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Part I: Meshless
Approximation
Methods



Meshless Approximations

Approximate a function from discrete samples
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Meshless Approximation Methods

Smoothed Particle Hydrodynamics (SPH)

= simple, efficient, no consistency guarantee

= popular in CG for fluid simulation

Meshfree Moving Least Squares (MLS)

= 3 little more involved, consistency guarantees

= popular in CG for elasto-plastic solid simulation



Meshless Approximation Methods

Fluid simulation using SPH Elastic solid simulation using MLS
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Smoothed Particle
Hydrodynamics



Smoothed Particle Hydrodynamics (SPH)

Integral representation of a scalar function f
60 = [ F()8(x = y)dy

Dirac delta function

s-n={ & 173




Smoothed Particle Hydrodynamics (SPH)

Replace Dirac by a smooth function w

)~ [ F@w(lx = yl/m)dy AN

Desirable properties of w

1. compactness: w(||x —y||/h) =0 when |x —y|/h>1

2. delta function property: |im w(|jx —y||/h) = 5(x —y)
3. unity condition (set fto 1): /w(”x —yl||/h)dy =1
4

. smoothness



Smoothed Particle Hydrodynamics (SPH)
Example: designing a smoothing kernel in 2D

For simplicity set h =1, ||x —y|| =

A(l-=7r)3 r<1

We pick w(r):{ 0 o .

Satisfy the unity constraint

27 rl 3
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Smoothed Particle Hydrodynamics (SPH)

Particle approximation by discretization

)~ [ Fwlix = yll/m)dy

U g
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f(x) = ) fiw(||x —x;|/h)V;
=il
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F) =~ Y 2 o(lx - xill/hi)

1=1



Smoothed Particle Hydrodynamics (SPH)

Example: density evaluation
N

F) =~ S Zfaw(llx — x| /Rq)
=1 M1
2
N m;

p(x) = Y —paw(l|x —x4|/h;)

1:1 ,01

)

N
p(x) = Y mw(||x —x;(|/h;)
i=1



Smoothed Particle Hydrodynamics (SPH)

N
f(x) =) &;(x)f;
i=1

®;(x) = “Jiw(|[x — x;l|/h;)



Smoothed Particle Hydrodynamics (SPH)

Derivatives

16~ [ Fwlx = yli/m)dy
|l replace f by Vf

Vxf(x) & Vx [ F()w(lx - yl/h)dy
J V, / linear, product rule

Vxf(x) ~ ffo(X)w(||x—y||/h)]dy+‘/f(y)wa(l|X—yI|/h)dy
|} Vxf(y) =0

V() & [ ) Vxw(lix - yll/h)dy



Smoothed Particle Hydrodynamics (SPH)

Particle approximation for the derivative

N

Vi) &~ Y Evw(x — xll/h)

i=1 Pi

Some properties:
= simple averaging of function values
= only need to be able to differentiate w
= gradient of constant function not necessarily 0

= will fix this later



Smoothed Particle Hydrodynamics (SPH)

Example: gradient of our smoothing kernel

10 3
e e ) = { (- Tl i G

withr = ||x—y|,h=1

Gradient using product rule:

) —
V){T_L — (_w V}[T — _—(1 — T)Q . X y
or [x =yl




Smoothed Particle Hydrodynamics (SPH)

Alternative derivative formulation
N m.
Old gradient formula: Vf(x;) = Y —2LfiVw(||x; — x;|/h;) (1)
j=1 Pj

Product rule: V(pf) = fVp+ pVf & Vf = %V(pf) - if‘?’p (2)

Ui (1) m (@)
1 N om; 1 Y om;
Vi) ~— Y —2pifiVw(llxi—x;ll/hj)——Fi > —LpjVw(||x;—x%;l|/h;)
Pi j=1 Pj Pi  j=1 Pj
1 N
VIx) =~ Py > mi(f; — f)Vw(llx; — xl/hj)
i j=1

Gradient of constant function now always 0.



Smoothed Particle Hydrodynamics (SPH)

Similarly, starting from

vihy=-Lvp+ivs o vi=»p (v(f) + %w)
p p p p’ T p
vihy=—Lvp+ivs o vi=p (V(f) + %w)
p p p p p
=~ fi
VI = pi ) mi(=5 + ) Vw(llx; — x;ll/h;)
=1 Pj P

This gradient is symmetric: Vi(x) =) gij : 9ij = —9ji
J



Smoothed Particle Hydrodynamics (SPH)

= Other differential operators

= Divergence

V- f(x) & X5 A — £) - V(llx; — x1/h)

= Laplacian

Af(w) = 2, (f5 = f) Aw(|lx; — x| /)



Smoothed Particle Hydrodynamics (SPH)

Problem: Operator inconsistency

* Theorems derives in continuous setting don’t hold

Af#FV-Vf

Solution: Derive operators for specific guarantees



Smoothed Particle Hydrodynamics (SPH)

Problem: particle inconsistency

= constant consistency in continuous setting
[ wllx—yll/m)dy =1

= does not necessarily give constant consistency in
discrete setting (irregular sampling, boundaries)

N

Tris
> —w(llx —xill/hs) =1

i=1 Pi

Solution: see MLS approximation



Smoothed Particle Hydrodynamics (SPH)

Problem: particle deficiencies near boundaries

= integral/summation truncated by the boundary

= example: wrong density estimation

N
p(x) = Z m;w(||x — x;||/h;)
=1

boundary

Solution: ghost particles

ghost
particles

real
particles



SPH Summary (1)
A scalar function f satisfies
160 = [ £()8(x = y)dy

Replace Dirac by a smooth function w

16 & [ fwlx - yl/h)dy
Discretize

N
f(x) = > Vifiw(||lx — x4]|/h;)
i=1




SPH Summary (2)

Function evaluation:
N

fxi)= > E'_jfjw(nxi —x;l|/h;)

g=1 p.?

Gradient evaluation:

N -
Vi) =Y —2fiVw(llx; — xjl/h;)
1 N
Vi) == > mi(f; — f)Vw(lx; — xl|/hj)
Pq j=1

N fj‘

Vi) =pi ), mi(=5

j=1 _',r 1

)V'w(llxz' — Xj||/hj)



SPH Summary (3)

Further literature

= Smoothed Particle Hydrodynamics, Monaghan, 1992

= Smoothed Particles: A new paradigm for animating highly deformable bodies,
Desbrun & Cani, 1996

= Smoothed Particle Hydrodynamics, A Meshfree Particle Method, Liu & Liu, 2003
= Particle-Based Fluid Simulation for Interactive Applications, Miiller et al., 2003

=  Smoothed Particle Hydrodynamics, Monaghan, 2005

= Adaptively Sampled Particle Fluids, Adams et al., 2007

= Fluid Simulation, Chapter 7.3 in Point Based Graphics, Wicke et al., 2007

= Many more



Preview: Particle Fluid Simulation

Solve the Navier-Stokes momentum equation

p(BF) =-VP+puvv+g

o

Lagrangian pressure viscosity

derivative force force gravity



Preview: Particle Fluid Simulation

Discretized and solved at particles using SPH

Dv;
pi (o) = VP 4 uV2vi+ g

. den51ty est1mat10n

; = p(x;) = z Vip; w((]|x; xj||fhj) = Z m. u(||x —X; ||/’hj)

= pressure force

—VP; = - Z ViPiVw((lx; — xll/h;)

= viscosity force

;.-\72‘\#, — U Z ‘;jvjvzu (||x; — xl.)-||/h.j}
J_



Preview: Particle Fluid Simulation
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Moving Least Squares



Meshless Approximations

Same problem statement:
Approximate a function from discrete samples
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Moving Least Squares (MLS)

Moving least squares approach

i
l f(x)?
_l X X l :

Locally fit a polynomial f(x) = p’(x)a

a=[abed! px)=[1zyz’

N
By minimizing £ = > w(||x — x;||/h;) (pT(x.,-_)a - f;.)2

1=1 = -> W




Moving Least Squares (MLS)

N —
B=3 w(lx - xill/k:) (b7 (x)a - f;)°

i=1
( oF — i‘: w(||x — x;||/h;) [ }-p(x_}..l_ f} 1= 0
da =1 ill/ i 1 e i
E N . :
— =2 w(lx-x/h) (p" (x:)a - f;)m =0 N N
i = : _
. > wllx = xll/h)pG) (PT (xi)a - fi) =0
o =2 2 wlx = xill/hi) (p" (xi)a— fi) g = 0 i—1
i=1
o E '\.. eps
\ (:;:; =2 r_; w(||x — xl|/hi) (P (x:)a — f;) 24 =0

N
Solution: a = M(x) ™ * ¥ w(||x — x;||/hs)p(x;) f;
i=1
N
with M(x) = ¥ w(|x = x;l|/h)p(x:)p” (x;)

i=1
N

Approximation: f(x) =p’ (x)a=p’ (IM(x)"" Y w(|lx—x[|/h)p(x;) f;

i=1



Moving Least Squares (MLS)

Jn\‘r
Approximation: f(x) = p’ (x)a=p’ x)M(x)"1 Y w(|x—x;||/hi)p(x:) fi
i=1

N
f(x) =) &;(x)f;
=1

with shape functions &, (x)

d;(x) = T;»‘(HX — X-a||f*’1-;:)P(X)Th;I(X)_lp(Xz‘)

weight function moment matrix -
Complete polynomial basis M(x) = > w(|[x — XI,'H/IJ.,-)})I[X;)[}(){;)!
— by construction they are up to the order of the basis

— by construction they build a



Moving Least Squares (MLS)

N
f(x) =) &;(x)f;
i=1

®;(x) = w(([x — x| /h:i)p" ()M(x) " p(x;)



Moving Least Squares (MLS)

Derivatives
af(x) & odi(x)
Xy =1 X

fi

%[%1 _ du(n;«cx(}:jllﬂt) pT (x)M(x)~1p(x;)

Fuw(llx — xi|l /h)pT (o) M1 (5

CJX(L.J

+w(lx = x,ll/hs) B LM ~1p(x:)

(M= D o= oM

M



Moving Least Squares (MLS)

Consistency .
= have to prove: p(x) = ) ®;(x)p(x;)
=1
— N g
" or:p’' (x) = Y ;(x)p’ (x;)
=1

I ®i(x) = w(|lx —xl|/h)p! (x)M(x) " 1p(x;)

N
p' (x) = > w(llx—x[l/h)p" (x)M(x) " 'p(x;)p’ (x;)
i=1
N “
p' (x) =p' )M Y wlllx—xll/h)p(x:)p’ ()
i=1

N
U Mx) =3 w(|x —x;ll/h)pxi)p! (x:)

i=1

p' (x) = p" (GIM(x) *M(x) = p' (x)



Moving Least Squares (MLS)

Problem: moment matrix can become singular

= Example:
= particles in a plane 2 =0 in 3D
» Linear basis p(x) =[1 x]T =[1 z y 2]*

Y
i
M(x) = ) w(|lx —xi[|/hi)p(x;)p" (x;)
i=1
, 1 =z oy oz
M(x) = in‘(HX—X'H/h') T T Y Tz
=i Wy wy yE vz
Zi Tizi Yi%i 2
,_ 1 z; y; O
MGO = 3 wllx—xil /) | T 7 i O
i—1 T f Yi LYy U? 0
0O O 0 O



Moving Least Squares (MLS)

Stable computation of shape functions

P, (x) = w(||x — x;||/h)p(x)TM(x) " 1p(x;)
M(x) = > w(||x — x;[|/h)p(x;)pT (x;)

) translate basis by —x
scaleby 1/h

®;(x) = w(||x — x;]|/h:)P(0) T M(x)~Lp(¥iX)

M(x) = ¥ w(|x — x| /R)p(>)p! ()

It can be shown that this moment matrix has
a lower condition number.



MLS Summary

N
f(x)=> ®;(x)f;
=

P;(x) = w(|x — x4]|/h;)P(0) T M(x) "1 p(¥>)

M(x) = X w(||x — x| /)P )p! (4)



MLS Summary (2)

Literature

= Moving Least Square Reproducing Kernel Methods (I) Methododology and
Convergence, Liu et al., 1997

= Moving-Least-Squares-Particle Hydrodynamics —I. Consistency and Stability,
Dilts, 1999

= (lassification and Overview of Meshfree Methods, Fries & Matthies, 2004

= DPoint Based Animation of Elastic, Plastic and Melting Objects, Miiller et al., 2004
= Meshless Animation of Fracturing Solids, Pauly et al., 2005

= Meshless Modeling of Deformable Shapes and their Motion, Adams et al., 2008



Preview: Elastic Solid Simulation

N
u(x) = ) ()

i=1




Preview: Elastic Solid Simulation
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Preview: Elastic Solid Simulation




Part I: Conclusion



SPH — MLS Comparison

N

f) =Y ®i(x)f;

1=1

SPH MLS

Si(x) = Viw(llx — x| /hy)  Pi0) = wllix = xill/h)PCOTME) " p(x;)
M(x) = Tiw(lx — xill /)PP

local local
fast slower
simple weighting matrix inversion (can fail)

not consistent consistent up to chosen order



Lagrangian vs Eulerian Kernels

Lagrangian kernels Eulerian kernels
neighbors remain constant neighbors change
tr27722 272724 2/ 7727277777
220 s 777 PSS
P 177 7 7Rk A S AR
A & Nl B AR .. Sl
PSS AR S S A
PSS W e I VAV
r 7 KA F S 2 g

7 KA 2 77 7 f <

F ’{';f fﬂ:’l“ip’f; A R S S S o -.
i ;'\ ‘:‘!" jr x x > = T 7 f %

S A A A B S B B SV A S A A B B .
T T T T A R A AR R R R S R R . i

[Fries & Matthies 2004]



Lagrangian vs Eulerian Kernels

Lagrangian kernels are OK for elastic solid
simulations, but not for fluid simulations

.......

BN O }H >
)

[Fries & Matthies 2004]



Moving Least Squares Particle
Hydrodynamics (MLSPH)

Use idea of variable rank MLS

®;(x) = Viw(|[x — x| /h;)  (SPH)
J
D, (x) = w(||x — x| /h)p(x)TM(x) *p(x;) (MLS)

= start for each particle with basis of highest rank
» if inversion fails, lower rank

Consequence: shape functions are not smooth
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Application 1:
Particle Fluid Simulation
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Fluid Simulation




Eulerian vs. Lagrangian

= Fulerian Simulation

= Discretization of space

= Simulation mesh required

= Better guarantees / operator consistency
= Conservation of mass problematic

= Arbitrary boundary conditions hard




Eulerian vs. Lagrangian

= Lagrangian Simulation

= Discretization of the material

= Meshless simulation

= No guarantees on consistency

= Mass preserved automatically (particles)

= Arbitrary boundary conditions easy (per particle)




Navier-Stokes Equations

* Momentum equation:

%—f+V-VV=%(—Vp+uAV+fext)

= Continuity equation:

% 4+ V. (pv) =0



Continuum Equation

= Continuum equation automatically fulfilled
= Particles carry mass
= No particles added/deleted & No mass loss/gain

= Compressible Flow
= Often, incompressible flow is a better approximation
= Divergence-free flow (later)



Momentum Equation

W+ v Vv =1 (—Vp+pAv + o)

= [eft-hand side is material derivative

= “How does the velocity of this piece of fluid change?”
= Useful in Lagrangian setting

Dt =3 (=Vp + pAV + fext)



Momentum Equation

Y = %(—Vp + pAV + fext)
a=1/m - F

* Instance of Newton’s Law
= Right-hand side consists of

= Pressure forces
= Viscosity forces
= External forces



Density Estimate

= SPH has concept of density built in
pi = ) wijm;
J

= Particles carry mass
= Density computed from particle density



Pressure

= Pressure acts to equalize density differences

N
o,

p= K({— | —1)
PO

= CFD: v=7, computer graphics: y=1
= ]Jarge K and v require small time steps



Pressure Forces

DF = 5 (5 + pAV + fext)

. . —Vp
" Discretize ap = ——
P

= Use symmetric SPH gradient approximation

Vp(x;) Pi . D
Ap,i = =~ ) mi(—5 + 25) Vg
Pi j Pj P;

= Preserves linear and angular momentum



Pressure Forces

= Symmetric pairwise forces: all forces cancel out

" Preserves linear momentum

= Pairwise forces act along X; — X;

= Preserves angular momentum

™~



Viscosity

DF = 5 (=Vp + pAV + fext)

= Discretize using SPH Laplace approximation

_ uAvV(x;) m;
Ayj — = p( ) ~ HZj p._j.(vj - Vz’)Awij

* Momentum-preserving
= Very unstable



XSPH (artificial viscosity)

Viscosity an artifact, not simulation goal
Viscosity needed for stability

Smoothes velocity field

Artificial viscosity: stable smoothing

Vi =(1—=8)v; + &3, wiv;



Integration

= Update velocities

v; — v; + At (apjg* i f(;{,i))

1

= Artificial Viscosity
Vi — (L =&V +&§ X wiyv;

= Update Positions

X; — X5 —I— &tv;.;



Boundary Conditions

= Apply to individual particles

= Reflect off boundaries

= 2-way coupling
= Apply inverse impulse to object



Surface Effects

* Density estimate breaks down at boundaries

le density

1C

= Leads to higher part




Surface Extraction

= Extract iso-surface of density field
= Marching cubes



Extensions

Adaptive Sampling [Adams et al 08]

Incompressible flow gz etaos

MUltiphaSG flOW [Mueller et al 05]

Interaction with deformables pueier et ai o4

Interaction with porous materials i
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Application 2:
Elastic Solid Simulation



Goal

Simulate elastically deformable objects




Goal

efficient and stable algorithms

~

different materials

elastic, plastic, fracturing

~

highly detailed surfaces



Elasticity Model

What are the strains and stresses
for a deformed elastic material?

u(x)




Elasticity Model

Displacement field
ux) = (u,v,w)! : R3 - R3

u(z,y,z) i R3S R

v(z,y,2) RS =R

w(z,y,z) R3-SR




Elasticity Model

Gradient of
displacement field




Elasticity Model

Green-Saint-Venant
non-linear strain tensor

€ = %(Vu + Vul + vul'vu)

symmetric 3x3 matrix



Elasticity Model

Stress from Hooke’s law

o = Ee

symmetric 3x3 matrix




Elasticity Model

For isotropic materials

Fy P FE

oy | — (1 +v)(1 - 2v)

Young’s modulus E

Poisson’s ratio v

(1 — v

=

oo




Elasticity Model

Strain energy density

U=

1
—€-0
2

Elastic force

felastic = VU



Elasticity Model

Volume conservation
force

pvol. — ;;”vu(|1+ Vu(x)| — 1)2

prevents undesirable
shape inversions



Elasticity Model

Final PDE

2%’ L 0°%u _ felastic 4+ fvolume 4+ fbody

a2 — Va2

gelastic _ _%\7“6 .o

gvolume _ %Vu(\I'FVU(XN — 1)2

bed‘y’ = pg



Particle Discretization

N
u(x) = ) P;(x)y; %
=i




Simulation Loop
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Surface Animation

Two alternatives

= Using MLS approximation of
displacement field

= Using local first-order approximation of
displacement field



Surface Animation — Alternative 1

Simply use MLS approximation
of deformation field

Can use whatever representation:
triangle meshes, point clouds, ...



Surface Animation — Alternative 1

Vertex position update

f=fF
x' = x + u(x) 2 = TJ
S My

Approximate normal update

= first-order Taylor for displacement field at normal tip
u(x +n) ~ u(x) + Vu(x)'n
= tip is transformed to
(x+n) =x+4n+ u(x) + Vu(x)n
x'+n =x"4+n+ Vux)n
n’ =n+ Vu(x)n



Surface Animation — Alternative 1

Easy GPU Implementation

N
X =x4+ux)=x+ Y Di(x)u;

1=1 \

scalars
remain constant

)

N
n =n+ Vu(x)’n=n+ > (V! (x)n)u;

1=1

— only have to send particle deformations to the GPU



Surface Animation — Alternative 2

Use weighted first-order Taylor approximation
for displacement field at vertex

i(x) =Y @ (u; + Vu(x;)’ (x — x;)
: J( J J J ) '\'_/<_/

X

Updated vertex position

x' = x + (%) ﬁ

— avoid storing per-vertex shape functions
—> at the cost of more computations



Plasticity

Include plasticity etfects




Plasticity

Store some amount of the strain and
subtract it from the actual strain
in the elastic force computations

elastic _ plastic

€; = €; — €

strain state variable

lasti 1 lasti
£e astic _ it VAP astic



Plasticity

Strain state variables updated by
absorbing some of the elastic strain

Absorb some of the elastic strain:

. elastic lastic lastic elastic
It ”E'a || > Cyield then Eip — EE —|— Ccreep - €;

Limit amount of plastic strain:

plastic Eplastlc _ Cmax/HEEIaStICH

if ||ef|35tic|\ > cmax then €; ;



Plasticity

Update the reference shape and
store the plastic strain state variables

lasti lasti
Egastc{_eipastc_

X; < X; + u;,

€,

lli*i—O.



Ductile Fracture

Initial statistics:
2.2k nodes
134k surfels

Final statistics:
3.3k nodes
144k surfels

Simulation time:
23 sec/frame



Modeling Discontinuities

Only visible nodes
should interact

crack



Modeling Discontinuities

Only visible nodes
should interact

= collect nearest neighbors




Modeling Discontinuities

Only visible nodes
should interact

= collect nearest neighbors

= perform visibility test




Modeling Discontinuities

Only visible nodes
should interact

= collect nearest neighbors

= perform visibility test




Modeling Discontinuities

Only visible nodes
should interact

Discontinuity along the
crack surfaces




Modeling Discontinuities

Only visible nodes
should interact

Discontinuity along the
crack surfaces

But also within the domain

— undesirable!



Modeling Discontinuities

Visibility Criterion

Weight function Shape function



Modeling Discontinuities

Solution: transparency method!

= nodes in vicinity of crack
partially interact
= by modifying the weight
function
crack

wi; = w(lxj — x4]|/h; + (ds/kh)?)

— crack becomes transparent
near the crack tip

! Organ et al.: Continuous Meshless Approximations for Nonconvex
Bodies by Diffraction and Transparency, Comp. Mechanics, 1996



Modeling Discontinuities

Visibility Criterion Transparency Method
Weight :
function _
Shape :
function -




Re-sampling

= Add simulation nodes when number of
neighbors too small

re-sampling of the
domain of a node

= distribute mass crack

¢
(] ]
e °
........
. .
e s

= adapt support radius
= interpolate attributes



Re-sampling: Example



4.3k nodes
249k surfels

6.5k nodes
310k surfels

22 sec/frame

Brittle Fracture




Summary
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Summary

Efficient algorithms
= for elasticity: shape functions precomputed
= for fracturing: local cutting of interactions

No bookkeeping for consistent mesh
= simple re-sampling
= shape functions adapt automatically

High-quality surfaces
= representation decoupled from volume discretization
= deformation on the GPU



Limitations

Problem with moment matrix inversions
= cannot handle shells (2D layers of particles)
= cannot handle strings (1D layer of particles)

Plasticity simulation rather expensive
= recomputing neighbors
= re-evaluating shape functions

Fracturing in many small pieces expensive

= excessive re-sampling



Tutorial Overview

= Meshless Methods

= smoothed particle hydrodynamics
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Application 3:
Shape & Motion Modeling



Shape Deformations



Shape Deformations: Objective

Find a realistic shape deformation
given the user’s input constraints.




Shape Deftormations

/o



Shape Deftormations



Shape Deftormations

f(x) =x 4 u(x)



Deformation Field Representation

Use meshless shape functions to define
a continuous deformation field.

u;

u(x) = ) d;(x)uy,
=1

1

x f(x) =x 4+ ulx)



Deformation Field Representation

N
u(x) = Y @,
=1

1

Precompute for every node and neighbor

D, (x) = w(||x — x| /h;)p(x)TM(x) "1 p(x;)

Complete linear basis in 3D
p(x) =[Lzyz]"

- N
u(x) = E D (0w
i=1

X f(x) = x4+ u(x)



Detformation Field Optimization

We are optimizing the displacement field

f(x) =x+ ux)

=x+ YL Pi(xw
1

nodal deformations
unknowns to solve for




Deformation Field Optimization

The displacement field should
satisty the input constraints.

Position constraint s

I£(x) — y]|2 — min “”(/

|x + u(x) — y||2 — min

|x 4+ 3; Pi(x)u; — y||? — min ﬁ

— quadratic in the unknowns



Detformation Field Optimization

The displacement should be realistic.

Locally rigid (minimal strain) | o
(VT (x)VF(x) —I}2 — min
{(Vu(x) 4+ Vul'(x) + Vul (x) Vu(x)}2 — min

Volume preserving
{|IVE(x)| — 1}2 — min
(I 4+ Vu(x)| — 1}2 — min

-
B
-

— degree 6 in the unknowns
— non-linear problem

|



Deformation Field Optimization

The total energy to minimize
E = ) constraints ”X + 2 CD?;(X)IIE' — YHQ
+ Snodes i [IVEL (%) VE(x;) — I||%
+ D _nodes i(‘Vf(Xi)‘ — 1)2

Solve using LBFGS

= unknowns: nodal displacements u; = [u; v; ’w«,\;]T

* need to compute derivatives 9gg §E OE
with respect to unknowns Ju;' Ov;' Ow;




Nodal Sampling & Coupling

Keep number of unknowns as low as possible.

y ;
by )
B R
g j |

w .' ::1.; h": J“

.
\ \ , f’
\ - ,I.__, 1-"’ =% L L




Nodal Sampling & Coupling

Ensure proper coupling by using
material distance in weight functions.




Nodal Sampling & Coupling

Set of candidate points:
vertices and interior set of dense grid points



Nodal Sampling & Coupling

Grid-based fast marching to
compute material distances.




Nodal Sampling & Coupling

Resulting sampling is roughly uniform over the material.
Resulting coupling respects the topology of the shape.




Surface Deformation

Use Alternative 1 of the surface
animation algorithms discussed before

Vertex positions and normals updated on the GPU



Shape Deformations

100k vertices, 60 nodes — 55 fps



Shape Deformations

naces: 60 | vertices: SO0000 | frame: 00 | fps: 010

500k vertices, 60 nodes — 10 fps



Deformable Motions



Deformable Motions: Objective

Find a smooth path for a deformable object
from given key frame poses.

101 59 | wertices: 17233 | frame: 0/ | fps: 108




Deformation Field Representation

keytrame 1 kcyl’r'lme 2 keyframe 3
sl
SM/ h
%{ Jﬁ F‘/ _— ‘_\\/? /
-1

; _j

I N
u(x, t) = ) Y P;(0)Pi(x)u;y,
j=1i=1 '
shape functions in space

shape functions in time



Deformation Field Representation

Frames: discrete samples in time

keyframe 1

keyframe 2 keyframe 3
y Yy
:/.I\ ; jr frJL_ ,{?, ,' ‘“‘M“ ({«\ ":i",- :1—1;
Q2D Vil SN S INOLY )
( Q. ¢ ﬁ ARy AN Ry R o
;_J' 1'3 ._;_f\?;_g «f : // A \‘x,\:* ."//'\2'*{‘ Y \“’“}r '-\,E{-l\-l-\.f:
1 1 1 >
¢ £ ' t- { ¢
frame1l frame?2 frame 3 frame 4 frame 5

Solve only at discrete frames: nodal displacements u; ¢

Use meshless approximdtion to define continuous displacement field

T N
u(x,t) = Z Z (I)‘j(f)(bf(x)ua’:.”

j=1li=1



Deformation Field Representation

I' N

ulx,t) = > Y P (1) P;(x)u; ¢,

j=1i=1
Precompute for each frame for every neighboring frame
®;(t) = w(||t — t;]|/r))P() M)~ 'p(t))

Complete quadratic basis in 1D
p(t) = [1 ¢t ]

keyframe 1 keyframe 2 keyframe 3
!; g | Ja 23] /:“ '~ 4 ““\".w"' ~~: B f'
iR ;’}j} &N *7 VY QErEy
J : l J | >
t1 to i3 ta ls
frame 3 frame 4 frame 5

frame1l frame?2



Deformation Field Optimization

We want a realistic motion interpolating the keyframes.

handle constraints

keyframe 1 keyframe 2 keyframe 3
r_f'f' /'3“ s —
A " (A I “On 13 B
& T, e O B 2
oo < ﬁ N NS ¢
i ff | ; "/,/‘ \e Ve A f,- ""'-\\.
“._:: 1_,3 f;::_f\?i_:} \‘, \*\ {.{m{/ {’ :’ \y }-}_“:’ \._},n
| |
t - t- t te g
frame1l frame?2 frame 3 frame 4 frame 5

\ rigidity constramts /

volume preservation constraints



Detformation Field Optimization

We want a smooth motion.

Acceleration constraint

"‘" A
ﬂ’

4

s—,

o ﬂ"ﬂ%\ﬁ% R 1

R Ll

|| (K t)[|* — min

Jr

-
l u(x, t) = 3 3 @i()P;(x)uyy,

j=1l:i=1

L& 620;(t) .
|| Z Z dtz cbi(x)ui,t_jnz — Min

1=1:=1

for all nodes in all frames



Detformation Field Optimization

We want a collision free motion.
Obstacle avoidance constraint

d?(f(x,t),t) — min

l f(x,t) =x+u(x,t)

d?(x 4+ u(x,t),t) — min

for all nodes in all frames

d(x,t) =0



Deformable Motions

59 nodes
500k vertices

2 keyframes

solve time: 10 seconds, 25 frames



Adaptive Temporal Sampling

Number of unknowns to solve for: 3NT
— keep as low as possible!

Constraints only imposed at frames
— what at interpolated frames?

keyframe 1 keyframe 2 keyframe 3
e o /'ZN o
A T . LA P G =
'wfv‘:‘;:’) 7. S e L)) k4
:/.x.. \ /r ﬁ.____...I I,rl:’i3 {_,.,\{\\: "//'i/;‘“\ (ﬂ:} \\,~§ ~.\:\‘; -, .:‘\
3 Hy < & v o QGveY <3
1 1 1 >
¢ £ ' t- t t
frame1l frame?2 frame 3 frame 4 frame 5

Adaptive temporal sampling algorithm



Adaptive Temporal Sampling

Solve only at the key frames.




Adaptive Temporal Sampling

Evaluate over whole time interval.




Adaptive Temporal Sampling

Introduce new frame where energy highest and solve.




Adaptive Temporal Sampling

Evaluate over whole time interval.




Adaptive Temporal Sampling

Iterate until motion is satisfactory.




Deformable Motions

66 nodes
166k vertices

7 keyframes

interaction rate: 60 fps, modeling time: 2.5 min, solve time: 16 seconds, 28 frames



Summary

Realistic shape and motion modeling

= constraints from physical principles

Interactive and high quality
= MLS particle approximation
= Jow number of particles
= shape functions adapt to sampling and object’s shape
= decoupled surface representation
= adaptive temporal sampling

Rotations are however not interpolated exactly
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