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Information Theory

» Claude Elwood Shannon, 1916-2001

= A mathematical theory of communication. The Bell
System Technical Journal, July, October 1948

= Transmission, storage and processing of information

= Applications:

= Physics, computer science, mathematics, statistics,
economics, biology, linguistics, neurology, learning, etc

= Medical image processing, computer vision, robot motion, etc
= Shannon entropy measures the information content or
uncertainty of a random variable
u Mutual information measures the information transfer in a
communication channel

Shannon Entropy

u Discrete random variable X
XX, X5, 005X, 0, pi=px;) =Pr{X=x;}
Shannon entropy of X : uncertainty, information

H(X)=-) plogp,

i=1

= How difficult it is to guess the values of a random
variable

= Homogeneity or uniformity of a probability
distribution

Shannon Entropy

= Properties
m 0<H(X)=logn

L H(X):Zq,H(Yt)_qulogq;
i=1 i=l
. 12 U3 1
= Binary entropy
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Information Channel

m Information channel Pji
X

Di q;

HY | X)==2"3" p,logp,

i=1 =1

» Conditional entropy

H(X,Y)==Y">"p,logp,

=1 j=1

= Joint entropy

= Mutual information: I(X,Y)=H(X)-H(X|Y)
dependgnce, co!'relatlon, =iip,-,log Py
shared information ENE P4,




Information Channel

= Properties HY) HY) o

= 0<H(X|Y)<H(X)

 HX,Y)=H(X)+H(Y|X)

= H(X,Y)=H(X)+HY)-I(X,Y)
= I(X,Y)=1(Y,X)>0

= I(X,Y)<H(X)

Inequalities

= Jensen’s inequality: if f{x) is a convex function

|/ (ELXD) < EL/(X0)]|

m Log-sum inequality

3

zn:al. logﬁz( a,.jlog’znl:ai
i=1 b,- i=1 Zbi

i=1

i=

» Data processing inequality : if X 2 Y »Z isa

Markov chain, then 10X, V)>1(X,2)

Relative Entropy

» Kullback-Leibler distance

D (pllg)=Y plogZt

= j

u Properties

= Dy(pllg)=0

= I(X,Y) =Dy ({py 3 1P, 0)

Jensen-Shannon Divergence

m Jensen-Shannon divergence

N N
ISy sees Ty Proeess Py) = H[Z”ipi)_zﬂiH(pi)
i=1

i=l

N N
STy sees T3 Provess Py) = Z”iDKL(pi l z”ipij
i=1 i=1
u Properties

= Concavity of entropy:  JS(72,,..., Ty Prayeees Py ) 20

B JS(P(x))sees P(x,); PV 1 X))o (V] x,)) = 1(X,Y)

f-Divergences

= Family of convex functions based on a convex function f

- D;(p.q) is convex on (p,q)
D/ (p.g)= Zﬂx)f(@] Dyp)>0
e 9(x) -Dy(p.g) =0 =p=q

= Kullback-Leibler distance Dy, (pllg)= Zp(x) 10g@

xeX q(x )

Dy ()= T P00

u Chi-square distance
xeX q(x)

u Hellinger distance

Dy (p,q>=§2(\/p(x) ~Ja0)?

xeX

Continuous Channel

m Continuous entropy

H(X) =~ [ p(x)log p(x)dx

lim H(X*) = H*(X)

m Continuous mutual information

[(X,Y)= log 224
0= [ [rwntee 6505

lim 7(X*,7*) = 1(X, )

m I¢(X,Y) is the least upper bound for I(X,Y)
m Refinement can never decrease I(X,Y)




Information Bottleneck Method (IBM)

u Tishby, Pereira and Bialek, 1999

» Find a compressed signaf' that needs short encoding
(small/( X, X )) while preserving as much as possible
the information on the relevant signall{) )

I(X.Y)

C 77

p(xlx) X p(yl%) Y

p(x) X
I(X)Y)

I(X,X)

Agglomerative IBM

u Goal: find a clustering that minimizes the loss of mutual
information

u Clustering or merging: loss of mutual information
I(X.,Y)-I(X,Y)=
P(X)IS(p(x)/ p(x),.... p(x,) p(X); (¥ | %,)se0s (¥ ] X,,))
PO=3 ()
= The quality of each cluster X is measured by the Jensen-

Shannon divergence between the individual distributions in
the cluster

Generalised Entropy

m Harvda-Charvat-Tsallis entropy (HCT)

k>0, e R\ {1}

H(X) 11 a—)lHa(X)=_kz:,=1pilnpi

m Generalised mutual information

LX) = [1 DD p'f”_
Jj=1 alq.

J
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Radiosity Method

m The radiosity method solves the problem of
illumination in an environment of diffuse surfaces

m Continuous radiosity equation

B(x) = E(x)+ p(x) [ F(x, )B(y)dA,

cos®, cosd,
2

F(x,y)=

Radiosity Method

m Discrete radiosity equation

B, = E+p,z B,

m Form factor properties

= Reciprocity  [4,F, = 4,F,

J i

= Energy conservation ZF _1




Form Factor Computation

= Analytical solutions
u Between two spherical patches  |F; =

7

= Monte Carlo computation
= Uniform area sampling 4,
A

= Uniformly distributed lines '

S

©

~ 1 &
F:',' =A/‘ NZF(X;{,)’;:)
k=1

Local lines

Global lines 8

Refinement Criteria for HR

m In hierarchical radiosity (HR), the mesh is generated
adaptively

m Oracles based on
m Transported power

p,A,F;B, <e¢

m Kernel smoothness

g o2r

|p, max(F}™ —F;" F;" ~F;")4,B, <]

Scene Information Channel

= The scene is modelled as an information channel

Pji
x Uy
D; q; D
F," arlF.
X 2.y iy
a; a;

Scene Information Channel

Positional entropy |H, =-Y"a,loga,
\ "

Scene entropy

H; z_nzpainszy IOgF;'j

=l =l

w, F
Scene mutual information |/ =H,—-H;= ZZaiEj loga—’

i=l j=I J

I -
Continuous Mutual Information

m By discretising a scene, a distortion or error is
introduced: information loss
» From discrete to continuous
=
n F; > F(xy)
ma=A/A, > 1/4,

1= [ [y s ) 1o8Ay P, vy

Monte Carlo Computation

(AT cos 8, cos 6,
2

c 1 N
Iszﬁzl()g

contribution of
each segment

X

Total area = A, Lines cast = K

Line segments = N




Dicretisation Error

m Two basic results
= If any patch is subdivided, I increases or remains the same
m I is the least upper bound to I

m Discretisation error

15 =3273

I,=0.690  Ig=2.199 Ig=2558  I;=2752

Information Transfer

m Mutual information matrix

I = F lo F information transfer
s g between patches i and j

a Ly

<=|Iij

1,
il

[; = . . J;[ J;/ ALTF(.X, y) 10g(ATF(X, y))dxd))

Discretisation Error Between Two Patches

m Discretisation error between two elements: loss of
information transfer

6, =1; -1,

it

Monte Carlo integration

log-sum
inequality

l Nl/
AA N [ZF(xk’yk)IOgF(xk:Yk)]
, A=

6,' ~ >
LA Flx,) |1 F
N, ; (x;5,) |log N, ; (x5

27

i |

MI-based Oracle

m From radiosity equation and kernel-smoothness-
based oracle

] Bi:E"Jr]Z::'

w  pmax(F™ ~F",F" ~F"™)A|B, <&

yoory

m to Ml-based oracle

w |p15-1)B,=ps,B, <

Oracles for HR

Kernel-
smoothnes-
based

Ml-based

2684000 rays - 19000 patches - 10 lines FF

MI-based Oracle for HR

2684000 rsys 19000 patches - 10 lines FF




Generalised MI-based Oracle

2684000 rays - 19000 patches ~ ¢=0.50 - 10 lines FF

Generalised MI-based Oracle

@=0.50 - 10 lines FF - 9268000 rays - 10000 patches

f-Divergence-based Oracles

4

I =
£ c
3 g
o Q
£ x
7] —
- (0]
& @,
2 ]
() =
4

I

5] T
> [©)
=3 =
(] =3
L «Q
< [}
S <

10 lines FF - 2684000 rays - 19000 patches
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Adaptive Sampling

» Adaptive control of the sampling rate

= Image-Space
. . _ Som—Sws  [Mitche
» Intensity Comparison =g [Mitchell 7]

u Intensity Statistics Pr{S, e[S-45+}=1-a
[Purgathofer, 87]

u [Tamstorf and Jensen, 97]

m Object-Space  r.='- >

[Simmons and Séquin, 00]

m Hybrid (image+object spaces)

Pixel Measures

Point-sampling-based technique for image synthesis

Capture the pixel radiance

Finite set of samples

Information is lost |====p Artifacts Noise
Information measure ‘ ‘

I Erroneous information

More samples! ’
Information Theory ‘
Regions with high —.

inhomogeneity illumination

Refinement criterion

Refinement tree |G Adaptive sampling




Pixel Colour Quality
_ p; =colour fraction of a ray

i

Q m

pixel channel entropy ~ H*

pixel channel quality ~ O°

IS

X . Coloursystem

37

pixel colour quality

[

Pixel Colour Contrast

_ p; =colour fraction of a ray
> -
c(rg.b)

Cabin
Cindy Larson

pixel channel contrast ~ C“=1-0° ‘

Z weeC”

pixel colour contrast Cl=—==¢

2. we

Pixel Geometry Contrast

pY = geometric fraction of a ray
i
> -
d

pixel geometric entropy

cr.g.b)

Class room
Peter Shirley

N
HE=-)_pilogpf

i=1

__H
¢ log N,

c =6c+(1-d)c*

Combination of colour and geometry

pixel geometric quality

pixel geometric contrast

pixel contrast

Quality Map

Contrast Map




Entropy-based Adaptive Sampling

Grouping property of Entropy

image information

H(X):_Zqil(’g q;*zq,H(Y:)

i=1 i=1

information hidden
acquired information

* H(X) = entropy of the whole image The decomposition of &

* H(Y,) = entropy of each root pixel can be recursively

* ¢; = colour probability of pixel i extended to the subpixels

Contrast Tree

n>3

Cf,=ZWCC§‘I:
cs=5C+(1-68)ce

Classic
aouepodw|

Variance
Adosug

s

f-Divergences

m f~-Divergences as refinement criteria in RT ?

= Distributions
= {p} = Luminance L of Ng-samples
= {¢g} = Uniform 1/Ng

= Homogeneity: D (p,q)
D(p:g) = 24(x) &]
= Weights for D, rex q(x)
= Importance: avg(L;)
m Convergence: 1/Ng

Luminance Luminance Uniform
distribution average distribution

L, N, 1
pi=

1 _

. L=—)1L 4=
NZL/ \lﬂz“l// )
J=1

1 —
—L ,J) < &
N Dy (p,q)

D () <

s

/l\

1~ 1 - 1 —
KL Dx(pq) <& EL Dy (pg)<e FL Dy (p.q) <&

s

Kullback-Leibler Chi-Square Hellinger

48

f-Divergence-based Adaptive Sampling

3 |




Confidence Test
18|qIe7-%oBq|INy

Chi-Square
J9bul)IoH
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= Viewpoint selection is an emerging area in computer graphics with applications in fields
such as scene understanding, volume visualization, image-based modeling, and molecular
visualization

»  We present a unified framework for viewpoint selection and mesh visibility / saliency /
simplification based on an information channel between a set of viewpoints and the
polygons of an object

= Tools: entropy, mutual information, Jensen-Shannon divergence

= This framework is based on the geometric characteristics of the object, but it can be
extended to other characteristics

= ltis also valid for any set of viewpoints in a closed scene

= What is a good viewpoint? Depending on our objective, the best viewpoint can be the most
representative one or the most unstable one (maximally changes when it is moved within its
close neighborhood) or ...

= Representative views can help us to understand the object
= Unstable views enable us to obtain critical viewpoints to capture the structure of the object

Background and Related Work

» Information Theory
m Discrete random variable X
X:efx;, x5, 000,x,}, px;))=Pr{X=x;}

= Shannon entropy of X : uncertainty, ignorance

HX) =~ 3, p(x)logp(x).

XEX

Background and Related Work

m Information Theory (PO}

= Information Channel (P} (PO}

« Conditional Entropy /")~ 2,000 Z pbkteer(h.

. IX.Y) = H(X)-H(X|Y)=H(Y)-H(Y|X)
» Mutual Information S p) S plrietog 0.
reX yey r)

» Jensen-Shannon inequality

N N
IS(pr.p2.-.-.py) = HOE mipy) = 3 miH(pi) 2 0.

=1 =

Background and Related Work

= Related Work

w Heuristic measure T P.Sn'} ] -
Plemenos et al. [1996] Clv) = =l :::EIJH 4 Zr=err(") )

u Viewpoint Entrop % a; ai
y H(\!]:-»Z—]og—,

=%

. . Ny a

= Kullback-Leibler distance KL(v) = z aj log 5
i=1 4 ;4‘;

[ ggglr]ls Rigau et. al [2000], Vazquez et al. [2001-2006], Sbert. Et al
5




We formalize the viewpoint selection using an
information channel

{p(o|v)}
v 0 _
{pV)} {p(0)} (@
' loval  Lendommd ove  |rard
e ' [ .

N L o
B-(&Y

|etvd | woplooged| « o |oedw

.l_‘ o) plo) -+ -+ | pis)
St

[ YR
; plo) = Z;J(r]p((:|t‘)

This framework is based on vEV
geometric characteristics

Viewpoint Mutual Information

Conditional Entropy

H(v) depends on the polygonal
H(OWW) = > pv) X plolv)logplo|v) digéretigation polyg
vel YT
1 MI converges to a finite value
No E_”' ¥) when the mesh is infinitely
ey refined

Mutual Information: degree of correlation, dependence

Low values: representative views

P : s f £, Illll'rJ V) i A X
1v.0) = % p(v) Z‘!’-“ v)log Plo) High values: highly coupled views
VeV oge
- N (0. 0) )
IZ.:’.M vl (v, Q) 1(v.0) = H;,Pi”i” log ,";l,:!r_‘\:l_u

Viewpoint Mutual Information evaluation (I)

I ) l
-

Viewpoint Mutual Information evaluation (ll)

Viewpoint Similarity and Unstability
Viewpoint Similarity

Any clustering over V ¥ or 0= O reduce 1(V,0)

§H{viv;) = I(V.0)— I{V.0)
= (plvi)I{vi. O) + p(v;) (v O)) = p(0) (7. Q)
.3 iy
= p(7) (‘”I'I#Hr-,.m - &N_:-,_U} - mr.m)

mu) pe)
= (T} D(vi. 1),

D(vi,v5) =J8 (‘I h — :;J{Ul:‘,]‘pifllf',])

Viewpoint Similarity and Unstability
Viewpoint Unstability

) 1 - _ The maximum change in view that
Ulvi) = o L D(v;,v5) occur when the camera position is
LT | shifted within a small neighborhood




Selection of n Best Views

Objective: to select the minimal set of representative views
Ideal proposal: n views that maximize their JS (to capture the
maximum information of the object)

Greedy strategy: to select successive views that maximize JS

Viewpoint Clustering
Clustering algorithm

Select the n best views

Assign each viewpoint to the nearest best viewpoint

Two clusters

Five clusters

“xy

Exploratory Tour

Guided Tour

Reversion of the Channel

Channel is reversed using the Bayes theorem

plv.o)

plv)plofv) = plo)plvio)

V.0 -

z plv) z plojv)log pLoiv}
vey

Ma)
oe £

fv.0) =

Z plo) Z Ir:-j\'in!lnl_'f
veV

i)

Z plell(V.o),
[l

Hvler)

plv)

I(V,0) is the polygonal mutual
information

Degree of correlation between the
polygon o and the set of viewpoints




Applications
Important viewpoints
Importance at the viewpoint space
Selection according to geometry and saliency

Applications
Relighting for Non-Photorealistic Rendering
Warping a color palette texture to the viewpoint sphere

clv]

BR0 | =

OEOCEROOac!

Color ambient occlusion + NPR technique

308




Applications
Relighting NPR + Coloroid Palettes

Saliency

. . Sw) =S S(0)p(v| ;
Sloy) J_ Z JS(p(V]ei). p(Vlo;)) =0, Saliency S(v) L X (”}‘D{ vjo) +
No j=1 " ac@ [ - -
B

|+

plojv)

I'(v,0) = z plo|v)log ——

= plo)’ [ )

plo)ile)

Ple) = = -
Yoco Plolilo)

Lady of Eiche




System features Fixed

FIXED

VMI Sphere View-based Shape descriptor
Rigid registration system Rotations (8, @)
642 viewpoints —
. . R(¢)
lee.d & Floatmg Sphere FLOATING INTERPOLATOR
Metric P R(®)
Interpolator Nearest Neighbour
Floating
Results Results

l

Ivan Viola
4 University of Bergen
Norway

07 Prague Czech Republic

Viewpoint quality = visibility of data
Visibility computation
Information-theoretic measures for characteristic
viewpoint estimation
Viewpoint entropy
Mutual information
View selection approaches for

3D scalar fields

3D + time scalar fields
Objects in volume data




[Takahashi et al. Vis05]

[Bordoloi and Shen Vis05]

[Ji06 and Shen Vis06]

View Selection for Volumetric Objects

07 Prague Czech Republic

Importance distribution among objects controls:

Characteristic view computation
Interactive focusing

Characteristic view computation
View rating image and object weights
For every object + context

Interactive focusing
Visual emphasis and cutaways
Changing the focus among objects

Input: known and classified volumetric data
High level request: show me object X
Output: guided navigation to object X

View management

Ossa metacarpi | -




Focusing Considerations

= Characteristic view
= Emphasis of focus object
= Guided navigation between characteristic views

object-space distance weight visibility es‘}lzmallon image-space weight

) (@ « D
.

information-theoretic framework for optimal viewpoint estimation

p(vi)|[  p(oilvi) -

p(vn) =+ p(om|va)
[ plon)

" " up-vector information -
objectseecton by user

Framework

up-vector information

viewpoint transformation

cut-away and level of ghosting ‘
v \ V

object selection by user I

focus discrimination

Characteristic Views

= QOverview
= All objects are visible
= Visibility of objects is balanced

= Characteristic view of focus object
= High visibility for focus object
= |f possible other objects also visible

Characteristic View Estimation

view rating

theoreti for optimal vi

p(vi)| p(oilvi) -

= plorivn)
plom)

up-vector information -

View rating

= For every view
= For every object




View Rating
= Visibility

= High

= Low
= Location in image

= |n image center

= Qutside center
= Distance to the viewer
= Object close to the viewer
= Far from the viewer

View Rating Weights

object-space distance weight

image-space weight

Characteristic Viewpoint Estimation

object-space distance weight  visibility 315"'"3'"’" image-space weight

) (@ «

characteristic views

Characteristic Views

= Overview
= All objects are visible

= Visibility of objects is balanced

= Characteristic view of focus object
= High view rating (visibility) for focus object
= |f possible other objects also visible

= Sets of views and objects are random
variables

= Views V=(v,, V,, Vg, ..., V)

= Objects O=(0,, 0,, 05, ..., O,)

= View rating (visibility, weights)
= Information channel between V—0O
= Conditional probability p(o;|v;)

= Mutual information between V and O expresses
degree of dependance

= Viewpoint mutual information is dependance
between v, and O

= High values = high dependance

= Small number of objects

= Low average visibility

= Low values = low dependance

= Maximum objects visible
= Object visibility is balanced

= Minimal VMI determines the best view




Probability Transition Matrix

view rating of object o; from viewpoint v;

probability of the viewpoint )]

marginal probability of the object

Viewpoint Mutual Information

= Degree of correlation v;«~>O

p(;|v)
I(Viao) = Zp(oj |vi)log#
> p(o;)
v [ plov)  ploav) ... P(OIv;)
P(v2) | ploslva)
p(v3)
P(ve) | P(04lvn) P(On|Va)
plo) Pl plos) P(or)

Characteristic Views

= Overview
= All objects are visible
= Visibility of objects is balanced

= Characteristic view at focus object
= High view rating for focus object
= |f possible other objects also visible

Incorporating Importance

importance distribution

p(Oj V)
p(0,)im(0;)
z p(o,)im(o,)

I(v;,0) = Zp(oj |v,)log

Interactive Focus of Attention




= Levels of sparseness
dense

representation

Emphasis of Focus Object

importance

max

Emphasis of Focus Object

= Cut-aways to unveil internal features
= Labeling to add textual information

intestine

'Y vessels

Guided Navigation Between Objects

= Decreasing importance of Object X

= De-emphasis of Object X

= Change to overview

= Increasing importance of Object Y

= Emphasis of Object Y

= Change to characteristic view of Y

Refocusing

Overview

Characteristic
view 1

Characteristic
view 2

Refocusing

Overview

Characteristic
view 1

Vc

Characteristic
view 2

Example - Stagbeetle

Overview

Focu¥jview 2




Example - Hand

Application-Driven View Selection

[Mahler et al. EuroVis07]
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= Most simplification methods use some geometric
distance to guide the simplification process

m Recently, some works have developed methods
guided by visual error metrics

m In some real-time applications like computer games
the main requirement is visual similarity

» We propose new simplification metrics which

produce closer approximations to the original model
based on Information Theory

Recent Work on Simplification

u Geometry-Based

= Appearance-Preserving
Simplification [Cohen98]

= Simplifying Surfaces with
Color and Texture using Simplification for
Quadric Error Metrics Interactive Rendering
[GH98] [LHO1]

= New quadric metric for u Visibility-Guided
simplifying meshes with simplification [ZT02]
appearance attributes = Viewpoint Entropy-driven
[Hoppe99] Simplification [CSCF07]

= Mesh Saliency [LVJ05]

= Viewpoint-Based

w Image-Driven
Simplification [LT00]

u Perceptual-Driven

Pros and Cons

m Geometry- Based
= The algorithm runs faster
m Manage complex meshes
= CAD, Scanned
= Adjust geometric tolerance
m Viewpoint-Based
» The algorithm runs slower
w Deal with simple meshes
u Games, Virtual Reality
= Remove interior parts and preserves silhouette

“Current Game Artists make
the simplifications by hand”




Viewpoint Entropy

u Definition
u The Viewpoint Entropy gives a measure of the information provided
by a point of view
u We take as a probability distribution the relative area of the projected
polygons over the sphere of directions centered in the viewpoint v

Hv=—i&log—

g
=0 4, a,

w Where:
= N; number of polygons in the scene
= a;: projected area of polygon i over the sphere 4
= a,: projected area of background in open scenes 1
= a: total area of the sphere

The best viewpoint is the one that has maximum entropy, i.e.,
maximum information captured

Viewpoint Entropy
m The error metric

u Defined as the sum of
variations of viewpoint
entropy for all viewpoints 7
Ho=1.434227

c=Y|H,-H',

vel

u Where:
= H, is the viewpoint
entropy before an edge
collapse
= H’, is the viewpoint
entropy after an edge
collapse

H',=1.358059

H';=1.307704

C,=0.076168 Cy=0.126523

Best edge collapse  Worst edge collapse

Simplification algorithm

/* Compute /, for the original mesh M */
Compute 7, where v={1,..,n}
/* Build initial heap of edge collapses */
for (e e M)
Perform collapse e
Compute I’, where v={1,..,n}
Compute collapse cost C,
Insert (e, C,) in heap &
Undo collapse e
end for
/* Update the mesh */
while ( heap / not empty )
Remove from heap / the edge e with lowest C,
Perform collapse e
for ( each ¢’ in neighborhood )
Compute collapse cost C,.
Update (e’, C,) location in heap #
end for

end while

= Comparison
u Algorithm
» QSLIM v2.0 [Gar97] Well-Know geometric simplification algorithm
u Tools
u Geometric error: METRO v4.06 [Cig98]
= Visual error: RMSE [Lin00]
20 viewpoints regularly distributed over a sphere
Resolution: 256x256 images
PC, Xeon 2.4 GHz, 1GB RAM, NVIDIA 7800 GTX 512MB
C++ implementation with OpenGL
u Vertex Buffer Objects & Frame Buffer Objects

Experiments H,,

LA A

Original Fish T=815

B S8

Original Galleon T=4.698

QsSlim T=100 H, C=20 T=100

QSlim T=500 H, C=20 T=500

Experiments H,,

Original Galo T=6.592 QSlim T=500 H, C=20 T=500

Original Octopus T=8.468 QSlim T=1.000 H, C=20 T=1.000




Experiments H,

H, C=20 T=1.000

Original Porsche T=10.474 Qslim T=1.000

Original Unicycle T=13.810 QSlim T=1.000 H, C=20 T=1.000

127

Experiments H

I

Model Triangles RMSE Error METRO Error Time
odel

Original  Final | QSlim H, QSlim H, QSlim H,
Fish 815 100 22,83 11,40 0,09 0,05 0.02 11.16

Galleon | 4.698 500 36,84 17,74 0,22 0,11 0.06 92.64

Galo 6.592 500 12,40 9,03 0,12 0,08 0.08 152.29
Octopus | 8.468 500 25,84 17,35 0,05 0,03 0.09 224.89
Porsche | 10.474  1.000 8,28 7,48 0,16 0,09 0.13 299.47
Unicycle [ 13.810  1.000 11,06 10,32 0,10 0,04 0.20 451.76

Experiments H,

Geometric Error Visual Error

= =
i A
o] . /
/ /

4000 3300 2600 1900 1200 500 4000 3300 2600 1900 1200 500
Model size (triangles) Model size (triangles)

Comparison at several degrees of simplification of the Galleon model

Mutual Information

m Definition

= The Viewpoint Mutual Information defines an
information channel between " and O

pv)= Ni p(0)= p(v)plo|v)= NLZ po]v)

f velV’ f vel

= The conditional probabilities of p(o|v) are given by the
relative area of the projected polygons over the
sphere of directions centred at viewpoint v

17.0) = Zp(v)zp(omlog”(" Y _ 21( 0)

vel 0€0 v vel

L m
Mutual Information

= The mutual information for a given viewpoint

1,0)=Y p(o|v)log p(‘z|)v)

= High values mean high degree of dependence “highly
coupled view”

= Low values correspond to low dependence “more
representative view”

= Observe that

1(v,0)=KL((p(O|v) | p(0))]

Mutual Information

= The error metric

m Defined as the sum of variations of viewpoint mutual
information for all viewpoints V'

=2
vel
Triangles RMSE Error Time
Model

Original Final H, VMI H, VMI

Shark 734 80 14,78 14,65 10,24 10,23
Galo 6592 500 9,05 8,38 141,75 142,24
Greekship 9510 600 13,37 12,85 241,78 246,72
Tree 11.136 600 17,23 16,60 321,06 332,49
Hammer 13.380 500 8,13 7,43 404,33 423,05
Elephant 31.548 900 13,75 11,60 2197,67 2309,79




Experiments VMI

Original Shark T=734

QSlim T=80 VMI C=20 T=80

Original Galo T=6.592 QSlim T=500 VMI C=20 T=500

Experiments VMI

I
\\\\

Original Greekship T=9.510

TTT

Original Tree T=11.136

QSlim T=600 VMI C=20 T=600

Qslim T=600 VMI C=20 T=600

Experiments VMI

—

Qslim T=500

i A &R

Original Hammer T=13.380 VMI C=20 T=500

Original Elephant T=31.548

QsSlim T=900 VMI C=20 T=900

Experiments VMI

Model Triangles RMSE Metro Time
Original ~ Final | QSlim VMI QSlim VMI QSlim VMI

Shark 734 80 33,41 14,65 0,20 0,04 0,02 10,20

Galo 6592 500 12,40 8,38 0,05 0,01 0,08 142,24

Greekship | 9510 600 17,20 12,85 0,21 0,09 0,11 246,72
Tree 11.136 600 20,73 16,60 0,11 0,13 0,20 332,49
Hammer | 13.380 500 8,99 7,43 0,03 0,04 0,20 423,05
Elephant | 31.548 900 25,32 11,60 0,08 0,03 0,52 2309,79
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Experim

Geometric Error Visual Error

:-f‘; aslim 7 35 rasim ——

g VMl —— / [, V] —

016 / 2 P

014 25

012 / 20

0.10 /

0.08 A 1’ 4

0.06 = 0 e

oM = _ o

002 e e

0.00 0

600 500 400 300 200 100 600 500 400 300 200 100

Maodel size (triangles) Model size (riangles)

Comparison at several degrees of simplification of the Shark model
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Kullback-Leibler

u Definition

u The f-divergences quantifying the degree of discrimination between
two probability distributions

= Kullback-Leibler distance

_ p(x)
KL(p|q)= ;p(@ log 40

u Viewpoint Kullback-Leibler distance

:A|Na |2
=
I
™
e
=
I
Q

Nf ai
KLV=Za—10g

i=1 Y

S

Where g; is the projected area of the polygon i, 4, is the actual area of the
polygon i and 4, is the total area of the object
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Kullback-Leibler

= The error metric

u Defined as the sum of
variations of Kullback-
Leibler distance for all
viewpoints 7

KL,=0,094

c=)|KL,—KL'

vel

» The cost of the algorithm
is higher than Entropy or
Mutual Information due to
the 4,computation

| KL',=0,090
= Hidden polygons will be

removed according with C,=0,004 C,=0.041
their actual area

Best edge collapse  Worst edge collapse

Kullback-Leibler

» Simplification example using KL,

N
AVAY
NG

Experiments KL,

Triangles RMSE Metro

Model
Original ~ Final | QSlim H, KL, QSlim H, KL,
Fish 815 100 2283 11.57  12.98 0.09 0.03 0.03
Galo 6.592 500 12.40 9.34 10.48 0.05 0.03 0.01
Al Capone 7.124 1.000 17.66 11.47 12.07 0.03 0.08 0.03
Tree 11.136 600 2073 16.98  18.04 0.1 0.13 0.04
Big_atc 13.594 1000 16.50 15.97 15.44 0.08 0.05 0.03
Elephant | 31.548 900 2532 1318  13.40 0.08 0.14 0.05

Model Time
Original QSlim H, KL,
Fish 0.03 10.01 11.31
Galo 0.08 141.75  237.30
Al 0.08 150.90 273.18

Simpletree | 020 33249 60549
Big_atc | 027 53523 83588
Elephant | 052 2197.67 4016.78

Experiments KL,

Original Fish T=815

QSlim T=80 H, T=80 KL, T=80

56 55 55

QSlim T=1.000 H, T=1.000 KL, T=1.000

WLOLOL Y

Original Elephant T=31.548

Original Big_atc T=13.594

Qslim T=900 H, T=900 KL, T=900

Simplification Algorithm

/* Update the mesh */
while ( heap 4 not empty )
Remove from heap / the edge ¢ with lowest C,
Perform collapse ¢
for ( each ¢’ in neighborhood )
Compute collapse cost C,.
Update (e’, C,) location in heap /
end for
end while

Simplification Algorithm

= Analysis on the number of cameras using Mutual

Information
RMSE Time (seconds)
" N Shark 1800 Shark
18 T Big_atc -« 1600 Big_atc
T Simpletres . Simpletres
17 A 1400 Ao
1 1200
. — = 1000
5 g
;% = 800 -
14 N 500 B =
. e 400 .
12 T —— — 200 e -
1 o+t
12 20 4z [ 12 0 4z
Number of Viewpaints Number of Viewponts




Conclusions and future work

= New viewpoint-driven
simplification metrics based
on Information Theory has
been proposed

u The metrics will be
improved incorporating
attributes (textures)

= We are working to reduce
the computation time,
although the simplification
is an off-line process




