
EUROGRAPHICS 2009/ K. Museth and D. Weiskopf Tutorial

Meshless Approximation Methods and Applications in
Physics Based Modeling and Animation

Bart Adams1,3 Martin Wicke2,3

1Katholieke Universiteit Leuven
2Max Planck Center for Visual Computing and Communication

3Stanford University

delivered by

EUROGRAPHICSEUROGRAPHICS

D LIGITAL IBRARYD LIGITAL IBRARY
www.eg.org diglib.eg.org

Abstract

With growing computing power, physical simulations have become increasingly important in computer graphics.
Content creation for movies and interactive computer games relies heavily on physical models, and physically-
inspired interactions have proven to be a great metaphor for shape modeling.
This tutorial will acquaint the reader with meshless methods for simulation and modeling. These methods differ
from the more common grid or mesh-based methods in that they require less constraints on the spatial discretiza-
tion.
Since the algorithmic structure of simulation algorithms so critically depends on the underlying discretization,
we will first treat methods for function approximation from discrete, irregular samples: smoothed particle hy-
drodynamics and moving least squares. This discussion will include numerical properties as well as complexity
considerations.
In the second part of this tutorial, we will then treat a number of applications for these approximation schemes.
The smoothed particle hydrodynamics framework is used in fluid dynamics and has proven particularly popular in
real-time applications. Moving least squares approximations provide higher order consistency, and are therefore
suited for the simulation of elastic solids. We will cover both basic elasticity and applications in modeling.

1. Introduction

Computer graphics has evolved to a stage where content cre-
ation is highly automated. Physics-based animation can au-
tomatically compute realistic behavior for dynamic systems
such as liquids, gases, or elastic solids. Researchers have cre-
ated algorithms that simulate complex effects such as frac-
ture, plasticity, or phase transitions. Physically plausible in-
teractions have also proven exceptionally useful as a model-
ing metaphor in shape modeling.

Currently, the most common algorithms in all of these
areas are mesh or grid-based. Traditional fluid simulation
uses a Eulerian discretization of the velocity field, i. e., the
space containing the fluid is discretized. For visualization,
density values (in smoke simulation), or a representation of
the surface (for liquids) are then advected using the dis-
cretized velocity field. Common methods for the simula-
tion of elastic solids typically discretize the simulated ma-

terial, not the embedding space. Because the discretization
grid moves along with the material, this Lagrangian dis-
cretization is better suited for elasticity, where the relative
displacements of neighboring sample points is essential for
force computation.

All of these mesh-based methods require that their simu-
lation mesh covers the discretized domain, and its elements
are non-overlapping. We will call a mesh with this property
consistent. The shape of its elements influence the imple-
mentation of the algorithm, and usually, they are chosen to
be as simple as possible, i. e. hexahedral or tetrahedral.

In this tutorial, we discuss methods that do not require a
consistent mesh. Instead, the necessary functions and deriva-
tives are interpolated from irregular samples. The only con-
nectivity information necessary is the neighborhood rela-
tionship between samples. The neighborhood graph is rel-
atively cheap to compute, and therefore, meshless methods

c© The Eurographics Association 2009.

http://www.eg.org
http://diglib.eg.org

B. Adams and M. Wicke / Meshless Approximation Methods and Applications in Physics Based Modeling and Animation

are ideally suited for applications in which the topology of
the discretized domain changes frequently. This also leads to
one of the most important differences to mesh-based meth-
ods in fluid simulation: meshless methods for fluid simula-
tion are Lagrangian methods, discretizing the fluid instead
of the embedding space. Consequently, all sample neigh-
borhoods are recomputed in each time step. Being able to
change the topology of the simulation domain quickly is es-
sential in simulations of fracture, or for adaptive computa-
tions that add samples where more detail is needed.

Physical systems are governed by partial differential
equations (PDEs). For fluid dynamics, these are the Navier-
Stokes equations, a system of PDEs in the velocity at each
point in space. For elasticity, the governing equations can be
written as a PDE in the displacement of each point in the
material. In order to solve for the dynamic behavior of these
systems, we have to discretize the PDE in space and time. In
other words, we will replace the governing equations, which
are statements about functions, by statements about samples
of functions — discrete objects which we can represent in
a computer. To properly translate the governing equations
into equations pertaining to samples, we need to reconstruct
a continuous function (and its derivatives) from the given
samples, apply the governing equations to the approximated
function, and transform the results back into changes that we
can apply to the samples directly.

1.1. Outline

We have written this tutorial with two goals in mind. The
readers should understand the foundations of meshless meth-
ods, enabling them to not only understand the methods pre-
sented here, but apply their knowledge to develop their own
variations, or analyze meshless methods they encounter in
the literature. On the other hand, we have included pseu-
docode for all core algorithmic parts. This should ensure that
the reader is able to reimplement the algorithms discussed
in this tutorial without being frustrated by common pitfalls.
Throughout the text, there are plenty of references that point
to further reading if any topic is of particular interest.

The tutorial is organized in two parts. Sections 2–5 treat
fundamentals, while sections 6–8 discuss applications based
on the frameworks introduced in the first part.

In the first part of this tutorial, we will discuss in de-
tail how to spatially discretize functions using irregular, un-
structured samples. We will treat two meshless discretiza-
tion approaches. Smoothed Particle Hydrodynamics (SPH)
is a function approximation framework which has been used
primarily for fluid simulation. It is fast but provides only
low-order accuracy in function values and derivatives. In
Section 2, we will rigorously derive its properties, and pro-
vide the background necessary to apply the framework both
as a function approximation technique and for the specific
problem of fluid dynamics. SPH relies on so-called kernel

functions to reconstruct a continuous function from scattered
samples. We will discuss the options for choosing these ker-
nel functions, as they significantly impact the performance
quality of SPH simulations.

Moving Least Squares (MLS) approximations are more
expensive to compute, but provide higher-order accuracy,
making them suitable approximation methods for elastic-
ity computations. Since their construction involves a non-
trivial amount of precomputation whenever the neighbor-
hood graph changes, these methods are not usually used for
fluid simulation. They have shown great potential in the sim-
ulation of elastic solids, where fracture can be computed
without costly remeshing. Adaptive simulations are also far
easier to achieve. Section 3 will introduce MLS approxima-
tion.

After giving a concluding comparison between SPH and
MLS in Section 4, we will turn our attention to search data
structures in Section 5. These are essential for computing
neighborhoods and are used heavily in any meshless sim-
ulation. The most common data structures used for neigh-
borhood lookups are kd-trees and spatial hashing. We will
treat their complexities and pitfalls, and discuss scenarios in
which each is optimal.

Part two of this tutorial deals with applications of the
methods introduced in part one. SPH is used for fluid simu-
lation, and Section 6 discusses the basic technique, as well as
several extensions. We will see how the Navier-Stokes equa-
tions can be discretized using irregular, Lagrangian samples,
and discuss the inherent advantages and limitations of mesh-
less Lagrangian fluid simulation compared to the traditional
mesh-based Eulerian setting.

Simulations of elastic objects require higher-order accu-
racy. In a meshless setting, the MLS function approxima-
tion can be used to implement meshless simulations of con-
tinuum elasticity. Section 7 treats the basics of continuum
elasticity, and we discuss how to apply MLS approxima-
tions to the problem. We will briefly touch upon simulation
of more complex phenomena such as plasticity and fracture,
with special emphasis on sampling issues.

Natural deformations as computed by continuum elastic-
ity simulations can be used in shape modeling. Section 8
discusses how to use the basic simulation developed in Sec-
tion 7 in a modeling application. We can use the physical
framework not only for shape modeling, but also for motion
modeling. Since physical simulations produce natural defor-
mations, we can use non-linear optimization paired with ob-
jective functions derived from elasticity to compute optimal
motion paths between keyframes.

Finally, we conclude with some high-level considerations
in Section 9.

c© The Eurographics Association 2009.

214

B. Adams and M. Wicke / Meshless Approximation Methods and Applications in Physics Based Modeling and Animation

I. Function Approximation from Unstructured
Samples

This part of the tutorial will deal with the problem of func-
tion approximation from unstructured samples. Given sam-
ples of a function at irregular locations, we want to recon-
struct the original function (or an approximation). The key
difference between mesh-based and meshless methods for
function approximation is the additional structure that a con-
sistent mesh offers. A consistent mesh partitions the sam-
pled space into disjoint elements or cells. These additional
guarantees can be used in various ways: Many finite element
methods define the value of the reconstructed function at any
point x as a linear combination of only those samples that are
corners of the element that contains x. We can integrate over
the whole domain by simply adding the contributions of all
elements.

For regularly sampled domains, regular or adaptive grids
(octrees) provide a simple way of constructing such a con-
sistent mesh. Computing meshes for irregular samples is
not straightforward. Most commonly, Delaunay methods are
used, but numerical problems due to slivers are common and
hard to avoid, especially in dynamic settings where frequent
re-meshing is necessary. Repairing or modifying a mesh af-
ter local resampling is often a global operation.

Meshless methods do not require a consistent mesh, and
work on unstructured samples instead. For these methods, it
is sufficient to know the distances between samples. Mesh-
less methods are typically designed to be local, i. e. eval-
uating a function only involves values from nearby sam-
ples. These neighborhoods can be efficiently computed using
search data structures like kd-trees or hash grids (see Sec-
tion 5). Since inter-sample distances and neighborhoods can
be easily recomputed, resampling is usually not a problem,
and generally a local operation. On the downside, we lose
the space partition property of a consistent mesh.

In the following, we introduce two meshless methods for
function approximation: smoothed particles hydrodynamics
and moving least squares. There are other methods that have
not found widespread use in animation, for example approx-
imation using radial basis functions. Although they are im-
portant in other areas of computer graphics, we will not treat
these techniques in this tutorial.

2. Function Approximation using Smoothed Particle
Hydrodynamics

In this section, we derive the basic formulation of Smoothed
Particle Hydrodynamics (SPH). The term smoothed parti-
cle hydrodynamics was coined by Gingold and Monaghan
[GM77], who introduced the method as a way to simulate
interstellar gas. The function approximation method that is
at the core of SPH is older, and originated from statistics
as a method to approximate probability distributions from

scattered samples [Ros56]. Lucy [Luc77] independently re-
discovered the technique. In this tutorial, we will discuss the
derivation as well as the most common formulation of SPH.
The excellent review article [Mon05], or the book [LL03]
give a good overview of different variations of the technique
developed since its inception. While SPH is often discussed
in the context of fluid animation, its function approximation
framework is general. We will treat it independently of appli-
cations in this section, and return to the application of fluid
dynamics in Section 6.

Consider the problem of reconstructing an (unknown)
function f from a set of irregular samples fi = f (xi), where
each sample has an associated importance weight mi.

Using the Dirac-delta function δ, we can rewrite f (x) as a
convolution

f (x) =
Z

x′
f (x′)δ(‖x−x′‖)dV. (1)

This doesn’t yet help us, since we cannot evaluate f ev-
erywhere. We therefore replace δ with a kernel function ωh.
As long as

R
ωh = 1, we recover a smoothed function f̃ :

f̃ (x) =
Z

x′
f (x′)ωh(‖x−x′‖)dV. (2)

We can discretize the integral in (2) into a sum over all sam-
ple points to obtain the SPH approximation

〈 f 〉(x) = ∑
i

fiωh(‖xi−x‖)Vi. (3)

The volumes Vi associated with each sample point are still
unknown. Drawing upon a physical metaphor, we associate
the importance weights mi with mass and observe that vol-
ume equals mass divided by density:

Vi =
mi

ρi
. (4)

We will see in Section 6 how this analogy is useful when we
apply the approximation framework to physical problems.
The density ρi is the sampling density around the sample i.
We can measure ρ using (3):

ρi = 〈ρ〉(xi) = ∑
j

ωh(‖xi−x j‖)ρ j Vj

= ∑
j

ωh(‖xi−x j‖)ρ j
m j

ρ j
(5)

= ∑
j

ωh(‖xi−x j‖)m j.

We can obtain the same result by defining a mass function
in the continuous setting

m(x) =
{

mi x = xi,
0 otherwise,

(6)

which concentrates the weights of the samples at the sample
points. We then smear out the weight over the area of sup-
port of the kernel by setting the density at each point to the

c© The Eurographics Association 2009.

215

B. Adams and M. Wicke / Meshless Approximation Methods and Applications in Physics Based Modeling and Animation

smoothed version of m(x):

ρi = m̃(xi) =
Z

x′
m(x′)ωh(‖xi−x′‖)dV

= ∑
j

ωh(‖xi−x j‖)m(x j) (7)

= ∑
j

ωh(‖xi−x j‖)m j

The reader should employ the derivation for ρi they find
most intuitive. Note that in the absence of weights (mi = 1),
the density serves as a simple normalization term that makes
sure that the kernel weights add up to one. In that case, and
for a specific choice of kernel function, the method is equiv-
alent to Shepard’s scattered data interpolation [She68].

Note that even if the kernel functions have sufficient sup-
port (i. e. the whole region of interest is covered by the union
of the kernel support regions), SPH approximation in gen-
eral do not recover constant functions exactly. This problem
will lead us to introduce the more sophisticated moving least
squares interpolation in Section 3.

We still have to choose the kernel function ωh before the
SPH approximation (3) is fully defined.

2.1. Kernel Functions

We have a wide range of options when choosing kernel func-
tions. Figure 1 (a) shows a plot of a typical 2D kernel func-
tion. In order to produce valid results, kernel functions need
to fulfill a number of requirements. We have already encoun-
tered one essential requirement for admissible kernel func-
tions: they must be normalized.Z

x
ωh(‖x‖)dV = 1 (8)

The kernel functions are one-dimensional (R→ R), how-
ever, the normalization has to consider the space in which
the samples points live. This means that kernel functions
need to be renormalized for each space in which the function
interpolation is to be performed. The normalization criterion
yields to

R
2πrωh(r)dr = 1 for two-dimensional kernels, andR

4πr2
ωh(r)dr = 1 in three dimensions.

In our derivation of the SPH approximation, we have
silently introduced the smoothing parameter h. Kernels are
parameterized with h, allowing control over how far the in-
fluence of each sample point reaches. Figure 1 (b) shows a
kernel function for several values of h. The choice of h in-
fluences the quality of the resulting function reconstruction,
and depends on the sampling density. Too large values of h
produce unnecessarily smooth reconstructions, while small
values of h might lead to region in which no sample has non-
zero weight. To ensure that the approximation (3) converges
to the continuous result (1), it is crucial that the kernel func-
tion converges to a Dirac-delta function as h goes to zero.

If the kernels have local support, only a small fraction

0 1
0

1

(a) (b)

Figure 1: (a) A polynomial kernel function (see Eq. 86 for
a definition). (b) ωh(d) for several values of h, red: h = 1,
blue: h = 3

2 , and gray: h = 2.

of the samples have non-zero influence on the approxima-
tion (3) at any point. Acceleration data structures can then
be used to quickly find neighboring samples. These will be
discussed in Section 5.

As can be verified in (3), the smoothness of the kernel
functions determines the smoothness of the reconstructed
function. It is therefore desirable that the kernel function
is as smooth as possible. Although it is tempting to use
higher-order interpolation kernels that work well in other
contexts, negative values of ωh are problematic when the
sample points are not equi-distant.

Note that even though in this tutorial, the kernels are de-
fined as radially symmetric, this is not a strict requirement.
All derivations herein can be adapted for kernels that are
anisotropic, as long as they fulfill the requirements listed
above.

Gingold and Monaghan initially proposed normalized
Gaussian kernel [GM77], while Lucy proposed to use poly-
nomial splines [Luc77]. Polynomial spline kernels, while of
lower smoothness, have local support. Often, several kernel
functions are used for different interpolation tasks within the
same application [MCG03, CBP05]. If the kernel function
has a singularity at zero, the SPH approximation is interpo-
lating. This is often desirable, but comes at the expense of
highly unstable gradient approximations as the kernel gradi-
ents tend to infinity for nearby sample points. Appendix A
contains some good polynomial kernel functions for use in
R2 and R3.

2.2. Approximations of Differential Operators

In order to apply SPH approximations to the solution of par-
tial differential equations, we need not only a reconstruction
of the continuous function f , but also the derivatives of the
function.

Differential operators can be directly applied to the SPH
approximation 〈 f 〉. In this section, we will introduce ap-
proximations for the gradient and Laplacian of a real-valued
function, as well as for the divergence of a vector-valued
function. All expressions are summarized in Table 1.

c© The Eurographics Association 2009.

216

B. Adams and M. Wicke / Meshless Approximation Methods and Applications in Physics Based Modeling and Animation

Since the sample values fi are constants, we can write ap-
proximation of∇ f as

〈∇ f 〉(x) = ∑
i

fi∇ωh(‖x−xi‖)Vi, (9)

where the gradient∇ωh(‖x−x j‖) can be rewritten in terms
of the kernel derivative

∇ωh(‖x−xi‖) =
x−xi

‖x−xi‖
ω
′
h(‖x−xi‖). (10)

Other linear operators can be treated similarly: the Lapla-
cian ∆ f can be approximated as

〈∆ f 〉(x) = ∑
i

fi∆ωh(‖x−xi‖)Vi, (11)

where ∆ωh(‖x−xi‖) = ω
′′
h (‖x−xi‖), and the divergence of

a vector-valued function f becomes

〈∇ · f〉(x) = ∑
i

fi ·∇ωh(‖x−xi‖)Vi. (12)

The accuracy of the approximations of derivative quan-
tities strongly depends on the distribution of sample points
within the support region of the kernel function. For highly
irregular sample distributions, the differential properties can
be very noisy. Larger values of h provide more sample points
and add stability to the derivative estimates. However, larger
values of h also imply more smoothing, which might not be
desirable.

Fortunately, we have some freedom in defining “correct”
approximations to these differential quantities. By choosing
the approximation carefully, we can enforce specific prop-
erties that are important in the context of the application.
In many applications, we are interested in the gradient of a
function at the sample points (but not necessarily in between
points). From (9), we can see that the gradient approxima-
tion 〈∇ f 〉(xi) can yield non-zero values even if the function
f (x) = c is constant. Below, we will discuss several ways of
defining 〈∇ f 〉 at the sample points to rectify the situation.

Note that if we substract any constant function g from f ,
the gradient of f will remain unchanged. We can then en-
force a zero gradient for constant functions by substracting
the constant fi when computing 〈∇ f 〉(xi):

∇ f (xi) ≈ 〈∇ [f − fi]〉(xi)

= ∑
j

(
f j− fi

)
∇ωh(‖xi−x j‖)Vj. (13)

The above gradient expression yields zero gradients for con-
stant functions. There are different methods to derive the
above result, for a more general derivation, see [Mon05].
The same reasoning can be applied to the divergence and
Laplace operators, leading to the corrected expressions

〈∇ · f〉(xi) = ∑
j

(
f j− fi

)
·∇ωh(‖xi−x j‖)Vj, (14)

〈∆ f 〉(xi) = ∑
j

(
f j− fi

)
∆ωh(‖xi−x j‖)Vj. (15)

Techniques for finding alternative valid approximations
are usually based on finding expressions that are equivalent
in the continuous setting but lead to different discretizations.
For example, we can use the product rule for differentiation

∇(ρ f) = f∇ρ+ρ∇ f ⇒ ∇ f =
∇(ρ f)

ρ
− f∇ρ

ρ
(16)

to approximate∇ f (xi) as

∇ f (xi) ≈
〈∇(ρ f)〉(xi)

ρi
− fi 〈∇ρ〉(xi)

ρi

=
1
ρi

∑
j

m j(f j− fi)∇ωh(‖xi− x j‖). (17)

Note the subtle difference between the approximations (13)
and (17). Eq. 17 also gives zero gradients for constant func-
tions. Another variation of the gradient approximation that
is important in particular for fluid simulation (see also Sec-
tion 6.1) can be derived similarly. By observing that

∇
[

f
ρ

]
=

ρ∇ f − f∇ρ

ρ2

⇒ ∇ f = ρ

(
∇
[

f
ρ

]
+

f∇ρ

ρ2

)
, (18)

we find

∇ f (xi) ≈ ρi

(〈
∇
[

f
ρ

]〉
(xi)+

fi 〈∇ρ〉(xi)
ρ2

i

)

= ρi ∑
j

m j

(
f j

ρ2
j
− fi

ρ2
i

)
∇ωh(‖xi− x j‖). (19)

Eq. 19 has important symmetry properties that we will revisit
in Section 6.1.

One final word of caution: one should not take results
derived in the continuous setting for granted, even if they
hold for mesh-based approximations. Having defined gra-
dient, divergence, and Laplace operators, it is instructive to
examine the identity ∆ f =∇·∇ f which holds in the contin-
uous setting, and carries over to most mesh-based function
approximation methods. As is easily verified in Eqns. 9–12,
this identity does not generally hold in the SPH setting:

〈∆ f 〉 6= 〈∇ · 〈∇ f 〉〉 . (20)

While it is certainly possible to define an approximation to
the Laplacian which preserves this identity, this comes at
a computational cost, and might carry additional disadvan-
tages.

3. Function Approximation using Moving Least
Squares

The SPH method discussed in the previous section has in
general poor accuracy and lacks already zero order consis-
tency, i.e., it does not always recover constant functions. In
this section, we will discuss an alternative particle approx-
imation method that can be constructed to have any order

c© The Eurographics Association 2009.

217

B. Adams and M. Wicke / Meshless Approximation Methods and Applications in Physics Based Modeling and Animation

of consistency, i.e., it recovers polynomial functions up to
the desired order exactly, which is for example important for
elastic solid simulations. This of course comes at the cost
of more involved computations. However, when the particle
sampling and neighborhood relations remain constant, much
can be precomputed and evaluation boils down to computing
simple linear combinations, making the method as efficient
as SPH. This method was proposed in the graphics commu-
nity [MKN∗04, PKA∗05] for use in elastic solid simulation,
where indeed the material does not deform significantly and
particle samplings remain constant.

The approach discussed in this section achieves its higher
order consistency through moving least squares approxima-
tions (MLS), and will hence be referred to as the MLS
method.

3.1. Shape Function Approximation

We again consider the problem of reconstructing an un-
known function f from a set of irregular samples fi =
f (xi). This function will locally be defined as a polynomial
〈 f 〉(x) = pT (x)a, where p(x) is a complete polynomial ba-
sis of order n. For example for dimension d = 3 and order
n = 1, we have p(x) = [1 x y z]T , with x = [x y z]T . The vec-
tor a is the coefficient vector and for our example will have
the form a = [a b c d].

Given the polynomial basis, the approximation 〈 f 〉 is now
found as the polynomial that locally best fits the sample data
in a least squares sense. More formally, given an evaluation
point x and a chosen basis p(x), we wish to obtain the coef-
ficient vector a that minimizes the error

E = ∑
i

ωhi(‖x−xi‖)
(

pT (xi)a− fi
)2

. (21)

Here, the summation is over all particles and nearby particle
contributions are weighted according to a weight function
ωhi similar to the one used for SPH approximations (cf. Sec-
tion 2). The support radius hi can be uniform or particle de-
pendent and defines each particle’s influence region.

The coefficients are found as a = argminE and it can be
easily seen by differentiation that they are the solution of the
linear system of equations

∑
i

ωhi(‖x−xi‖)p(xi)
(

pT (xi)a− fi
)

= 0. (22)

Solving this system yields

a = M(x)−1
∑

i
ωhi(‖x−xi‖)p(xi) fi, (23)

where

M(x) = ∑
i

ωhi(‖x−xi‖)p(xi)pT (xi) (24)

is called the moment matrix. Note that M does not depend
on the particle function values fi and hence, given that the
particle distribution and coupling remains constant, can be

precomputed for every x. The final approximation is now
given as

〈 f 〉(x) = pT (x)a

= pT (x)M(x)−1
∑

i
ωhi(‖x−xi‖)p(xi) fi.

(25)

This is often written as

〈 f 〉(x) = ∑
i

Φi(x) fi, (26)

where

Φi(x) = ωhi(‖x−xi‖)p(x)T M(x)−1p(xi) (27)

are called shape functions. Similar to the moment matrices,
the shape functions do not depend on fi and can hence be
precomputed and reused for varying fi if the particle sam-
pling is constant. Hence, in this setting, evaluating the MLS
approximation using Eq. 26 becomes as efficient as evalu-
ating an SPH approximation. Nevertheless, (pre)computing
the shape functions requires inversion of a moment matrix
which can potentially fail if this matrix becomes singular.

Note that there are other ways of deriving Eq. 26, for ex-
ample using Taylor series expansion [FM03].

The weight functions ωhi can have any form (interpolat-
ing or not, isotropic or anisotropic, local or global) and do
not have to be normalized as opposed to the weight functions
used for SPH approximations. Of interest are the shape func-
tions Φi, which have, by construction very desirable proper-
ties such as consistency up to the order of the used basis.

3.2. Consistency

Given a basis p(x) of order n, consistency up to this order
can be easily proved by showing that 〈p〉(x) = p(x), i.e.,
the basis is approximated exactly for every x. This is easily
proved as

〈p〉T (x) = ∑
i

Φi(x)pT (xi)

= ∑
i

ωhi(‖x−xi‖)pT (x)M(x)−1p(xi)pT (xi)

= pT (x)M(x)−1
∑

i
ωhi(‖x−xi‖)p(xi)pT (xi)

= pT (x)M(x)−1M(x)

= pT (x).

Here we used the definition of the shape functions in the first
step and the definition of the moment matrix in the third step.
Since the basis is reconstructed exactly, every linear combi-
nation of the basis is also recovered exactly and the MLS
approximation method is consistent up to the used basis or-
der.

Higher order basis functions should be used when higher
accuracy is required. However, this not only comes at the
larger computational cost of having to invert larger moment

c© The Eurographics Association 2009.

218

B. Adams and M. Wicke / Meshless Approximation Methods and Applications in Physics Based Modeling and Animation

matrices, stability problems might arise such as having to
deal with (near-)singular moment matrices.

3.3. Stability

A simple example illustrates the problem of singular mo-
ment matrices. Assume that all particles lie in the plane z = 0
in R3 and that a linear basis p(x) = [1 x]T = [1 x y z]T is
used. It is easy to see that the moment matrix will always be
singular:

M(x) = ∑
i

ωhi(‖x−xi‖)p(xi)pT (xi)

= ∑
i

ωhi(‖x−xi‖)

1 xi yi zi
xi x2

i xiyi xizi
yi xiyi y2

i yizi
zi xizi yizi z2

i

= ∑
i

ωhi(‖x−xi‖)

1 xi yi 0
xi x2

i xiyi 0
yi xiyi y2

i 0
0 0 0 0

 .

It is hence clear that care has to be taken when evaluat-
ing the moment matrices. Even in near-singular cases it is
good practice to use safe inversion methods such as using the
Singular Value Decomposition (SVD). Next to the fact that
the MLS method is computationally more involved than the
SPH method, the singularity problem renders it impractical
for particle fluid simulation. Indeed, thin sheets and isolated
particles often appear for splashing fluids which would yield
singular moment matrices.

In addition to using safe inversion using SVD, it is advised
to center the polynomial basis at the evaluation point [Saa86]
to improve the conditioning number of the moment matrix.
Instead of using the basis functions p(xi) in Eq. 27, one can
equally well use the translated and scaled basis functions
p((xi− x)/h) (for now assume hi = h is constant). The re-
sulting modified moment matrix

M̃(x) = ∑
i

ωh(‖x−xi‖)p(
xi−x

h
)pT (

xi−x
h

) (28)

has a better condition number and can be more stably in-
verted. Note that the resulting shape functions will now have
the form

Φ̃i(x) = ωh(‖x−xi‖)p(0)T M̃(x)−1p(
xi−x

h
). (29)

In the adaptive setting, one should use for h the average par-
ticle support radius in the above formulation.

3.4. Approximation of Differential Operators

First-order derivatives of 〈 f 〉 are obtained as

∂〈 f 〉(x)
∂x(k)

= ∑
i

∂Φi(x)
∂x(k)

fi, (30)

where derivatives of the shape functions using the chain rule
are

∂Φi(x)
∂x(k)

=
∂ωhi(‖x−xi‖)

∂x(k)
pT (x)M(x)−1p(xi)

+ωhi(‖x−xi‖)pT (x)
∂M(x)−1

∂x(k)
p(xi)

+ωhi(‖x−xi‖)
∂pT (x)
∂x(k)

M(x)−1p(xi),

and the derivative of the inverted moment matrix is given as

∂(M−1)
∂x(k)

=−M−1(
∂M

∂x(k)
)M−1. (31)

Using Eq. 30, the spatial gradient can be approximated as

〈∇ f 〉(x) = ∑
i
∇Φi(x) fi (32)

and the divergence of a vector-valued function as

〈∇ · f〉(x) = ∑
i

fi ·∇Φi(x). (33)

Higher-order derivatives are obtained by repeated differ-
entiation using the chain rule [FM03]. The Laplace operator
is for example approximated as

〈∆ f 〉(x) = ∑
i

∆Φi(x) fi. (34)

Müller et al. [MKN∗04] use a different approach to com-
pute spatial gradients in the context of stress computations
for meshless elastic solid simulation. Instead of taking the
derivative of the approximation, they directly approximate
the first-order derivative using moving least squares and lo-
cal first-order Taylor expansions. In the neighborhood of a
particle xi, the function f can be approximated as

f̃ (xi +∆x) = fi + 〈∇ f 〉(xi) ·∆x+O(‖∆x‖2). (35)

Dropping the second order term, the approximation at a
neighboring particle x j is becomes

f̃ j = f̃ (x j)≈ fi + 〈∇ f 〉(xi) ·xi j, (36)

with xi j = x j−xi. The weighted least squares error of mak-
ing this approximation is

E = ∑
j

ωh j (‖xi j‖)(f j− f̃ j)
2

= ∑
j

ωh j (‖xi j‖)
(

fi j−〈∇ f 〉(xi) ·xi j
)2

,

with fi j = f j − fi. The unknown in this expression is
〈∇ f 〉(xi) and can be found by minimizing E. Similarly to
Eq. 23, this yields the least squares approximation for∇ f at
particle xi

〈∇ f 〉(xi) = A−1
i ∑

j
ωh j (‖xi j‖) fi jxi j, (37)

c© The Eurographics Association 2009.

219

B. Adams and M. Wicke / Meshless Approximation Methods and Applications in Physics Based Modeling and Animation

with

Ai = ∑
j

ωh j (‖xi j‖)xi jxT
i j (38)

a 3× 3 moment matrix. Similar considerations hold for in-
verting Ai as before for computing M−1.

Note that above equation only allows approximating the
first-order spatial derivative at a particle xi and not regular
derivatives at general positions x.

4. SPH–MLS Comparison

The SPH and MLS method are just two of many particle ap-
proximation methods [FM03]. They are however the most
popular in computer graphics for physically based simula-
tion algorithms.

The SPH method has the advantage that evaluating a
function or its derivatives simply amounts to computing a
weighted average of particle quantities. The MLS method
is computationally more involved and requires construction
and inversion of a (small) moment matrix per evaluation.
The latter method however comes with consistency guaran-
tees, while the SPH method in practice does not even have
zero order consistency.

The approximated function can for both methods be writ-
ten as

〈 f 〉(x) = ∑
i

Φi(x) fi, (39)

where the shape functions for SPH are given by

Φ
SPH
i (x) = Viωh(‖x−xi‖) (40)

and the shape functions for MLS are given by

Φ
MLS
i (x) = ωhi(‖x−xi‖)p(x)T M(x)−1p(xi). (41)

Table 1 gives an overview of the different SPH and MLS
approximation equations.

It is instructive to make the distinction between Eulerian
and Lagrangian kernels. Eulerian kernels are kernels that re-
main fixed in shape but move with the particles. Hence when
Eulerian kernels are used, particle neighbors change during
the course of a simulation. This means that the shape func-
tions in Eq. 39 need to be evaluated in every simulation time
step. Eulerian kernels are always used for particle fluid sim-
ulation using SPH. Lagrangian kernels on the other hand
change shape during the course of simulation so that par-
ticle neighbors remain constant. Such kernels are typically
used for elastic solid simulation using MLS, where particle
displacement differences are rather small and it is feasible to
use fixed particle neighbors. In this setting, shape functions
have to be evaluated only once in so-called material coordi-
nates and can be re-used in subsequent time steps for func-
tion approximation. As a consequence, the computational

H(i, j)

(i, j)

(a) (b)

Figure 2: (a) A balanced kd-tree. The tree adapts to the spa-
tial distribution of the input samples. (b) A hash grid. The
grid structure is virtual, only the hash table (right) is actu-
ally stored. The hash function H maps cell indices to hash
table indices.

complexity disadvantage of the MLS method is dropped and
it becomes as efficient as the SPH method.

An interesting combination of the ideas behind SPH and
MLS is used in the Moving Least Squares Particle Hydro-
dynamics (MLSPH) method [Dil99, Dil00]. The idea is to
use the MLS shape functions of Eq. 41, starting with the
highest rank basis functions. If the inversion of the moment
matrix however fails, then the rank of the basis is lowered
until the inversion succeeds. One could imagine using ML-
SPH for particle fluid simulation and start with a linear basis
p1(x) = [1 x y z] and if needed, for example for a single
isolated particle, lower the rank by using the constant basis
p0(x) = [1] (and effectively reverting to Shepard’s scattered
data interpolation method). A consequence of this variable
rank MLS method is that the resulting shape functions are
not smooth. To our knowledge, this method has not been
used in a computer graphics context.

5. Search Data Structures

Many operations in meshless function approximation rely
on local neighborhood relationships between samples. If the
kernels used in function approximation have local support,
function values at a point x are only influenced by a small
set of neighborsNr(x) = {xi : ‖xi−x‖ ≤ r}, where r is the
maximum distance at which the kernel is non-zero.

Finding the set Nr requires O(n) time if a brute force
algorithm is used. Acceleration data structures can signifi-
cantly lower the complexity of these queries. This section
discusses kd-trees and spatial hashing, which are particularly
well-suited for the queries most relevant to our application.
Figure 2 shows an illustration. A comparison to other data
structures, such as uniform grids, octrees, or bounding vol-
ume hierarchies, can be found in [BF79, Sam05].

5.1. kd-Trees

A kd-tree, or k-dimensional binary search tree, is a special
case of a binary space partition tree with axis-aligned sepa-
rating planes [Ben75]. Its root cell contains all points in Rk.

c© The Eurographics Association 2009.

220

B. Adams and M. Wicke / Meshless Approximation Methods and Applications in Physics Based Modeling and Animation

Eq. SPH Eq. MLS
〈 f 〉 (x) (5) ∑i fiωh(‖xi−x‖)Vi (26) ∑i Φi(x) fi

where Vi = mi/ρi and ρi = ∑ j ωh(‖xi−x j‖)m j where Φi(x) = ωhi (‖x−xi‖)p(x)T M(x)−1p(xi)

〈∇ f 〉 (x) (9) ∑i fi∇ωh(‖xi−x‖)Vi (32) ∑i∇Φi(x) fi

〈∇ f 〉 (xi) (13) ∑ j(f j− fi)∇ωh(‖x j−xi‖)Vj (zero for fi = c) (32) ∑ j∇Φ j(xi) f j

(19) ρi ∑ j(
f j
ρ2

j
− fi

ρ2
i
)∇ωh(‖x j−xi‖)Vj (symmetric) (37)

(
∑ j ωh j (‖xi j‖)xi jxT

i j

)−1
∑ j ωh j (‖xi j‖) fi jxi j

〈∇ · f〉 (x) (12) ∑i fi ·∇ωh(‖xi−x‖)Vi (33) ∑i fi ·∇Φi(x)

〈∇ · f〉 (xi) (14) ∑ j(f j− fi) ·∇ωh(‖x j−xi‖)Vj (zero for f j = c) (33) ∑ j f j ·∇Φ j(xi)

〈∆ f 〉 (x) (11) ∑i fi∆ωh(‖xi−x‖)Vi (34) ∑i ∆Φi(x) fi

〈∆ f 〉 (xi) (15) ∑ j(f j− fi)∆ωh(‖x j−xi‖)Vj (zero for f j = c) (34) ∑ j ∆Φ j(xi) f j

Table 1: A summary of the most important equations for meshless approximation using the SPH and MLS frameworks. Given
discrete samples fi = f (xi) of an unknown continuous function f , the table summarizes approximations of f and differential
quantities of f .

In each level of the hierarchy, each cell is divided once by an
axis aligned plane. Since cell boundaries are axis-aligned,
inside/outside tests for points are fast. Figure 2 (a) shows an
illustration.

Given the set of sample locations, a kd-tree can be con-
structed by recursively splitting cells until a minimum num-
ber of samples remain in the cell. For each cell, a good
separating plane has to be found. Most commonly, the ori-
entation of the planes is simply cycled through, and the
median of point positions within the cell is used to deter-
mine the position of the separating plane. Algorithm 1 is
a pseudocode version of the basic construction algorithm.
More sophisticated methods based on statistical analysis of
the input points have been proposed for high-dimensional
data [Qui83, WAD94]. The trade-off between construction
time and query time justifies these more complex construc-
tion methods only if a kd-tree, once constructed, is used for
significantly more queries than there are sample points.

The construction time for a kd-tree is O(n logn). Adding,
deleting, or moving samples will create an unbalanced tree
and degrade search performance [FP86]. Since construc-
tion is relatively cheap, the kd-tree is typically rebuilt from
scratch whenever the set of points changes.

To query a kd-tree, we find the cell containing the query
point x, and then compute all cells that are intersected by
the sphere of radius r centered around x (see Figure 3 (a)).
The relevant cells are found by backtracking up the hier-
archy until a cell fully contains the sphere. All children of
this cell are recursively tested for intersection with the query
range. Points contained in intersecting cells are candidates
to be returned by the query and have to be tested against the
sphere [FBF77]. A pseudocode version of the algorithm is

Algorithm 1: Recursive construction of a kd-tree. S is a
set of sample locations, and k denotes the dimension of
embedding space: x ∈ Rk ∀ x ∈ S. s is the maximum
number of samples in a leaf node.
Function SplitCell(axis, S)

if |S| ≤ s then
return LeafNode(S)

else
// find good separating plane
split = medianx∈S x[axis]
// sort points into half-spaces
Sl = {x ∈ S : x[axis] < split}
Sr = S \Sl
// cycle through splitting dimensions
newaxis = (axis+1) mod k
return TreeNode(SplitCell(newaxis, Sl),

SplitCell(newaxis, Sr),
split, axis)

Function MakeTree(S)
return SplitCell(0, S)

given in Algorithm 2. [AM93] contains a more comprehen-
sive discussion.

5.2. Spatial Hashing

Hash grids are regular grids whose contents are stored in a
hash table. The embedding space is discretized into cells,
and each cell is assigned an index. The cell indices are
passed through a hash function, resulting in an index in a
hash table. All data associated with the cell (such as the sam-
ple points it contains) is stored in this hash table entry. Hash

c© The Eurographics Association 2009.

221

B. Adams and M. Wicke / Meshless Approximation Methods and Applications in Physics Based Modeling and Animation

Algorithm 2: Querying a kd-tree T at x to find all neigh-
boring samplesNr(x) = {xi : ‖xi−x‖< r}.
Function GatherSamples(T, x, r)

if isLeaf(T) then
return {xi ∈ T.S : ‖x−xi‖< r}

else
S = ∅
if IntersectsSphere(T.left, x, r) then
S ← S ∪ GatherSamples(T.left, x, r)

if IntersectsSphere(T.right, x, r) then
S ← S ∪ GatherSamples(T.right, x, r)

return S

Function TreeQuery(T, x, r)
// find last node fully containing the query range
while not isLeaf(T) do

if ContainsSphere(T.left, x, r) then
T = T.le f t

else if ContainsSphere(T.right, x, r) then
T = T.right

else
break

// search all cells under T for sample points in range
return GatherSamples(T, x, r)

(a) (b) (c)

Figure 3: (a) Querying a kd-tree. The highlighted cells have
to be searched for sample points within the query radius. (b)
Query in a hash grid, where d = r. The 9 cells closest to the
query point have to be searched (27 in three dimensions). (c)
d = 2r. The 4 nearest cells (8 in three dimensions) need to
be searched.

grids provide fast access to stored data elements and are
very easy to maintain. Since cells are not explicitly stored in
memory, the searchable domain is not bounded. The mem-
ory requirement of a hash grid grows with the number of
non-empty cells, but is independent of the number of empty
cells. Figure 2 (b) shows an illustration.

To construct a hash grid, the search space is divided into
an infinite regular grid. We will describe the construction for
R3, but the procedure generalizes easily, and the pseudocode
algorithms in this section work for arbitrary dimension.

We define a regular, axis-aligned grid with edge length d
and a cell corner at the origin. For any point x = [x,y,z], we
can compute an index tuple I = (i, j,k) that uniquely identi-

fies the cell containing x:

I(x) = (bx/dc,bz/dc,bz/dc) , (42)

We also require a hash function H which maps cell indices
to entries of a hash table. A simple hash function for index
tuples such as (42) has been proposed in [THM∗03]:

H(i, j,k) = (ip1 xor jp2 xor kp3) mod s, (43)

Where p1,2,3 are prime numbers and s is the hash table size.
In order to minimize collisions, s should also be prime or co-
prime to p1,2,3. More advanced hash functions might result
in fewer collisions for small hash table sizes s, however, they
are typically more expensive to compute. The additional cost
incurred by an occasional collision is low, and more compli-
cated hash functions do not translate into performance gains.

Given the set of sample locations S, points from P are
sequentially added to the hash grid, and assigned to their re-
spective hash table entries. The construction time of a hash
grid for a point set of size n is O(n). Adding, deleting, or
moving points in an existing hash grid requires only O(1)
time. Algorithm 3 gives the construction algorithm in pseu-
docode.

Algorithm 3: Hash grid construction. Stores a point set
S ⊂ Rk in a hash table of size s.
Function Hash(I)

Data: an array of prime numbers p
H = 0
for i ∈ {0 . . .k−1} do

H← H +p[i]x[i]
return H

Function MakeHashGrid(S, d)
table = Array(s)
forall x ∈ S do

// compute cell index
for i ∈ {0 . . .k−1} do

I[i] = bx[i]/dc
// add to hash table
hash = Hash(I)
table[hash].S ← table[hash].S ∪ x

return table

To query the hash table, we find the hash cell (i, j,k) that
contains the query point x. All cells intersected by a sphere
of radius r around x have to tested for points within the query
range. The cell spacing d should be chosen to be either d = r
or d = 2r. In the former case, a total of 3k cells have to be
checked for points within the query radius. With d = 2r, only
2k closest cells to x have to be considered (see Figure 3 for an
illustration for k = 2). The average complexity of a query is
linear in the number m of returned points. Algorithm 4 shows
a pseudocode version of the query algorithm for d = 2r.

c© The Eurographics Association 2009.

222

B. Adams and M. Wicke / Meshless Approximation Methods and Applications in Physics Based Modeling and Animation

Algorithm 4: Hash grid query for a k-dimensional hash
grid with spacing d = r. The query radius is fixed and
therefore not passed as a parameter.
Function HashGridQuery(table, x)

// compute index and direction of neighboring cell
for i ∈ {0 . . .k−1} do

I[i] = bx[i]/dc
if x[i]− I[i]d < d/2 then

dI[i] =−1
else

dI[i] = 1
// find all points in the 2k closest neighboring cells
C = ∅
for c = BinaryCount(0, 2k−1) do

// compute modified cell index
for i ∈ {0 . . .k−1} do

J[i] = I[i]+ c[i]dI[i]
C ← C ∪ table[Hash(J)].S

return {xi ∈ C : ‖xi−x‖< r}

5.3. Comparison

Both hash grids and kd-trees are commonly used for neigh-
bor queries in meshless methods. Which data structure to
use depends on several factors, and a final decision can often
only be made after performance figures can be compared for
representative test cases. There are, however, some general
rules that help determine which method is most appropriate.

Most importantly, kd-trees are fully adaptive data struc-
tures, while hash grids discretize space uniformly. In situ-
ations with strongly varying sampling density, kd-trees of-
fer advantages over hash grids since the spatial resolution
adapts to the local spatial density of the point set. However,
the adaptivity comes at a cost. Constructing a kd-tree takes
O(n logn) time as opposed to O(n) for hash grids. While
construction cost is not an issue for static data, it can become
a limiting factor in dynamic settings. Hash grids are most ef-
ficient with range queries of known constant radius. If the
sampling density does not vary significantly throughout the
domain, this leads to a retrieval in O(1).

II. Meshless Simulation and Modeling

We now have all basic ingredients to implement various
physical systems. We will treat fluid simulation using the
SPH framework described in Section 2, as well as simula-
tion of continuum elasticity using MLS interpolations as dis-
cussed in Section 3. We will see in Section 8 how the latter
can be used for shape and motion modeling.

6. Fluid Simulation using SPH

The behavior of fluids is governed by the Navier-Stokes
equations. In graphics, the incompressible version of these

equations is most commonly used. Traditionally, it is dis-
cretized on either regular, adaptive, or tetrahedral meshes for
both water and smoke simulations [Sta99, LGF04, FOK05,
KFCO06].

An alternative to these Eulerian approaches is to discretize
the material instead of its embedding space. Using a tetrahe-
dral or hexahedral grid, this is the standard method for sim-
ulations involving continuum elasticity (see also Section 7).
However, fluid simulations in computer graphics usually in-
volve very turbulent behavior, as well as complex topolog-
ical changes such as the formation of water droplets and
spray.

The simplicity of restructuring in meshless discretization
makes meshless Lagrangian approaches a viable alternative.
We will use the SPH framework introduced in Section 2 to
discretize the Navier-Stokes equations in a Lagrangian fash-
ion. In this context, it is useful to think of the sample points
as particles that carry the mass and other properties of the
fluid, such as pressure and velocity. In principle, the simula-
tion will then proceed by first computing forces acting on the
particles using a discretization of the governing partial dif-
ferential equations using the current particle positions. When
all forces have been computed, they are integrated, and the
particle velocities are updated accordingly. The particles are
then moved according to their updated velocities.

The governing equations for fluids are the Navier-Stokes
equations. They state the laws of momentum and mass con-
servation. The continuity equation, stating the conservation
of mass, is not needed in the Lagrangian framework, since
the mass is carried by the particles, and is hence preserved
automatically if no particles are deleted or inserted, and the
particle masses are not changed. For compressible fluids, the
momentum equation can be written as a combination of pres-
sure, viscosity, and external forces:

Dv
Dt

=
1
ρ

(fp + fv + fe) , (44)

Above, v denotes the velocity field, and fe are external forces
acting on the fluid. The pressure force fp is a function of the
pressure field p

fp =−∇p, (45)

In computer graphics, viscosity effects due to compres-
sion are usually neglected, and the viscosity force (even for
the compressible case that is assumed in SPH simulation)
is typically modeled after the viscosity term that applies to
incompressible fluids [MCG03]. Viscous forces smooth the
velocity field, and are proportional to the Laplacian of the
velocity field:

fv = µ∇·∇v = µ∆v. (46)

Intuitively, Eq. 44 states that forces act to even out pres-
sure differences (fp) and velocity differences (fv) within a
fluid. The pressure p is a function of the density of the fluid.

c© The Eurographics Association 2009.

223

B. Adams and M. Wicke / Meshless Approximation Methods and Applications in Physics Based Modeling and Animation

A common choice for the pressure function is the Tait equa-
tion [Mon94]

p = K(
(

ρ

ρ0

)γ

−1). (47)

ρ0 denotes the rest density of the fluid. The parameters K
and γ determine the compressibility of the fluid. Monaghan
proposed γ = 7, whereas in computer graphics, a value of
γ = 1 is typically used [DG96, MCG03]. Recently [BT07]
propose a method for choosing sensible parameter values in
(47). Low values of γ and K make the fluid more compress-
ible, but allow for larger time steps.

Dv
Dt = ∂v

∂t + v ·∇v is the material derivative of v, i. e. the
derivative of v at a point moving with the material. In a La-
grangian setting, the particles move with the material they
represent. Thus, the material derivative can simply be com-
puted as the time derivative of a value stored with a given
particle.

Eq. 44 is a partial differential equation in the velocity field
v, and uses the pressure field p. We therefore discretize these
fields using SPH, using the same sample points for both: We
will have one value vi and pi per particle. Although it is be-
yond the scope of this tutorial, it is very easy to simulate
inhomogeneous media using SPH. The varying property can
simply be stored at each particle, and will automatically be
advected with the fluid.

The most straightforward spatial discretization of (44) us-
ing SPH is

∂vi

∂t
=−〈∇p〉(xi)

ρi
+µ〈∆v〉(xi)+

fe(xi)
ρi

. (48)

Below, we will discuss the pressure and viscosity terms of
(48) in more detail, before we discuss the algorithmic details
of the simulation.

6.1. Pressure Forces

In Eq. 48, we approximate the particle accelerations due to
pressure forces as

fp(xi)
ρ(xi)

=−〈∇p〉(xi)
ρi

. (49)

An implementation of (49) using the gradient discretization
(9) yields a working simulation. The explicit discrete expres-
sion is

fp(xi)
ρ(xi)

=−∑
j
∇ω

i j
h p j

m j

ρ jρi
=−∑

j
a ji

p (50)

where we use the convenient shorthand ω
i j
h = ωh(‖xi−x j‖).

It is useful to decompose the pressure interactions into pair-
wise accelerations ai j . We can see that a ji

p +ai j
p 6= 0. In other

words, there is no guarantee that the pairwise influences
cancel out. Therefore, it can not be guaranteed that linear

and angular momentum are conserved. Especially for low-
resolution simulations that are common in computer graph-
ics, the lack of symmetry in the pairwise influences can lead
to problematic visual artifacts.

A simple way to solve this problem is to symmetrize
the pairwise interactions, for example by using a ji

p =

∇ω
i j
h

(pi+p j)mj
2ρiρ j

. A more elegant way of ensuring momentum
conservation is using the alternative gradient approximation
(19), which yields

fp(xi)
ρ(xi)

=−∑
j
∇ω

i j
h (

p j

ρ2
j
+

pi

ρ2
i
)m j. (51)

It is easy to check that this expression is indeed symmet-
ric as defined above, implying that all pressure forces add
up to zero (therefore conserving linear momentum). Because
∇ω

i j
h is always parallel to (xi− x j), no pairwise interaction

introduces any angular momentum, and angular momentum
is preserved as well.

6.2. Viscosity Forces

Discretizing the acceleration on particles due to viscosity
leads to the expression

fv(xi)
ρi

= µ∑
j

∆ω
i j
h (v j−vi)

m j

ρiρ j
= µ∑

j
a ji

v . (52)

The force (52) is symmetric: a ji
v +ai j

v = 0.

There are several problems with this expression. The SPH
approximation of higher-order derivatives depends strongly
on the distribution of sample points and is therefore quite
noisy, especially if the support radius of the kernel function
is small and only few samples are considered. While choos-
ing a larger support radius h can alleviate this problem, large
values of h also introduce significant numerical diffusion on
their own, which might be undesirable.

Numerical viscosity in SPH simulations is usually so high
that additional viscosity is rarely necessary from an anima-
tion point of view. However, viscosity forces smooth the ve-
locity field, and can greatly contribute to the stability of the
simulation, allowing for larger timesteps. Creating a stable
simulation with the viscosity (52) requires some parameter
tuning, as high values of µ destabilize the simulation and can
actually reduce that maximum admissible timestep.

Viscosity forces effectively perform a smoothing of the
velocity field. We can use more stable smoothing operators
to achieve a similar effect. Such methods are called artifi-
cial viscosity. One type of artificial viscosity is the XSPH
technique [Mon92]. Here, after each time step, the velocity
of each particle is modified in the direction of the average

c© The Eurographics Association 2009.

224

B. Adams and M. Wicke / Meshless Approximation Methods and Applications in Physics Based Modeling and Animation

velocity of its neighbors.

ṽi = ξ〈v〉(xi)+(1−ξ)vi

= ξ

[
∑

j
ω

i j
h v j

m j

ρ j

]
+(1−ξ)vi. (53)

Original XSPH uses the corrected velocities ṽi only for mov-
ing the particles, but stores the originally computed veloci-
ties. If ṽi is also stored and used in subsequent timesteps,
the viscosity effect is stronger. In (53), 0≤ ξ≤ 1 determines
how strong artificial viscosity should be. Even high values
of ξ do not incur stability problems, on the contrary, stabil-
ity increases as ξ gets closer to 1.

6.3. Boundary Effects

If the particle distribution is highly irregular, the SPH ap-
proximations of differential quantities can become unstable.
In a fluid simulation, the forces push particles into semi-
regular arrangements, such that these problems usually only
occur on the boundary of the fluid. Figure 4 shows the effects
of a free surface on the particle distribution. Near the surface,
less particles are inside the support radius of the kernel func-
tion, leading to lower density estimates. The pressure forces
try to maintain a constant density throughout the fluid and
push particles on the surface closer together. By itself, this
effect is not harmful, on the contrary, it can help extracting a
smooth surface (see Section 6.5).

For simulations involving free boundaries, the pressure
can be clamped to positive values, or reduced by a factor
ζ for negative values:

p′ =
{

p p≥ 0,
ζp p < 0.

(54)

Clamping or reducing the pressure at the boundaries reduces
the cohesive forces inside the fluid and makes splashes and
spray more likely. Müller et al. [MCG03] have proposed to
explicitly include surface tension forces, which have an ef-
fect similar to using low values of ζ.

Irregular sampling at the boundary can lead to prob-
lems for example for higher order derivative approximations
needed for heat transfer computations. We can avoid irregu-
lar sampling and the associated issues using ghost particles.
For free surfaces (fluid/air or fluid/vacuum interfaces), ghost
particles have to be generated dynamically. This amounts to
implementing a simulation of multiphase flow [MSKG05].
Rigid objects in contact with the fluid can be sampled stat-
ically. To implement interaction with a rigid body, the rigid
body is sampled with ghost particles at positions xg

k , which
are treated like regular fluid particles regarding density com-
putation [MTHG04]. The density approximation then be-
comes

ρi = ∑
j

m jω
i j
h +∑

k
mg

kωh(‖xi−xg
k‖), (55)

All other computations can proceed as before. If no-slip

(a) (b)

Figure 4: Particle distribution close to the surface of the
fluid. (a) The kernel function centered around a particle
“sees” only about half the number of particles that are in
range of a particle inside the fluid. (b) During the simulation,
the particles close to the surface are pushed closer together
to maintain constant density.

(sticky) boundaries are desired, the ghost particles are as-
signed the velocity of the rigid body, and are included com-
putation of the viscosity force

fv(xi)
ρi

= µ∑
j

∆ω
i j
h (v j−vi)

m j

ρ j
+

µ∑
k

∆ωh(‖xi−xg
k‖)(v

g
k −vi)

mk
ρk

, (56)

or, for artificial viscosity

ṽi = (1−ξ)vi +

ξ

[
∑

j
ω

i j
h v j

m j

ρ j
+∑

k
ωh(‖xi−xg

k‖)v
g
k

mk
ρk

]
. (57)

For two-way coupling, forces are computed for the ghost
particles, however, they are not moved independently. In-
stead, forces acting on ghost particles are added to the cor-
responding rigid body, which is updated, moving all its par-
ticles and updating their velocities.

6.4. Time Discretization and Simulation Loop

SPH helps us discretize the Navier-Stokes equations in
space, and leaves us with an ordinary differential equation
for each particle which we can discretize in time. Each par-
ticle stores a position and a velocity. Eq. 44 tells us how the
particle velocities change over time. Using a simple explicit
integration scheme, we can integrate those changes over time

vi(t +∆t) = vi(t)+∆t
Dvi

Dt
(58)

xi(t +∆t) = xi(t)+∆tvi(t +∆t) (59)

Whether or not rigid bodies are sampled with ghost parti-
cles, it is a good idea to prevent the particles from entering
the solid by enforcing hard constraints. When moving parti-
cles according to (59), we can reflect them off solid bound-
aries, thus preventing them from entering solid objects.

c© The Eurographics Association 2009.

225

B. Adams and M. Wicke / Meshless Approximation Methods and Applications in Physics Based Modeling and Animation

Algorithm 5 gives the complete SPH fluid simulation al-
gorithm using artificial viscosity. Boundary effects on the
surface are ignored. In a first pass over the particles, we
compute density estimates for all particles. Then, forces are
computed. Finally, we integrate the forces and move the
particles. The parameters passed to the simulation are the
timestep ∆t, the kernel radius h, artificial viscosity parameter
ξ, stiffness (inverse compressibility) K, pressure exponent γ,
rest density ρ0, as well as pressure scaling for negative pres-
sures ζ. It is important that the initial starting distribution is
not too far from a rest state, i. e. , the pressures computed in
the first step should be close to zero.

Algorithm 5: The SPH simulation loop. The kernels ωh(r)
are non-zero only for r < h. We use a hash grid for neigh-
borhood computations.
Data:

xi – particle positions
vi – particle velocities
mi – particle masses

Function SPHStep(∆t, h, ξ, K, γ, ρ0, ζ)
// compute neighborhoods and density
H = MakeHashGrid({xi}, h)
forall i do

// compute neighborhood indices
Ni = { j : x j ∈ HashGridQuery(H, xi, h)}
// compute density
ρi = ∑ j∈Ni

m jωh(‖xi−x j‖)
// compute pressure

pi = K
(

ρi
ρ0
−1
)γ

if pi < 0 then
pi← ζpi

// compute forces
forall i do

// acceleration due to pressure forces

ai =−∑ j∈Ni

(
pi
ρ2

i
+ p j

ρ2
j

)
xi−x j
‖xi−x j‖ ω

′
h(‖xi−x j‖)

// average velocity for artificial viscosity
v̄i = ∑ j∈Ni

v j
m j
ρ j

ωh(‖xi−x j)

// artificial viscosity and integration
forall i do

// artificial viscosity
vi← (1−ξ)vi +ξv̄i
// integrate velocity
vi← vi +∆tai
// integrate positions
xi← xi +∆tvi
EnforceConstraints(i)

6.5. Surface Extraction

The SPH fluid simulation yields particle positions, as well
as discretely sampled density and velocity fields. In Eulerian

fluid simulations, a surface or smoke densities are advected
using the computed velocity field. For SPH simulations, vi-
sualization is typically either based directly on the particle
positions or the density field.

For gaseous phenomena such as clouds or smoke, parti-
cles are often rendered as semi-transparent spheres with a
volumetric texture. The texture of the spheres can be cho-
sen depending on density, temperature, or any other value
from the underlying simulation (see for example [FOA03,
HBSL03]).

For liquids, the interface of the fluid with the surround-
ing air or vacuum needs to be computed. The easiest and
most common way to generate a surface around the parti-
cles is to extract an implicit surface from the density field.
[Bli82]. Several variants to this approach have been pro-
posed [ZB05,APKG07]. This isosurface can be rendered di-
rectly, for example using raytracing, or extracted using the
Marching Cubes algorithm [LC87] or a variant thereof. The
resulting triangle mesh can be rendered with standard ren-
dering algorithms, in the case of transparent liquids, raytrac-
ing is the preferred solution for high-quality images, while
hardware rendering can be used for simpler settings. Figure 5
shows some frames from an SPH fluid simulation result.

6.6. Comparison

A meshless fluid simulation has both advantages and dis-
advantages over the traditional mesh-based Eulerian ap-
proaches.

In general, boundary conditions are easier to enforce in
particle-based methods than in Eulerian simulations. Bound-
ary conditions in Eulerian simulation are easiest to imple-
ment if they are aligned with the simulation grid used to rep-
resent the domain. For performance reasons, these meshes
are usually regular grids, thus leading to artifacts when rep-
resenting boundaries. [FOK05] solve the problem by us-
ing adaptive meshes to discretize the simulation domain.
[GSLF05] developed a method that couples a Eulerian fluid
simulation to thin shells. The same technique could also be
used to represent boundary conditions.

In Lagrangian methods, the material itself is discretized,
and boundary conditions can be imposed without restric-
tions. In particular, in particle-based simulations, the bound-
ary condition can be applied to individual particles. For two-
way interaction between fluids and other objects, the forces
or impulses used to enforce the boundary conditions on the
particles can be applied to the boundary [MTHG04].

Another practical difficulty in Eulerian fluid simulations
is the surface representation. Usually, the interface is tracked
in the velocity field by integration. However, due to integra-
tion errors, the total volume of the fluid can change. In prac-
tice, this leads to mass loss, especially in thin sheets that
cannot be resolved by the simulation grid. In contrast, in an

c© The Eurographics Association 2009.

226

B. Adams and M. Wicke / Meshless Approximation Methods and Applications in Physics Based Modeling and Animation

Figure 5: The bottom row shows four frames of a fluid simulation obtained using the SPH algorithms discussed in this section.
The top row shows the corresponding particles in a cross section view. This result is taken from [APKG07].

SPH simulation, mass is carried by the particles, thus mass-
preservation is guarantueed.

The flexibility that meshless discretizations offer makes
them particularly well-suited for adaptive resampling. Adap-
tive discretization is beyond the scope of this tutorial and we
refer the interested reader to [APKG07,KAG∗06] for details.

A major disadvantage of SPH simulation especially for
fluids like water is the inherent compressibility of the re-
sulting material. In Eulerian simulations, it is relatively
easy to enforce incompressibility by solving a global lin-
ear system. An analogous method exists for SPH simula-
tion [KO96, PTB∗03, CEL06]. However, due to the incon-
sistency of SPH operators, enforcing true incompressibility
is hard for SPH methods. In practice, methods that use an
auxiliary grid to solve for a divergence-free velocity field
[Har64, BR86, ZB05] are more common.

7. Simulating Elastic Materials using MLS
Approximations

The previous section discussed how the particle approxi-
mation method SPH can be used for the simulation of flu-
ids. In this section we will discuss how the MLS method
can be used for animation of elastically deformable ob-
jects. The basis of the material in this section was first pre-
sented in the graphics community by Müller and co-workers
[MKN∗04], building on recent trends in mechanical engi-
neering [BKO∗96].

Similar to the particle fluid discretization, we will sample
the object’s volume by particles and use a meshless contin-
uum mechanics based model and the discussed MLS method
to derive the elastic forces. The absence of explicit connec-
tivity information entails similar advantages as discussed be-
fore. Particle resolutions can be easily adapted (e.g., coars-
ened or refined) during the simulation and therefore large
deformations or even fracturing materials are easier to han-
dle. On the downside, meshless methods are computation-

u(x)

x x+u(x)

Figure 6: Left: undeformed object in material coordinates x.
Right: deformed object in world coordinates x′ = x + u(x).
The displacement field u(x) defines a continuous mapping
from material coordinates to world coordinates.

ally more involved, since the particle connectivity is deter-
mined at run-time. However, for moderate elastic deforma-
tions, the computational burden can be reduced significantly
as will be discussed in this section. Also, as will be shown,
local caching schemes can be used in the case of fracturing
materials.

We will first discuss the elasticity theory and the particle
discretization of the governing equations as well as a simple
explicit time stepping algorithm for the simulation of elastic
solids in Section 7.1. Next, we will discuss two variants for
surface deformation in a computer graphics context in Sec-
tion 7.2. Finally, we discuss in Section 7.3 how plasticity and
fracturing effects can be included without much effort.

7.1. Elastic Particle Based Solid Simulation

We start by discussing the continuum elasticity model in the
continuous setting and derive how it can be adapted in the
discrete setting to allow numerical point-based simulations.

Elasticity Model The continuum elasticity equations de-

c© The Eurographics Association 2009.

227

B. Adams and M. Wicke / Meshless Approximation Methods and Applications in Physics Based Modeling and Animation

scribe how to compute elastic stresses (and thus forces) in-
side an object given a deformation field. Assume that the
undeformed object is defined by the material coordinates
x = (x,y,z)T and that the displacement field is defined as a
continuous mapping u(x) = (u,v,w)T : R3→ R3 which de-
fines for each point x in material coordinates to which point
x′ = x + u(x) in spatial or world coordinates it is displaced
(see Figure 6). Note that each of the scalar displacements
u = u(x,y,z),v = v(x,y,z) and w = w(x,y,z) are function of
the material coordinates. The material coordinate system is
also often referred to as the reference system. The world
coordinate system is often denoted as the displaced or de-
formed coordinate system.

The elastic strain ε is computed from the spatial deriva-
tives of this displacement field u(x). In three dimensions the
gradient of the displacement field is a 3×3 matrix:

∇u =

 u,x u,y u,z
v,x v,y v,z
w,x w,y w,z

 , (60)

where the index after the comma represents a spatial deriva-
tive.

A popular choice in computer graphics is to use Green-
Saint-Venant’s nonlinear strain tensor:

ε =
1
2
(∇u+∇uT +∇uT∇u), (61)

which is a symmetric 3×3 matrix (i.e., ε
T = ε).

To come to stress σ, one can simply use Hooke’s law
which states that stress and strain are linearly related:

σ = Eε, (62)

where E is a 3×3×3×3 rank four tensor. For isotropic ma-
terials, the coefficients of this tensor only depend on Young’s
Modulus E and Poisson’s Ratio ν [NMK∗05].

The elastic body forces can then be computed via the
strain energy density [MKN∗04]:

U =
1
2

ε ·σ =
1
2

3

∑
i=1

3

∑
j=1

εi jσi j. (63)

The elastic force per unit volume is then computed as the
negative gradient of the strain energy density with respect to
the displacement field u (computed as the directional deriva-
tive):

felastic =−∇uU. (64)

Volume conservation forces are added to avoid undesir-
able shape inversions

fvolume =− kv

2
∇u(|I+∇u(x)|−1)2, (65)

with kv a user-defined constant.

By applying Newton’s second law of motion, we come

to the partial differential equation (PDE) governing dynamic
elastic materials:

ρ
∂

2x′

∂t2 = ρ
∂

2u
∂t2 = felastic + fvolume + fbody, (66)

where ρ is the material density and fbody are external forces
such as gravity or collision forces.

Meshless Discretization To discretize the force distribu-
tion, the displacement field is approximated using the MLS
approximation scheme discussed in Section 3 as

u(x) = ∑
i

Φi(x)ui, (67)

where ui are the displacement vectors at a discrete set of par-
ticles and Φi are shape functions associated with these par-
ticles. In the work of [MKN∗04], the particles are sampled
uniformly in space over the volume of the object. However,
the lack of a consistent mesh and connectivity information
also facilitates adaptive sampling as will be discussed below
for plastic and fracturing materials.

Discretization of the above PDE is straightforward and
MLS approximations are only necessary for the computa-
tion of the gradient of the displacement field in the strain
equation. Müller et al. [MKN∗04] use the first order approx-
imation as given by Eq. 37, however, one can equally well
use Eq. 32.

As discussed before, for moderate elastic deformations
the computation of the shape functions can be performed
only once for each particle in the reference system. This cor-
responds to using Lagrangian kernels and the shape func-
tions are then a function of the material coordinates, and not
a function of the displaced or world coordinates. Thus, in
each animation time step, the gradient of the displacement
field for a particle can be simply computed by iterating over
its neighbors and evaluating the appropriate linear combina-
tion.

Simulation Loop The elastic animation framework pro-
ceeds in each time step as follows:

ut︸︷︷︸
displacements

→ ∇ut︸︷︷︸
derivatives

→ εt︸︷︷︸
strains

→

σt︸︷︷︸
stresses

→ ft︸︷︷︸
forces

→ ut+∆t︸ ︷︷ ︸
integration

with ∆t the time step interval. First, the derivatives of the
displacements are computed using the MLS approximation
method. This yields elastic strains (Eq. 61) which in turn
yield elastic stresses according to Hooke’s law (Eq. 62).
From the stresses, one can compute the elastic body forces
acting on the particles using Eq. 64 which are then used to
integrate the particle positions forward in time using Eq. 66.
These new particle positions then define the shape of the de-
formed object at the beginning of the next time step.

Time integration can be performed using explicit

c© The Eurographics Association 2009.

228

B. Adams and M. Wicke / Meshless Approximation Methods and Applications in Physics Based Modeling and Animation

Figure 7: Meshless simulation of an elastically deforming armadillo model.

schemes, if small time steps are taken. However, Müller et
al. also provide the tangent stiffness matrix derived from the
elastic forces for implicit integration [MKN∗04].

7.2. Surface Animation

The deformation field defined by the particles can be evalu-
ated using the MLS approximation at any point in the parti-
cles’ support region. Hence, any explicit surface representa-
tion that surrounds the particles can be used. In the following
we will limit the discussion to polygon meshes, but the algo-
rithms extend trivially to other surface representations such
as point set surfaces. Note that there is no tight coupling be-
tween the surface and the deformation field discretization
which is important in a computer graphics context where
typically one requires a very fine surface resolution, while
a coarse deformation field representation is often sufficient
to obtain the desired deformable solid behavior.

Deforming the shape’s surface can be done in a straight-
forward and very efficient manner. We discuss two alterna-
tives that were proposed in the literature.

Alternative 1 The first approach [AOW∗08] directly uses
the MLS approximation of the displacement field. In a pre-
processing step, one has to compute for each vertex x the set
of particles that have non-zero support at the vertex. Given
these particles, the shape functions Φi(x) and the gradient of
the shape functions ∇Φi(x) are computed using Eq. 27 and
Eq. 32 respectively. This computation is only done once in
material coordinates. During simulation, the deformed ver-
tex position x′ is computed using Eq. 67 as x′ = x + u(x).
Note that this simply amounts to computing a linear com-
bination of the neighboring particles’ deformation vectors
using the precomputed shape functions.

Similarly, the updated (unnormalized) vertex normal
n′(x) can be approximated from the local gradient of the de-
formation field as n′(x) = n(x)+∇u(x)n(x). Here, a com-
putational trick reduces the matrix-vector multiplications to
scalar-vector multiplications by noting that this expression
is equivalent to n′(x) = n(x) + ∑i(∇Φ

T
i (x)n(x))ui, where

the scalars ∇Φ
T
i (x)n(x) are constant and can be precom-

puted. Again, this amounts to adding to the undeformed nor-

mal a weighted sum of the displacement vectors ui where
the weights are the precomputed∇Φ

T
i (x)n(x).

Computing the updated vertex position and normal can be
efficiently performed on the GPU as follows. For each ver-
tex x the indices to the particle neighbors and the accompa-
nying scalars Φi(x) and∇Φ

T
i (x)n(x) are stored in GPU tex-

ture memory. During animation, the computed particle dis-
placement vectors ui are sent to the graphics board, which
is several orders of magnitude smaller than the number of
vertices. Using multiple render passes and fragment shaders
one can easily compute and write for each vertex its defor-
mation for the position and normal to intermediate texture
memory. Then, in a final render pass, the vertex position and
normal are computed in a vertex shader using two final tex-
ture lookups to retrieve the respective information.

Alternative 2 Instead of using the MLS approximation
at the vertices, Müller et al. [MKN∗04] propose a different
surface animation approach that is less accurate, but avoids
the storage of per-vertex shape functions. They reuse the ap-
proximation ∇u computed at the particles and derive a first
order accurate approximation for the displacement vectors at
the surface points:

ũ(x) = ∑
j

ω̄i j

(
u j +∇u(x j)

T (x−x j)
)

, (68)

where ω̄i j = ωi j/∑ j ωi j is a normalized compactly sup-
ported weighting function evaluated using the distance be-
tween the vertex and the respective particle. This alternative
surface deformation algorithm avoids the per-vertex stor-
age of precomputed shape functions, but implementing this
deformation algorithm on the GPU would require sending
more information (the vectors u j and matrices ∇u(x j)) to
the graphics board. Evaluation also involves more computa-
tions as compared to Alternative 1.

Figure 7 illustrates the meshless elasticity animation algo-
rithm.

7.3. Extension for Plasticity and Fracturing

The basic elastic simulation framework is extended in
[MKN∗04] to include plastic deformations and in [PKA∗05]
to incorporate fracturing for graphical applications. We first

c© The Eurographics Association 2009.

229

B. Adams and M. Wicke / Meshless Approximation Methods and Applications in Physics Based Modeling and Animation

discuss the extension for plasticity using plastic strain state
variables and then discuss how discontinuities in the defor-
mation field are modeled to enable fracture simulation. Fi-
nally, adaptive sampling for large plastic deformations and
near propagating cracks ensures an adequate sampling den-
sity at all times.

Plasticity Plasticity effects are easily modeled by using
strain state variables ε

plastic
i stored per particle as proposed

by [OBH02] and [MKN∗04]. The actual strain used for com-
puting the elastic forces is then

ε
elastic
i = εi− ε

plastic
i , (69)

where εi is computed using Eq. 61.

At every time step, the plastic strain is updated using fol-
lowing procedure [GP07]

ε
elastic
i ← εi− ε

plastic
i

if ‖εelastic
i ‖> cyield then ε

plastic
i ← ε

plastic
i + ccreep · εelastic

i

if ‖εplastic
i ‖> cmax then ε

plastic
i ← ε

plastic
i · cmax/‖εplastic

i ‖

A small value for the parameter ccreep gives only little plas-
tic behavior, while a value of 1 immediately absorbs all elas-
tic strain. The parameter cmax defines the maximum plastic
strain a particle can store.

For large deformations, the reference shape should be up-
dated after each time step while storing the plastic strain
state variables:

ε
plastic
i ← ε

plastic
i − εi,

xi← xi +ui,

ui← 0.

After doing so, one also has to recompute the shape func-
tions for all the particles. This can make simulating plas-
tic materials expensive, especially when a large number of
particles and/or when high order basis functions are used.
Note also that highly plastic deformations can result in poor
and degenerate particle sampling distributions. Below we
will discuss an adaptive sampling strategy that alleviates this
problem. An example of plastic deformations is shown in
Figure 8.

Modeling Discontinuities As is clear from the shape func-
tion definition Eq. 27, neighboring particles always interact,
as long as they are in each other’s support. Although this is
a reasonable assumption when animating elastic materials,
this approach is clearly insufficient when animating fractur-
ing materials. Indeed, when a crack propagates through the
material, it should cut the interaction between the particles
on opposite sides of the crack surfaces. To enable this sepa-
ration, Belytschko et al. [BLG94] introduced a visibility cri-
terion, where particles can only interact with each other, if
the ray connecting the two particle centers does not intersect
a boundary surface. The adaptation can be easily made by
modifying the weight function ω to incorporate this visibility

Figure 8: Highly plastic deformations and ductile fracture
using the meshless simulation method discussed in this sec-
tion.

visibility criterion

crack

x j

xi

support of xi

modified

transparency criterion

modified
support of xi

xscrack

x j

ds

xi

artificial
discontinuity

Figure 9: Comparison of visibility criterion (left) and trans-
parency criterion (right) for the modeling of discontinuities.
The visibility criterion introduces an artificial line of discon-
tinuity.

criterion (see Figure 9, left). However, considering only this
line-of-sight constraint can cause undesirable discontinuities
within the simulation domain. This can adversely affect the
accuracy of the physical simulation, but also has a signifi-
cant impact on the smoothness of the displacement field used
for surface animation (cf. Section 7.2). Indeed, spatially ad-
jacent vertices can be deformed very differently because a
particular simulation particle is visible for one vertex, but
not for its neighboring vertex, even though the surface points
lie on the same side of the crack. Thus, using the visibility
criterion would degrade the surface quality, especially in the
neighborhood of propagating cracks.

To alleviate this problem, Pauly et al. [PKA∗05] use the

c© The Eurographics Association 2009.

230

B. Adams and M. Wicke / Meshless Approximation Methods and Applications in Physics Based Modeling and Animation

transparency method proposed by Organ et al. [OFTB96]
to allow partial interaction of points in the vicinity of the
crack front. Suppose the ray between two points xi and
x j (this can be a surface point and a simulation particle
or two simulation particles) intersects a crack surface at
a point xs (see Figure 9, right). Then the weight function
ωi j = ω(‖x j−xi‖/hi) is adapted to

ω
′
i j = ω(‖x j−xi‖/hi +(ds/κh)2), (70)

where ds is the distance between xs and the closest point
on the crack front, h is the average particle spacing in the
vicinity of xi and κ controls the opacity of the crack surfaces.
Effectively, a crack passing between two points lengthens
the interaction distance of the points until eventually, in this
adapted distance metric, the points will be too far apart to
interact.

A comparison between the visibility criterion and the
transparency method is shown in Figure 9 and the effect on
the weight and shape functions of both methods is illustrated
in Figure 10.

Note that the only adaptation which has to be made to the
elastic solid animation framework of Section 7.1 for the an-
imation of fracturing materials is the modified distance met-
ric given by Eq. 70. However, this also increases the com-
putational complexity as visibility tests between simulation
particles (and surface points) have to be performed and ray-
surface intersection tests are necessary to compute the mod-
ified transparency weights. However, this additional compu-
tational complexity can be reduced significantly by using ef-
ficient caching schemes.

As discussed before weight functions are evaluated in the
reference (or material coordinate) system. This means that
weights between interacting points do not change under de-
formation. Weights can thus only be affected by propagat-
ing cracks. There are two situations where the weight be-
tween neighboring points xi and x j can change. Firstly, if
newly added crack surfaces block the line of sight between
the previously visible xi and x j . This means that the weight
ω
′
i j = ωi j at time t is modified to a weight ω

′
i j < ωi j at time

t + ∆t. Secondly, when two points xi and x j have a trans-
parency weight ω

′
i j < ωi j , i.e., the ray connecting the points

is already blocked by a crack surface, crack propagation will
alter the distance ds (cf. Eq. 70) and change the transparency
weight at time step t +∆t to ω

′
i j(t +∆t) < ω

′
i j(t).

To summarize, transparency weights can only change
when a crack surface cuts the line between two neighbor-
ing points or when a crack already passing between the two
points propagates further away. Typically only a few cracks
propagate through the material at a time and only a small
number of points are affected. Hence, in each time step only
a small number of shape functions have to be re-evaluated.
Pauly et al. discuss in detail how the affected points can be
identified and updated.

Figure 8 shows the animation of plastic material including

Figure 10: Comparison of visibility criterion (top) and
transparency method (bottom) for an irregularly sampled 2D
domain. The effect of a crack, indicated by the horizontal
white line, on weight function ωi and shape function Φi is
depicted for particle xi marked by the cross.

fracturing. Figure 12 shows the result of brittle fracturing
of a very stiff material. For a detailed discussion on when,
where and how to initiate and propagate crack surfaces, we
refer to [PKA∗05, Ada06, Kei06].

Adaptive Sampling During fracture simulation, the par-
ticle sampling needs to be adapted. Without dynamic re-
sampling, frequent fracturing would quickly degrade the nu-
merical stability of the simulation even for an initially ad-
equately sampled model. New particles need to be inserted
in the vicinity of the crack surfaces and in particular around
the crack front. At the same time, strong deformations of the
model can lead to a poor spatial discretization of the simula-
tion volume, which also requires a dynamic adaptation of the
sampling resolution. This is particularly important for highly
plastic materials, where the deformed shape can deviate sig-
nificantly from its original configuration. Note of course that
resampling due to strong deformations only makes sense
when Eulerian kernels are used.

Pauly et al. propose to use a simple local criterion to de-
termine under-sampling at a particle xi. Let

Ωi = ∑
j

ω
′
i j

ωi j
(71)

be the normalized sum of transparency weights cf. Eq. 70.
Without visibility constraints, Ωi is simply the number of
simulation particles in the support of xi. During simulation
Ωi decreases, if fewer neighboring particles are found if the

c© The Eurographics Association 2009.

231

B. Adams and M. Wicke / Meshless Approximation Methods and Applications in Physics Based Modeling and Animation

Figure 11: Effect of resampling on the shape functions. Left:
no resampling. Right: resampling.

transparency weights become smaller due to a crack front
passing through the solid or due to severe stretching in plas-
tic materials. If Ωi drops below a threshold Ωmin (One typi-
cally uses Ωmin = 10), a total of dΩmin−Ωie new particles
are inserted using an approach similar to [DC99].

The mass associated with the old particles is distributed
evenly among the new ones and their support radius is
adapted to keep the overall material density constant. Note
that mass will not be strictly preserved locally in the sense
that the mass distribution of nodes after fracturing will not
precisely match the correct distribution according to the sep-
arated volumes created by the fracture surface sheets. How-
ever, mass will be preserved globally and the local deviations
are sufficiently small to not affect the simulation noticeably
(cf. [MBF04]).

To prevent excessive resampling for particles very close
to a fracture boundary, particle splitting is restricted by pre-
scribing a minimal support radius. Resampling due to frac-
turing is triggered by the cracks passing through the solid,
similar to adapting the visibility weights. Performing these
checks comes essentially for free, since all the required spa-
tial queries are already carried out during visibility compu-
tation.

The effect of crack propagation and adaptive upsampling
on the shape functions is illustrated for a simple 2D example
in Figure 11.

7.4. Summary

This section introduced a particle animation framework
based on MLS approximations for the simulation of elas-
tic materials. We showed how the material behavior can be
simulated using discrete particles and MLS approximations
of the elastic forces. We discussed two alternatives for ani-
mating the surface mesh along with the particles and showed
how the basic framework can be extended to incorporate the
simulation of plasticity and fracturing.

One of the nice properties of this animation approach is
that the surface and volume representation are decoupled

Figure 12: Brittle fracture of a hollow stone sculpture using
the meshless simulation method discussed in this section.

which allows the animation of highly detailed surfaces with-
out increasing the complexity of the physical representation
and simulation. This allows separating visual quality from
physical accuracy which is important in computer graph-
ics applications. Müller et al. for example report interaction
rates of 27 FPS (on a P4 2.8 GHz laptop) of a model sam-
pled with 200 particles and 10k surface points. This clearly
shows the strength of the point-based animation framework:
It allows high visual quality with low simulation complexity.
Moreover, if a higher surface quality is required, the same
animation can be replayed with a high resolution surface
wrapped around the simulation points. This is an important
feature for example in production environments.

With the addition of plastic materials, the proposed frame-
work allows the animation of a wide range of materials.
Moreover, the continuum mechanics based elasticity model
has the advantage that the parameters (i.e., Young’s Modulus
and Poisson’s Ratio) have a real physical meaning and can
thus be looked up in a mechanics text book for example.

The proposed system has a few limitations though. First,
the MLS approximation assumes that each particle has
enough neighbors in its support at non-degenerate locations.
This means that the approach presented in this section does
not work for 2D layers (e.g., thin shells) or 1D strings of par-
ticles. Other point-based simulation algorithms have been
proposed in the computer graphics community for the ani-
mation of for example thin shells [WSG05, GLB∗06].

c© The Eurographics Association 2009.

232

B. Adams and M. Wicke / Meshless Approximation Methods and Applications in Physics Based Modeling and Animation

The absence of connectivity information requires the
computation of neighboring particles. When animating mod-
erately elastic materials, static neighborhoods can be used.
However, when plastic materials are added, these neigh-
borhoods have to be recomputed in each animation frame
because the reference system is adapted and therefore the
choice of a proper data structure is of key importance.

The extension to fracturing shows the key strengths of the
meshless method. Instead of maintaining a consistent volu-
metric mesh using continuous cutting and re-structuring of
finite elements, the method dynamically adjusts the weight
functions based on simple visibility constraints and dynami-
cally adapts the particle distribution where needed by simple
resampling.

8. Geometric Modeling using Physical Metaphors

Another application of the MLS particle approximation
method was proposed by Adams et al. [AOW∗08] for inter-
active shape deformation modeling and the design of smooth
keyframe animations for deformable objects. The modeling
applications presented in this section are based on the same
physical models as used for the elastic solid simulation of
Section 7 and hence result in realistic deformations. We first
discuss the shape modeling algorithm and then detail the ex-
tension to deformable animation design.

8.1. Shape Deformations

The meshless deformation field representation used for elas-
tic solid simulation, can be equally well used for shape de-
formation modeling. Energy terms can be defined and opti-
mized that penalize non-rigid deformations and changes in
the shape’s volume, while enforcing the user’s input con-
straints. The resulting deformation framework can be used to
interactively model complex shapes. It will also serve as the
core component in the deformable animation design frame-
work that we will discuss in Section 8.2.

Again, the object is sampled using a set of particles and
the continuous deformation field is found using MLS ap-
proximation of the displacements at the particles as

u(x) = ∑
i

Φi(x)ui. (72)

Adams et al. [AOW∗08] propose to use a complete linear
basis of order n = 1 (p(x) = [1 x y z]T , and x = [x y z]T) in
the shape function construction. This allows reconstructing
rigid motions exactly. Eq. 72 maps every point x in the un-
deformed shape to its image x+u(x) in the deformed shape.
For ease of notation this mapping is denoted in this section
as

f(x) = x+u(x). (73)

Given the above formulation, the goal is to find the particle

Figure 13: Illustration of the effect of the different shape
modeling constraints. Left: handle constraints are specified
to fix the bottom of the box and to move the top to the de-
sired position. Middle: with only the rigidity constraint the
total volume is increased by 53%. Right: the total volume re-
mains within 3% of the original when the volume constraint
is added.

displacement vectors ui so that the resulting continuous de-
formation field u(x) (or equivalently f(x)) fulfills desirable
properties (see also Figure 13).

Handle Constraints Handle constraints restrict the move-
ment of certain points of the shape. For example, the user
may want to fix the legs while pulling one of the arms of the
model to deform its shape. Thus, a handle constraint simply
states that the deformation field f(xk) should move a given
point xk to a prescribed target position x′k. Given a set of K
handle constraints (xk,x′k), the energy to minimize is:

Ehandle =
K

∑
k=1
‖f(xk)−x′k‖

2. (74)

Rigidity The deformation field is completely rigid if at
all points ∇fT (x)∇f(x) = I. Hence, to obtain as-rigid-as-
possible shape deformations, following energy should be
minimized:

Erigidity =
Z

x∈V
‖∇fT (x)∇f(x)− I‖2

F dx, (75)

where the integration is over the (undeformed) shape’s vol-
ume V and ‖ · ‖F is the Frobenius norm. Note the similar-
ity between Eq. 75 and Eq. 61. To facilitate optimization, it
is often sufficient to only penalize non-rigid behavior at the
particle positions. This leads to the discretized equation

Erigidity = ∑
i

Vi‖∇fT (xi)∇f(xi)− I‖2
F . (76)

Here, ∇f(x) = I +∇u(x), where ∇u(x) is computed using
the analytic derivative formula of Eq. 32. The scaling by the
particle volume Vi = 4/3πh3

i can be omitted when using uni-
form particle radii (hi = h). In the following we will directly
write down the discretized equation (cf. Eq. 76) and leave
out the continuous one (cf. Eq. 75) for the sake of brevity.

Volume Preservation The deformation field preserves the
shape’s volume if and only if |∇f(x)| = 1 over the whole
shape. Thus, the deformed shape’s volume matches its orig-

c© The Eurographics Association 2009.

233

B. Adams and M. Wicke / Meshless Approximation Methods and Applications in Physics Based Modeling and Animation

Figure 14: Deformation of the dragon model obtained using
a coarse set of only 60 particles. The particle deformations
are computed on the CPU, while the high resolution surface
is deformed faithfully on the GPU. The interaction was per-
formed at a rate of 55 fps for the model with 100k vertices
and 10 fps for the model with 500k vertices.

inal volume as closely as possible if one minimizes

Evolume = ∑
i

Vi(|∇f(xi)|−1)2. (77)

Again, this equation corresponds to the volume preservation
force used for elastic solid simulation given in Eq. 65.

The optimal deformation field f(x) can now be found by
minimizing the total sum of constraint energies:

E = λ1Ehandle +λ2Erigidity +λ3Evolume, (78)

where the parameters λ1, λ2 and λ3 vary the contribution of
each of the different constraints. It can be easily seen from
Eq. 74, Eq. 76 and Eq. 77 that E is a multivariate polynomial
of total degree 6 in the unknowns (the particle displacements
ui). Minimizing Eq. 78 hence requires a non-linear solver.
Note however, that taking analytic derivatives with respect
to the unknowns is straightforward.

Adams et al. also discuss a particle sampling algorithm
that distributes particles uniformly over the shape’s volume
and defines the coupling between the particles by comput-
ing distances within the shape instead of using simple Eu-
clidean distances. During interactive modeling, the surface
is deformed on the GPU using Alternative 1 described in
Section 7.2. Even though the resulting optimization problem
is non-linear, interactive deformations for highly detailed ge-
ometric shapes are possible on standard hardware.

An example of a deformation of a high resolution dragon
model is shown in Figure 14.

8.2. Deformable Shape Motions

The shape modeling framework can be easily extended into
an animation design framework for deformable objects. In
such a framework, the user specifies keyframe poses and
the algorithm computes an optimal interpolatory deformable
motion, while satisfying certain constraints such as shape
preservation and collision avoidance. Again, by sampling

the deformation field only at a sparse discrete number of
time instances and by using the meshless shape approxima-
tion scheme of Section 3, a continuous time dependent de-
formation field is obtained over the whole time interval. An
adaptive temporal sampling strategy limits the number of un-
knowns and allows rapid motion path modeling.

Each particle xi’s motion path is now sampled at T dis-
crete times t j, and defined by the deformation vectors ui,t j

(see Figure 15). These discrete time representations are
called frames. If each frame was treated separately, the de-
formation at x would be represented using Eq. 72 as

ut j (x) = ∑
i

Φi(x)ui,t j . (79)

By assigning a support radius ht j to each frame t j, we can ob-
tain a smooth time dependent deformation at position x and
time t by MLS approximation over the neighboring frames

u(x, t) =
T

∑
j=1

Φ j(t)ut j (x). (80)

Here the shape functions are one-dimensional and defined
over the time domain. Second order consistency is obtained
by using the complete polynomial basis p(t) = [1 t t2]. This
allows reconstructing most deformable motions with only a
small number of frames.

Substituting Eq. 79 in Eq. 80 yields the final expression

u(x, t) =
T

∑
j=1

Φ j(t)∑
i

Φi(x)ui,t j

=
T

∑
j=1

∑
i

Φ j(t)Φi(x)ui,t j . (81)

Hence, the deformation at position x at time t is a linear com-
bination of the deformations ui,t j of the spatially neighboring
particles xi at neighboring frames. These particle deforma-
tions are the unknowns that are solved for.

Note that space and time are decoupled and separate MLS
shape functions are used to approximate the displacement
field within the shape and to define the continuous displace-
ment field over time.

Within a frame t j, the rigidity and volume preserving
penalties as defined before for the shape modeling algorithm
are used. To solve for a temporally changing deformation
field, additional constraints are added (see also Figure 16).

Keyframes The user can specify the desired position for the
shape at certain keyframe times tk,k∈ 1 . . .K. Keyframes are
typically defined at the beginning and end of a motion, but
can also constrain shape poses at intermediate times. These
keyframes are converted into handle constraints by specify-
ing one handle constraint for each particle in each keyframe.
Note that the user can specify the shape in a keyframe in a
deformed pose or can only constrain a subset of the shape
in a keyframe. The resulting energy function is denoted as
Ekeyframe in the following.

c© The Eurographics Association 2009.

234

B. Adams and M. Wicke / Meshless Approximation Methods and Applications in Physics Based Modeling and Animation

t2t1

u(x, t)

t
t3

keyframe 1 keyframe 2 keyframe 3

Figure 15: The goal is to find a smooth motion of the de-
formable shape that interpolates the keyframes. The contin-
uous time dependent deformation field is defined from the
frames as u(x, t) = ∑

T
j=1 ∑i Φ j(t)Φi(x)ui,t j where the un-

knowns ui,t j are the nodal displacements we will solve for.
There is one displacement vector ui,t j for each particle i in
each frame t j.

Velocity Constraints Along with specifying the shape’s
keyframe poses, the user can specify a velocity vk that the
deformation field should satisfy at the keyframes tk. This ve-
locity should match the temporal derivative of the shape’s
deformation field at time tk, for all points in the shape. For
all keyframes together and discretized at the the particles,
this gives the constraint

Evelocity =
K

∑
k=1

∑
i

Vi‖
∂u
∂t

(xi, tk)−vk‖2. (82)

The analytic time derivatives of the deformation field
are computed from the shape function’s time derivatives
∂Φ j(t)/∂t using Eq. 30.

Acceleration To obtain smooth motion, the shape’s accel-
eration is bounded. Very similar to the above velocity con-
straint this yields the energy penalty

Eacceleration =
T

∑
j=1

∑
i

ht jVi‖
∂

2u
∂t2 (xi, t j)‖2, (83)

where ht j is the support radius of frame t j . The second
derivatives of the displacement field with respect to time can
be computed analytically by computing ∂

2
Φ j(t)/∂t2 as de-

tailed in [FM03]. Note again that the resulting expression for
the acceleration is a simple linear combination of the particle
displacements, i.e., the unknowns ui,t j .

Obstacle Avoidance A final penalty function prevents pen-
etration of the deforming object with possible obstacles in
the scene. Assuming that obstacles can be represented by a
(time dependent) distance field d(x, t) and that a point x is
penetrating at time t if d(x, t) ≥ 0, the following collision
avoidance energy is obtained

Eobstacles =
T

∑
j=1

∑
i

ht jVid
2(f(xi, t j), t j), (84)

where f(x, t) = x + u(x, t). Note that although this energy
penalizes collisions for the particles at the frames, it does

Figure 16: Illustration of the effect of the different tempo-
ral constraints. Top left: smooth interpolation between two
keyframes using the keyframe and acceleration constraints.
Lower left: result after prescribing the velocity in the first
frame (gray arrow). Top right: result after adding an obsta-
cle. Bottom right: result after adding the velocity and obsta-
cle constraints.

not prevent collisions of all points at all times. To pre-
vent artifacts rising from only constraining the particles,
the particles are fattened to spheres (by using their sup-
port radii hi) and constrained to be outside the obstacles
(hence, d(f(xi, t j), t j) + hi is used instead of d(f(xi, t j), t j)
in the above equation). If the union of these spheres cov-
ers the whole shape, this adequately prevents penetrations
at the frames t j. However, nothing restricts the shape from
colliding with obstacles at other time instances, as the in-
terpolation scheme is collision oblivious. Adaptive temporal
sampling solves this issue and will be explained below.

Given the discrete spatial and temporal sampling, the op-
timal time dependent deformation field f(x, t) = x + u(x, t)
can now be found by minimizing the total energy

E = λ1Ekeyframe +λ2Erigidity +λ3Evolume

λ4Evelocity +λ5Eacceleration +λ6Eobstacles, (85)

where λ1 to λ6 are again parameters to modify the contribu-
tion of the various constraints. Similar to the energy function
of Eq. 78, the above equation is a polynomial of total degree
6 in the unknown nodal displacements ui,t j .

We now discuss how the deformation field is tempo-
rally discretized by iteratively creating and solving for new
frames.

Adaptive Temporal Sampling In the (single frame) defor-
mation modeling part, the total number of unknowns to solve
for is 3N, where N is the number of particles. In the motion
planning setting, the total number of unknowns multiplies to
3NT , where T is the number of frames. To keep this number
sufficiently low, Adams et al. propose an adaptive time sam-
pling strategy that introduces frames iteratively in problem-
atic regions. Initially, all frames t j correspond to keyframes

c© The Eurographics Association 2009.

235

B. Adams and M. Wicke / Meshless Approximation Methods and Applications in Physics Based Modeling and Animation

Figure 17: Left: keyframe poses obtained using the meshless shape deformation algorithm. Right: smooth interpolated motion
obtained using the shape interpolation algorithm.

specified by the user. The displacement field is optimized as
discussed above and the error is evaluated at a dense num-
ber of frames in between the frames t j (typically evaluation
is done at 10 intermediate frames). A new frame t j is intro-
duced at the time instance tmax where the error is maximal.
The algorithm then proceeds by solving again and iterating
until a desired accuracy is obtained. When a new frame is
introduced at time tmax, the particle deformation vectors at
the new frame are initialized kas ui,tmax = ∑

T
t=1 Φ j(tmax)ui,t j .

This yields a good initial guess for the subsequent solve.

The proposed adaptive sampling strategy greatly reduces
the number of unknowns and introduces frames only at prob-
lematic regions, for example when there is high accelera-
tion, or when the deforming shape is penetrating an obsta-
cle. Thanks to the second order consistency in the temporal
shape functions Φ j(t), most motions can be represented by
only a very low number of frames. The frames’ support radii
ht j (and hence weight functions ωt j (t)) are adapted to the
frame spacing to ensure that every time instance t is cov-
ered by at least 3 neighboring frames. This guarantees non-
singular moment matrices and safe computation of the tem-
poral shape functions. If only two frames are present, simple
linear interpolation defines the shape’s deformation field.

An example of interpolated motion of a deformable object
is shown in Figure 17.

8.3. Summary

This section presented a framework and algorithms for inter-
active shape and motion modeling. Using energies derived
from physical metaphors similar to the forces used for elas-
tic solid simulations, realistic shape deformations are ob-
tained. A particle discretization and the approximation using

the MLS method enables interactivity as it allows using only
few particles to adequately deform high resolution surfaces.

The shape modeling framework is easily extended to a
motion planning or keyframe interpolation algorithm for de-
formable objects, by using the MLS approximation to inter-
polate between adjacent frames. Note that this is the only
application presented in this tutorial that uses a particle ap-
proximation scheme where the domain is time and not the
Euclidean space. A drawback of using the MLS approxima-
tions to interpolate motion is that, contrary to translations,
rigid rotations are not recovered exactly. Indeed, even though
a quadratic basis is used, rotations cannot be represented us-
ing simple polynomials in time.

9. Conclusion

This tutorial treated meshless methods for animation and
modeling. In order to offer a principled and comprehen-
sive perspective on the material, we have first introduced
the function approximation methods that form the founda-
tion of these methods, before discussing their applications
in computer graphics. We have seen how the requirements
of the simulation determine the choice of approximation
method: fluid simulation requires frequent recomputation of
the neighborhood structure and shape functions, and a low-
cost, low-accuracy approximation like SPH appears optimal.
Conversely, continuum elasticity requires the reconstruction
of linear functions, and therefore demands the more accurate
MLS approximation.

Similarly, the choice of approximation method influences
the simulation algorithm. The most striking example of this
is the near-universal absence of mesh-based Lagrangian fluid
simulations form the graphics literature. Since fluids are
often highly turbulent, permanently recomputing the mesh

c© The Eurographics Association 2009.

236

B. Adams and M. Wicke / Meshless Approximation Methods and Applications in Physics Based Modeling and Animation

structure is impractical, and mesh-based fluid simulations
discretize the embedding space instead. The same holds for
elasticity computations: Since meshless sampling makes it
easy to resample, adaptive sampling is much more attractive
for meshless methods.

When approaching a problem in simulation or modeling,
it is a good idea to analyze the problem and consider which
advantages and problems a solution using both mesh-based
and meshless approaches might have. Meshless approaches
require only the neighborhood graph, which is easy to com-
pute and maintain. Resampling or topological changes in the
material that require restructuring the neighborhood infor-
mation are therefore relatively simple operations in a mesh-
less setting. On the other hand, mesh-based approaches of-
fer significantly more mathematical structure to be exploited
by the function approximation mechanism. Examples are the
consistency of differential operators (for fluid simulation) or
the exact conservation of integral properties (for continuum
elasticity). Sometimes, careful consideration might lead to a
hybrid technique combining the strength of both approaches,
successful examples of this are the PIC and FLIP techniques
for incompressible SPH [Har64, BR86, ZB05], or the par-
ticle level set techniques for interface tracking in Eulerian
fluid simulations [EMF02, ELF05].

We hope to have given the reader a useful introduction to
meshless methods in computer graphics.

Appendix A: SPH Kernel Functions

A good polynomial kernel function has been introduced in
[MCG03], here shown normalized for use in three dimen-
sions:

ωh(d) =

 315
64πh3

(
1− d2

h2

)3
d < h,

0 otherwise.
(86)

This since d is only used squared, (86) can be evaluated
without using a square root. The first and second derivatives
are:

ω
′
h(d) =

 − 945
32πh3

d
h2

(
1− d2

h2

)2
0 < d < h,

0 otherwise,
(87)

ω
′′
h (d) =

 945
32πh3

1
h2

(
1− d2

h2

)(
5 d2

h2 −1
)

d < h,

0 otherwise.
(88)

For function approximation in 2D, the normalization has to
be adjusted, yielding:

ωh(d) =

 4
πh2

(
1− d2

h2

)3
d < h,

0 otherwise,
(89)

with derivatives

ω
′
h(d) =

 − 24
πh2

d
h2

(
1− d2

h2

)2
0 < d < h,

0 otherwise,
(90)

ω
′′
h (d) =

 24
πh2

1
h2

(
1− d2

h2

)(
5 d2

h2 −1
)

d < h,

0 otherwise.
(91)

[MCG03] also introduce a spiky kernel ω̂h(d) to avoid
clumping in low resolution fluid simulations. Its gradient
does not go smoothly to zero at d = 0, thus preventing a
force-free state in which particles clump at a single position.
For 3D simulation, it is given by

ω̂h(d) =

 15
πh3

(
1− d

h

)3
d < h,

0 otherwise,
(92)

with first and second derivatives

ω̂
′
h(d) =

 − 45
πh3

1
h

(
1− d

h

)2
0 < d < h,

0 otherwise,
(93)

ω̂
′′
h (d) =

 90
πh3

1
h2

(
1− d

h

)
d < h,

0 otherwise.
(94)

In 2D, the normalization yields

ω̂h(d) =

 15
πh2

(
1− d

h

)3
d < h,

0 otherwise,
(95)

with first and second derivatives

ω̂
′
h(d) =

 − 30
πh2

1
h

(
1− d

h

)2
0 < d < h,

0 otherwise,
(96)

ω̂
′′
h (d) =

 60
πh2

1
h2

(
1− d

h

)
,

0 otherwise.
(97)

References
[Ada06] ADAMS B.: Point-Based Modeling, Animation and Ren-

dering of Dynamic Objects. PhD thesis, Katholieke Universiteit
Leuven, May 2006.

[AM93] ARYA S., MOUNT D. M.: Algorithms for fast vector
quantization. In Proceedings of the IEEE Data Compression
Conference ’93 (1993), pp. 381–390.

[AOW∗08] ADAMS B., OVSJANIKOV M., WAND M., SEIDEL
H.-P., GUIBAS L. J.: Meshless modeling of deformable shapes
and their motion. In ACM SIGGRAPH/Eurographics Symposium
on Computer Animation (2008).

[APKG07] ADAMS B., PAULY M., KEISER R., GUIBAS L. J.:
Adaptively sampled particle fluids. In Proc. SIGGRAPH ’07
(2007).

c© The Eurographics Association 2009.

237

B. Adams and M. Wicke / Meshless Approximation Methods and Applications in Physics Based Modeling and Animation

[Ben75] BENTLEY J. L.: Multidimensional binary search tree
used for associative searching. Communications of the ACM 18
(1975), 509–517.

[BF79] BENTLEY J. L., FRIEDMAN J. H.: Data structures for
range searching. ACM Computing Surveys 11 (1979), 397–409.

[BKO∗96] BELYTSCHKO T., KRONGAUZ Y., ORGAN D.,
FLEMING M., KRYSL P.: Meshless methods: An overview and
recent developments. Comp. Meth. in Appl. Mech. Eng. 139, 3
(1996).

[BLG94] BELYTSCHKO T., LU Y., GU L.: Element-free galerkin
methods. Int. J. Numer. Meth. Engng 37 (1994), 229–256.

[Bli82] BLINN J. F.: A generalization of algebraic surface draw-
ing. ACM Transactions on Graphics 1, 3 (1982), 235–256.

[BR86] BRACKBILL J. U., RUPPEL H. M.: Flip: A method for
adaptively zoned, particle-in-cell calculations of fluid flows in
two dimensions. J. Comput. Phys. 65, 2 (1986), 314–343.

[BT07] BECKER M., TESCHNER M.: Weakly compressible sph
for free surface flows. In Proc. SCA 07 (2007), pp. 63–72.

[CBP05] CLAVET S., BEAUDOIN P., POULIN P.: Particle-based
viscoelastic fluid simulation. In Proceedings of the Symposium
on Computer Animation’05 (2005), pp. 219–228.

[CEL06] COLIN F., EGLI R., LIN F. Y.: Computing a null diver-
gence velocity field using smoothed particle hydrodynamics. J.
Comput. Phys. 217, 2 (2006), 680–692.

[DC99] DESBRUN M., CANI M.-P.: Space-Time Adaptive Simu-
lation of Highly Deformable Substances. Tech. rep., INRIA Nr.
3829, 1999.

[DG96] DESBRUN M., GASCUEL M.-P.: Smoothed particles: A
new paradigm for animating highly deformable bodies. In Pro-
ceedings of the Eurographics Workshop on Computer Animation
and Simulation’96 (1996), pp. 61–76.

[Dil99] DILTS G. A.: Moving least-squares particle hydrodynam-
ics i: consistency and stability. International Journal for Numer-
ical Methods in Engineering 44, 8 (1999), 1115–1155.

[Dil00] DILTS G. A.: Moving least-squares particle hydrodynam-
ics ii: conservation and boundaries. International Journal for Nu-
merical Methods in Engineering 48, 10 (2000), 1503–1524.

[ELF05] ENRIGHT D., LOSASSO F., FEDKIW R.: A fast and ac-
curate semi-lagrangian particle level set. Computers and Struc-
tures 83 (2005), 479–490.

[EMF02] ENRIGHT D., MARSCHNER S., FEDKIW R.: Anima-
tion and rendering of complex water surfaces. In ACM Trans-
actions on Graphics (SIGGRAPH 2002 Proceedings) (2002),
pp. 736–744.

[FBF77] FRIEDMAN J. H., BENTLEY J. L., FINKEL R. A.: An
algorithm for finding best matches in logarithmic expected time.
ACM Transactions in Mathematical Software 3 (1977), 209–226.

[FM03] FRIES T.-P., MATTHIES H. G.: Classification and
Overview of Meshfree Methods. Tech. rep., TU Brunswick, Ger-
many Nr. 2003-03, 2003.

[FOA03] FELDMAN B. E., O’BRIEN J. F., ARIKAN O.: Ani-
mating suspended particle explosions. ACM Trans. Graph. 22, 3
(2003), 708–715.

[FOK05] FELDMAN B. E., O’BRIEN J. F., KLINGNER B. M.:
Animating gases with hybrid meshes. In Proceedings of SIG-
GRAPH’05 (2005), pp. 904–909.

[FP86] FLAJOLET P., PUECH C.: Partial match retrieval of mul-
tidimensional data. Journal of the ACM 33 (1986), 371–407.

[GLB∗06] GUO X., LI X., BAO Y., GU X., QIN H.: Meshless
thin-shell simulation based on global conformal parameteriza-
tion. IEEE Transactions on Visualization and Computer Graph-
ics 12, 3 (2006).

[GM77] GINGOLD R. A., MONAGHAN J. J.: Smoothed particle
hydrodynamics: Theory and application to non-spherical stars.
Monthly Notices of the Royal Astronomical Society 181 (1977),
375–389.

[GP07] GROSS M., PFISTER H.: Point-Based Graphics (The
Morgan Kaufmann Series in Computer Graphics). Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2007.

[GSLF05] GUENDELMAN E., SELLE A., LOSASSO F., FEDKIW
R.: Coupling water and smoke to thin deformable and rigid
shells. ACM Trans. Graph. 24, 3 (2005), 973–981.

[Har64] HARLOW F. H.: The particle in cell computing methods
for fluid dynamics. Methods of Computational Physics 3 (1964),
319–343.

[HBSL03] HARRIS M., BAXTER W., SCHEUERMANN T., LAS-
TRA A.: Simulation of cloud dynamics on graphics hardware. In
Proc. Graphics Hardware (2003).

[KAG∗06] KEISER R., ADAMS B., GUIBAS L., DUTRÉ P.,
PAULY M.: Multiresolution Particle-Based Fluids. Tech. Rep.
520, ETH Zürich, 2006.

[Kei06] KEISER R.: Meshless Lagrangian Methods for Physics-
Based Animations of Solids and Fluids. PhD thesis, ETH Zürich,
2006.

[KFCO06] KLINGNER B. M., FELDMAN B. A., CHENTANEZ
N., O’BRIEN J. F.: Fluid animation with dynamic meshes. In
Proceedings of SIGGRAPH’06 (2006), pp. 820–825.

[KO96] KOCHIZUKA S., OKA Y.: Moving particle semi-implicit
method for fragmentation of incompressible fluid. Nuclear Sci-
ence Engineering 123 (1996), 421–434.

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes: A
high resolution 3d surface construction algorithm. In SIGGRAPH
’87: Proceedings of the 14th annual conference on Computer
graphics and interactive techniques (New York, NY, USA, 1987),
ACM Press, pp. 163–169.

[LGF04] LOSASSO F., GIBOU F., FEDKIW R.: Simulating wa-
ter and smoke with an octree data structure. In Proceedings of
SIGGRAPH’04 (2004), pp. 457–462.

[LL03] LIU G.-R., LIU M.: Smoothed Particle Hydrodynamics.
World Scientific, 2003.

[Luc77] LUCY L. B.: A numerical approach to the testing of
the fission hypothesis. The Astronomical Journal 82, 12 (1977),
1013–1024.

[MBF04] MOLINO N., BAO Z., FEDKIW R.: A virtual node al-
gorithm for changing mesh topology during simulation. ACM
Trans. Graph. 23, 3 (2004), 385–392.

[MCG03] MÜLLER M., CHARYPAR D., GROSS M.: Particle-
based fluid simulation for interactive applications. In Pro-
ceedings of the Symposium on Computer Animation’03 (2003),
pp. 154–159.

[MKN∗04] MÜLLER M., KEISER R., NEALEN A., PAULY M.,
GROSS M., ALEXA M.: Point based animation of elastic, plas-
tic and melting objects. Proceedings of 2004 ACM SIGGRAPH
Symposium on Computer Animation (2004).

[Mon92] MONAGHAN J. J.: Smoothed particle hydrodynamics.
Annu. Rev. Astron. Physics 30 (1992), 543.

[Mon94] MONAGHAN J. J.: Simulating free surface flows with
SPH. J. Comput. Phys. 110, 2 (1994), 399–406.

c© The Eurographics Association 2009.

238

B. Adams and M. Wicke / Meshless Approximation Methods and Applications in Physics Based Modeling and Animation

[Mon05] MONAGHAN J. J.: Smoothed particle hydrodynamics.
Reports on Progress in Physics 68 (2005), 1703–1759.

[MSKG05] MÜLLER M., SOLENTHALER B., KEISER R.,
GROSS M.: Particle-based fluid-fluid interaction. In Proceedings
of the Symposium on Computer Animation’05 (2005), pp. 237–
244.

[MTHG04] MÜLLER M., TESCHNER M., HEIDELBERGER B.,
GROSS M.: Interaction of fluids with deformable objects. In
Proceedings of the Conference on Computer Animation and So-
cial Agents’04 (2004), pp. 159–171.

[NMK∗05] NEALEN A., MÜLLER M., KEISER R., BOXERMAN
E., CARLSON M.: Physically based deformable models in com-
puter graphics. In Eurographics 2005 State of the Art Report
(2005).

[OBH02] O’BRIEN J. F., BARGTEIL A. W., HODGINS J. K.:
Graphical modeling and animation of ductile fracture. In Pro-
ceedings of SIGGRAPH 2002 (2002), Computer Graphics Pro-
ceedings, Annual Conference Series, ACM, ACM Press / ACM
SIGGRAPH, pp. 291–294.

[OFTB96] ORGAN D., FLEMING M., TERRY T., BELYTSCHKO
T.: Continuous meshless approximations for nonconvex bodies
by diffraction and transparency. Computational Mechanics 18
(1996), 1–11.

[PKA∗05] PAULY M., KEISER R., ADAMS B., DUTRÉ P.,
GROSS M., GUIBAS L. J.: Meshless animation of fracturing
solids. ACM Trans. Graph. 24, 3 (2005), 957–964.

[PTB∗03] PREMOZE S., TASDIZEN T., BIGLER J., LEFOHN A.,
WHITAKER R.: Particle based simulation of fluids. In Proceed-
ings of Eurographics ’03 (2003), pp. 401–410.

[Qui83] QUINLAN J. R.: Learning efficient classification pro-
cedures and their applications to chess endgames. In Machine
Learning (1983), Michalski R., Carbonell J., Mitchell T., (Eds.).

[Ros56] ROSENBLATT M.: Remarks on some nonparametric es-
timates of a density function. Annals of Mathematical Statistics
27 (1956), 832–835.

[Saa86] SAAD Y.: On the condition numbers of modified moment
matrices arising in least squares approximation in the complex
plane. Journal of Numerical Mathematics 48 (1986), 337–347.

[Sam05] SAMET H.: Foundations of Multidimensional and Met-
ric Data Structures. Morgan Kaufmann, 2005.

[She68] SHEPARD D.: A two dimensional interpolation function
for irregular spaced data. In Proc. 23rd Nat. Conf. ACM (1968),
pp. 517–524.

[Sta99] STAM J.: Stable fluids. In Proceedings of SIGGRAPH’99
(1999), pp. 121–128.

[THM∗03] TESCHNER M., HEIDELBERGER B., MÜLLER M.,
POMERANERTS D., GROSS M.: Optimized spatial hashing for
collision detection of deformable objects. In Proceedings of Vi-
sion, Modeling, and Visualization (VMV)’03 (2003), pp. 47–54.

[WAD94] WESS S., ALTHOFF K.-D., DERWAND G.: Using k-d
trees to improve the retrieval step in case-based reasoning. In Se-
lected papers from the European Workshop on Case Based Rea-
soning ’93 (1994), pp. 167–181.

[WSG05] WICKE M., STEINEMANN D., GROSS M.: Efficient
animation of point-based thin shells. In Proceedings of Euro-
graphics ’05 (2005), pp. 667–676.

[ZB05] ZHU Y., BRIDSON R.: Animating Sand as a Fluid. In
Proceedings of SIGGRAPH’05 (2005), pp. 965–972.

c© The Eurographics Association 2009.

239

