L ‘_-.‘ x - et
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Related Work

e User provided segmentation: Pekelny08

e Unsupervised pairwise registratiop: LiO8, Huang08

(from Pekelny and Gotsman 2008, Li et al. 2008 and Huang et al. 2008) 33
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Model: Linear Blend Skinning

Transformations (bones) and weights

Shape Wieigisfedritahbingdins alt

()

. Bone 2

L

Shape with Weights

Bone 1
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Model: Linear Blend Skinning

Each point assighed vector of weights

Transformations move each point according t
weights

Bone 1 . Bone 2

"’
Y
.
.
“
PY e
PR

o
.
.
.
[ ] “
. *
% 2
......

[1,0] [0.5, 0.5] [0,1]

Weighted Blending Result
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Weight Grid

Define weights on grid enclosing surface
e Covers small holes, reduces variables
e Provides regular structure for optimization

Shape T F = 2 _
\J R

Grid = ' i
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LBS for scan registration

Fit the transformations and weights to align a pair of
range scans

. T, =md®
5\\ :
A 3
T,
>
T;
), % /\\
— - ' L_l**‘ ——
Q4 - Q-3
\h\ Y & T K = l\ -
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Algorithm Description

P s ~ i
W / / ) \:\-: |
"’ q“"‘ ¥ ‘-fh \ K‘:-_
= ~ - SO e
, . - {
¢ dla P 7
Bl ) T &
= Ly L T-Step W-Step Correspondence Update ) p"'.
Initialization Main Optimization Loop Weight Final
Refinement Result
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&

Initialization

Iy
11500

39

Eurographics 2010 Course — Geometric Registration for Deformable Shapes



Initialization

(Converged)

11A40

40
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W-Step
(Finished)

IL1BY)

1O
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Optimization overview

¥ ) g o
o’ ‘,""_“’:"_‘\h'. ‘;f‘ . \’ ::'_
L *‘I' —_— y -k :
Gl PR & s T
S ,‘I___“ E
o L T-Step W-Step Correspondence Update | ,-*'.. :
Initialization Main Optimization Loop Weight Final
Refinement Result
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Optimization overview

1S
- ».T.!__
v S
| r -
< L 1-Step W-Step Correspondence Update | ,-*'.. :
Initialization Main Optimization Loop Weight Final
Refinement Result
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T-Step: Distance Term

Fix weights & solve for transformations

\/\/

Source

Target
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T-Step: Distance Term

Fix weights & solve for transformations
e Use closest point correspondences

Bone 1

L] Bone 2

™ Bone 3
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T-Step: Distance Term

Fix weights & solve for transformations
e Use closest point correspondences

Bone 1

L] Bone 2

™ Bone 3
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T-Step: Distance Term

Fix weights & solve for transformations
e Use closest point correspondences
e |terate further until convergence

Bone 1

[] Bone 2

L] Bone 3
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T-Step: Joint Constraint Term

Prevent neighboring bones from separating

Bone 1

L] Bone 2

™ Bone 3
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T-Step: Joint Constraint Term

Prevent neighboring bones from separating
e Constrain overlapping weight regions

Unwanted stretch

.

Bone 1

[] Bone 2

L] Bone 3
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T-Step: Joint Constraint Term

Prevent neighboring bones from separating
e Constrain overlapping weight regions

Bone 1

L] Bone 2

™ Bone 3
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T-Step: Joint Constraint Term

Prevent neighboring bones from separating
e Constrain overlapping weight regions

Bone 1

L] Bone 2

™ Bone 3
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T-Step: Optimization summary

Like rigid registration

e Except multiple parts & joint constraints

Non-linear least squares optimization
e Solving for a rotation matrix
e Gauss-Newton algorithm
e Solve by iteratively linearizing solution

Few variables - Fast performance
e #variables = 6 x #bones
e Typically 5~10 bones in our examples
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Optimization overview
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L *‘I' —_— y -k :
Gl PR & s T
S ,‘I___“ E
o L T-Step W-Step Correspondence Update | ,-*'.. :
Initialization Main Optimization Loop Weight Final
Refinement Result
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Optimization overview

\A/_Ctan:
P A f
&/ .
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s—".? T-Step W-Step Correspondence Update ) a
Initialization Main Optimization Loop Weight Final
Refinement Result
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W-Step: Optimizing weights

Fix transformations, solve for weights

Target

Correspondences from last T-Step
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W-Step: Optimizing weights

Fix transformations, solve for continuous weights

Good
\ Alignment

\‘_’q

Bone 1l
(Applied to entire shape)
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W-Step: Optimizing weights

Fix transformations, solve for continuous weights

Good
Alignment

Bone 2
(Applied to entire shape)
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W-Step: Optimizing weights

Fix transformations, solve for continuous weights

Good Alignment

Applied to entire shape)
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W-Step: Optimizing weights

Fix transformations, solve for continuous weights

Bone 1

L] Bone 2

™ Bone 3

“Ideal” solved result
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W-Step: Optimizing weights

Without additional constraints, problem is
underconstrained

Bone 1l & 3
Bone 1 &2 /
Bone 2 & Bone 2 & 3

Typical solved result
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Use discrete labeling

Our solution: one transformation per location
e Transformations = labels
e Becomes discrete labeling problem

Bone 1
Closer to “Ideal”
B Bone 2 solved result!
™ Bone 3
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W-Step: Optimization Summary

Use “graph cuts” to optimally label grid cells
e [Boykov, Veksler & Zabih PAMI '01]

Distance term + Smoothness term
e Distance: measures alignment for a given label
e Smoothness: penalizes different labels for adjacent cells

Good Performance

e Only 1000~5000 grid cells (graph nodes) & 5~10 labels
e Fast performance for graph cuts
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Results

Robot, torso video
Interactive posing video
Additional results & statistics
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Robot video (real-time recording)

W k3
i EE ]
rpakS Ay ol
\ 4{ » F
1 1 =
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H
7 bones b ’ ; J
1454 cells 8
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Torso video (2x speed recording)

7 bones
4890 cells

I Eurographics 2010 Course Bﬂgﬂm@ﬁ'ﬂ& idhfor Deformable Shapes SUIVEU VVCIETILS
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Interactive posing (real-time recording)

X

."H‘. ‘ ~
L

B | '\ .
TR\

Solved Weights Interactive Posing Result
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Average performance statistics

Car Robot Walk Hand

Bones 7 7 10 12
Corresp. 1200 1200 1000 1500
Vertices 5389 9377 4,502 34342
Max Dist 20 4O 20 30
Grid Res 60 65 5O 40
Grid Cells 1107 1295 1014 814
Grid Points 2918 3366 2553 1884
Setup| 0.185sec 0.234 sec 0.136s ec 0.078 sec
RANSAC] 8.08gsec| 20.001sec 5.517 Sec N/A
Align] 9.945sec| 19.644sec| 23.092sec| 49.918 sec
Weight] 6.135sec| 10.713sec| 10.497sec| 3.689 sec
Total Time| 24.355sec| 5o.591sec| 39.242sec| 53.684 sec
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Limitations

Discussion
e Topology issues with grid
e Limited to a pair of scans
e Limitations with LBS
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Conclusion

A new algorithm to align range scans by modeling
the motion with a reduced deformable model

e Use LBS to represent the motion

» Represent weight function using a 3D grid

e Solve for the parameters using alternating optimization

No marker, template, segmentation information
e Robust to occlusion & missing data
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Implementation Issues

Determine grid enclosing geometry

e Intersect mesh triangles with regular grid (triangle-box
intersection), mark grid cells that intersect

Compute joint constraint integrals
e Derive closed-form expression

Derive equations for Gauss-Newton optimization
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Geometric Registration for
Deformable Shapes

4.1 Dynamic Registration
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Scan Registration
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Scan Registration

Solve for inter-frame
motion; o = (R ,t)

Eurographics 2010 Course — Geometric Registration for Deformable Shapes



Scan Registration

Solve for inter-frame
motion: o; := (Rj,t;)
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The Setup

Given:
A set of frames {P,, P,, ... P}

Goal:
Recover rigid motion {a,;, a,, ... o} between
adjacent frames
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The Setup

Smoothly varying object motion
Unknown correspondence between scans

Fast acquisition —
motion happens between frames
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Insights

Rigid registration — kinematic property of space-
time surface (locally exact)

Registration —surface normal estimation

Extension to deformable/articulated bodies
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Time Ordered Scans

........
----------------

tj tj+1 tj+2

N .

PJ

(p/} := {(p/.),p] e Rt/ e R}
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Space-time Surface

sample spacing
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Space-time Surface

sample spacing il
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Space-time Surface

sample spacing R
. (G) Rarese

.....

------

lllllllll

------

S

b/ - o;(p)) = (R;p/ +t;,1/ + )
P
aj = argmin ) d”(a;(p;),S)
j—
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Spacetime Velocity Vectors

L

L T )
L I S

?l e e

Tangential point movement — velocity vectors orthogonal to surface normals

|P] .
oj = argmin ) d° (aj(p?).S)

=
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Spacetime Velocity Vectors

‘ W(‘ it

Tangential point movement — velocity vectors orthogonal to surface normals

~ ] ~ ]

V(pi )'n(pi ) =0
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Final Steps

(rigid) velocity vectors — Vv (p(, ) — (\Cj X P! i Ci, 1)
I . o
min w/ [(cjxp'l-’—kcj,])-n}.’
CiCii—1
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Final Steps

~ ~]

v(p;) = (¢j x pj +,1)

(rigid) velocity vectors —
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Registration Algorithm

1. Compute time coordinate spacing (o), and form
space-time surface.

2. Compute space time neighborhood using ANN,

and locally estimate space-time|surface normals.

3. Solve linear system to estimate (c;,c;).

4. Convert velocity vectors to rotation matrix +
translation vector using Pliicker coordinates and
guarternions.
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Normal Estimation: PCA Based

Plane fitting using PCA using chosen neighborhood points.
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Normal Estimation: Iterative

Update neighborhood with current velocity estimate.
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Normal Refinement: Effect of Noise

0.9

o
o
T

=== Regular
[terative |7

o
-
L]

o o o
e 8] [s)]
L L] n

o
w
T

Estimation Error
|| (e,¢) — ':cg'ég ) || || I:(',Q'E,Q ) ||

o
[N ]
T

01F

0 1 2 3 < 5

Unitorm Noise Margin (times G)

Stable, but more expensive.
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Normal Estimation: Local

Perform local surface triangulation (tetrahedralization).
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Normal Estimation

0.14

Tetrahedralization

0.12f

0.1F

0.08F

0.06p

Estimation Error

[(e.©) — (cp) || /|l (eg. &) ||

0.04f

0.02f

Timescale (times G)

Stable, but more expensive.
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Comparison with ICP

ICP point- Dynamic registration
plane
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Rigid: Bee Sequence (2,200 frames)

Eurographics 2010 Course — Geometric Registration for Deformable Shapes



Rigid: Coati Sequence (2,200 frames)

Eurographics 2010 Course — Geometric Registration for Deformable Shapes



Handling Large Number of Frames

P 000000
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Rigid/Deformable: Teapot Sequence

(2,200 frames)
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Deformable Bodies

mme [cj X p] +Ej-,1)‘n'f

Citii=1

Cluster points, and solve smaller systems.

Propagate solutions with regularization.
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DEfOFma blEZ Ha nd (100 frames)

input frames registered result
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DEforma b|€: Ha nd (100 frames)

scan #1 — scan #50 scan #1 — scan
#100

Eurographics 2010 Course — Geometric Registration for Deformable Shapes



Deformation + scanner motion: Skeleton (100 frames)

input frames registered resuit
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Deformation + scanner motion: Skeleton (100 frames)

scan #1 — scan #50 scan #1 — scan
#100
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Deformation + scanner motion: Skeleton (100 frames)

rigid components
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Pe rforma nce Ta ble (on 2.4GHz Athlon Dual Core, 2GB

RAM)

Model # scans # points/scan Time

(in 1000s) (mins)
bunny (simulated) 314 33.8 13
bee 2,200 20.7 51
coatl 2,200 28.1 71
tcapot «igid) 2,200 27.2 68
skeleton (simulated) 100 55.9 11
hand 100 40.1 17
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Conclusion

Simple algorithm using kinematic properties of
space-time surface.

Easy modification for deformable bodies.

Suitable for use with fast scanners.
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Conclusion

Simple algorithm using kinematic properties of
space-time surface.

Easy modification for deformable bodies.

Suitable for use with fast scanners.

Limitations/Future Work
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thank you
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Geometric Registration for
Deformable Shapes

4.2 Animation Reconstruction

Basic Algorithm - Efficiency: Urshape Factorization
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Animation Reconstruction
Basic Algorithm



Bayesian Approach

Bayesian surface reconstruction:

= Probability space
Q=0QxQp

= S —original model
D — measurement data

= Bayes’ rule:

P(S | D) = P(D|S) P(S)

P(D)

= Find most likely S
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Bayesian Approach

measurement model prior assumptions
(“likelihood”)

P(D|S) P(S)

optimize (best S)

Log Space:
E(S D) ~ EWD]S) + E(S)

measurement prior potential
potential
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The Space of All Scenes

What is the space of all scenes?

e Discretized model

e Pretend that the original scene
has been a point cloud, too.

° QS — ]R{Bn} QD — ]R3m
e Define probability density p(D,S) on Q.

e Truncate p to make it well defined
(bounding box support).
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Measurement Model — P(D|S)

L X O® NO O O
e® %o, 0® %04 OS 809 O?) QQC’
g O O O O O O O
: o _, ° o _, ° @ _, o ¢
® O ® O ® O %
o O O O
° o o o Op & oo .
LY X -0 To®O 080
original scene S sample noise measurement D

Generative Model:
e Subsamling: according to (known) p,,. )

e Noise: according to (known) p,_...(X,.-,X,)
(currently assuming independent, Gaussian noise)
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Implementation...

Implementation: Point-based model

e Our model is a set of points

e “Surfels”: Every point has n,
a latent surface normal 5

e We want to estimate

i+ “Surfel”
position and normals
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Data Term - E(D|S)

Data fitting term: ¢ £
\ match
e Surface should be close to data : "
e Truncated squared distance ““(\_}/
function
E  ..(D,S)= Z truncg(dist(S,di)Z)
data pts

e Sum of distances? of data points to surfel planes
e Point-to-plane: No exact 1:1 match necessary
e Truncation (M-estimator): Robustness to outliers

Eurographics 2010 Course — Geometric Registration for Deformable Shapes



Why do We Need Priors?

No Reconstruction without Priors
e Non-measurement points unconstrained

e For the rest:
Measurement itself has highest probability

measurement )
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Priors — P(S)

less likely more likely

Canonical assumption: smooth surfaces
e Correlations between neighboring points

Eurographics 2010 Course — Geometric Registration for Deformable Shapes
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Point-based Model

Simple Smoothness Priors:

e Similar surfel normals:

E(l)ooth(s) Z Z (ni—nij)z,

surfels neighbors

e Surfel positions — flat surface:

2
E® (S)= >y <si—sij,n(si)>

surfels neighbors

e Uniform density:

E; 0 = D, Z(si —average)2

surfels neighbors

E

(2) o
smooth o _,-r‘ ' o
._ﬂ 1

O
ELaplace N
Lo E -.,:.
&« .. Q

[c.f. Szeliski et al. 93]
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Nasty Normals

Optimizing Normals
° PrOblem. Eérlrzooth(s): Z Z (ni_nij)Q’ 8.L.

surfels neighbors

e Need unit normals: constraint optimization

e Unconstraint: trivial solution (all zeros)

n:

l

=1
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Nasty Normals

Solution: Local Parameterization
e Current normal estimate
e Tangent parameterization
e New variables u, v
e Renormalize
e Non-linear optimization
e No degeneracies n(u,v) = n, + u-tangent,

+ v-tangent,

[Hoffer et al. 04]
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Neighborhoods?

Topology estimation
e Domain of S, base shape (topology)
e Here, we assume this is easy to get

e In the following
= k-nearest neighborhood graph

= Typically: k=6..20
Limitations

e This requires dense enough sampling
e Does not work for undersampled data

Eurographics 2010 Course — Geometric Registration for Deformable Shapes
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Numerical Optimization

Task:

e Compute most likely “original scene” S
e Nonlinear optimization problem

Solution:
o Create initial guess for S
= Close to measured data
= Use original data
e Find local optimum
= (Conjugate) gradient descent
= (Gauss-) Newton descent

Eurographics 2010 Course — Geometric Registration for Deformable Shapes
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3D Examples

3D reconstruction results:

With discontinuity lines:

Eurographics 2010 Course — Geometric Registration for Deformable Shapes

16



3D Reconstruction Summary

Data fitting: "‘"."'.""..-3'1"-'--‘-:1)
E(D|S) ~ %, dist(S, d)? ]

Prior: Smoothness

E(S) ~ -[S curv(S)?

Optimization:
Yields 3D Reconstruction
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Animation Reconstruction
Improved Algorithm



Extension to Animations

Animation Reconstruction
e Not just a 4D version

= Moving geometry,
not just some hypersurface
e Key component: correspondences
= Latent variables (no direct measurement)

= Inferred by motion priors

e Intuition for “good correspondences”:
= Match target shape
= Little deformation
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Recap: Correspondences

KX K

Correspondences?

“A too much deformation

Eurographics 2010 Course — Geometric Registration for Deformable Shapes
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Recap: Correspondences

Model: M
Jogp=Y | dist? + rigidy] %
Distance: /d::ti(
NG) —
Deformation / rigidity: (;Z
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Animation Reconstruction

Two additional priors:

Deformation

E4S) ~ Ig deform(S,, S,,,)?

Acceleration
E(S) ~ [, 8(x, 1)? W
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Animation Reconstruction

Not just smooth 4D reconstruction!
e Minimize
= Deformation
= Acceleration
e This is quite different from smoothness
of a 4D hypersurface.
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Animations

Refined parametrization of reconstruction S
e Surfel graph (3D)
e Trajectory graph (4D)
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Discretization

Refined parametrization of reconstruction S
e Surfel graph (3D)
e Trajectory graph (4D)

edges encode
topology

surfel graph
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Discretization

Refined parametrization of reconstruction S
e Surfel graph (3D)
e Trajectory graph (4D)

—_— time ——

frame 1 frame 2 frame 3 frame 4
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Missing Details...

How to implement...
e The deformation priors?
= We use one of the models previously developed

e Acceleration priors?

= This is rather simple...
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Recap: Elastic Deformation Model

Deformation model
e Latent transformation A" per surfel
e Transforms neighborhood of s,
e Minimize error (both surfels and Al)

time

frame 1 frame 2 frame 3 frame 4
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Recap: Elastic Deformation Model

frame t frame t+1

prediction

A L"L

Orthonormal Matrix A,

per surfel (neighborhood),
latent variable
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Recap: Elastic Deformation Model

frame t frame t+1

prediction

A L’*L

...................................................................... Orthonormal Matrix A,

per surfel (neighborhood),
latent variable

Fuom®= 3 [t s} b -sg]

surfels neighbors
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Acceleration

Acceleration priors

e Penalize non-smooth trajectories

9
L1 t t+1
k... (A)=1|s,” —2s; +5s

L

e Filters out temporal noise

. | Eaccel
______ Y
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Optimization

For optimization, we need to know:
e The surfel graph
e A (rough) initialization close to correct solution

Optimization:
e Non-linear continuous optimization problem
e Gauss-Newton solver (fast & stable)

How do we get the initialization?
e [terative assembly heuristic to build & init graph

Eurographics 2010 Course — Geometric Registration for Deformable Shapes

32



Global Assembly

Assumption: Adjacent frames are similar
e Every frame is a good initialization for the next one

e Solve for frame pairs

frame 11 frame 12 frame 13 frame 14 frame 15 frame 16

[data set courtesy of C. Theobald, MPI-Inf]
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Iterative Assembly

Iterative assembly

e Merge adjacent frames 1.6
e Propagate hierarchically 1.4
. 7N
e Global optimization 1.2 3.4 5.8

(avoid error propagation)

space

time

Eurographics 2010 Course — Geometric Registration for Deformable Shapes 34



Iterative Assembly

Pairwise alignment

A

>

< space —
< space —
$3538!

@E

time — time —

adjacent aligned
trajectory sets frames
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Alignment

Alignment:
e Two frames
e Use one frame
as initialization
e Second frame
as “data points

7

e Optimize

[data set: Zitnick et al., Microsoft Research]
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Iterative Assembly

Pairwise alignment

A

>

< space —
< space —
$3538!

@E

time — time —

adjacent aligned
trajectory sets frames
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Iterative Assembly

Topology stitching

A

>

< space —
< space —>

time — time —

aligned merged
frames topology
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Topology Stitching

P
>

B

>

Recompute Topology
e Recompute kNN/e-graph

< space —

IIIEE
ﬁoo
<« space —>

e Topology is global o--

time — time —

Y

Sanity Check:

e No connection if distance changes

[data set courtesy of S. Konig, S. Gumhold, TU Dresden]
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Iterative Assembly

Topology stitching

A

>

< space —
< space —>

time — time —

aligned merged
frames topology
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Iterative Assembly

Problem: incomplete trajectories

ol ol

S S

) 7
time —
merged uninitialized
topology surfels
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Iterative Assembly

Hole filling

>
>

< space —>
< space —>

time —

uninitialized copy from neighbors,
surfels optimize
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Iterative Assembly

Resampling
] 1
) D
O O
(© ®©
Q. Q.
n )
) >
time — time —
hole filled remove dense surfels
result (constant complexity)
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Global Optimization

Last step:

e Global optimization

e Optimize over all frames
simultaneously

Improve stability: Urshapes

e Connect hidden “latent” frame
to all other frames
(deformation prior only)

e Initialize with one of the frames

< space —>

urshape
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Meshing

Last step: create mesh

e After complete surfel graph
is reconstructed

e Pick one frame (or urshape)

e “Marching cubes” meshing
[Hoppe et al. 92, Shen et al. 04]

e Morph according to trajectories
(local weighted sum)

[data set courtesy of O. Schall, MPI Informatik Saarbrticken]
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Results



Elephant

deformation & rotation,
noise, outliers, large holes

20 49,500 963,671 6 min 52 sec 4h 25 min [Pentium-4, 3.4GHz]



Facial Expression

Dataset courtesy of S. Gumhold,
University of Dresden

20 32,740 400,000 6 min 59 sec®) 7 h 31 min [Pentium-4, 3.4GHz / )3.0GHZ]



Improved Algorithm
Urshape Factorization



Improved Version

Factorization Model:

e Solving for the geometry in every frame
wastes resources

e Store one urshape and a deformation field
= High resolution geometry
= Low resolution deformation (adaptive)

e Less memory, faster, and much more stable
e Streaming computation (constant working set)
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We have so far...

data

trajectories
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New: Factorization

f

urshape

data

deformation
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Components

Variational Model

e Given an initial estimate,
improve urshape and deformation

Numerical Discretization
e Shape
e Deformation

Domain Assembly
e Getting an initial estimate
e Urshape assembly
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Components

Variational Model

e Given an initial estimate,
improve urshape and deformation

Numerical Discretization
e Shape
e Deformation

Domain Assembly
e Getting an initial estimate
e Urshape assembly

Eurographics 2010 Course — Geometric Registration for Deformable Shapes

54



Energy Minimization

Energy Function @ @ @
-

E(f' 5) = Edata + Edeform + Esmooth ’

f deformation

urshape

Components
o £ .. (f, S)— data fitting
* Eyeromlf) — elastic deformation, smooth trajectory
e £

<mooth(S)— smooth surface

Optimize S, f alternatingly
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Data Fitting

Data fitting
* Necessary: f(S) = D, Tl o
e Truncated squared distance \ID/
function (point-to-plane) fi(S)
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Elastic Deformation Energy

Regularization

e Elastic energy

e Smooth trajectories

o,
"
.....
b
"
.

.
o

Eurographics 2010 Course — Geometric Registration for Deformable Shapes

57



Surface Reconstruction

.

(S R\
Esmoo h( ) f&\/

Data fitting

e Smooth surface
e Fitting to noisy data
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Factorization

f

urshape

data

deformation
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Components

Variational Model

e Given an initial estimate,
improve urshape and deformation

Numerical Discretization
e Shape
e Deformation

Domain Assembly
e Getting an initial estimate
e Urshape assembly
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Discretization

Sampling:
e Full resolution geometry
e Subsample deformation
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Discretization

Sampling:
e Full resolution geometry
= High frequency
e Subsample deformation

= Low frequency
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Discretization

Sampling:
e Full resolution geometry
= High frequency, stored once

e Subsample deformation
= Low frequency, all frames = more costly
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Shape Representation

Shape Representation:

e Graph of surfels (point + normal + local connectivity)
e F

mooth — Neighboring planes should be similar

e Same as before...
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Deformation

geometry

Se____-"_ “thick shell”

Volumetric Deformation Model
e Surfaces embedded in “stiff” volumes
e Easier to handle than “thin-shell models”
e General —works for non-manifold data
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Deformation

:’ \\\t\v)f:tz ///’:
S S VA-TT 8 geometry

|
~
S s

W =~ “thick shell”

Deformation Energy

e Keep deformation gradients Vf as-rigid-as-possible
e This means: VfTVf =1

o Minimize: E ., = |+ J | | VE(x,t)TVE(x,t) = I| |2 dxdt
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Additional Terms

More Regularization
e Volume preservation: E = fovl |det(Vf) — 1| |?

= Stability

e Acceleration: £ _=[.J 102 f||? e
= Smooth trajectories o

e Velocity (weak): E..=J:f,110,f | —
= Damping /—'\
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Discretization

-9 %

w geometry
O '
Q 10

~ L. ~
-O deformation

How to represent the deformation?
e Goal: efficiency

e Finite basis:
As few basis functions as possible
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Discretization

Meshless finite elements
e Partition of unity, smoothness
e Linear precision
e Adaptive sampling is easy
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Meshless Finite Elements

Topology:

e Separate deformation
nodes for disconnected
pieces

e Need to ensure
= Consistency
= Continuity
e Euclidean / intrinsic
distance-based coupling rule

= See references for details
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Adaptive Sampling

Adaptive Sampling
e Bending areas
= Decrease rigidity

= Decrease thickness
= Increase sampling density

e Detecting bending areas:
residuals over many frames
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Summary: Variational Model

E(S f d) Ematch (S f d) + (Erzgzd + Evolume + Eaccel + Eveloczty)(S f) + Esmooth (S)
%r_/

v

data deformation urshape

By S £, = 3 trunc(dist(d,, f(S)?)

t=1 1=1

"V £ ) -1 da

— 1)2 dx

Erigid (S’ f) =

V(S)

volume (S f) — @y (x)qvx

V(S)

2 2
82
E, .S f)= ja)acc (x)(? f(x,t)j dx E, . (S )= j‘a)velomy (x)( f(x, t)j
S

smooth (S) = jwsmooth (x) V S(x)) dx
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Components

Variational Model

e Given an initial estimate,
improve urshape and deformation

Numerical Discretization
e Deformation
e Shape

Domain Assembly
e Getting an initial estimate
e Urshape assembly
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Urshape Assembly

Adjacent frames are similar
e Solve for frame pairs first

e Assemble urshape step-by-step

frameﬁfll frame 12 frame 13 frame 14 frame 15 frame 16

[data set courtesy of C. Theobald, MPC-VCC(]
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Hierarchical Merging

- B & §

f(S)

f

S
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Hierarchical Merging

data

-
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Initial Urshapes

data

-

f(S)

f
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Initial Urshapes
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Alignment

- § B & §

79

Eurographics 2010 Course — Geometric Registration for Deformable Shapes



Align & Opti

data

f(S)

f
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Hierarchical Alignment

data

f(S)

f

Eurographics 2010 Course — Geometric Registration for Deformable Shapes 81



Hierarchical Alignment
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Results



79 frames, 24M data pts, 21K strfels, 315 nodes






120 frames,
30M data pts,
17K surfels,
1,939 nodes



34 frames,
4M data pts,
23K surfels,
414 nodes



Quality Improvement

old version new result old version

new result
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Geometry and Motion Reconstruction
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Non-Rigid ICP

Non-Linear Optimization

Etot = afig gt + CVlrigidlErigid * Agmooth Psmooth

Too few nodes:
® inaccurate

Too many nodes:
e inefficient

Extension of [Li et al.’08]




Non-Rigid ICP

Non-Linear Optimization

Etot = afig gt + CVlrigidlErigid * Agmooth Psmooth

Too few nodes:
® inaccurate

Too many nodes:

¢ inefficient
e less robust

Extension of [Li et al.’08]
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Close-up Comparison

Input Scan




Close-up Comparison

Input Scan Warped Template




Close-up Comparison

Input Scan Warped Template Reconstruction




Close-up Comparison

Input Scan Warped Template Reconstruction Overlaid Scan




More Results



Grasping Hand — 34 Frames

Input Scans Reconstruction Textured Reconstruction

N



Grasping Hand — 34 Frames

Input Scans Reconstruction Textured Reconstruction

N



Crumpling Paper Bag — 85 Frames

Input Scans Reconstruction Textured Reconstruction

N



Crumpling Paper Bag — 85 Frames

Input Scans Reconstruction Textured Reconstruction



Facial Expressions — 200 Frames

Input Scans Reconstruction Overlaid Scans

N



Facial Expressions — 200 Frames

Input Scans Reconstruction Overlaid Scans



Limitations



Limitations

Self-Intersection




Limitations

Self-Intersection Large Motion

11




Limitations

Self-Intersection Large Motion Varying Topology

11




What’s Next!?

Multi-View and Textures




What’s Next!?

Multi-View and Textures Complex Materials

National Geographic




What’s Next!?

Multi-View and Textures Complex Materials Surface Segmentation

National Geographic WordPress




www.hao-li.com


http://www.hao-li.com
http://www.hao-li.com

www.hao-li.com



http://www.hao-li.com
http://www.hao-li.com

	1.1 Introduction, problem statement, data modeling
	Geometric Registration for Deformable Shapes
	Overview
	Presenters
	Tutorial Outline
	Part I: Introduction
	Part II: Local Registration
	Part III: Global Matching
	Part IV: Animation Reconstruction
	Part V: Conclusions and Wrap-up
	Problem Statement�and Motivation
	Deformable Shape Matching
	Deformable Shape Matching
	Applications
	Applications
	Deformable Scan Registration
	Example: Full Body Scanner
	Applications
	3D Animation Scanner
	Structured Light Scanners
	Passive Multi-Camera Acquisition
	Time-of-Flight / PMD Devices
	Animation Reconstruction
	Animation Reconstruction
	Applications
	Statistical Shape Spaces
	Statistical Shape Spaces
	Data Characteristics
	Scanner Data – Challenges
	Challanges
	Challanges
	Challanges
	Challanges
	Challanges
	Outlook
	This Tutorial
	Problem Statement
	Problem Statement

	1.2 DiffGeo
	Differential Geometry�of Curves & Surfaces (Overview)
	Part I: Curves
	Parametric Curves
	Length of a Curve
	Reparametrization
	Tangents
	Curvature
	Curvature & 2nd Derivatives
	Curvature
	Unit-speed parametrization
	Radius of Curvature
	Theorems
	Space Curves
	Torsion
	Torsion
	Illustration
	Theorem
	Part II: Surfaces
	Parametric Patches
	Parametric Patches
	Illustration
	Tangents
	Surface Area
	Fundamental Forms
	First Fundamental Form
	First Fundamental Form
	First Fundamental Form
	Second Fundamental Form
	Second Fundamental Form
	Second Fundamental Form
	Alternative Computation
	Basic Idea
	Principal Curvature
	Normal Curvature
	Principal Curvatures
	Gaussian & Mean Curvature 
	Global Properties
	Theorema Egregium
	Gauss Bonnet Theorem
	Fundamental Theorem of Surfaces
	Summary
	Deformation Models

	1.3 4D Kinematic
	Geometric Registration for Deformable Shapes
	Rigid Motion
	Scanning Moving Objects
	Space-time Surface
	Time Ordered Scans
	Space-time Surface
	Kinematic Surfaces

	2.1 ICP + Rigid Motions
	Geometric Registration for Deformable Shapes
	Rigid Motion
	Registration Problem
	Registration Problem
	Notations
	Notations
	Squared Distance Function (F)
	Squared Distance Function (F)
	Registration Problem
	Registration Problem
	Overview of Our Approach
	Registration in 2D
	Registration in 2D
	Registration in 2D
	Registration in 2D
	Registration in 2D
	Registration in 3D
	Approximate Squared Distance
	F(x, P) using d2Tree
	F(x, P) using d2Tree
	Example d2trees
	Approximate Squared Distance
	Approximate Squared Distance
	On-demand Computation
	On-demand Computation
	On-demand Computation
	Iterated Closest Point (ICP)
	ICP in Our Framework
	Convergence Properties
	Convergence Funnel
	Convergence Funnel
	Convergence Funnel
	Convergence Rate I
	Convergence Rate II
	Partial Alignment
	Partial Alignment
	Partial Alignment
	Closed Form Solution
	How to Establish Correspondence?
	When Objects are Almost Aligned
	ICP
	Convergence Funnel
	Convergence Rate
	Improvements
	Tangent Space
	Instantaneous Formulation

	2.2 Deformable Registration
	Geometric Registration for Deformable Shapes
	Variational Model�What is deformable shape matching?
	Example
	What are we looking for?
	Example
	This is a Trade-Off
	Variational Model
	Variational Model
	Part 1: Shape Matching
	Point Cloud Matching
	Surface approximation
	Surface approximation
	Surface approximation
	Variational Model
	Part II: Deformation Model
	Volume Model
	Volume Model
	Isometric Regularizer
	Elastic Regularizer
	Example Implementation
	Parameterization
	Deformation
	Deformation
	Unconstrained Optimization
	Variational Model
	Deformable ICP
	Deformable ICP
	Deformable ICP
	Example

	2.3_Robust_Local_Registration
	3.1 Features
	Global Matching��Part I: Introduction to geometric key point detection and feature descriptors
	The story so far
	What is Global Matching?
	Local  vs  Global
	Our eyes recognize features
	Types of features
	An Example: Spin Images
	Spin Image Construction
	Spin Image Matching
	Compressing Spin Images
	Problem #1: False positive/negative
	Problem #2: Parameter Selection
	Problem #3: Non-unique patches
	Conclusion

	3.2 Isometric Matching and Quadratic Assignment
	Geometric Registration for Deformable Shapes
	Overview and Motivation
	Global Isometric Matching
	Global Isometric Matching
	Isometric Matching�(vs. extrinsic matching)
	Invariants
	Invariants
	Invariants
	Feature Based Matching�Quadratic Assignment Model
	Problem Statement
	Algorithm
	Algorithm
	Algorithm
	Algorithm
	Quadratic Assignment
	Quadratic Assignment Model
	Quadratic Assignment Model
	Quadratic Assignment Model
	Quadratic Assignment Model
	Spectral Matching�Approximate Quadratic Assignment
	Spectral Matching
	Spectral Matching
	Spectral Matching
	Spectral Matching Example
	Markov Random Field Model�Probabilistic Interpretation
	Direct MRF Approach
	Direct MRF Approach
	Direct MRF Approach
	Example Result

	3.3 Advanced Global Matching
	Advanced Global Matching�Correlated correspondences [ASP*04]�A complete registration system [HAW*08]
	In this session…
	Correlated correspondences
	Basic Approach
	Mathematical Technique
	Joint Probability model
	Deformation potential
	Deformation potential
	Encoding the preference
	Geodesic distance potential
	Geodesic distance potential
	Local surface signature potential
	Model summary
	Quick intro: Markov Random Fields
	Loopy Belief Propagation (LBP)
	Loopy Belief Propagation (LBP)
	Loopy Belief Propagation (LBP)
	Loopy Belief Propagation (LBP)
	Loopy Belief Propagation (LBP)
	Loopy Belief Propagation (LBP)
	Results & Applications
	Conclusion
	Next topic: HAW*08
	Overview
	Overview
	Overview
	Detailed Overview
	Sample for robustness & efficiency
	Correspondence Step #1
	Correspondence Step #2
	Correspondence Step #3
	Correspondence Step #3
	Correspondence Step #3
	Correspondence Step #4
	Correspondence Step #4
	Correspondence Step #5
	Deformation
	Correspondence matching term
	Shape preservation term
	Clusters for local rigidity
	Advantages of features & clustering
	Results
	Results
	Results
	Conclusion

	3.4 Probabilistic Techniques - Ransac and Foreward Search
	Geometric Registration for Deformable Shapes
	Ransac and Forward Search�The Basic Idea
	Random Sampling Algorithms
	RANSAC
	Forward Search
	Ransac-Based�Correspondence Estimation
	RANSAC Algorithm
	Ransac Details
	Ransac Details
	Foreward Search Algorithm
	Foreward Search Algorithm
	Foreward Search Algorithm
	Foreward Search Algorithm
	Foreward Search Algorithm
	Foreward Search Algorithm
	Another View
	Results: Topological Noise
	Results
	Complexity
	How expensive is all of this?
	How expensive is it..?
	Costs...
	Costs...
	General Case

	3.5 Articulated Registration
	Articulated Registration�� Graph cuts and piecewise-rigid registration [CZ08]�Articulated registration [CZ09]�Implementation issues and alternatives
	Overview
	Problem Statement
	[CZ08] Algorithm Overview
	Motion Sampling Illustration
	Motion Sampling Illustration
	Motion Sampling Illustration
	Motion Sampling Illustration
	Motion Sampling Illustration
	Limitations of Motion Sampling
	Global Motion Optimization
	Data Term
	Smoothness Term
	Symmetric Cost Function
	Optimization Using Graph Cuts
	Horse Dataset Results
	Synthetic Dataset Example
	Synthetic Dataset w/ Holes
	Arm Dataset Results
	Arm Dataset Example
	Arm Dataset Example
	Hand Dataset Example
	Hand Dataset Example
	Performance
	Limitations
	Limitations
	Compare to CC algorithm
	Implementation Issues
	Implementation Issues
	Conclusions
	Range Scan Registration Using�Reduced Deformable Models
	Problem Statement
	Related Work
	Model: Linear Blend Skinning
	Model: Linear Blend Skinning
	Weight Grid
	LBS for scan registration
	Algorithm Description
	Optimization strategy
	Optimization strategy
	Optimization strategy
	Optimization strategy
	Optimization strategy
	Optimization strategy
	Optimization overview
	Optimization overview
	T-Step: Distance Term
	T-Step: Distance Term
	T-Step: Distance Term
	T-Step: Distance Term
	T-Step: Joint Constraint Term
	T-Step: Joint Constraint Term
	T-Step: Joint Constraint Term
	T-Step: Joint Constraint Term
	T-Step: Optimization summary
	Optimization overview
	Optimization overview
	W-Step: Optimizing weights
	W-Step: Optimizing weights
	W-Step: Optimizing weights
	W-Step: Optimizing weights
	W-Step: Optimizing weights
	W-Step: Optimizing weights
	Use discrete labeling
	W-Step: Optimization Summary
	Results
	Robot video (real-time recording)
	Torso video (2x speed recording)
	Interactive posing (real-time recording)
	Average performance statistics
	Limitations
	Conclusion
	Implementation Issues

	4.1 Dynamic Registration
	Geometric Registration for Deformable Shapes
	Scan Registration
	Scan Registration
	Scan Registration
	The Setup
	The Setup
	Insights
	Time Ordered Scans
	Space-time Surface
	Space-time Surface
	Space-time Surface
	Spacetime Velocity Vectors
	Spacetime Velocity Vectors
	Final Steps
	Final Steps
	Registration Algorithm
	Normal Estimation: PCA Based
	Normal Estimation: Iterative Refinement
	Normal Refinement: Effect of Noise
	Normal Estimation: Local Triangulation
	Normal Estimation
	Comparison with ICP
	Rigid: Bee Sequence (2,200 frames)
	Rigid: Coati Sequence (2,200 frames)
	Handling Large Number of Frames
	Rigid/Deformable: Teapot Sequence (2,200 frames)
	Deformable Bodies
	Deformable: Hand (100 frames)
	Deformable: Hand (100 frames)
	Deformation + scanner motion: Skeleton (100 frames)
	Deformation + scanner motion: Skeleton (100 frames)
	Deformation + scanner motion: Skeleton (100 frames)
	Performance Table (on 2.4GHz Athlon Dual Core, 2GB RAM)
	Conclusion
	Conclusion
	Slide Number 36

	4.2 Animation Reconstruction
	Geometric Registration for Deformable Shapes
	Animation Reconstruction�Basic Algorithm
	Bayesian Approach
	Bayesian Approach
	The Space of All Scenes
	Measurement Model – P(D|S)
	Implementation...
	Data Term – E(D|S)
	Why do We Need Priors?
	Priors – P(S)
	Point-based Model
	Nasty Normals
	Nasty Normals
	Neighborhoods?
	Numerical Optimization
	3D Examples
	3D Reconstruction Summary
	Animation Reconstruction�Improved Algorithm
	Extension to Animations
	Recap: Correspondences
	Recap: Correspondences
	Animation Reconstruction
	Animation Reconstruction
	Animations
	Discretization
	Discretization
	Missing Details...
	Recap: Elastic Deformation Model
	Recap: Elastic Deformation Model
	Recap: Elastic Deformation Model
	Acceleration
	Optimization
	Global Assembly
	Iterative Assembly
	Iterative Assembly
	Alignment
	Iterative Assembly
	Iterative Assembly
	Topology Stitching
	Iterative Assembly
	Iterative Assembly
	Iterative Assembly
	Iterative Assembly
	Global Optimization
	Meshing
	Results
	Slide Number 47
	Slide Number 48
	Improved Algorithm�Urshape Factorization
	Improved Version
	We have so far...
	New: Factorization
	Components
	Components
	Energy Minimization
	Data Fitting
	Elastic Deformation Energy
	Surface Reconstruction
	Factorization
	Components
	Discretization
	Discretization
	Discretization
	Shape Representation
	Deformation
	Deformation
	Additional Terms
	Discretization
	Discretization
	Meshless Finite Elements
	Adaptive Sampling
	Summary: Variational Model
	Components
	Urshape Assembly
	Hierarchical Merging
	Hierarchical Merging
	Initial Urshapes
	Initial Urshapes
	Alignment
	Align & Optimize
	Hierarchical Alignment
	Hierarchical Alignment
	Results
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Quality Improvement

	4.3_Practical_Animation_Reconstruction

