
Programming the Cell BE for
High Performance Graphics

Bruce D’Amora
IBM T.J. Watson Research Center

Michael McCool
RapidMind and University of Waterloo

Eurographics 2007
Tutorial Notes

© 2007 IBM Corporation

IBM T.J. Watson Research

Cell Broadband EngineCell Broadband Engine
Architecture and Programming EnvironmentArchitecture and Programming Environment

Bruce D’Amora
Senior Technical Staff Member
Emerging Systems Software
IBM T.J. Watson Research Center
damora@us.ibm.com

EUROGRAPHICS 2007/ K. Myszkowski and V. Havran Tutorial

http://www.eg.org
http://diglib.eg.org

2

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

AgendaAgenda

� Architecture
� Programming Models
� Basic Programming
� Graphics Workloads
� Questions

3

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

ArchitectureArchitecture

706

4

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Cell Broadband Engine ArchitectureCell Broadband Engine Architecture

MIC BIC

Dual XDR™

I/O I/O

EIB (up to 96B/cycle)

16B/cycle

16B/cycle(2x)16B/cycle

L2

L1
PPU

32B/cycle

16B/cycle

64-bit Power Architecture w/VMX

PPE

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

16B/cycle

SPE0 SPE1 SPE2 SPE3 SPE4 SPE5 SPE6 SPE7

AUC

MFC MFC MFC MFC MFC MFC MFC MFC

AUC AUC AUC AUC AUC AUC AUC

5

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Element Interconnect BusElement Interconnect Bus
� EIB data ring for internal communication
� Four 16 byte data rings, supporting multiple transfers
� 96B/cycle peak bandwidth
� Over 100 outstanding requests

707

6

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Power Processor ElementPower Processor Element
� PPE handles operating system and control tasks
� 64-bit Power ArchitectureTM with VMX
� In-order, 2-way hardware simultaneous multi-threading (SMT)
� Load/Store with 32KB L1 cache (I & D) and 512KB L2

7

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Synergistic Processor ElementSynergistic Processor Element
� Dual issue, up to 16-way 128-bit SIMD
� Dedicated resources: 128 128-bit register file, 256KB Local Store
� Each can be dynamically configured to protect resources
� Dedicated DMA engine: Up to 16 outstanding requests per SPE

708

8

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

I/O and Memory InterfacesI/O and Memory Interfaces
� Two configurable interfaces
� Up to 25.6 GB/s memory B/W
� Up to 70+ GB/s I/O B/W

– Practical ~ 50GB/s

9

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

ProgrammingProgramming

709

10

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Cell BE Features Exploited by Software

� Large register file
� Keep intermediate and control data on chip

� DMA Engine – Memory Flow Controller
� DMA between System Mem and LS
� DMA from L2 cache-> LS
� LS to LS DMA
� Scatter->Gather support

� Atomic Update Cache
� Implement synchronization commands

� SPE Signalling Registers
� SPE <-> PPE Mailboxes

� Resource Reservation and Allocation
� PPE can be shared across logical partitions
� SPEs can be assigned to logical partitions
� SPEs independently or Group Allocated

PowerPC
(PPE)

L2 Cache
DMA with Intervention

Hardware Managed Cache Coherency

Cell BE™ Chip

System Memory I/O

BIF/IOIF

MFC

Local Store

SPU

AUC

MFC

Local Store

SPU

AUC

MFC

Local Store

SPU

AUC

MFC

Local Store

SPU

AUC

MFC

Local Store

SPU

AUC

MFC

Local Store

SPU

AUC

Local Store to Local Store DMA

Atomic Update Cache

11

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Common Cell programming models

SPE LS

SPE LS

PPE thread

Large small

Multi-SPE

BE-level

Effective Address
Space

Single Cell environment:
� PPE programming models
� SPE Programming models

– Small single-SPE models

– Large single-SPE models

– Multi-SPE parallel programming models

710

12

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Small single-SPE models
� Single tasked environment
� Small enough to fit into a 256KB- local store
� Sufficient for many dedicated workloads
� Two address spaces – (SPE) LS & (SPE/PPE) EA
� Explicit input and output of the SPE program

– DMA

– Mailboxes

– System calls

13

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Small single-SPE models – tools and
environment

� SPE compiler/linker compiles and links an SPE executable
� The SPE executable image is embedded as reference-able RO data in the PPE

executable
� A Cell programmer controls an SPE program via a PPE controlling process and its SPE

management library
– i.e. loads, initializes, starts/stops an SPE program

� The PPE controlling process, OS(PPE), and runtime(PPE or SPE) together establish the
SPE runtime environment, e.g. argument passing, memory mapping, system call
service.

711

14

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Small single-SPE models – PPE controlling
program

extern spe_program_handle spe_foo; /* the spe image handle from CESOF */

int main()
{

int rc, status;
speid_t spe_id;

/* load & start the spe_foo program on an allocated spe */
spe_id = spe_create_thread (0, &spe_foo, 0, NULL, -1, 0);

/* wait for spe prog. to complete and return final status */
rc = spe_wait (spe_id, &status, 0);

return status;
}

15

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Small single-SPE models – SPE code

/* spe_foo.c: A C program to be compiled into an executable called “spe_foo” */

int main(int speid, addr64 argp, addr64 envp)
{

char i;

/* do something intelligent here */
i = func_foo (argp);

/* when the syscall is supported */
printf(“Hello world! my result is %d \n”, i);

return i;
}

712

16

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Large single-SPE programming models

� Data or code working set cannot fit
completely into a local store

� The PPE controlling process, kernel, and
libspe runtime set up the system
memory mapping as SPE’s secondary
memory store

� The SPE program accesses the
secondary memory store via its
software-controlled SPE DMA engine -
Memory Flow Controller (MFC)

SPE
Program

System Memory

PPE controller
maps system
memory for

SPE DMA trans.

Local Store

DMA
transactions

17

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Large single-SPE programming models – I/O
data

� System memory for large size input / output data
– e.g. Streaming model

int g_ip[512*1024]

System memory

int g_op[512*1024]

int ip[32]

int op[32]

SPE program: op = func(ip)

DMA

DMA

Local store

713

18

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Large single-SPE programming models-SW
Cache

� System memory as secondary memory store
– Manual management of data buffers

– Automatic software-managed data cache

– Software cache framework libraries
– Compiler runtime support

Global objects

System memory

SW cache entries
SPE program

Local store

19

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Shared-memory Multiprocessor
� Cell BE can be programmed as a shared-memory multiprocessor

– PPE and SPE have different instruction sets and compilers
� SPEs and the PPE fully inter-operate in a cache-coherent model
� Cache-coherent DMA operations for SPEs

– DMA operations use effective address common to all PPE and SPEs

– SPE shared-memory store instructions are replaced
– A store from the register file to the LS
– DMA operation from LS to shared memory

– SPE shared-memory load instructions are replaced
– DMA operation from shared memory to LS
– A load from LS to register file

� A compiler could manage part of the LS as a local cache for instructions and data obtained
from shared memory.

714

20

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Large single-SPE programming models-
Overlays
� System memory as secondary memory store

– Manual loading of plug-in into code buffer
– Plug-in framework libraries

– Automatic and manual software-managed code overlay
– Compiler and Linker generated overlaying code

System memory

Local store

SPE func b or c

SPE func a, d or e

SPE func main & f

SPE func a

SPE func b

SPE func c

SPE func d

SPE func e

SPE func f

Call

Call

SPE func main

Overlay
region 2

Overlay
region 1

Non-overlay
region

An overlay is SPU code
that is dynamically
loaded and executed by
a running SPU
program. It cannot be
independently loaded
or run on an SPE

21

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Parallel programming models – Streaming

� SPE initiated DMA
� Large array of data fed through a group

of SPE programs
� A special case of job queue with regular

data
� Each SPE program locks on the shared

job queue to obtain next job
� For uneven jobs, workloads are self-

balanced among available SPEs

PPE

SPE1
Kernel()

SPE0
Kernel()

SPE7
Kernel()

System Memory

In

.

I7

I6

I5

I4

I3

I2

I1

I0

On

.

O7

O6

O5

O4

O3

O2

O1

O0

…..Data-parallel

715

22

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Parallel programming models – Pipeline

� Use LS to LS DMA bandwidth, not system
memory bandwidth

� Flexibility in connecting pipeline functions
� Larger collective code size per pipeline
� Load-balance is harder

PPE

SPE1
Kernel1()

SPE0
Kernel0()

SPE7
Kernel7()

System Memory

In

.

.

I6

I5

I4

I3

I2

I1

I0

On

.

.

O6

O5

O4

O3

O2

O1

O0

…..
DMA DMA

Task-parallel

23

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Programming Model Final Points
� A proper programming model reduces development cost while achieving higher

performance
� Programming frameworks and abstractions help with productivity
� Mixing programming models are common practice
� New models may be developed for particular applications.
� With the vast computational capacity, it is not hard to achieve a performance gain from

an existing legacy base
– Top performance is harder

� Tools are critical in improving programmer productivity

716

24

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Basic Programming

25

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

“Hello World!” – SPE Only
� SPU Program

� SPU Makefile

#include <stdio.h>

int main()

{

printf("Hello world!\n");

return 0;

}

PROGRAM_spu := hello_spu
include $(CELL_TOP)/make.footer

PROGRAM_spu tells make
to use SPE compiler

717

26

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Synergistic PPE and SPE (SPE Embedded)

� Applications use software constructs called SPE contexts to manage and
control SPEs.

� Linux schedules SPE contexts from all running applications onto the
physical SPE resources in the system for execution according to the
scheduling priorities and policies associated with the runable SPE
contexts.

� libspe provides API for communication and data transfer between PPE
threads and SPEs.

27

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

How a PPE program embeds an SPE program?

4 basic steps must be done by the PPE program
1. Create an SPE context.

2. Load an SPE executable object into the SPE context local store.

3. Run the SPE context. This transfers control to the operating system, which
requests the actual scheduling of the context onto a physical SPE in the system.

4. Destroy the SPE context.

718

28

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

SPE context creation

� spe_context_create - Create and initialize a new SPE context data structure.
#include <libspe2.h>

spe_context_ptr_t spe_context_create(unsigned int flags,
spe_gang_context_ptr_t gang)

– flags - A bit-wise OR of modifiers that are applied when the SPE context is created.

– gang - Associate the new SPE context with this gang context. If NULL is specified, the new SPE
context is not associated with any gang.

– On success, a pointer to the newly created SPE context is returned.

29

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

spe_program_load

� spe_program_load - Load an SPE main program.
#include <libspe2.h>

int spe_program_load (spe_context_ptr_t spe, spe_program_handle_t
*program)

– spe - A valid pointer to the SPE context for which an SPE program should be
loaded.

– program - A valid address of a mapped SPE program.

719

30

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

spe_context_run
� spe_context_run - Request execution of an SPE context.

#include <libspe2.h>

int spe_context_run(spe_context_ptr_t spe, unsigned int *entry, unsigned int runflags, void
*argp, void *envp, spe_stop_info_t *stopinfo)

– spe - A pointer to the SPE context that should be run.
– entry - Input: The entry point, that is, the initial value of the SPU instruction pointer, at which the SPE program should start

executing. If the value of entry is SPE_DEFAULT_ENTRY, the entry point for the SPU main program is obtained from the
loaded SPE image. This is usually the local store address of the initialization function crt0.

– runflags - A bit mask that can be used to request certain specific behavior for the execution of the SPE context. 0 indicates
default behavior.

– argp - An (optional) pointer to application specific data, and is passed as the second parameter to the SPE program,
– envp - An (optional) pointer to environment specific data, and is passed as the third parameter to the SPE program,
– stopinfo An (optional) pointer to a structure of type spe_stop_info_t

31

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

spe_context_destroy

� spe_context_destroy - Destroy the specified SPE context.
#include <libspe2.h>

int spe_context_destroy (spe_context_ptr_t spe)

– spe - Specifies the SPE context to be destroyed

– On success, 0 (zero) is returned, else -1 is returned

720

32

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

“Hello World!” – SPE object embedded in PPE program

� SPU program
– Same as for SPE only

� SPU Makefile

PROGRAM_spu := hello_spu

LIBRARY_embed := hello_spu.a
include $(CELL_TOP)/make.footer

33

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

“Hello World!” – PPU program
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <libspe2.h>

extern spe_program_handle_t hello_spu;

int main(void)
{

spe_context_ptr_t speid;
unsigned int flags = 0;
unsigned int entry = SPE_DEFAULT_ENTRY;
void * argp = NULL;
void * envp = NULL;
spe_stop_info_t stop_info;
int rc;

// Create an SPE context
speid = spe_context_create(flags, NULL);
if (speid == NULL) {
perror("spe_context_create");
return -2;
}

// Load an SPE executable object into the SPE context
local store
if (spe_program_load(speid, &hello_spu)) {
perror("spe_program_load");
return -3;
}

// Run the SPE context
rc = spe_context_run(speid, &entry, 0, argp, envp,
&stop_info);
if (rc < 0)
perror("spe_context_run");

// Destroy the SPE context
spe_context_destroy(speid);
return 0;

}

DIRS = spu
PROGRAM_ppu = hello_be1

IMPORTS = spu/hello_spu.a –lspe2 -lpthread
include $(CELL_TOP)/make.footer

PPU Makefile

721

34

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

PPE and SPE Synergistic Programming
#include <errno.h>

#include <stdio.h>

#include <stdlib.h>

#include <libspe2.h>

extern spe_program_handle_t hello_spu;
int main(void)

{

.

// Run the SPE context

rc = spe_context_run(speid, &entry, 0, argp, envp, &stop_info);

.
}

#include <stdio.h>

int main(unsigned long long speid, unsigned long long argp,
unsigned long long envp)

{

printf("Hello world!\n");

return 0;

}

PPU
Code

SPU
Code

35

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Primary Communication Mechanisms

� DMA transfers
� Mailbox messages
� Signal-notification
� All three are implemented and

controlled by the SPE’s MFC

722

36

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Memory Flow Controller (MFC) Commands
� Main mechanism for SPUs to

– access main storage (DMA commands)
– maintain synchronization with other processors and devices in the system (Synchronization commands)

� Can be issued either by SPU via its MFC or by PPE or other device, as follows:
– Code running on the SPU issues an MFC command by executing a series of writes and/or reads using channel instructions -

read channel (rdch), write channel (wrch), and read channel count (rchcnt).
– Code running on the PPE or other devices issues an MFC command by performing a series of stores and/or loads to memory-

mapped I/O (MMIO) registers in the MFC
� MFC commands are queued in one of two independent MFC command queues:

– MFC SPU Command Queue — For channel-initiated commands by the associated SPU
– MFC Proxy Command Queue — For MMIO-initiated commands by the PPE or other device

37

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Sequences for Issuing MFC Commands

� All operations on a given channel are
unidirectional

n only read or write operations for
a given channel, not bidirectional

� Accesses to channel-interface
resources through MMIO addresses
do not stall

� Channel operations are done in
program order

� Channel read operations to reserved
channels return ‘0’s

� Channel write operations to reserved
channels have no effect

� Reading of channel counts on
reserved channels returns ‘0’

� Channel instructions use the 32-bit
preferred slot in a 128-bit transfer

723

38

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

DMA Overview

39

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

DMA Commands

� MFC commands that transfer data are referred to as DMA
commands

� Transfer direction for DMA commands referenced from the SPE

n Into an SPE (from main storage to local store) � get

nOut of an SPE (from local store to main storage) � put

724

40

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

DMA Commands
Channel Control

Intrinsics
spu_writech

Composite
Intrinsics

spu_dmfcdma32

MFC Commands
mfc_get

defined as macros in
spu_mfcio.h

For details see: SPU C/C++ Language Extensions

41

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

DMA Get and Put Command (SPU)
� DMA get from main memory into local store

(void) mfc_get(volatile void *ls, uint64_t ea, uint32_t size,
uint32_t tag, uint32_t tid, uint32_t rid)

� DMA put into main memory from local store
(void) mfc_put(volatile void *ls, uint64_t ea, uint32_t size,

uint32_t tag, uint32_t tid, uint32_t rid)
� To ensure order of DMA request execution:

– mfc_putf : fenced (all commands executed before within the same tag group must finish first,
later ones could be before)

– mfc_putb : barrier (the barrier command and all commands issued thereafter are not executed
until all previously issued commands in the same tag group have been performed)

725

42

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

DMA-Command Tag Groups
� 5-bit DMA Tag for all DMA commands (except getllar, putllc, and putlluc)
� Tag can be used to

– determine status for entire group or command
– check or wait on the completion of all queued commands in one or more tag groups

� Tagging is optional but can be useful when using barriers to control the ordering of
MFC commands within a single command queue.

� Synchronization of DMA commands within a tag group: fence and barrier
– Execution of a fenced command option is delayed until all previously issued commands within the same

tag group have been performed.
– Execution of a barrier command option and all subsequent commands is delayed until all previously

issued commands in the same tag group have been performed.

43

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Barriers and Fences

726

44

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

DMA Characteristics
� DMA transfers

– transfer sizes can be 1, 2, 4, 8, and n*16 bytes (n integer)

– maximum is 16KB per DMA transfer

– 128B alignment is preferable (cache-line)
� DMA command queues per SPU

– 16-element queue for SPU-initiated requests

– 8-element queue for PPE-initiated requests

– SPU-initiated DMA is always preferable
� DMA tags

– each DMA command is tagged with a 5-bit identifier

– same identifier can be used for multiple commands

– tags used for polling status or waiting on completion of DMA commands
� DMA lists

– a single DMA command can cause execution of a list of transfer requests (in LS)

– lists implement scatter-gather functions

– a list can contain up to 2K transfer requests

45

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

PPE – SPE DMA Transfer

727

46

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Transfer from PPE (Main Memory) to SPE
� DMA get from main memory

mfc_get(lsaddr, ea, size, tag_id, tid, rid);

– lsaddr = target address in SPU local store for fetched data (SPU local address)

– ea = effective address from which data is fetched (global address)

– size = transfer size in bytes

– tag_id = tag-group identifier

– tid = transfer-class id

– rid = replacement-class id
� Also available via “composite intrinsic”:

spu_mfcdma64(lsaddr, eahi, ealow, size, tag_id, cmd);

47

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

DMA Command Status (SPE)

� DMA read and write commands are non-blocking
� Tags, tag groups, and tag masks used for:

– checking status of DMA commands

– waiting for completion of DMA commands
� Each DMA command has a 5-bit tag

– commands with same tag value form a “tag group”
� Tag mask is used to identify tag groups for status checks

– tag mask is a 32-bit word

– each bit in the tag mask corresponds to a specific tag id:

tag_mask = (1 << tag_id)

728

48

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

DMA Tag Status (SPE)

� Set tag mask
unsigned int tag_mask;

mfc_write_tag_mask(tag_mask);

– tag mask remains set until changed
� Fetch tag status

unsigned int result;

result = mfc_read_tag_status(); /* or mfc_stat_tag_status(); */

– tag status is logically ANDed with current tag mask

– tag status bit of ‘1’ indicates that no DMA requests tagged with the specific tag id
(corresponding to the status bit location) are still either in progress or in the DMA queue

49

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Waiting for DMA Completion (SPE)

� Wait for any tagged DMA:
n mfc_read_tag_status_any():

n wait until any of the specified tagged DMA commands is completed
� Wait for all tagged DMA:

n mfc_read_tag_status_all():

n wait until all of the specified tagged DMA commands are completed

� Specified tagged DMA commands = command specified by current tag mask setting

729

50

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

DMA Example: Read into Local Store

inline void dma_mem_to_ls(unsigned int mem_addr,
volatile void *ls_addr,unsigned int size)

{

unsigned int tag = 0;

unsigned int mask = 1;

mfc_get(ls_addr,mem_addr,size,tag,0,0);

mfc_write_tag_mask(mask);

mfc_read_tag_status_all();

}

Set tag mask

Wait for all tag
DMA completed

Read contents
of mem_addr
into ls_addr

51

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

DMA Example: Write to Main Memory

inline void dma_ls_to_mem(unsigned int mem_addr,volatile
void *ls_addr, unsigned int size)

{

unsigned int tag = 0;

unsigned int mask = 1;

mfc_put(ls_addr, mem_addr, size, tag, 0, 0);

mfc_write_tag_mask(mask);

mfc_read_tag_status_all();

}

Write contents of
mem_addr into

ls_addr

Set tag mask

Set tag mask

730

52

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

SPE – SPE DMA Transfer

53

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

SPE – SPE DMA

� Address in the other SPE’s local store is represented as a 32-bit effective address
(global address)

� SPE issuing the DMA command needs a pointer to the other SPE’s local store as
a 32-bit effective address (global address)

� PPE code can obtain effective address of an SPE’s local store:
#include <libspe2.h>

speid_t speid;

void *spe_ls_addr;

..

spe_ls_addr = spe_get_ls(speid);

� Effective address of an SPE’s local store can then be made available to other
SPEs (e.g. via DMA or mailbox)

731

54

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

DMA support for Double Buffering
#include <spu_intrinsics.h>
#include "cbe_mfc.h"
#define BUFFER_SIZE 4096
volatile unsigned char B[2][BUFFER_SIZE] __attribute__ ((aligned(128)));
void double_buffer_example (unsigned int eahi, unsigned int ealow, int buffers)
{

int next_idx, buf_idx = 0;
// Initiate first DMA transfer using first buffer
spu_mfcdma64(B[buf_idx], eahi, ealow, BUFFER_SIZE, buf_idx, MFC_GET_CMD);
ealow += BUFFER_SIZE;
while (--buffers) {

next_idx = buf_idx ^ 1;
// Initiate next DMA transfer
spu_mfcdma64(B[next_idx], eahi, ealow, BUFFER_SIZE, next_idx, MFC_GET_CMD);
ealow += BUFFER_SIZE;
// Wait for previous transfer to complete
spu_writech (MFC_WrTagMask, 1 << buf_idx);
(void) spu_mfcstat(2);
// Use the data from the previous transfer
use_data (B[buf_idx]);
buf_idx = next_idx;

}
// Wait for last transfer to complete
spu_writech (MFC_WrTagMask, 1 << buf_idx);
(void)spu_mfcstat(2);
// Use the data from the last transfer
use_data (B[buf_idx]);

}

55

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Tips to Achieve Peak Bandwidth for DMAs

� The performance of a DMA data transfer is best when the source and
destination addresses have the same quadword offsets within a PPE
cache line.

� Quadword-offset-aligned data transfers generate full cache-line bus
requests for every unrolling, except possibly the first and last unrolling.

� Transfers that start or end in the middle of a cache line transfer a partial
cache line (less than 8 quadwords) in the first or last bus request,
respectively.

732

56

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Mailboxes Overview

57

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Uses of Mailboxes
� To communicate messages up to 32 bits in length, such as buffer completion flags or program

status
– e.g., When the SPE places computational results in main storage via DMA. After requesting the DMA

transfer, the SPE waits for the DMA transfer to complete and then writes to an outbound mailbox to notify
the PPE that its computation is complete

� Can be used for any short-data transfer purpose, such as sending of storage addresses,
function parameters, command parameters, and state-machine parameters

� Can also be used for communication between an SPE and other SPEs, processors, or devices
– Privileged software needs to allow one SPE to access the mailbox register in another SPE by mapping the

target SPE’s problem-state area into the EA space of the source SPE.
– If software does not allow this, then only atomic operations and signal notifications are available for SPE-

to-SPE communication.

733

58

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Mailboxes - Characteristics
Each MFC provides three mailbox queues of 32 bit each:
� PPE (“SPU write outbound”) mailbox queue

– SPE writes, PPE reads

– 1 entry per queue

– SPE stalls writing to full mailbox
� PPE (“SPU write outbound”) interrupt mailbox queue

– like PPE mailbox queue, but an interrupt is posted to the PPE when the mailbox is written
� SPU (“SPU read inbound”) mailbox queue

– PPE writes, SPE reads

– 4 entries per queue

– can be overwritten

59

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Mailboxes API – libspe2

MFC

PPE mbox

out_mbox

dataflow

spu_stat_out_mbox

spu_write_out_mbox
spe_out_mbox_status(<speid>)

spe_out_mbox_read(<speid>, &<data>))

PPE intr mbox

out_intr_mbox

spu_stat_out_intr_mbox

spu_write_out_intr_mbox
spe_out_intr_mbox_status(<speid>)

spe_get_event

dataflow

SPE mbox

in_mbox

spu_stat_in_mbox

spu_read_in_mbox

spe_in_mbox_status(<speid>)

spe_in_mbox_write(<speid>,<data>)

dataflow

PPU (libspe2.h) SPU (spu_mfcio.h)

734

60

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

SPU Write Outbound Mailboxes

61

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

SPU Write Outbound Mailbox

– The value written to the SPU Write Outbound Mailbox channel SPU_WrOutMbox is entered into the
outbound mailbox in the MFC if the mailbox has capacity to accept the value.

– If the mailbox can accept the value, the channel count for SPU_WrOutMbox is decremented by ‘1’.

– If the outbound mailbox is full, the channel count will read as ‘0’.

– If SPE software writes a value to SPU_WrOutMbox when the channel count is ‘0’, the SPU will stall on
the write.

– The SPU remains stalled until the PPE or other device reads a message from the outbound mailbox by
reading the MMIO address of the mailbox.

– When the mailbox is read through the MMIO address, the channel count is incremented by ‘1’

735

62

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

SPU Write Outbound Interrupt Mailbox
� The value written to the SPU Write Outbound Interrupt Mailbox channel (SPU_WrOutIntrMbox) is entered into

the outbound interrupt mailbox if the mailbox has capacity to accept the value.
� If the mailbox can accept the message, the channel count for SPU_WrOutIntrMbox is decremented by ‘1’, and an

interrupt is raised in the PPE or other device, depending on interrupt enabling and routing.
� There is no ordering of the interrupt and previously issued MFC commands.
� If the outbound interrupt mailbox is full, the channel count will read as ‘0’.
� If SPE software writes a value to SPU_WrOutIntrMbox when the channel count is ‘0’, the SPU will stall on the

write.
� The SPU remains stalled until the PPE or other device reads a mailbox message from the outbound interrupt

mailbox by reading the MMIO address of the mailbox.
� When this is done, the channel count is incremented by ‘1’.

63

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Waiting to Write SPU Write Outbound Mailbox Data
� To avoid SPU stall, SPU can use the read-channel-count instruction on the SPU Write Outbound Mailbox channel to

determine if the queue is empty before writing to the channel.
� If the read-channel-count instruction returns ‘0’, the SPU Write Outbound Mailbox Queue is full.
� If the read channel-count instruction returns a non-zero value, the value indicates the number of free entries in the

SPU Write Outbound Mailbox Queue.
� When the queue has free entries, the SPU can write to this channel without stalling the SPU.
Polling SPU Write Outbound Mailbox or SPU Write Outbound Interrupt Mailbox.

/* To write the value 1 to the SPU Write Outbound Interrupt Mailbox instead

* of the SPU Write Outbound Mailbox, simply replace SPU_WrOutMbox

* with SPU_WrOutIntrMbox in the following example.*/

unsigned int mb_value;

do {

/* Do other useful work while waiting.*/

} while (!spu_readchcnt(SPU_WrOutMbox)); // 0 � full, so something useful

spu_writech(SPU_WrOutMbox, mb_value);

736

64

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Polling for or Block on an SPU Write Outbound Mailbox
Available Event

#define MBOX_AVAILABLE_EVENT 0x00000080
unsigned int event_status;
unsigned int mb_value;
spu_writech(SPU_WrEventMask, MBOX_AVAILABLE_EVENT);
do {

/*
* Do other useful work while waiting.
*/

} while (!spu_readchcnt(SPU_RdEventStat));
event_status = spu_readch(SPU_RdEventStat); /* read status */
spu_writech(SPU_WrEventAck, MBOX_AVAILABLE_EVENT); /* acknowledge event */
spu_writech(SPU_WrOutMbox, mb_value); /* send mailbox message */
� NOTES: To block, instead of poll, simply delete the do-loop above.

65

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

PPU reads SPU Outbound Mailboxes

� PPU must check Mailbox Status Register first
– check that unread data is available in the SPU Outbound Mailbox or SPU Outbound Interrupt

Mailbox

– otherwise, stale or undefined data may be returned
� To determine that unread data is available

– PPE reads the Mailbox Status register

– extracts the count value from the SPU_Out_Mbox_Count field
� count is

– non-zero � at least one unread value is present

– zero � PPE should not read but poll the Mailbox Status register

737

66

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

SPU Read Inbound Mailbox

67

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

SPU Read Inbound Mailbox Channel
� Mailbox is FIFO queue

– If the SPU Read Inbound Mailbox channel (SPU_RdInMbox) has a message, the value read from
the mailbox is the oldest message written to the mailbox.

� Mailbox Status (empty: channel count =0)
– If the inbound mailbox is empty, the SPU_RdInMbox channel count will read as ‘0’.

� SPU stalls on reading empty mailbox
– If SPE software reads from SPU_RdInMbox when the channel count is ‘0’, the SPU will stall on

the read. The SPU remains stalled until the PPE or other device writes a message to the mailbox
by writing to the MMIO address of the mailbox.

� When the mailbox is written through the MMIO address, the channel count is
incremented by ‘1’.

� When the mailbox is read by the SPU, the channel count is decremented by '1'.

738

68

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

SPU Read Inbound Mailbox Characteristics

� The SPU Read Inbound Mailbox can be overrun by a PPE in which case,
mailbox message data will be lost.

� A PPE writing to the SPU Read Inbound Mailbox will not stall when this mailbox
is full.

69

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

PPE Access to Mailboxes
� PPE can derive “addresses” of mailboxes from spe thread id
� First, create SPU thread, e.g.:

speid_t spe_id;
spe_id = spe_create_thread(0,spu_load_image,NULL,NULL,-1,0);

– spe_id has type speid_t (normally an int)
� PPE mailbox calls use spe_id to identify desired SPE’s mailbox
� Functions are in libspe.a

739

70

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Read: PPE Mailbox Queue – PPE Calls
(libspe.h)

� “SPU outbound” mailbox
� Check mailbox status:

unsigned int count;
count = spe_stat_out_mbox(spe_id);

– count = 0 � no data in the mailbox

– otherwise, count = number of incoming 32-bit words in the mailbox
� Get mailbox data:

unsigned int data;
data = spe_read_out_inbox(spe_id);

– data contains next 32-bit word from mailbox

– routine is non-blocking

– routine returns MFC_ERROR (0xFFFFFFFF) if no data in mailbox

71

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Write: PPE Mailbox Queues – SPU Calls (spu_mfcio.h)

� “SPU outbound” mailbox
� Check mailbox status:

unsigned int count;
count = spu_stat_out_mbox();

– count = 0 � mailbox is full

– otherwise, count = number of available 32-bit entries in the mailbox
� Put mailbox data:

unsigned int data;
spu_write_out_mbox(data);

– data written to mailbox

– routine blocks if mailbox contains unread data

740

72

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

PPE Interrupting Mailbox Queue – PPE Calls
� “SPU outbound” interrupting mailbox
� Check mailbox status:

unsigned int count;
count = spe_stat_out_intr_mbox(spe_id);

– count = 0 � no data in the mailbox

– otherwise, count = number of incoming 32-bit words in the mailbox
� Get mailbox data:

– interrupting mailbox is a privileged register

– user PPE applications read mailbox data via spe_get_event

73

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

PPE Interrupting Mailbox Queues – SPU Calls

� “SPU outbound” interrupting mailbox
� Put mailbox data:

unsigned int data;

spe_write_out_intr_mbox(data);

– data written to interrupting mailbox

– routine blocks if mailbox contains unread data
� defined in spu_mfcio.h

741

74

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Write: SPU Mailbox Queue – PPE Calls
(libspe.h)

� “SPU inbound” mailbox
� Check mailbox status:

unsigned int count;
count = spe_stat_in_mbox(spe_id);

– count = 0 � mailbox is full

– otherwise, count = number of available 32-bit entries in the mailbox
� Put mailbox data:

unsigned int data, result;
result = spe_write_in_mbox(spe_id,data);

– data written to next 32-bit word in mailbox

– mailbox can overflow

– routine returns 0xFFFFFFFF on failure

75

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Read: SPU Mailbox Queue – SPU Calls (spu_mfcio.h)

� “SPU inbound” mailbox
� Check mailbox status:

unsigned int count;
count = spu_stat_in_mbox();

– count = 0 � no data in the mailbox
– otherwise, count = number of incoming 32-bit words in the mailbox

� Get mailbox data:
unsigned int data;
data = spu_read_in_mbox();

– data contains next 32-bit word from mailbox
– routine blocks if no data in mailbox

742

76

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Example using libspe2.x

77

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

The PPU program
#include <stdio.h>
//#include <libspe.h>
//#include <libmisc.h>
#include <string.h>
#include <libspe2.h>

//spu program
extern spe_program_handle_t getbuf_spu;
//local buffer
unsigned char buffer[128] __attribute__ ((aligned(128)));
//spe context
spe_context_ptr_t speid;
unsigned int flags = 0;
unsigned int entry = SPE_DEFAULT_ENTRY;
spe_stop_info_t stop_info;
int rc;

int main (void)
{

strcpy (buffer, "Good morning!");
printf("Original buffer is %s\n", buffer);
speid = spe_context_create(flags, NULL);

spe_program_load(speid, &getbuf_spu);
rc = spe_context_run(speid, &entry, 0, buffer, NULL,
&stop_info);
spe_context_destroy(speid);

printf("New modified buffer is %s\n", buffer);
return 0;

}

DIRS = spu

PROGRAM_ppu = getbuf_dma

IMPORTS = -lspe2 -lpthread -lmisc \

spu/getbuf_spu.a

include $(CELL_TOP)/make.footer

743

78

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

The SPU program
#include <stdio.h>
#include <string.h>
//#include <libmisc.h>
#include <spu_mfcio.h>
unsigned char buffer[128] __attribute__ ((aligned(128)));
int main(unsigned long long speid, unsigned long long argp, unsigned long long envp)
{

int tag = 31, tag_mask = 1<<tag;
// DMA in buffer from PPE
mfc_get(buffer, (unsigned long long)argp, 128, tag, 0, 0);
mfc_write_tag_mask(tag_mask);
mfc_read_tag_status_any();
printf("SPE received buffer \"%s\"\n", buffer);
// modify buffer
strcpy (buffer, “Good Morning!");
printf("SPE sent to PPU buffer \"%s\"\n", buffer);
// DMA out buffer to PPE
mfc_put(buffer, (unsigned long long)argp, 128, tag, 0, 0);
mfc_write_tag_mask(tag_mask);
mfc_read_tag_status_any();
return 0;

}

PROGRAM_spu := getbuf_spu

LIBRARY_embed := getbuf_spu.a

IMPORTS = -lmisc

include $(CELL_TOP)/make.footer

79

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

DMA Example: Read into Local Store

void dma_mem_to_ls(unsigned int mem_addr,
volatile void *ls_addr,unsigned int size)

{

unsigned int tag = 0;

unsigned int mask = 1;

mfc_get(ls_addr,mem_addr,size,tag,0,0);

mfc_write_tag_mask(mask);

mfc_read_tag_status_all();

}

Set tag mask

Wait for all tag
DMA completed

Read contents
of mem_addr
into ls_addr

744

80

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Graphics Workloads

81

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Cell Servers for Online Gaming

Motivation
� Server side physics to enable next generation MMOGs
� Current video games perform limited amount of physical simulation

n Not enough client CPU resources

745

82

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Rigid Body Dynamics

� Objects in the game world are represented by one or more rigid bodies; a sparsely
populated world will have about 1000 rigid bodies

– 6 degrees of freedom per rigid body

– Linear position of the body’s center of mass and linear velocity are represented by a 3 vector

– Orientation representation is a unit quaternion

– Angular velocity is a 3 vector

� Forces and constraints define interactions between rigid bodies and allow joints,
hinges, etc. to be implemented

� The physics engine provides real-time simulation of the interaction between the
rigid bodies

83

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Sparse Matrix Data Structures on Cell

� Matrix is block-sparse with 6x6 blocks
– diagonal blocks represent bodies and
– off-diagonal blocks represent forces between bodies

� Typical 65-body scene has ~200 nonzero blocks in a 65x65-block matrix
� Diagonal elements are assumed nonzero and are stored as a “block” vector for fast

access
� Off-diagonal elements are stored in linked lists (one per block row) of block data and

associated block column position
� 6x6 float block data is currently stored in column-major form in a padded 8x6 block for

ease of access
� Vectors used in sparse matrix multiplication are similarly stored with one unused float

per three elements

746

84

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Numerical Integration
� Game world is partitioned into non-interacting groups of 1 or more rigid bodies which can be simulated on a

single SPU (maximum of about 120 bodies per group).
� SPU performs semi-implicit integration step for a second-order rigid body dynamics system using conjugate

gradient squared algorithm;
– basic operation is multiplication of a 6x6-block-sparse matrix by a vector and multiplication of the matrix transpose by a second vector

� Output of the integration step gives the change in velocity and angular velocity for each rigid body over one
time step

� Integration algorithm:
1. Calculate the components of A and b. v0 and W are trivial to extract. f0 must be calculated. df_dx and df_dv both

require considerable computational effort to calculate.
2. Form A and b.
3. solve A*delta_v = b by a conjugate gradient method.
4. step the system from Y0 to Y1 by delta_v. This is nearly trivial except that integrating orientation is slightly ugly.

85

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

SPU Implementation: Rigid Body Structures
struct Rigid_Body {

//state
Vec3 position;
Quaternion or Matrix33 orientation;
Vec3 velocity;
Vec3 angular_velocity
//mass params
float inverse_mass;
Matrix33 inverse_inertia;
//other params:
float coeffecient_friction;
float coeffecient_damping;
...

} bodies[num_bodies];
The output is logically:

struct Rigid_Body_Step {
Vec3 delta_velocity;
Vec3 delta_angular_velocity;

} delta_v[num_bodies];

The forces can be global, unary, or binary. Here are examples of
two common binary forces:
struct Point_To_Point_Constraint_Force {

int index_body_a;
int index_body_b;
Vec3 point_body_space_a;
Vec3 point_body_space_b;

};
struct Contact_Force {

int index_body_a;
int index_body_b;
Vec3 point_world_space;
Vec3 normal_world_space;
float penetration;

};

747

86

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Intermediate data structures
� Vec4 v0[2*num_bodies];
� Vec4 f0[2*num_bodies];
� Six component vectors are padded out to 8 components, with each one float of padding on each of the linear and angular components

– If the SPE calculations were straightforward dense linear algebra, the padding could be dropped, but due to the sparse matrix block granularity, it is better to have the vector components aligned
� The most complicated data structure is the block sparse matrix:

struct Block_Sparse_Matrix {
struct Block {

Matrix86 m;
int column_index;
Element* pointer_next;

};
Block* rows[NUM_BODIES];

};
� The logically 6x6 blocks are padded to 8x6. The matrix is stored in a column major fashion, with padding on the 4th and 8th element to match padding in v0 and f0:

Matrix43 linear_linear, linear_angular;
Matrix43 angular_linear, angular_angular;

� Each row has a singly linked list to the elements. The list is maintained to be sorted by increasing column_index, so that find/insert operations can early out (given that there is never an insert without a find,
there is no cost to maintaining this sort order):
struct Block_Sparse_Matrix2 {

struct Block {
Matrix86 m;
int column_index;
Element* pointer_next;

};
Block* rows[NUM_BODIES];

};

87

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Numerical Integration Steps

Steps 1-4 are performed on the SPE.
1. Calculate the components of A and b. v0 and W are trivial to extract. f0 must be calculated. df_dx and df_dv both require considerable

computational effort to calculate.
2. Form A and b
3. solve A*delta_v = b by a conjugate gradient method.
4. step the system from Y0 to Y1 by delta_v

The steps of the SPE implementation:
1. Initialize A and b to zero.
2. Construct A

1. By looping over each global, unary, and binary force, and calculating its force contribution and its derivatives, multiplying by
the appropriate factors and accumulating into A and b
1. Example: for a binary force we accumulate df_dv + h*df_dx into A and f0 + h*(df_dx*v0) is accumulated into b
2. For each binary force (between bodies of index i and j):

1. Find/allocate the blocks (i,i), (j,j), (i,j) and (j,i) of A

748

88

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Numerical Integration Steps (cont)

1. Calculate the force - the exact calculation of course depends on what type of binary force is required, but generally uses auxiliary force data (such as body space
positions) and the two rigid body's kinematic state.

3. Calculate the derivatives. The force is logically two 6-vectors (one for each body), and its derivative with respect to a 6-vector
body state (position or velocity) is logically a 6x6 matrix. A and b are finalized – this involves the h*W premultiply.

A = I - h*w*A
b = h*w*b

4. Solve A=b by a conjugate gradient method.
Why was conjugate gradient squared chosen?

– The preferred choice is bi-conjugate gradient, but this requires multiplies by A transpose
– The sparse matrix transpose times vector can be written in a row-oriented fashion, but having the inner 6x6 logical block efficiently support both multiplication with

a logical 6-vector and multiplication of its transpose with a logical 6-vector may be more expensive than the alternative – conjugate gradient squared.
– Caching the transpose of the blocks would likely take too much memory

89

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Conjugate Gradient Squared Method
� The conjugate gradient squared method only requires A times a vector – however, it has been found in practice

to converge more slowly.
� Each iteration of the conjugate gradient performs two matrix vector products along with a handful of vector

scales, adds, and inner products. The matrix product is the only non-trivial operation. It looks like this:
void mul(Vec8* res, const Block_Sparse_Matrix2& A, const Vec8* x)

{

for (int i = 0; i < num_bodies; ++i) {

Vec8 sum = 0;

for (Block* b=A.rows[i]; b; b = b->pointer_next)

sum += b->m * x[b->column_index];

res[i] = sum;

}

}
Where , b->m * x[b->column_index] is pseudo code for Column_Major_Matrix86 times Vec8 which is basically trivial SPE code.

749

90

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

SPU Sparse Matrix Multiply Code
void mul(vf4 d[], const SPU_Sparse_Matrix_Element* const A[], const vf4 x[])
{

PROFILER(mul);
int i;
for (i=0; i < nv/2; ++i) {

const SPU_Sparse_Matrix_Element* p = A[i];

vf3 s0 = vf3_zero;
vf3 s1 = vf3_zero;

while (p) {
int j = p->j;
s0 = spu_add(s0, xform_vf3(&p->a.a[0][0], x[2*j+0]));
s0 = spu_add(s0, xform_vf3(&p->a.a[0][1], x[2*j+1]));
s1 = spu_add(s1, xform_vf3(&p->a.a[1][0], x[2*j+0]));
s1 = spu_add(s1, xform_vf3(&p->a.a[1][1], x[2*j+1]));

p = p->Pnext;
}
d[2*i+0] = s0;
d[2*i+1] = s1;

}
}

91

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Memory constraints and workload size
� The number of matrix blocks required is less than num_bodies + 2*num_binary_forces
� A typical 65 rigid body scene had approximately 400 contacts and 200 matrix block elements
� SPU memory usage for integrating this example scene follows:

Input:
num_bodies*sizeof(Padded(Rigid_Body)) = 65*160B = 10400B
num_contacts*sizeof(Padded(Contact_Force)) = 400*48B = 19200B
TOTAL= 29600B

Output:
num_bodies*sizeof(Padded(Rigid_Body_Step)) = 65*32B = 2080B

Intermediate:
num_bodies*sizeof(Padded(W_Element)) = 65*64B = 4160B
num_vectors*num_bodies*sizeof(Padded(Vec6)) = 8*65*32B = 16640B
num_bodies*sizeof(Block*) = 65*4B = 260B
num_blocks*sizeof(Padded(Block)) = 200*208B = 41600B
TOTAL = 62660B

� Including double buffering the input and output areas, we use a total of 126,020B
� Maximum workload is probably less than 120 bodies
� Demo

750

92

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Ray Tracing: Quaternion Julia Sets on the GPURay Tracing: Quaternion Julia Sets on the GPU

� Keenan Crane (University of Illinois) – GPU implementation

� Based on “Ray Tracing Deterministic 3-D Fractals” Computer Graphics,
Volume 23, Number 3, July 1989

� “This kind of algorithm is pretty much ideal for the GPU - extremely high
arithmetic intensity and almost zero bandwidth usage” – Keenan Crane

93

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Optimal Data Organization: Optimal Data Organization:
Array of Structures versus Structure of Arrays

Typedef struct _Triangle {
vector float a, b, c

} Triangles;

Triangles triangles[];

Structure data organization for single triangle

� AOS data-packing approach can produce small code sizes, but
� Typically less than optimal for SIMD architectures
� Generally requires significant loop-unrolling to improve its efficiency
� Memory wasted

� If the vertices contain fewer components than the SIMD vector can
hold , e.g., 3 components instead of four

wzyxVertex c

wzyxVertex b

wzyxVertex a

(1) Array of Structures

751

94

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Structure of Arrays for 4 TrianglesStructure of Arrays for 4 Triangles

Triangle 4Triangle 3Triangle 2Triangle 1c[2]: z1,z2,z3,z4

Triangle 4Triangle 3Triangle 2Triangle 1c[1]: y1,y2,y3,y4

Triangle 4Triangle 3Triangle 2Triangle 1c[0]: x1,x2,x3,x4

Triangle 4Triangle 3Triangle 2Triangle 1b[2]: z1,z2,z3,z4

Triangle 4Triangle 3Triangle 2Triangle 1b[1]: y1,y2,y3,y4

Triangle 4Triangle 3Triangle 2Triangle 1b[0]: x1,x2,x3,x4

Triangle 4Triangle 3Triangle 2Triangle 1a[2]: z1,z2,z3,z4

Triangle 4Triangle 3Triangle 2Triangle 1a[1]: y1,y2,y3,y4

Triangle 4Triangle 3Triangle 2Triangle 1a[0]: x1,x2,x3,x4

� SOA data-packing approach can be more efficient for some algorithms
� Typically executes well on SIMD architectures
� Less memory wasted
� Usually more complex code

Struct Triangles {
Vector float a[3], b[3], c[3];

}

Optimal Data Organization: Optimal Data Organization:
Array of Structures versus Structure of Arrays

(2) Structure of Arrays for 4 Triangles
Structure data organization for 4 triangles

95

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

PerformancePerformance

7 SPEs used for rendering + 1 SPE reserved for image compression

0 2 4 6 8 10 12 14 16 18

Frames/sec (1024x1024)

Nvidia GeForce 7800 GT OC

IBM 3.2 GHz Cell (AOS)

IBM 3.2 GHz Cell (SOA)

Julia Set Ray Tracing Performance

752

96

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Texture Mapping the Julia Set
� Texture references:

– Difficult to set up (predict) DMAs in advance

– Significant spatial & temporal locality

– Small working set size (16-32 kb)

� Texture memory organization
– Consistency with framebuffer rendering order

– Tiled framebuffer memory � Tiled texture memory
� Cache layout organization

– Use cache line size == texture tile size

* Findings from The Design and Analysis of a Cache Architecture for Texture Mapping, Ziyad S.
Hakura, and Annop Gupta [Stanford, 1997]

97

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

High Level API’s

� Simplify programming
– Hide details of DMA

� Common Operations
– Cached data read, write

– Pre-touch

– Flush

– Invalidate

– etc.

#include <spe_cache.h>

#define LOAD1(addr) \
* ((char *) spe_cache_rd(addr))

#define STORE1(addr, c) \
* ((char *) spe_cache_wr(addr)) = c

void memcpy_ea(uint dst, uint src, uint size)

{
while (size > 0) {

char c = LOAD1(src);
STORE1(dst, c);
size--;
src++;
dst++;

}

}

753

98

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Low level Cache API

� Depend on cache type
� Programmer directly controls

– Look up

– Branch to miss handler

– Wait for DMA completion
� Custom interfaces

– Multiple lookups

– Special data types

– Cache locking

#include <spe_cache.h>

unsigned int __spe_cache_rd(unsigned int ea) {
unsigned int ea_aligned = (ea) & ~SPE_CACHELINE_MASK;
int set, line, byte, missing;
unsigned int ret;

missing = _spe_cache_dmap_lookup_(ea_aligned, set);
line = _spe_cacheline_num_(set);
byte = _spe_cacheline_byte_offset_(ea);
ret = *((unsigned int *) &spe_cache_mem[line + byte]);
if (unlikely(missing)) {

_spe_cache_miss_(ea_aligned, set, 0, 1);
spu_writech(22, SPE_CACHE_SET_TAGMASK(set));
spu_mfcstat(MFC_TAG_UPDATE_ALL);
ret = *((unsigned int *) &spe_cache_mem[line + byte]);

}
return ret;

}

99

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Example: SPE Texture MappingExample: SPE Texture Mapping

� Texturing maps images onto 3-D surfaces
� Cube environment mapping reflects image

data from 1 of 6 surrounding texture maps
� Fresnel reflection & refraction increase

realism, complexity of texture look up
� Animated 3-D Julia Set Fractal

754

100

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Interactive Ray-tracing

Renewed interest from Graphics
Community

– Global Illumination

– Rendering time scales sub linearly with scene
complexity

– Scales well on multi-core processors

– Mathematically elegant

– Algorithmically simple

Courtesy of Barry Minor, IBM Quasar Design Center

101

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

IBM iRT
Interactive Ray-tracer
� Visualization of Huge Digital Models

� Powered by IBM QS20 Blades

� 720p and 1080p HDTV Output

� Seamless Scale Out
� More Blades

� More Cells

� More performance

� Real-time Ambient Occlusion

� Server Side Rendering
� Image Encode

� IB or Network Image Delivery

� Dynamic Load Balancing

� Across Multiple Blades, Cells, & SPEs

C
ou

rte
sy

 o
f B

ar
ry

 M
in

or
,IB

M
C

ou
rte

sy
 o

f B
ar

ry
 M

in
or

,IB
M

755

102

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

� Texture Maps
� Bilinear Filtering

� Bump Maps
� Blinn Style

� Phong Lighting Model
� Phong Shading

� Multi-Sampling

� 1, 4, 16 Samples per Pixel

� Jitter Sampled

� Ambient Occlusion

� 4, 16, 64 Random Samples per Primary

� Optical Effects

� Reflection, Refraction

IBM iRT
Supported Rendering Features

103

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Performance Scales Across SPEs
iRT SPE Performance Scaling

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SPEs

Fr
am

es
/S

ec

1080p 1.6M Triangles

QS20 Blades, FC5, Cell SDK 2.0

756

104

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Performance Scales Across Blades
iRT Blade Performance Scaling

0
2
4
6
8

10
12
14
16
18
20

1 2 3 4 5 6 7

Blades

Fr
am

es
/S

ec

1080p 1.6M Triangles

QS20 Blades, FC5, Cell SDK 2.0

105

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Ray-Tracing + Ambient Occlusion

Primary, Shadow, Secondary, Global illumination – 288 Rays per Pixel

757

106

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Ray-Triangle Intersection
static inline int isect_ray4_triangle (const struct ray4 *ray,

const float4 p[3], hit_rec4 * hit, uint id)
{

vec_uint4 vid = spu_splats (id);
vec_float4 p0 = p[0].v;
vec_float4 p1 = p[1].v;
vec_float4 p2 = p[2].v;
vec_float4 ro_x = ray->o.x;
vec_float4 ro_y = ray->o.y;
vec_float4 ro_z = ray->o.z;
vec_float4 rd_x = ray->d.x;
vec_float4 rd_y = ray->d.y;
vec_float4 rd_z = ray->d.z;
vec_float4 edge1 = spu_sub (p1, p0);
vec_float4 edge2 = spu_sub (p2, p0);
vec_float4 hit_t = hit->t;
vec_float4 hit_u = hit->u;
vec_float4 hit_v = hit->v;
vec_uint4 hit_id = hit->id;
vec_float4 one = spu_splats (1.0f);
vec_float4 zero = spu_splats (0.0f);
vec_float4 p0_x = spu_splats (spu_extract (p0, 0));
vec_float4 p0_y = spu_splats (spu_extract (p0, 1));
vec_float4 p0_z = spu_splats (spu_extract (p0, 2));
vec_float4 edge1_x = spu_splats (spu_extract (edge1, 0));
vec_float4 edge1_y = spu_splats (spu_extract (edge1, 1));
vec_float4 edge1_z = spu_splats (spu_extract (edge1, 2));
vec_float4 edge2_x = spu_splats (spu_extract (edge2, 0));
vec_float4 edge2_y = spu_splats (spu_extract (edge2, 1));
vec_float4 edge2_z = spu_splats (spu_extract (edge2, 2));

vec_float4 pvec_x, pvec_y, pvec_z;
vec_float4 tvec_x, tvec_y, tvec_z;
vec_float4 qvec_x, qvec_y, qvec_z;
vec_float4 u, v, t;
vec_float4 det, inv_det;
vec_uint4 u_geq_0, v_geq_0;
vec_uint4 uv_leq_1, t_lt_hit;
vec_uint4 t_geq_0, valid_hit;

_CROSS3_V (pvec, rd, edge2);
det = _DOT3_V (edge1, pvec);
_INVERSE (inv_det, det);
_SUB3_V (tvec, ro, p0);
_CROSS3_V (qvec, tvec, edge1);
u = spu_mul (_DOT3_V (tvec, pvec), inv_det);
v = spu_mul (_DOT3_V (rd, qvec), inv_det);
t = spu_mul (_DOT3_V (edge2, qvec), inv_det);
u_geq_0 = spu_cmpge (u, zero);
v_geq_0 = spu_cmpge (v, zero);
uv_leq_1 = spu_cmple (spu_add (u, v), one);
t_lt_hit = spu_cmplt (t, hit_t);
t_geq_0 = spu_cmpge (t, zero);
valid_hit = spu_and (spu_and (spu_and (u_geq_0, v_geq_0),

spu_and(uv_leq_1, t_lt_hit)), t_geq_0);

hit->t = spu_sel (hit_t, t, valid_hit);
hit->u = spu_sel (hit_u, u, valid_hit);
hit->v = spu_sel (hit_v, v, valid_hit);
hit->id = spu_sel (hit_id, vid, valid_hit);

return _any4 (valid_hit) ? 1 : 0;
}

107

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Demos

City Lamborghini

758

108

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Thank you

109

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Questions?

759

110

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

(c) Copyright International Business Machines Corporation 2005.
All Rights Reserved. Printed in the United Sates April 2005.

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or both.
IBM IBM Logo Power Architecture

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document are
NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction could result
in death, bodily injury, or catastrophic property damage. The information contained in this document does not affect or change
IBM product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity
under the intellectual property rights of IBM or third parties. All information contained in this document was obtained in specific
environments, and is presented as an illustration. The results obtained in other operating environments may vary.

While the information contained herein is believed to be accurate, such information is preliminary, and should not be relied
upon for accuracy or completeness, and no representations or warranties of accuracy or completeness are made.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will IBM be liable
for damages arising directly or indirectly from any use of the information contained in this document.

IBM Microelectronics Division The IBM home page is http://www.ibm.com
1580 Route 52, Bldg. 504 The IBM Microelectronics Division home page is
Hopewell Junction, NY 12533-6351 http://www.chips.ibm.com

The RapidMind Development
Platform

Michael McCool

760

Outline

• Basic Concepts
– Background
– Performance
– Architecture
– Basic vocabulary
– Defining program objects
– Parallel programming model
– Loop conversion example

• Advanced Topics
– Accessors and copying semantics
– Applications of dynamic code generation
– Design patterns
– Acceleration strategies
– Program manipulation

• Application Examples
– Crowd simulation, FFT and convolution, raytracing

• RapidMind Development Platform
– Single-source solution for portable parallel programming
– Safe and deterministic data-parallel programming model
– Scalable to arbitrary number of cores
– Integrates with existing C++ compilers

• Can be used for programming multiple targets
– Unified programming model for both accelerators and CPUs
– Support for both GPUs and Cell BE generally available
– Prototype backend demonstrated on multi-core CPU

761

• Programmability
– Just an ISO standard C++ library
– No new tools or workflow
– No need for low-level understanding of the processor(s)
– Expressive, safe, modular, and easy to learn

• Performance
– Leverages all available computational resources
– Encourages and supports scalable data parallelism

• Portability
– Application programming independent of OS or target platform
– New processors supported without change to application

Programmability

• Use existing ISO standard C++ compiler:
– Just include a header file, link to a library
– Single-source solution, can be used with existing code bases
– Does not require modification of debugging and build

environments

• Allows specification of arbitrary computation:
– NOT just a library of canned functions
– Uses its own runtime optimizing code generator
– User can specify arbitrary computational kernels
– Staged compilation strategy avoids overhead of C++

762

Portability

• Multiple hardware targets:
– NVIDIA GPUs
– AMD/ATI GPUs
– Cell BE
– Prototype for x86 multi-core demonstrated

• Independent of number of cores
• Independent of memory model

– Shared or distributed

• If main processor does not change, can
support new co-processor without even
recompiling program

Cell BE Performance

• QJulia application
• Compared with IBM

SDK implementation
• Comparable

performance with same
optimizations

• Additional optimizations
possible with only a few
lines of code that nearly
doubled performance
over IBM
implementation

• Overall code size and
complexity significantly
lower than that of IBM
SDK implementation

763

GPU Performance

• Financial quasi Monte-
Carlo option-pricing
benchmark done in
“competition” with HP

• CPU code
independently tuned by
HP

• GPU implementation
over 30x faster than
single-core CPU
implementation

CPU Performance

• Same financial quasi
Monte-Carlo option-
pricing benchmark as
for GPU benchmark

• RapidMind
implementation
basically the same as
the GPU
implementation

• Prototype backend
targeting four CPU
cores

• RapidMind over 2x
faster on one core, 8x
faster on four cores

764

Key Concepts

• Vocabulary for parallel programming
– Set of nouns (types) and verbs (operations)
– Added to existing standard language: ISO C++

• A language implemented as an API

API == Language

• API
– Issue a sequence of function calls
– Manipulate state
– Must issue calls in a certain order
– Store sequences of calls in buffers (display lists)
– Play back sequences of calls

• Languages
– Issue a sequence of statements
– Manipulate variables
– Must have a certain syntax
– Encapsulate sequences of statements in functions
– Call functions to execute code

765

RapidMind Platform
Interface

• A C++ API
– for specifying data-parallel computation

• A data-parallel programming language
– embedded inside C++

13

RapidMind Platform
Architecture

766

14

RapidMind Interface

Simple API:
– Data Types: Arrays and Values
– Program Objects: similar to C++ functions
– Operations: C++ and matrix-vector library
– Collectives: reductions, scatter, gather, etc.

To use:
– #include <rapidmind/platform.hpp>
– using namespace rapidmind;
– link to rmplatform

Nouns: Basic Types

Purpose Type

Container for fixed-length data Value

Container for variable-sized multidimensional data Array

Container for computations Program

767

Values

1 half
2 double

Value<3, float>
4 int

Tuple
size

Tuple
size

Element
type

Element
type

Values

1h
2d

Value3f
4i

Tuple
size

Tuple
size

Element
type

Element
type

768

Arrays

1 Value4d
Array<2,Value3f>

3 Value2i

DimensionalityDimensionality

Item
type
Item
type

Verbs: Operators

• Operators act componentwise:
+, -, *, /, %, &, |, ^, ~, <, …

• Swizzling and writemasking:
Value4f c;
c(2,1,0)
c(0,0,0)
c(1,1,2,3)
c[3]

769

Verbs: Functions

• Can declare functions in the usual way:
Value3f
reflect (Value3f v, Value3f n) {

return Value3f(2.0*dot(n,v)*n - v);
}

• Standard library
– Matrix operations
– Geometric operations
– Trigonometry
– Exponentials and logarithms
– Splines, interpolation, and polynomials
– etc.

Programs

• Immediate mode:
– Execute operations on RapidMind types on host
– Acts like a standard matrix-vector library

• Retained mode:
– Enter retained mode with BEGIN, exit with END
– Record operations on RapidMind types

• Same operations that work in immediate mode

– Store operations in Program object
– Compile captured operations for coprocessor

• Dynamic compilation

Dynamic construction of remote procedure call

770

Program Definition

Program p;

p = BEGIN {
In<Value3f> a, b;
Out<Value3f> c;

Value3f d = f(a, b);
c = d + a * 2.0f;

} END;

DeclarationDeclaration DefinitionDefinition

InterfaceInterface

ComputationComputation

Program Application

• Apply programs to arrays, get new arrays

C = p(A,B);

Invokes parallel execution

771

Array Semantics

• Arrays use by-value semantics
– Can assign arrays with O(1) cost
– Strong modularity
– Simple and easy to understand
– Consistent with value tuples

• Most data copies can be optimized away
– Copies only required to complete partial updates
– Parallel assignment means partial updates can be avoided

• By-reference semantics available:
– Via the ArrayAccessor type

SPMD Data Parallel
Programming Model

Apply functions to arrays:
– Application: C = f(A,B)
– May have control flow (SPMD model)
– May perform random reads from other

arrays
– Can read and write to subarrays

Apply collective operations to
arrays:

– Reduce: a = reduce(p,A)
– Gather: A = B[U]
– Scatter: A[U] = B

– Others…

772

Control Flow

Program p;

p = BEGIN {
In<Value3f> a, b;
Out<Value3f> c;

Value3f d = f(a, b);
IF (all(a > 0.0f)) {
c = d + a * 2.0f;

} ELSE {
c = d – a * 2.0f;

} ENDIF;
} END;

Control Flow:
SPMD vs. SIMD

SIMD:
– Single Instruction, Multiple

Data
– Kernels include sequences

of simple instructions
– Take constant amount of

time to execute

SPMD:
– Single Program,

Multiple Data
– Kernels may include control

flow (loops and conditionals)
– Can avoid unnecessary work

SPMD includes but is
intrinsically more

powerful than SIMD

SIMD SPMD

773

Load Balancing

SIMD scheduling
• Assumes constant time per

kernel
SPMD scheduling
• Takes variable execution

time into account
• Load balancing distributes

workload evenly across
cores

Serial SIMD Load
Balanced

SPMD Load
Balanced

Ti
m

e

Processor Core Computation

Stalls

1.67x faster

2.85x faster

Conversion Example

#include <cmath>

float f;
float a[512][512][3];
float b[512][512][3];

float func(
float r, float s

) {
return (r + s) * f;

}

void func_arrays() {
for (int x = 0; x<512; x++) {
for (int y = 0; y<512; y++) {
for (int k = 0; k<3; k++) {
a[y][x][k] =
func(a[y][x][k],b[y][x][k]);

}
}

}
}

774

Access API

#include <rapidmind/platform.hpp>
#include <rapidmind/shortcuts.hpp>
using namespace rapidmind;

#include <cmath>

float f;
float a[512][512][3];
float b[512][512][3];

float func(
float r, float s

) {
return (r + s) * f;

}

void func_arrays() {
for (int x = 0; x<512; x++) {
for (int y = 0; y<512; y++) {
for (int k = 0; k<3; k++) {
a[y][x][k] =
func(a[y][x][k],b[y][x][k]);

}
}

}
}

0.

Replace
Types

#include <rapidmind/platform.hpp>
#include <rapidmind/shortcuts.hpp>
using namespace rapidmind;

Value1f f;
Array<2,Value3f> a(512,512);
Array<2,Value3f> b(512,512);

Value3f func(
Value3f r, Value3f s

) {
return (r + s) * f;

}

#include <cmath>

float f;
float a[512][512][3];
float b[512][512][3];

float func(
float r, float s

) {
return (r + s) * f;

}

void func_arrays() {
for (int x = 0; x<512; x++) {
for (int y = 0; y<512; y++) {
for (int k = 0; k<3; k++) {
a[y][x][k] =
func(a[y][x][k],b[y][x][k]);

}
}

}
}

1.

775

Replace
Types

#include <rapidmind/platform.hpp>
#include <rapidmind/shortcuts.hpp>
using namespace rapidmind;

Value1f f;
Array<2,Value3f> a(512,512);
Array<2,Value3f> b(512,512);

template <typename T>
T func(
T r, T s

) {
return (r + s) * f;

}

#include <cmath>

float f;
float a[512][512][3];
float b[512][512][3];

float func(
float r, float s

) {
return (r + s) * f;

}

void func_arrays() {
for (int x = 0; x<512; x++) {
for (int y = 0; y<512; y++) {
for (int k = 0; k<3; k++) {
a[y][x][k] =
func(a[y][x][k],b[y][x][k]);

}
}

}
}

1b.

Capture
Computations

#include <rapidmind/platform.hpp>
#include <rapidmind/shortcuts.hpp>
using namespace rapidmind;

Value1f f;
Array<2,Value3f> a(512,512);
Array<2,Value3f> b(512,512);

Value3f func(
Value3f r, Value3f s

) {
return (r + s) * f;

}

void func_arrays() {
Program func_prog = BEGIN {
In<Value3f> r, s;
Out<Value3f> q;
q = func(r,s);

} END;
. . .

}

#include <cmath>

float f;
float a[512][512][3];
float b[512][512][3];

float func(
float r, float s

) {
return (r + s) * f;

}

void func_arrays() {
for (int x = 0; x<512; x++) {
for (int y = 0; y<512; y++) {
for (int k = 0; k<3; k++) {
a[y][x][k] =
func(a[y][x][k],b[y][x][k]);

}
}

}
}

2.

776

Parallel
Execution

#include <rapidmind/platform.hpp>
#include <rapidmind/shortcuts.hpp>
using namespace rapidmind;

Value1f f;
Array<2,Value3f> a(512,512);
Array<2,Value3f> b(512,512);

Value3f func(
Value3f r, Value3f s

) {
return (r + s) * f;

}

void func_arrays() {
Program func_prog = BEGIN {
In<Value3f> r, s;
Out<Value3f> q;
q = func(r,s);

} END;
a = func_prog(a,b);

}

#include <cmath>

float f;
float a[512][512][3];
float b[512][512][3];

float func(
float r, float s

) {
return (r + s) * f;

}

void func_arrays() {
for (int x = 0; x<512; x++)
for (int y = 0; y<512; y++) {
for (int k = 0; k<3; k++) {
a[y][x][k] =
func(a[y][x][k],b[y][x][k]);

}
}

}
}

3.

Usage Summary

#include <rapidmind/platform.hpp>
#include <rapidmind/shortcuts.hpp>
using namespace rapidmind;

Value1f f;
Array<2,Value3f> a(512,512);
Array<2,Value3f> b(512,512);

Value3f func(
Value3f r, Value3f s

) {
return (r + s) * f;

}

void func_arrays() {
Program func_prog = BEGIN {
In<Value3f> r, s;
Out<Value3f> q;
q = func(r,s);

} END;
a = func_prog(a,b);

}

• Usage:
– Include platform header
– Link to runtime library

• Data:
– Tuples
– Arrays
– Remote data abstraction

• Programs:
– Defined dynamically
– Execute on coprocessors
– Remote procedure abstraction

777

Feature Summary

• Abstractions for both code and data
• Generate and manipulate code explicitly

– C++ modularity
– FORTRAN execution efficiency

• Can target GPU as well as Cell BE
• Simple, safe programming model
• Single-source ISO standard C++ program:

– No extensions needed
– Use your existing compiler

Advanced Topics

• Accessors
– Extracting and accessing subarrays
– Copying semantics

• Metaprogramming
– Applications of dynamic code generation

• Design patterns
– Processor pattern
– Compiler pattern

• Acceleration strategies
– Loop conversion
– Interpreter conversion
– Task conversion

• Program manipulation
– Program algebra

778

Accessors

offset(A,n)
– Drop first n elements of A

shift(A,n)
– Translate index into array A by n

take(A,n)
– Drop all but first n elements of A

slice(A,i,j)
– Extract subarray from i to j, inclusive

stride(A,k)
– Extract every kth element

Return instance of ArrayAccessor type
– References subarray “view”, does not copy

Copying Semantics

• Assignment to an Array:
– by-value
– assignment replaces destination
– allocates new memory if needed

• Assignment to an ArrayAccessor:
– by-value
– assignment copies into destination

• Explicit copying can be forced with copy
function

• Memory automatically freed if no longer
referenced

779

Metaprogramming:
Dynamic Code Generation

Data-Parallel
Programming

Dynamic Code
Generation

Data-Parallel
Metaprogramming

Advantages of Data
Parallelism

• Efficient on a variety of computer architectures
– Shared memory machines
– Distributed memory machines
– Vector/stream machines

• Predictable memory access patterns
• Scales to arbitrary number of processors
• Single thread of control

– Simple extension of existing programming practice
– No explicit synchronization needed
– No deadlocks or non-determinism
– Debugging simplified

780

Advantages of
Metaprogramming

• Object-oriented overhead of C++ avoided
– Platform only compiles operations on RapidMind types
– Structure with C++: templates, objects, namespaces, …
– Run like FORTRAN (or better)

• Metaprogramming can be used to build
– Parameterized code, with possible automatic tuning
– Code generated algorithmically
– Code that adapts to hardware platform
– Code that adapts to or is generated based on data
– Compilers from interpreters
– Higher order functions to parameterize operations

Design Patterns

• Processor pattern
– Manage code generation and initialization
– Encapsulate parameterized code

• Compiler pattern
– Remove overhead from computation specified at runtime

781

Processor Pattern

Array<2,T>
apply(

const Array<2,T>& a,
const Array<2,T>& b

) {
return m_prog(a,b);

}
};

//�USAGE

//�Initialize
Value1f g;
Processor<Value3f,Value1f> proc(g);

//�Apply
Array<2,Value3f> p(512,512);
Array<2,Value3f> q(512,512);
p = proc.apply(p,q);

template <typename T, typename S>
class Processor {
protected:
S m_f;

T m_func(
T r, T s

) {
return (r + s) * m_f;

}

Program m_prog;

public:
Processor(

S f
): m_f(f) {

m_prog = BEGIN {
In<T> r, s;
Out<T> q;
q = m_func(r,s);

} END;
}

Compiler Pattern

Problem:
– Need to evaluate some expression not known until runtime
– Example:

• Image compositing
• User may express sequence of operations in visual language

Solution 1: Interpreter Pattern
1. Encode computation in data structure (ex: operator dag)
2. Traverse data structure, executing operations
3. Return result

Solution 2: Compiler Pattern
1. Encode computation in data structure (ex: operator dag)
2. Traverse data structure, recording operations
3. Compile operations into program object
4. Execute program object on data
5. Return result

782

Accelerating
Applications

Approach 1: Loop Conversion
– Find hot spot
– Identify loop structures
– Convert loops to parallel operations

Accelerating
Applications

Approach 2: Interpreter Conversion
– Identify use of interpreter pattern
– Convert to compiler pattern
Advantages:
– Can collect a significant amount of computation together even

when there is no obvious hot spot
– Can avoid memory and branching overhead of interpretation

783

Accelerating
Applications

Approach 3: Task Conversion
– Identify use or potential for task parallelism
– Convert to SPMD model
– Use arrays to communicate between tasks
Advantages:
– Simplified debugging
– Bulk synchronous model

Program Manipulation

• Combination:
– Program “algebra” to combine programs into new programs
– Can use to modify interfaces to existing programs
– Can use to specialize existing programs

• Partial evaluation:
– Can bind inputs one at a time
– Can convert inputs to non-local variables and vice versa

• Introspection:
– Can analyze program interface and performance at runtime
– Use for self-tuning libraries

784

Program Algebra

• Algebra:
– Set of objects
– Set of operators
– Closed

• Objects:
– Programs

• Operators:
– Functional composition:

p << q

– Concatenation:
bundle(p,q)

Applications of the
Program Algebra

• Interface adaptation
– Reordering
– Packing/unpacking
– Input or output type conversion

• Specialization
– Discard unneeded outputs
– Eliminates unnecessary computation

• Pipelining
– Combine producer/consumer programs into one:
A = (p << q << r)(B);

– Implement pipeline as single data-parallel task

785

Partial Evaluation

• Can bind only some inputs of a program, not all
• Binding gives a new program with fewer inputs

– If bind only 1 input of an n input program
– Get back program with n-1 inputs

• Partial evaluation provides
– Flexibility
– Interface adaptation
– Optimization opportunities

• Two kinds of binding:
– Tight: uses ()
– Loose: uses <<; is invertible using >>

Tight Binding

• Tight binding:
Program q = p(A);

• Execution can be deferred
• When eventually executes:

– Uses value of A in effect at time of binding

– Compiler can use actual value of A to optimize code

786

Loose Binding

• Loose binding:
Program q = p << A;

• Execution can be deferred
• When eventually executes:

– Uses value of A in effect at time of execution

– Value of A can be used to parameterize execution

• A acts like a non-local variable

Unbinding

• Convert input to non-local variable:
q = p << A;

• Convert non-local variable to input:
q = p >> A;

787

Examples • Crowd simulation (GDC)
• Ray tracing (w/ RTT)
• Fast Fourier transform
• Convolution
• Quasi Monte Carlo option pricing
• Matrix-matrix multiply (SGEMM)
• Transformation and lighting
• Color and gamma correction
• Object tracking
• Sorting
• Quaternion Julia set
• Deferred shading
• Vector textures
• Others…

Applications

Crowd Simulation

788

Crowd Simulation

• Graphics on GPU
– Shaders implemented using RapidMind platform

• Behavioral Simulation on Cell BE Blade
– 16K autonomous characters (4K visible at once)

• Parallel Execution:
– Rules to simulate social behavior and basic physics

• Global Communication:
– Any character can interact with any other

• Requires (approximate) solution to K-nearest-neighbor problem
– Behavior depends on the environment

• Random access to environmental parameter grid
• Obstacles, ground cover and slope

Fast Fourier Transform

• Fundamental signal processing operation
– Image processing
– Pattern matching
– Solving differential equations

• Standard test case for parallel computation
• Involves both

– Computation
– Communication

• Many varieties and ways to implement
– Will show radix-2 split-stream complex-to-complex 1D FFT

789

Signal Flow Graph

Fast Fourier Transform

//�Fast�Fourier�Transform
Array<1,Value2f>
FFT (Array<1,Value2f> data, int n) {

int N = (1 << n);

//�define�program�objects
…

//�generate�and�scramble�twiddle�factors�with�gather
…

//�scramble�input�data�using�a�gather
…

//�perform�split�stream�FFT�using�lg(N)�passes
…

}

790

Fast Fourier Transform

//�define�program�objects
Program butterfly_A = BEGIN {

In<Value2f> a, b;
Out<Value2f> c = a + b;

} END;

Program butterfly_B = BEGIN {
In<Value2f> a, b, w;
Value2f t = a - b;
Out<Value2f> c;
c[0] = t[0]*w[0] + t[1]*w[1];
c[1] = t[1]*w[0] - t[0]*w[1];

} END;

Fast Fourier Transform

//�generate�and�scramble�twiddle�factors�with�gather
Array<1,Value2f> w(N/2);
w = twiddle(n-1)[bitreverse(n-1)];

//�allocate�temporary�storage
Array<1,Value2f> x[2];
x[0] = Array<1,Value2f>(N);
x[1] = Array<1,Value2f>(N);

//�scramble�input�data�using�a�gather
x[0] = data[bitreverse(n)];

//�initialize�source�marker
int src = 0;

791

Fast Fourier Transform

//�perform�split�stream�FFT�using�log(N)�passes
for (int k=n-1; k>=0; k--) {

//�write�into�lower�half�of�output�array
take(x[!src],N/2) = butterfly_A(
stride(x[src],2),
stride(offset(x[src],1),2)

);
//�write�into�upper�half�of�output�array
offset(x[!src],N/2) = butterfly_B(
stride(x[src],2),
stride(offset(x[src],1),2),
take(w,1<<k)

);
//�swap�source�and�destination�buffers
src = !src;

}
//�return�final�transform
return x[src];

Convolution

• Fundamental signal processing operation
• For large filters, use FFT

– FFT
– Elementwise complex multiplication
– Inverse FFT

• For small filters, do directly
– Shift flipped filter to each pixel, multiply, sum
– May process many images with one filter
– Filters used in pattern matching may be sparse
– Can exploit sparsity to get more efficient execution

792

Convolution

*

Confocal microscopy image
courtesy of Peter J. Lu, Harvard

Convolution

float filter[N0][N1];
Array<2,Value1f> image(M0,M1);

Program convolve = BEGIN {
In<Value2i> u;
Out<Value1f> result = Value1f(0.0f);
for (int i = 0; i < N0; i++) {
for (int j = 0; j < N1; j++) {
if (filter[i][j] != 0.0f) {
Value2i tap = u - Value2i(i,j);
result += filter[i][j] * image[tap];

}
}

}
} END;

image = convolve << grid(M0,M1);

793

Raytracing

• Real-time raytracing
– Supports reflection and refraction
– Many recursive rays per pixel
– Incoherent memory access
– Accelerator data structure traversal

• Commercial product:
– Developed by RTT AG, Germany
– Used for automotive CAD visualization

• Hardware:
– Released product runs on GPUs
– Demonstrated on Cell BE at SIGGRAPH

794

