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Abstract

We present different applications of information theory to computer graphics, based on the use of the measures

of entropy, mutual information, f-divergences and generalized entropies. The application areas are hierarchical

radiosity, adaptive ray-tracing, selection of best viewpoints, object and scene exploration, mesh saliency, mesh

simplification and scientific visualization. We also give some hints on information-theoretic applications to object

recognition and image processing.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computing Methodologies]: Computer Graph-

ics

1. Presentation

These are the notes for the Eurographics 2007 tutorial Appli-

cations of Information theory to Computer Graphics. After

an introduction to the basics concepts of Information Theory,

different applications are presented to the fields of radios-

ity, adaptive ray-tracing, selection of best viewpoints, object

and scene exploration, mesh saliency, mesh simplification

and scientific visualization. These applications are based on

the use of the measures of entropy, mutual information, f -

divergences and generalized entropies. Other applications,

such as image-based rendering, object recognition, image

processing and light positioning, do not appear in the cur-

rent version of these notes.

This document is organized in the following way. After

this introductory part, second part deals with the basics of In-

formation Theory (IT). The concept of information channel

is introduced, and the quantities of entropy and mutual in-

formation are defined together with important relationships

such as the Jensen-Shannon inequality. Finally the informa-

tion bottleneck method is explained.

Third part deals with applications to radiosity. Radiosity is

a viewpoint independent global illumination technique that

discretizes the scene into small polygons or patches to solve

a transport system of equations. The way the scene is dis-

cretized is critical for the efficiency of the result. We define

first a scene information channel, which allows us to study

the interchange of information between the patches. From

the study of this channel several refinement oracles, i.e.,

criteria for subdividing the geometry, are obtained, aimed

at maximizing the transport of information. Both classic

and generalized information-theoretic quantities are used for

this.

Fourth part is about adaptive ray-tracing. This technique is

aimed at tracing more rays only where they are needed. For

instance, smoothly illuminated regions of the scene with low

variation do not need as much effort as rapidly varying illu-

mination or also geometric discontinuities. The information

theory quantities will be used again to define adaptive re-

finement oracles. New oracles are also defined for radiosity

and adaptive ray-tracing using the following f -divergences:

Kullback-Leibler, Chi-square, and Hellinger distances.

In the fifth part we define a viewpoint information channel

between the points of view around an object and the poly-

gons of the object. Several quantities associated to this chan-

nel, such as mutual information and entropy, are interpreted

in terms of viewpoint quality measures. Viewpoint similarity

and stability are defined, as well as methods for the selection

of best n-views and for exploring the object. Mesh saliency is

interpreted in terms of the viewpoint channel and polygonal

mutual information as an ambient occlusion quantity. Impor-
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tance is introduced into the scheme and saliency is used as

importance to guide the viewpoint selection.

Sixth part deals with view selection in scientific visual-

ization. The problem and context of the visualization of vol-

umetric data sets is presented, together with the different

viewpoint quality measures used. The framework presented

in part sixth is then applied to this context. Guided naviga-

tion using higher-level semantics is also studied.

Finally, seventh part is about viewpoint-driven simplifica-

tion. The several simplification algorithms are based on the

variations perceived in image space, measured in our case

through information-theoretic metrics: entropy, Kullback-

Leibler distance and mutual information. These techniques

are shown to give a better simplified mesh than object-based

approaches, although at the cost of an increased processing

time.
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3. Syllabus

1. Introduction (5 min)

Speaker: Mateu Sbert

2. Information Theory Basics (35 min)

Speaker: Miquel Feixas
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• Information channel: entropy and mutual information

• Important inequalities

• Information bottleneck method

3. Refinement Criteria for Radiosity (20 min)

Speaker: Jaume Rigau

• Scene information channel

• Refinement criteria for hierarchical radiosity

• Mutual-information-based oracle

• f-divergence-based oracles

4. Adaptive Refinement for Ray-tracing (15 min)

Speaker: Jaume Rigau

• Refinement criteria for ray-tracing

• Entropy-based refinement criteria

• f-divergence-based refinement criteria

5. Viewpoint Selection and Mesh Saliency (30 min)

Speaker: Mateu Sbert

• Viewpoint information-theoretic measures

• Viewpoint information channel: mutual information,

similarity and stability

• Selection of best views and object exploration

• Polygonal mutual information and information-

theoretic ambient occlusion

• Mesh saliency

• Importance-driven viewpoint selection

6. View Selection in Scientific Visualization (30 min)

Speaker: Ivan Viola

• View Selection for Volumes and Iso-Surfaces

• Importance-Driven Focus of Attention

• Guided Navigation using Higher-Level Semantics

7. Viewpoint-driven Simplification (30 min)

Speaker: Miguel Chover

• Recent work on simplification

• Information-theoretic metrics: entropy, Kullback-

Leibler distance and mutual information

• Simplification algorithms

8. Other Applications (15 min)

Speaker: Miquel Feixas and Mateu Sbert

• Image processing: registration and segmentation

• Object recognition: shape descriptors
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Part II: Information Theory Basics

Miquel Feixas, Jaume Rigau, and Mateu Sbert

University of Girona, Spain

1. Introduction

In 1948, Claude Shannon published “A mathematical theory

of communication” [Sha48] which marks the beginning of

information theory. In this paper, he defined measures such

as entropy and mutual information (called rate of transmis-

sion), and introduced the fundamental laws of data compres-

sion and transmission.

Information theory deals with the transmission, storage

and processing of information and is used in fields such

as physics, computer science, mathematics, statistics, eco-

nomics, biology, linguistics, neurology, learning, etc. It is

applied successfully in areas such as medical image process-

ing, computer vision, robot motion and computer graphics.

In this part, we present some basic concepts of informa-

tion theory. A very good reference is the text by Cover and

Thomas [CT91]. Other references are Blahut [Bla87] and

Lubbe [vdL97].

2. Entropy

In [Sha48], after representing a discrete information source

as a Markov process, Shannon asks himself: “Can we define

a quantity which will measure, in some sense, how much

information is “produced” by such a process, or better, at

what rate information is produced?”.

His answer is: “Suppose we have a set of possible events

whose probabilities of occurrence are p1, p2, . . ., pn. These

probabilities are known but that is all we know concerning

which event will occur. Can we find a measure of how much

“choice” is involved in the selection of the event or of how

uncertain we are of the outcome?

If there is such a measure, say H(p1, p2, . . . , pn), it is rea-

sonable to require of it the following properties:

1. H would be continuous in the pi.

2. If all the pi are equal, pi = 1
n

, then H should be a mono-

tonic increasing function of n. With equally likely events

there is more choice, or uncertainty, when there are more

possible events.

3. If a choice is broken down into two successive choices,

the original H should be the weighted sum of the indi-

vidual values of H. The meaning of this is illustrated in

Figure 1.

1/21/2

1/3

1/2 1/3 1/6

1/2
2/3 1/3 

1/6 

Figure 1: Grouping property of the entropy.

On the left, we have three possibilities p1 = 1
2 , p2 =

1
3 , p3 = 1

6 . On the right, we first choose between two

possibilities each with probability 1
2 , and if the second

occurs, we make another choice with probabilities 2
3 ,

1
3 . The final results have the same probabilities as be-

fore. We require, in this special case, that H( 1
2 , 1

3 , 1
6 ) =

H( 1
2 , 1

2 ) + 1
2 H( 2

3 , 1
3 ). The coefficient 1

2 is because this

second choice only occurs half the time.”

After these requirements, he introduces the following the-

orem: “The only H satisfying the three above assumptions is

of the form:

H = −K
n

∑
i=1

pi log pi (1)

where K is a positive constant”. When K = 1 and the loga-

rithm is log2, information is measured in bits.

Shannon calls this quantity entropy, as “the form of H will

be recognized as that of entropy as defined in certain formu-

lations of statistical mechanics where pi is the probability of
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a system being in cell i of its phase space”. There are other

axiomatic formulations which involve the same definition of

entropy [CT91].

The Shannon entropy is the classical measure of informa-

tion, where information is simply the outcome of a selection

among a finite number of possibilities. Entropy also mea-

sures uncertainty or ignorance.

Thus, the Shannon entropy H(X) of a discrete random

variable X with values in the set S = {x1,x2, . . . ,xn} is de-

fined as

H(X) = −
n

∑
i=1

pi log pi (2)

where n = |X |, pi = p(xi) = Pr[X = xi] for i ∈ {1, . . . ,n},

the logarithms are taken in base 2 (entropy is expressed in

bits), and we use the convention that 0 log0 = 0, which is

justified by continuity. We can use interchangeably the no-

tation H(X) or H(p) for the entropy, where p is the prob-

ability distribution {p1, p2, . . . , pn}, also represented by pi.

As − log pi represents the information associated with the

result xi, the entropy gives us the average information or un-

certainty of a random variable. Information and uncertainty

are opposite. Uncertainty is considered before the event, in-

formation after. So, information reduces uncertainty. Note

that the entropy depends only on the probabilities.

Some other relevant properties [Sha48] of the entropy are

1. 0 ≤ H(X) ≤ logn

• H(X) = 0 if and only if all the probabilities except

one are zero, this one having the unit value, i.e., when

we are certain of the outcome.

• H(X) = logn when all the probabilities are equal.

This is the most uncertain situation.

2. If we equalize the probabilities, entropy increases.

If we consider another random variable Y with probabil-

ity distribution qi corresponding to values in the set Y =
{y1,y2, . . . ,ym}, the joint entropy of X and Y is defined as

H(X ,Y) = −
n

∑
i=1

m

∑
j=1

pi j log pi j (3)

where m = |S′| and pi j = P(xi,y j) = Pr[X = xi,Y = y j] is

the joint probability.

When n = 2, the binary entropy (Figure 2) is given by

H(X) = −p log p− (1− p) log(1− p) (4)

where p = {p,1− p}.

Also, the conditional entropy is defined as

H(X |Y ) = −
m

∑
j=1

n

∑
i=1

pi j log pi| j (5)

where pi| j = pxi|y j
= Pr[X = xi|Y = y j] is the conditional

probability.

Figure 2: Binary entropy.

The Bayes theorem expresses the relation between the dif-

ferent probabilities:

pi j = pi p j|i = q j pi| j (6)

If X and Y are independent, then pi j = piq j .

The conditional entropy can be thought of in terms of a

channel whose input is the random variable X and whose

output is the random variable Y . H(X |Y ) corresponds to the

uncertainty in the channel input from the receiver’s point

of view, and vice versa for H(Y |X). Note that in general

H(X |Y ) 6= H(Y |X).

The following properties are also met:

1. H(X ,Y) ≤ H(X)+ H(Y )
2. H(X ,Y) = H(X)+ H(Y |X) = H(Y )+ H(X |Y )
3. H(X) ≥ H(X |Y ) ≥ 0

3. Mutual Information

The mutual information between two random variables X

and Y is defined as

I(X ,Y) = H(X)−H(X |Y)

= H(Y )−H(Y |X)

= −
n

∑
i=1

pi log pi +
m

∑
j=1

n

∑
i=1

pi j log pi| j

=
n

∑
i=1

m

∑
j=1

pi j log
pi j

piq j
(7)

Mutual information represents the amount of information

that one random variable, the output of the channel, gives

(or contains) about a second random variable, the input of

the channel, and vice versa, i.e., how much the knowledge

of X decreases the uncertainty of Y and vice versa. There-

fore, I(X ,Y) is a measure of the shared information between

X and Y .

Mutual information I(X ,Y) has the following properties:

1. I(X ,Y) ≥ 0 with equality if, and only if, X and Y are

independent.
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2. I(X ,Y) = I(Y,X)
3. I(X ,Y) = H(X)+ H(Y )−H(X ,Y)
4. I(X ,Y) ≤ H(X)

The relationship between all the above measures can be

expressed by the Venn diagram, as shown in Figure 3.

H(X|Y) H(Y|X)

H(X,Y)

H(X) H(Y)

I(X,Y)

Figure 3: Venn diagram of a discrete channel.

The relative entropy or Kullback-Leibler distance be-

tween two probability distributions p = {pi} and q = {qi},

that are defined over the set S, is defined as

DKL(p‖q) =
n

∑
i=1

pi log
pi

qi
(8)

where, from continuity, we use the convention that 0 log0 =
0, pi log

pi

0 = ∞ if a > 0 and 0log 0
0 = 0.

The relative entropy is “a measure of the inefficiency of

assuming that the distribution is q when the true distribution

is p” [CT91].

The relative entropy satisfies the information inequality

DKL(p‖q) ≥ 0 , with equality only if p = q. The relative

entropy is also called discrimination and it is not strictly a

distance, since it is not symmetric and does not satisfy the

triangle inequality. Moreover, we have to emphasize that the

mutual information can be expressed as

I(X ,Y) = DKL({pi j}‖{piq j}) (9)

4. Entropy Rate of a Markov Chain

The joint entropy of a collection of n random variables is

given by

H(X1, . . . ,Xn) =

H(X1)+ H(X2|X1)+ . . .+H(Xn|Xn−1, . . . ,X1) (10)

The entropy rate or entropy density of a stochastic process

{Xi} is defined by

h = lim
n→∞

1

n
H(X1,X2, . . . ,Xn)

= lim
n→∞

H(Xn|Xn−1, . . . ,X1) (11)

representing the average information content per output

symbol † [CT91]. It is the “uncertainty associated with a

† At least, h exists for all stationary stochastic processes.

given symbol if all the preceding symbols are known” and

can be viewed as “the intrinsic unpredictability” or “the ir-

reducible randomness” associated with the chain [FC98].

In particular, a Markov chain can be considered as a chain

of random variables complying with

H(Xn|X1,X2, . . . ,Xn−1) = H(Xn|Xn−1) (12)

An important result is the following theorem: For a station-

ary Markov chain, with stationary distribution wi, the en-

tropy rate or information content is given by

h = lim
n→∞

1

n
H(X1,X2, . . . ,Xn)

= lim
n→∞

H(Xn|Xn−1)

= H(X2|X1) = −
n

∑
i=1

wi

n

∑
j=1

Pi j logPi j (13)

where wi is the equilibrium distribution and Pi j is the transi-

tion probability from state i to state j.

Finally, the excess entropy or effective measure complexity

[CP83,Gra86,Sha84,SG86] of an infinite chain is defined by

E = lim
n→∞

(H(X1,X2, . . . ,Xn)− nh) (14)

where h is the entropy rate of the chain and n is the length

of this chain. The excess entropy can be interpreted as the

mutual information between two semi-infinite halves of the

chain. “Another way of viewing this, is that excess entropy is

the cost of amnesia – the excess entropy measures how much

more random the system would become if we suddenly for-

got all information about the left half of the string” [Fel97].

5. Important Inequalities

Some of the above properties can be deduced from the fol-

lowing inequalities [CT91].

Jensen’s inequality

A function f (x) is convex over an interval (a,b) (the graph of

the function lies below any chord) if for every x1,x2 ∈ (a,b)
and 0 ≤ λ ≤ 1,

f (λx1 +(1−λ)x2) ≤ λ f (x1)+ (1−λ) f (x2) (15)

A function is strictly convex if equality holds, only if λ =
0 or λ = 1. A function f (x) is concave (the graph of the

function lies above any chord) if − f (x) is convex.

For instance, x logx for x ≥ 0 is a strictly convex function,

and logx for x ≥ 0 is a strictly concave function [CT91].

Jensen’s inequality: If f is convex on the range of a ran-

dom variable X , then

f (E[X ]) ≤ E[ f (X)] (16)

where E denotes expectation. Moreover, if f (x) is strictly
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convex, the equality implies that X = E[X ] with probabil-

ity 1, i.e., X is a deterministic random variable with Pr[X =
x0] = 1 for some x0.

One of the most important consequences of Jensen’s in-

equality is the information inequality DKL(p‖q) ≥ 0. Other

previous properties can also be derived from this inequality.

Observe that if f (x) = x2 (convex function), then E[X2]−
(E[X ])2 ≥ 0. So, the variance is invariably positive.

If f is given by the Shannon entropy, which is a concave

function, we obtain the Jensen-Shannon inequality [BR82]:

JS(π1,π2, . . . ,πN ; p1, p2, . . . , pN)

≡ H

(
N

∑
i=1

πi pi

)

−
N

∑
i=1

πiH(pi) ≥ 0, (17)

where JS(π1,π2, . . . ,πN ; p1, p2, . . ., pN) is the Jensen-

Shannon divergence of probability distributions

p1, p2, . . ., pN with prior probabilities or weights

π1,π2, . . . ,πN , fulfilling ∑
N
i=1 πi = 1. The JS-divergence

measures how ‘far’ are the probabilities pi from their likely

joint source ∑
N
i=1 πi pi and equals zero if and only if all the

pi are equal. It is important to note that the JS-divergence

is identical to I(X ,Y) when πi = p(xi) and pi = p(Y |xi) for

each xi ∈X , where p(X) = {p(xi)} is the input distribution,

p(Y |xi) = {p(y1|xi), p(y2|xi), . . . , p(yM|xi)}, N = |X |, and

M = |Y| [BR82, ST00]. This notation is followed in some

parts of the tutorial.

The log-sum inequality

Log-sum inequality: If a1,a2, . . . ,an and b1,b2, . . . ,bn are

non-negative numbers, then

n

∑
i=1

ai log
ai

bi
≥ (

n

∑
i=1

ai) log
∑

n
i=1 ai

∑
n
i=1 bi

(18)

with equality if and only if ai

bi
= constant.

Note that the conditions in this inequality are much

weaker than for Jensen’s inequality.

From this inequality, certain results can be derived:

1. DKL(p‖q) is convex in the pair (p,q)
2. H(X) is a concave function of p

3. If X and Y have the joint pdf p(x,y) = p(x)p(y|x), then

I(X ,Y) is a concave function of p(x) for fixed p(y|x) and

a convex function of p(y|x) for fixed p(x).

Data processing inequality

Data processing inequality: If X → Y → Z is a Markov

chain, then

I(X ,Y) ≥ I(X ,Z) (19)

This result demonstrates that no processing of Y , deter-

ministic or random, can increase the information that Y con-

tains about X .

Fano’s inequality

Suppose we have two correlated random variables X and Y

and we wish to measure the probability of error in guessing

X from the knowledge of Y . Fano’s inequality gives us a

tight lower bound on this error probability in terms of the

conditional entropy H(X |Y ) [CT91, FM94]. As H(X |Y ) is

zero if and only if X is a function of Y , we can estimate X

from Y with zero probability of error if and only if H(X |Y ) =
0. Intuitively, we expect to be able to estimate X with a low

probability of error if and only if H(X |Y ) is small [CT91].

If X and Y have the joint pdf p(x,y) = p(x)p(y|x), from Y

we calculate a function g(Y ) = X̂ which is an estimate of X .

Observe that X →Y → X̂ is a Markov chain. The probability

of error is defined by

Pe = Pr[X̂ 6= X ] (20)

Fano’s inequality:

H(Pe)+ Pe log n ≥ H(X |Y ) (21)

where H(Pe) is the binary entropy from {Pe,1−Pe}.

This inequality can be weakened to

Pe ≥
H(X |Y )− 1

logn
(22)

Thus, Fano’s inequality bounds the probability that X̂ 6=
X .

6. Entropy and Coding

Other ways of interpreting the Shannon entropy are possible:

• As we have seen in section 2, − log pi represents the in-

formation associated with the result xi. But − log pi can

also be interpreted as the surprise associated with the out-

come xi. If pi is small, the surprise is large; if pi is large,

the surprise is small. Thus, the entropy

H(X) = −
n

∑
i=1

pi log pi

is the expectation value of the surprise [Fel97].

• Entropy is also related to the difficulty in guessing the

outcome of a random variable. Thus, it can be seen

[CT91, Fel97] that

H(X) ≤ questions < H(X)+ 1 (23)

where questions is the average minimum number of bi-

nary questions to determine X . This idea agrees with the

interpretation of entropy as a measure of uncertainty and

also with the next interpretation.

• A fundamental result of information theory is the Shan-

non source coding theorem, which deals with the encod-

ing of an object in order to store or transmit it efficiently

[CT91,Fel97]. “Data compression can be achieved by as-

signing short descriptions to the most frequent outcomes
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of the data source and necessarily longer descriptions to

the less frequent outcomes” [CT91]. For instance, Huff-

man instantaneous coding ‡ is optimal and fulfils the fol-

lowing theorems:

– Similarly to (23), we have

H(X) ≤ ℓ < H(X)+1 (24)

where ℓ is the expected length of the optimal binary

code for X .

– If we encode n identically distributed random variables

X with a binary code, the Shannon source coding the-

orem can be enunciated in the following way:

H(X) ≤ ℓn < H(X)+
1

n
(25)

where ℓn is the expected codeword length per unit

symbol. Thus, by using large block lengths, we can

achieve an expected codelength per symbol arbitrarily

close to the entropy [CT91].

– For a stationary stochastic process, we have

H(X1,X2, . . . ,Xn)

n
≤ ℓn <

H(X1,X2, . . . ,Xn)

n
+1(26)

and thus, by definition of entropy rate h (11),

lim
n→∞

ℓn → h (27)

Thus, the entropy rate is the expected number of bits

per symbol required to describe the stochastic process.

In conclusion, the entropy of a random variable is a mea-

sure of the amount of information required on average to

describe it.

7. Continuous Channel

In this section, entropy and mutual information are defined

for continuous sources of information. For a continuous

source X , messages are taken from a continuous set S.

The entropy of a discrete set of probabilities p has been

defined (2) as

H(X) = −
n

∑
i=1

pi log pi (28)

Similarly, the continuous entropy of a continuous random

variable X with a probability density function p(x) is defined

by

H
c(X) = −

Z

S
p(x) log p(x)dx (29)

In the same way, for two continuous random variables X

and Y , the continuous conditional entropy is defined as

H
c(X |Y ) = −

Z

S

Z

S
p(x,y) log p(x|y)dxdy (30)

‡ A code is called a prefix or instantaneous code if no codeword is

a prefix of any other codeword.

and the continuous mutual information is defined as

I
c(X ,Y ) =

Z

S

Z

S
p(x,y) log

p(x,y)

p(x)p(y)
dxdy (31)

where p(x|y) and p(x,y) are, respectively, the conditional

density function and the joint density function associated

with X and Y .

If we divide the range of the continuous random variable

X into n bins of length ∆, and we consider its discretised

version X∆ (see [CT91]), it can be seen that the entropy of

a continuous random variable does not equal the entropy of

the discretised random variable in the limit of a finer dis-

cretisation [Sha48, CT91, Fel97]:

lim
∆→0

H(X∆) = H
c(X)− log∆ (32)

On the other hand, the mutual information between two

continuous random variables X and Y is the limit of the mu-

tual information between their discretised versions. Thus,

when the number of bins tends to infinity:

lim
∆→0

I(X∆
,Y

∆) = I
c(X ,Y) (33)

In addition, Kolmogorov [Kol56] and Pinsker [Pin60] de-

fined mutual information as I(X ,Y) = supP,QI([X ]P, [Y ]Q),
where the supremum is over all finite partitions P and Q.

From this definition, two important properties can be de-

duced: the continuous mutual information is the least up-

per bound for the discrete mutual information and refinement

can never decrease the discrete mutual information [Gra90].

This last property can also be deduced from the data pro-

cessing inequality (19) [Gra90].
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Applications of Information Theory to Computer Graphics
Part III-IV: Refinement Criteria Based on f -Divergences

Jaume Rigau, Miquel Feixas, and Mateu Sbert

University of Girona, Spain

1. Introduction

Just as we have seen in the previous part, when sampling a
signal we need a criterion to decide whether to take addi-
tional samples, albeit within the original domain or within a
hierarchical subdivision. The refinement criteria are mainly
based on the homogeneity encountered in the samples. Het-
erogeneity should lead to further sampling, possibly with an
adaptive subdivision of the domain. Oracles are then built
based on these criteria.

In this part, we introduce new refinement criteria based
on f-divergences. The introduction of these measures is mo-
tivated by the observation that the mutual information-based
oracle (see Part III) can be rewritten as an f-divergence.
f-Divergences are a family of convex functions that pos-
sess very remarkable properties. They were introduced by
Csiszár [Csi63] and Ali and Silvey [AS66] as measures
of discrimination or distance between probability distribu-
tions and have been successfully used in image processing
and several engineering areas [OBS98, LeG99, HMMG01,
Plu01].

Our purpose is to demonstrate the usefulness of f-
divergences in computer graphics by applying them to defin-
ing new refinement criteria for the techniques of the previous
chapters: hierarchical radiosity (§4) and adaptive sampling
in ray-tracing (§5). We consider that some divergences are
perfectly fitted as homogeneity measures, when we consider
how distant the distribution of the samples is with respect
to the uniform distribution. We will see how, compared with
classic refinement criteria, the f-divergence-based ones give
significantly better results. Previously, we give a brief intro-
duction to divergence measures (§2) and in particular to the
f-divergences (§3).

2. Divergence Measures

In this section, we establish the semantics of divergence
measures (§2.1) and we present three specific types of them
(§2.2).

2.1. Concept

What does “divergence” mean? One brief definition for
divergence is “a deviation from a course or stan-
dard” [Mer05]. In general, the difference in shades of mean-
ing between words such as difference, dissimilarity, dis-
tance, and divergence are so subtle that we end up consid-
ering them practically synonyms in every day language. In
a statistical context, the objective is to measure the level of
separation between two elements of a sampling. Depending
on the properties that make up the measure, it can be quali-
fied in one sense or another [Gow85, BB97, Mar01].

Let X be a nonempty set and d : X2 →R a function. Then,
d is a measure of

Difference If it fulfils

◦ Symmetry: d(x,y) = d(y,x) ∀x,y ∈ X
◦ Minimum difference: d(x,y)≥ d(x,x) ∀x,y ∈ X

Dissimilarity If it is a difference measure which fulfils

◦ Non-negativity: d(x,y)≥ 0 ∀x,y ∈ X
◦ Self-similarity: d(x,x) = 0 ∀x ∈ X

Distance Also called a metric, if it is a dissimilarity mea-
sure which fulfils (∀x,y,z ∈ X)

◦ Defined: d(x,y) = 0⇒ x = y
◦ Triangle inequality: d(x,y)+d(y,z)≥ d(x,z)

When the objective of the measure is to reflect the discrep-
ancy or difference between two probability distributions, it
is called divergence (without loss of generality, divergences
are limited to discrete probability distributions) [Bur83]:

Definition 1 Let X be a countable observation space with
n > 1 elements and P the set of all the possible probability
distributions ofX . Then, D :P2 →R+∪{0} is a divergence
if, for all (p,q) ∈ P2, it fulfils:

◦ D({p1, . . . , pn},{q1, . . . ,qn}) is a continuous function of
its 2 ·n variables.

◦ D(p,q) is invariant under the permutations of the pairs
(pi,qi) for i ∈ {1, . . . ,n}.
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◦ D({p1, . . . , pn,0},{q1, . . . ,qn,0}) = D(p,q).
◦ D(p,q)≥ 0.
◦ D(p,q) = 0⇔ p = q.

Note that if a divergence were symmetric it would be equiv-
alent to a defined dissimilarity which only lacks the triangle
inequality to attain the category of metric.

2.2. Divergence Classes

With the previous definition of divergence, it is possible to
obtain a large set of divergence measures D(p,q). In general,
the problem consists in discerning the suitable measures for
every specific case. Convexity is a desirable property. A gen-
eralisation of it, Jensen’s inequality (see Part II), is widely
used in mathematics, information theory, and different en-
gineering areas as a kernel of divergence measures. For ex-
ample, it has been successfully applied to image registra-
tion [HHK03] and DNA segmentation [BOR99].

We now see particular examples of divergences (following
Pardo [PV03]). From the perspective of information theory,
the importance of the information divergence, or Kullback-
Leibler distance, is objectively accepted. In mathematical
statistics, the same role is played by the chi-square diver-
gence. Also, in convex analysis, arithmetic and geometric
means are used in the arithmetic-geometric divergence. In
the probability theory, the Vasershtein-Ornstein divergence
plays an important role together with Lα-norm divergence,
which is also very useful in statistics and other mathemati-
cal areas (see Table 1).

These examples and many others are special cases of a
kind of divergence measure which obeys the scheme (in this
context, we keep the usual functional notation for the prob-
ability distributions).

D(p,q) = ∑
x∈X

ϕ(p(x),q(x)) (1)

for a given real function ϕ(u,v) of positive variables u,v.
This function is assumed to be extended to [0,∞)× [0,∞)
taking:

ϕ(0,0) = 0 ϕ(0,v) = lim
u→0+

ϕ(u,v) ϕ(u,0) = lim
v→0+

ϕ(u,v)

(2)
for u,v > 0 where the limits may be infinite.

This scheme has been introduced in information theory
for some classes of functions ϕ(u,v) where (u,v) ∈ [0,1]2.
An important case is the kind of divergences that can be
generated with the help of a convex function f : (0,∞) →
(−∞,∞), extended to [0,∞]→ (−∞,∞] by the continuity
rules:

f (0) = lim
x→0+

f (x) f (∞) = lim
x→∞

f (x). (3)

Let F be the set of these functions f which are twice dif-
ferentiable with continuous derivatives satisfying f (1) = 0
and f ′′(1) > 0. Using f ∈ F , the following divergences are
defined in accordance with (1):

Csiszár divergences ϕ(u,v) = v f
( u

v
)

Bregman divergences ϕ(u,v) = f (u)− f (v)− f ′(v)(u−v)
Burbea-Rao divergences ϕ(u,v) = f (u)+ f (v)

2 − f
( u+v

2
)

These three kinds are partially overlapping [PV97]. We fo-
cus our attention on Csiszár divergences [Csi63,Csi67], also
called f-divergences and denoted by D f (p,q).

3. f-Divergences

f-Divergences are based on convex functions and were in-
dependently introduced by Csiszár [Csi63], and Ali and Sil-
vey [AS66]. These measures have been applied to different
areas, such as medical image registration [Plu01] and clas-
sification and retrieval [HMMG01], among others. We in-
troduce, in this section, the definition, properties, and par-
ticular instances which we will use in the following sec-
tions [LV87, Ö02a]. Accordingly §2.2, we take ϕ(u,v) =
v f
( u

v
)

and

Definition 2 Let (p,q) ∈ P2 and f ∈ F . The f-divergence
of the probability distributions p and q is given by

D f (p,q) = ∑
x∈X

q(x) f
(

p(x)
q(x)

)
. (4)

By extension rules (2), for p,q > 0

0 f
(

0
0

)
= 0 q f

(
0
q

)
= q f (0) 0 f

( p
0

)
= p lim

y→∞
f (y)

y
.

(5)
Then, D f (p,q) is well defined as a divergence mea-
sure [Vaj89]. Two important properties are:

• D f (p,q) is convex on (p,q).
If (p,q) and (p′,q′) are two pairs of probability distribu-
tions, then

λD f (p,q)+(1−λ)D f (p′,q′)≥
D f (λp+(1−λ)p′,λq+(1−λ)q′). (6)

• Uniqueness.
If f ,g ∈ F , then D f (p,q) = Dg(p,q)⇔ ∃r ∈R. f (u)−
g(u) = r(u−1).

f-Divergences have been studied in depth. The Research
Group in Mathematical Inequalities and Applications (Vic-
toria University, Melbourne, Australia) deserves a special
mention since over recent years its members have made
many contributions to this area [OV93, Dra00, BCDS02,
Ö02a]. f-Divergences can be grouped together in terms
of their convex functions. Considering the classification
of Österreicher [Ö02a], we have the following types: χ

α-
divergences, (symmetrised) dichotomy, Matusita’s diver-
gences, elementary divergences, Puri-Vincze Divergences,
and Divergences of Arimoto-type. Within each type, other
families of f-divergences can be created. We should mention
particularly the subtype of f α-divergences (dichotomy class)
presented by Liese and Vajda [LV87].

c© The Eurographics Association 2007.

636



Jaume Rigau, Miquel Feixas, and Mateu Sbert / Applications of Information Theory to Computer Graphics

divergence field definition

information information theory I(p,q) = ∑x∈X p(x) log p(x)
q(x)

chi-squared statistics χ
2(p,q) = ∑x∈X

(p(x)−q(x))2

q(x)

arithmetic-geometric convex analysis AG(p,q) = ∑x∈X ln (p(x)+q(x))/2√
p(x)q(x)

Vasershtein-Ornstein probability theory VO(p,q) = 1−∑x∈X min{p(x),q(x)}
Lα-norm mathematics Lα(p,q) = ∑x∈X | p(x)−q(x)|α α ∈ {1,2}

Table 1: A subset of useful divergences with its most common fields of application.

0 0.5 1 1.5 2 2.5 3

�0.5

0

0.5

1

1.5

Figure 1: Plot for x ∈ [0,3] of three strictly convex func-
tions: u logu (blue), (u−1)2 (red), and 1

2 (
√

u−1)2 (green).
The shared intersection is f (1) = 0. From these func-
tions, the Kullback-Leibler, chi-square, and the Hellinger f-
divergences are obtained, respectively.

Next, we select three of the most important f-
divergences [Dra00, GS01, Ö02a], called “distances” in the
literature. They are built up from the convex functions in
Fig. 1:

Kullback-Leibler f (u) = u logu:

DKL(p,q) = ∑
x∈X

p(x) log
p(x)
q(x)

. (7)

Introduced by Kullback and Leibler [KL51], it corre-
sponds to the relative entropy or Kullback-Leibler dis-
tance (see Part II). Based on continuity arguments,
0 log 0

q(x) = 0 for all q(x), and p(x) log p(x)
0 = ∞ for all

p(x) > 0 (2). Hence, the measure takes values in [0,∞].
It is not a metric, since it is not symmetric and does not
satisfy triangle inequality but, despite of this, it has many
useful properties [Rei89,CT91,GS01]. A square root ver-
sion of Kullback-Leibler divergence has been used by
Yang and Barron [YB99]. In Fig. 2.a we show the be-
haviour of this divergence by means of the contribution
of a pair (p(x),q(x)). The maximum contribution is ∞ in
(p(x),0), and the minimum is −(e ln2)−1 ≈ −0.531 in
( 1

e ,1). The contribution is null for any pair where p(x) = 0
or p(x) = q(x). Note the relevance which the divergence
takes with respect to p.

Chi-square f (u) = (u−1)2:

Dχ2(p,q) = ∑
x∈X

(p(x)−q(x))2

q(x)
. (8)

Defined by Pearson [Pea00] (the history of this measure
can be found in Liese and Vajda [LV87]), this measure
takes values in [0,∞] due to the limit when q(x) = 0 (2).
It is not symmetric. Reiss [Rei89] defined a divergence us-
ing the square root of Dχ2 . In Fig. 2.b we show the same
representation as in the previous divergence. The maxi-
mum contribution is also∞ in (p(x),0), but the minimum
is 0 and it is attained in all the pairs where p(x) = q(x).
Observe that, even though a strong relevance with respect
to p is maintained, the values of q take on more impor-
tance than in the case of DKL.

Hellinger f (u) = 1
2 (
√

u−1)2:

Dh2(p,q) =
1
2 ∑

x∈X

(√
p(x)−

√
q(x)

)2
. (9)

The origins are in Hellinger [Hel09] (historical references
can be found in Liese and Vajda [LV87] and Le Cam and
Yang [LY90]). This symmetric measure takes values in
[0,1] due to the normalisation factor of 1

2 . If it is omit-
ted in f , we obtain the general Hellinger form 2Dh2 . The
quantity 1−Dh2 is called the Hellinger affinity, a mea-
sure popularised by Kakutani [Kak48] who also applied
the square root to the general form of Hellinger obtain-
ing a metric [Top00] (the normalisation factor is 1√

2
). In

Fig. 2.c, the contribution of each pair is shown. The max-
imum contribution is 1

2 in (1,0) and (0,1) and the mini-
mum is 0 when p(x) = q(x). Note how the relevance be-
tween p and q has balanced out due to the symmetry.

However, none of the above f-divergences are true dis-
tances. In Österreicher [Ö02b] there is a discussion about
which f-divergences have a metric behaviour. Gibbs and
Su [GS01] provide a summary of bounds between proba-
bility metrics and distances. Three relationships between the
f-divergences presented are (Fig. 3):

◦ Dh2(p,q)≤ 1
2 DKL(p,q) [Rei89]

◦ Dh2(p,q)≤
√

Dχ2(p,q) [Rei89]
◦ DKL(p,q)≤ log(1+Dχ2(p,q)) [GS01]
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Figure 2: Density maps of the contribution of a pair (p(x),q(x)) for all x ∈ X : (a) DKL, (b) Dχ2 , and (c) Dh2 .

x
2

√
x

Dh2

log(1 + x)
DKL D

χ2

Figure 3: Bounds between DKL, Dχ2 , and Dh2 , where D f
h→

Dg means D f (p,q)≤ h(D f (p,q)).
Credit: Adapted from Gibbs and Su [GS01].

4. f-Divergences in Radiosity

In this section, new refinement criteria based on f-
divergences are introduced for hierarchical radiosity (object-
space approach).

4.1. Method

Analysing the mutual information-based oracle ρiδi jB j < ε

(see Part III) [FRBS02] we observe that it can be rewritten
from a Kullback-Leibler distance. In fact, the kernel of the
oracle is based on the mutual information, which at the same
time is defined as a the Kullback-Leibler distance and which,
in accordance with (7), belongs to the f-divergences family.
In order to obtain the new expression, we need to make the
following considerations:

◦ Let |Si× j|= Ns be the number of samples of the area sam-
pling form factor computation.

◦ Let F̂ = ∑
Ns
k=1 Fxk↔yk be the form factor estimation where

(xk,yk) ∈ Si× j (F̂ ≈ Fji
Ai

= Fi j
A j

).
◦ Let p = {pk =

Fxk↔yk

F̂
| 1 ≤ k ≤ Ns} be the probability

distribution given for the contribution of every sample to
F̂ .

Note that avg1≤k≤Ns
{pk} = 1

Ns
. Then, from the discretisa-

tion error (see Part III)

δi j ≈
AiA j

AT

 1
|Si× j|

 ∑
(x,y)∈Si× j

Fx↔y logFx↔y


−

 1
|Si× j| ∑

(x,y)∈Si× j

Fx↔y

 log

 1
|Si× j| ∑

(x,y)∈Si× j

Fx↔y

 ,

(10)

we can rewrite

δi j ≈
AiA j

AT
(avg1≤k≤Ns

{Fxk↔yk logFxk↔yk}

− avg1≤k≤Ns
{Fxk↔yk} logavg1≤k≤Ns

{Fxk↔yk}) (11)

=
AiA j

AT
F̂(avg1≤k≤Ns

{pk log pk}

− avg1≤k≤Ns
{pk} logavg1≤k≤Ns

{pk}) (12)

=
AiA j

AT
F̂
(

avg1≤k≤Ns
pk log pk−

1
Ns

log
1

Ns

)
=

AiA j

ATNs
F̂

((
∑

1≤k≤Ns

pk log pk

)
− log

1
Ns

)

=
AiA j

ATNs
F̂ DKL(p,q), (13)

where q = {qk = 1
Ns
| 1≤ k≤Ns} is the uniform distribution.

This fact suggests that we try other f-divergences in the
kernel of the refinement oracle. These measures will give
us the distance of the distribution of the point-to-point form
factors, p, with respect to the uniform distribution, q. Thus,
the Kullback-Leibler (7), chi-square (8), and Hellinger (9)
distances have been tested. The Kullback-Leibler-based or-
acle has already been studied in [FRBS02, Fei02] from an
information-theoretic perspective.

Definition 3 Three oracles for hierarchical radiosity,
based on their respective f-divergences, are given by
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• Kullback-Leibler divergence

ρiAiA jF̂ DKL(p,q)B j < ε (KL)

• Chi-square divergence

ρiAiA jF̂ χ
2(p,q)B j < ε (CS)

• Hellinger divergence

ρiAiA jF̂ D2
h2(p,q)B j < ε (HL)

Observe that the constants 1
AT

and 1
Ns

have been removed
since they are specific constants for each scene and are im-
plicit in the threshold.

It is important to note that the expression between paren-
thesis in (11) corresponds to Jensen’s inequality with f (x) =
x logx and x ∈ p. Moreover, we can also see that expression
(12) is equal to the first term of the log-sum inequality (see
Part II), taking ai = pk, bi = 1, and n = Ns. Thus, δi j ≥ 0.

4.2. Results

For comparative effects, the kernel-smoothness-based ora-
cle,

ρi max{Fmax
i j −Favg

i j ,Favg
i j −Fmin

i j }A jB j < ε, (KS)

is chosen as a representative of the oracles which work eval-
uating the variation of the radiosity kernel between a pair
of elements (see Part III). This oracle and the f-divergence-
based oracles have been implemented on top of the hier-
archical Monte Carlo radiosity method. It should be noted
that our oracles can be used with any hierarchical radiosity
method.

In Fig. 4 we show a general view of the test scene obtained
with the KL oracle. The left image (i) shows the Gouraud
shaded solution, while the right one (ii) corresponds to the
subdivision obtained. Each oracle has been evaluated with:
Ns = 10 random lines between the corresponding pair of el-
ements; an average of 2,684,000 rays to distribute the power
have been cast for each solution; and the ε parameter has
been tuned so that the meshes obtained have approximately
19,000 patches in all the methods.

For another view of the test scene, we present the results
obtained with the f-divergence-based oracles KL, CS, and
HL (Figs. 5.a–c, respectively) and the KS oracle (Fig. 6.a).
We can see how the f-divergence-based oracles outperform
the KS one, working the more complex light zones better
and obtaining an improved sharpness in the objects. The
meshes created are of higher quality and their precision in
the corners and in the transitions of light show this feature.
On the other hand, comparing our three f-divergence oracles
we conclude that, although they exhibit a similar quality, the
KL one is slightly better. For instance, observe that the shad-
ows on the table are more defined. A possible explanation

for this better behaviour could be that the KL oracle, unlike
the other ones, meets the conditions of Jensen’s inequality.
This confers a distinct theoretical advantage on this oracle.

From the above, one could be tempted to use Jensen’s in-
equality alone as a kernel for a refinement oracle. We have
experimented with the function f (x) = x2, which when sub-
stituted in Jensen’s inequality, corresponds to the variance.
Thus, substituting Fxk↔yk logFxk↔yk by F2

xk↔yk in (11), the
variance-based oracle is given by

ρiAiA jF̂
2 V (p,q)B j < ε, (VT)

where V (p,q) = avg1≤k≤Ns
{p2

k}−
(

1
Ns

)2
. The results ob-

tained are presented in Fig. 6.b, showing the inadequacy of
this function.

In Table 2, the results of the previous methods are evalu-
ated with the RMSE and PSNR measures. The improvement
with regard to the KS and VT is reflected and the results of
the KL oracle are noteworthy.

5. f-Divergences in Adaptive Sampling for Ray-Tracing

In this section, we apply the f-divergences to the refine-
ment criteria based on ray-tracing (pixel-driven approach).
To do this, we incorporate the divergences into the adaptive
sampling scheme using the same basic idea as in hierarchi-
cal radiosity (§4) but considering the luminance informa-
tion instead of the geometric information of the form fac-
tors. Therefore, we evaluate the homogeneity of a region of
the image plane in accordance with the divergence between
its luminance distribution and the uniform distribution. To
make the comparison easier, we use the same framework as
in the entropy-based refinement criteria for ray-tracing (see
Part IV).

5.1. Method

The f-divergences defined in §3 will be used to evaluate the
heterogeneity of a set of samples in a region. The scheme
used is the following:

1. A first batch of Np
s samples is cast through a pixel and the

corresponding luminances Li∈{1,...,Np
s } are obtained. For

an sRGB colour system, the luminance corresponds to the
value of Y in the corresponding XYZ system [Com98].

2. The f-divergences D f (p,q) are taken between the nor-
malised distribution of the obtained luminances,

p = {pi =
Li

∑
Np

s
j=1 L j

| 1≤ i≤ Np
s }, (14)

and the uniform distribution q = {qi = 1
Np

s
| 1≤ i≤ Np

s }.
3. The refinement criterion, given by

1
Np

s
LD f (p,q) < ε (15)

is evaluated, where D f represents the Kullback-Leibler,
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(i) KL (ii) KL

Figure 4: KL oracle for the test scene: (i) Gouraud shaded solution and (ii) its final adaptive mesh. The oracle has been
evaluated with 10 random lines between elements.

oracle view1 view2
RMSEa RMSEp PSNRa PSNRp RMSEa RMSEp PSNRa PSNRp

KL 9.475 8.698 28.599 29.342 9.712 8.956 28.385 29.088
CS 10.097 9.355 28.047 28.710 10.556 9.825 27.661 28.284
HL 9.990 9.217 28.139 28.839 10.404 9.687 27.787 28.407
KS 13.791 13.128 25.339 25.767 15.167 14.354 24.513 24.991
VT 16.414 15.898 23.826 24.104 17.829 17.378 23.108 23.331

Table 2: The RMSE and PSNR measures of the f-divergence-based, KS, and VT oracles applied to the test scene. A set of
images are shown in Fig. 4 (KL), Fig. 5 (KL, CS, and HL), and Fig. 6 (KS and VT). The oracles have been evaluated with 10
random lines between elements.

chi-square, or Hellinger divergences, L is the average lu-
minance

L =
1

Np
s

Np
s

∑
i=1

Li, (16)

and ε is a predefined threshold for the refinement test.
The divergence measure D f (p,q) in the kernel plays the
role of a contrast. Note that to assign an importance to this
value, we weight it with the average luminance (16), as in
Glassner’s version of classic contrast [Gla95], used also
in the method CC (see Part IV). Division by the number
of samples Np

s in (15) ensures that the refinement process
stops.

4. Successive batches of Np
s rays are cast until the result of

the test is true and no more refinement is necessary.

The new criteria give good visual results, but the RMSE
obtained in our tests (see Table 3), although better than for
the classic contrast, is higher than with the confidence test
criterion (see Part IV). Our next logical step was to try the
square root of Hellinger divergence, as it is a true metric.
The results obtained were very encouraging and, by analogy,
we extended the experimentation to the square root of the
other divergences (also used in other fields [Rei89, YB99,
Top00]). The results also improved the previous ones and

were also better than in the confidence test case. The square
root versions of this set of f-divergences have already been
used previously in statistics. Thus,

Definition 4 Three refinement criteria for adaptive ray-
tracing, based on their respective f-divergences, are given by

• Square root of Kullback-Leibler divergence

1
Np

s
LD

1
2
KL(p,q) < ε (KL

1
2 )

• Square root of chi-square divergence

1
Np

s
LD

1
2
χ2(p,q) < ε (CS

1
2 )

• Square root of Hellinger divergence

1
Np

s
LD

1
2
h2(p,q) < ε (HL

1
2 )

5.2. Results

In Fig. 8 and Fig. 9 we present comparative results with dif-
ferent techniques for the test scene in Fig. 7. The following
two methods are compared with the three f-divergence-based
criteria (KL

1
2 , CS

1
2 , and HL

1
2 of Def. 4):
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(a.i) KL (a.ii) KL

(b.i) CS (b.ii) CS

(c.i) HL (c.ii) HL

Figure 5: The view2 of the scene for comparison of f-divergence-based oracles, (a) Kullback-Leibler (KL), (b) chi-square (CS),
and (c) Hellinger (HL), versus KS and VT ones (Fig. 6). By columns, (i) Gouraud shaded solution and (ii) its final adaptive
mesh. The oracles have been evaluated with 10 random lines between elements.
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(a.i) KS (a.ii) KS

(b.i) VT (b.ii) VT

Figure 6: The view2 of the scene for comparison of (a) kernel-smoothness-based (KS) and (b) variance-based (VT) oracles
versus f-divergence-based ones (Fig. 5). By columns, (i) Gouraud shaded solution and (ii) its final adaptive mesh. The oracles
have been evaluated with 10 random lines between elements.

◦ CC: Classic contrast (see Part IV) of the luminance
weighted with the respective importance L.

◦ CT: Confidence test with a confidence level of α = 0.1
and a tolerance t = 0.025 (see Part IV).

In order to evaluate their behaviour, the images are gen-
erated by a similar process to that of adaptive sampling ray-
tracing in Part IV. Clearly, all the methods are directly appli-
cable to adaptive sampling schemes such as that presented in
Part IV. In all the methods, 8 initial rays are cast in a strati-
fied way at each pixel to compute the contrast measures for
the refinement decision, and 8 additional rays are succes-
sively added until the condition of the criterion is met. An
implementation of classic path-tracing with next event esti-
mator was used to compute all images. The parameters were
tuned so that all five test images were obtained with a sim-
ilar average number of rays per pixel (Np

s = 60) and a sim-
ilar computational cost. The reconstruction method applied
is the piecewise-continuous image with box filter. Finally,
the pixel value is the reconstructed signal average at pixel
domain.

The resulting images are shown in Figs. 8.∗.i (CC and CT)
and Figs. 9.∗.i (KL

1
2 , CS

1
2 , and HL

1
2 ), with the sampling

density maps in Figs. 8.∗.ii and Figs. 9.∗.ii, respectively. The
analysis of the critical points of the images shows how our
sampling scheme performs the best. Observe, for instance,
the reduced noise in the shadows cast by the objects. Observe
also the detail of the shadow of the sphere reflected on the
pyramid.

Comparison of the SDMs shows a better discrimination of
complex regions of the scene in the three divergence cases
against the classic contrast and confidence test cases. This
explains the better results obtained by our approach. On the
other hand, the confidence test approach also performs bet-
ter than the classic contrast-based method. Its SDM also ex-
plains why it performs better than the contrast-based. How-
ever, it is unable to suitably render the reflected shadows un-
der the mirrored pyramid and sphere with precision.

In Table 3, we show the RMSE and PSNR of the images
obtained with classic (Figs. 8.∗.i), f-divergence, and square
root of f-divergence (Figs. 9.∗.i) methods respective to the
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Figure 7: Test scene for the ray-tracing comparison in Fig. 8 and Fig. 9, obtained with a path-tracing algorithm with 1,024
samples per pixel in a stratified way.

(a.i) CC (a.ii) SDM of (a.i)

(b.i) CT (b.ii) SDM of (b.i)

Figure 8: Images of the test scene (Fig. 7) obtained with an adaptive sampling scheme based on (a) classic contrast (CC)
and (b) confidence test (CT) methods. By columns, (i) shows the resulting images and (ii) the sampling density maps of (i). The
average number of rays per pixel is 60 in all the methods.Compare with the images in Fig. 9.
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test image in Fig. 7. Visual comparison is in concordance
with numerical data. The f-divergence-based criteria used
in our experiments (KL

1
2 , CS

1
2 , and HL

1
2 ) outperform both

classic contrast and confidence test experiments. Finally, the
better results of the HL

1
2 criterion could be explained by the

fact that it is a true distance.
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(a.i) KL
1
2 (a.ii) SDM of (a.i)

(b.i) CS
1
2 (b.ii) SDM of (b.i)

(c.i) HL
1
2 (c.ii) SDM of (c.i)

Figure 9: Images of the test scene (Fig. 7) obtained with an adaptive sampling scheme based on square root of (a) Kullback-
Leibler (KL

1
2 ), (b) chi-square (CS

1
2 ), and (c) Hellinger (HL

1
2 ) f-divergences. By columns, (i) shows the resulting images and (ii)

the sampling density maps of (i). The average number of samples per pixel is 60 in all the methods. Compare with the images
in Fig. 8.
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method criterion RMSEa RMSEp PSNRa PSNRp

Classic Contrast (CC) 6.157 6.126 32.344 32.387
Confidence test (CT) 5.194 5.174 33.822 33.855

Kullback-Leibler (KL) 5.508 5.553 33.311 33.241
f-divergences chi-square (CS) 5.414 5.452 33.461 33.400

Hellinger (HL) 5.807 5.862 32.852 32.770

Square root of Kullback-Leibler (KL
1
2 ) 4.824 4.793 34.463 34.519

f-divergences chi-square (CS
1
2 ) 4.772 4.736 34.557 34.623

Hellinger (HL
1
2 ) 4.595 4.560 34.884 34.951

Table 3: The RMSE and PSNR measures of the CC, CT, and f-divergence-based refinement criteria applied to Fig. 7. The
images for the CC and CT methods are shown in Fig. 8, and for the f-divergence-based ones, in Fig. 9. The average number of
samples per pixel is 60 in all the methods.
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Part III: Refinement Criteria for Radiosity

Miquel Feixas, Jaume Rigau, and Mateu Sbert

University of Girona, Spain

1. Radiosity Method

The radiosity method, first introduced in [GTGB84, NN85,

CG85], solves the problem of illumination in an environment

of diffuse surfaces. In this section, we look at the radiosity

equation, the form factor computation and some refinement

criteria for hierarchical radiosity.

1.1. Rendering Equation

The light transport in a virtual closed environment or scene

(Figure 1) is described by the rendering equation [Kaj86],

which is a second-order Fredholm integral equation. This

equation, which describes all energy exchanges between sur-

faces, gives us the distribution of light at every point of a

scene:

L(x,ωx) =

Le(x,ωx)+

Z

S
ρbd(x,ωx,−ωy→x)L(y,ωy)G(x,y)dAy (1)

where

• S is the set of surfaces that form the environment

• x and y are points on S

• dAy is a differential area at point y

• ωx is a given outgoing direction at point x and ωy→x is the

outgoing direction at point y towards point x (ωy→x can

also be seen as an incoming direction at point x coming

from point y) (Figure 2)

• L(x,ωx) is the radiance at point x in direction ωx (radiance

can be defined as the power arriving at or leaving from a

surface per unit solid angle and per unit projected area,
W

sr.m2 ) and L(y,ωy→x) is the radiance at point y in direction

ωy→x

• Le(x,ωx) is the emitted radiance at point x in direction ωx

• ρbd(x,ωx,−ωy→x), with units sr−1, is the bidirectional

reflectance distribution function (BRDF) at point x, which

is the ratio between the outgoing radiance at x in direction

ωx and the incident radiant flux density (irradiance, W
m2 ) at

x from direction ωy→x (Figure 3a)

x

y

θy

θx

rxy

xN

Ny

ω

ω

x

y x

Figure 2: Outgoing and incoming directions at point x.

• G(x,y) is the geometric kernel, equal to
cos θx cos θy

r2
xy

V (x,y),

where θx and θy are the angles that the line joining x and

y form with the normals at x and y respectively, rxy is the

distance between x and y, and V (x,y) is a visibility func-

tion which is equal to 1 if x and y are mutually visible and

0 if not

This equation can be presented in slightly different forms

(global illumination equation, radiance equation) [SP94,

Gla95]. Observe that “the radiance distribution L is de-

scribed implicitly, so we know what conditions it must sat-

isfy, but we don’t know what it actually is” [Gla95].

1.2. Continuous Radiosity Equation

For diffuse surfaces, the BRDF does not depend on the out-

going and incoming directions. Thus, the outgoing radiance

L(x,wx) and the self-emitted radiance Le(x,wx) are also in-

dependent of the outgoing direction (Figure 3b). From this

simplification, the rendering equation for diffuse surfaces
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(a) (b)

Figure 1: Two different illuminated scenes.

(a) (b)

Figure 3: (a) Bidirectional reflectance distribution function. (b) Diffuse reflectance.

can be expressed as

L(x) = Le(x)+
Z

S
ρbd(x)L(y)G(x,y)dAy (2)

If we integrate L(x) on the whole hemisphere Ωx of the out-

going directions wx at point x, we obtain the total outgoing

flux over the hemisphere per unit area, called the radiosity at

point x (power per unit area) [SP94, Gla95]:

B(x) =
Z

Ωx

L(x)cosθxdωx = πL(x) (3)

where dωx is the differential solid angle containing the di-

rection ωx and θx is the angle that the direction ωx forms

with the normal at x. In addition, the total self-emitted flux

per unit area is expressed by E(x) = πLe(x), and is called the

emittance at point x.

Note that ρbd(x) is the ratio of outgoing radiance to in-

coming flux density. A more convenient quantity is the ratio

of reflected to incoming total flux, which must be between 0

and 1 according to the energy conservation law (the energy

reflected must be a fraction of the energy received, the other

fraction is absorbed). This ratio is the diffuse reflectance, or

simply reflectance, and is given by ρ(x) = πρbd(x) (Figure

3b).

The radiosity equation is then obtained by multiplying

both sides of equation (2) by π:

B(x) = E(x)+
ρ(x)

π

Z

S
B(y)G(x,y)dAy (4)

where

• B(x) and B(y) are, respectively, the radiosities at points x

and y ( W
m2 )

• E(x) is the emittance or emitted flux of energy per unit

area at point x ( W
m2 )

• ρ(x) is the diffuse reflectance at point x (dimensionless)

The radiosity equation can also be written in a directional

form [SP94]:

B(x) = E(x)+
ρ(x)

π

Z

Ωx

B(y)cosθxdωx (5)

In this conversion, dωx =
cos θy

r2
xy

dAy has been used.

1.3. Discrete Radiosity Equation and Form Factors

To solve the radiosity equation we can use a finite ele-

ment approach, discretising the environment into np patches

and considering the radiosities, emissivities and reflectances

constant over the patches (Figure 4).

With these assumptions, the integral equation (4) becomes
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(a) (b)

Figure 4: A scene with two different discretisations.

the system of radiosity equations [GTGB84]:

Bi = Ei +ρi

np

∑
j=1

Fi jB j (6)

where

• Bi, Ei, and ρi are respectively the radiosity, emittance (or

emissivity), and reflectance of patch i, and B j is the ra-

diosity of patch j

• Fi j is the patch-to-patch form factor, only dependent on

the geometry of the scene:

Fi j =
1

Ai

Z

Ai

Z

A j

G(x,y)

π
dAydAx

=
1

Ai

Z

Ai

Z

A j

cosθx cosθy

πr2
xy

V (x,y)dAydAx

=
1

Ai

Z

Ai

Z

A j

F(x,y)dAydAx

=
1

Ai

Z

Ai

Z

Ωx→ j

cosθx

π
V (x,y)dωxdAx (7)

where Ai and A j represent, respectively, the surfaces and

also the areas of patches i and j, x and y are, respectively,

points on Ai and A j, F(x,y) =
cos θx cos θy

πr2
xy

V (x,y) is the

point-to-point form factor, and Ωx→ j represents the set

of directions going from x to patch j

Form factor properties

Form factors have the following properties:

• Reciprocity

AiFi j = A jFji ∀i, j (8)

• Energy conservation

np

∑
j=1

Fi j = 1 ∀i (9)

• Additivity

Fi(k∪l) = Fik +Fil (10)

where i, k, and l are three disjoint patches. In general the

reverse is not true

F(k∪l)i 6= Fki +Fli (11)

In fact, if the patch i is divided into ni subpatches, we

obtain

ni

∑
k=1

Aik Fik j = AiFi j (12)

As a direct consequence of this equation, if patch i is di-

vided into ni subpatches of equal area, we have

niFi j =
ni

∑
k=1

Fik j (13)

or

Fi j =
1

ni

ni

∑
k=1

Fik j (14)

In this case, Fi j is the average of the form factors between

the subpatches of i and patch j.

Differential-area-to-area form factor

The form factor integral (7) can be considered as an average

over the area of patch i of the inner integral. Thus, we have

Fi j =
1

Ai

Z

Ai

FdAx,A j
dAx (15)

where FdAx,A j
is the differential-area-to-area form factor and

is equal to

FdAx,A j
=

Z

A j

cosθx cos θy

πr2
xy

V (x,y)dAy

=

Z

Ωx→ j

cosθx

π
V (x,y)dωx (16)
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If patches i and j are very distant from each other, then we

can assume that FdAx,A j
is constant over patch i. So, we can

evaluate this integral only at a point c (usually the center) of

patch i, obtaining

Fi j =
1

Ai

Z

x∈Ai

FdAx,A j
dAx

≈ FdAc,A j

1

Ai

Z

x∈Ai

dAx = FdAc,A j
(17)

The differential-area-to-area form factor is also called point-

to-patch form factor and can be thought of as the limit of

the patch-to-patch form factor when the area of one of the

patches decreases to zero [SP94]. We define Fj(x)≡ FdAx,A j
.

1.4. Form Factor Computation

The form factor computation is the most costly step of the

radiosity method. More specifically, its cost is mainly due to

the presence of the visibility term in the geometric kernel.

Analytical and deterministic numerical solutions

No analytical closed-form solution exists except for very

simple shapes without occlusions. Schroeder and Hanra-

han [SH93] solved the polygon-to-polygon case. In [SH92,

Gla95] there is an extensive list of formulae for simple

shapes. Here we only review one of them: the form factor

between two patches of the interior of a sphere without oc-

clusion, which is a paradigmatic case in our work.

From Figure 5, it can be easily obtained that the form fac-

tor Fi j between two spherical patches i and j is equal to
A j

AS
,

where AS is the area of the sphere. As θx and θy are equal

and cos θx

rxy
=

cos θy

rxy
= 1

2R
, where R is the radius of the sphere,

the expression for the form factor becomes

Fi j =
1

Ai

Z

Ai

Z

A j

cosθx cosθy

πr2
xy

V (x,y)dAxdAy

=
1

πAi

Z

Ai

Z

A j

cosθx

rxy

cosθy

rxy
V (x,y)dAxdAy

=
1

4πR2Ai

Z

Ai

Z

A j

dAxdAy =
A j

AS
(18)

Note also that F(x,y) =
cos θx cos θy

πr2
xy

= 1
AS

in a spherical scene.

When occlusions between patches exist, we can use de-

terministic numerical approximations to compute the form

factors. Different methods can be found in the literature

[SP94, Gla95]: Wallace’s method, Nusselt’s analogy, hemi-

cube method.

Monte Carlo integration

In this section, the form factor integral (7) will be evalu-

ated by the Monte Carlo method. So, we will give a brief

overview of this technique. For a more detailed description,

θ

θ

x

y

Ai

Aj

R
Rx

y

Nx

Ny

rxy
rxy/2

Figure 5: Geometry for the form factor between two spheri-

cal patches.

see [KW86]. Also [SP94, Gla95, Bek99] review it and give

different techniques to sample a random variable.

Monte Carlo integration enables us to estimate integrals

using random techniques. Let us suppose we want to solve

the integral of a function g(x). This can be written as

I =
Z

D
g(x)dx =

Z

D

g(x)

f (x)
f (x)dx (19)

If f (x) > 0 (∀x ∈ D) and
R

D f (x)dx = 1, then f (x) can be

considered as a probability density function (pdf) of a ran-

dom variable X and the integral (19) can be read as the ex-

pected value of the random variable
g(X)
f (X) with respect to the

pdf f (x):

I = E f

[
g(X)

f (X)

]
(20)

The term
g(x1)
f (x1)

, where x1 is obtained by sampling from the

pdf f (x), is a primary estimator for the integral I:

I ≈ Î =
g(x1)

f (x1)
(21)

This estimator is unbiased, i.e., the expected value of this

estimator is the value of the integral: E[Î] = I. The variance

of this estimator is given by

V [Î] = E

[(
g(X)

f (X)

)2
]

−

(
E

[
g(X)

f (X)

])2

=
Z

D

g(x)2

f (x)
dx− I

2

(22)

Averaging N independent primary estimators (obtained by

sampling N independent values x1,x2, . . .,xN from f (x)), we

obtain the unbiased secondary estimator ÎN

I ≈ ÎN =
1

N

N

∑
k=1

g(xk)

f (xk)
(23)
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with variance

V [ÎN ] =
1

N
V [Î] =

1

N

(
Z

D

g(x)2

f (x)
dx− I

2

)

(24)

So, we obtain better estimators as the number of samples

increases. This result is according to the weak law of large

numbers, which states that, for identically independent dis-

tributed (i.i.d.) random variables, 1
N ∑

N
k=1 Xk is close to its

expected value E[X ] for large numbers of N. Obviously the

variance depends on the pdf chosen. When we use a pdf that

resembles the integrand we are doing importance sampling,

which can reduce dramatically the variance of our estima-

tor [KW86].

With respect to the variance, let us remember that the stan-

dard deviation of X , which represents the error, is given by

σ =
√

V [X ]. It can be observed from (24) that σ decreases

at a rate of 1
√

N
as the number of samples increases.

The mean square error MSE of an estimator θ̂ of θ is given

by

MSE(θ̂) = E

[(
θ̂−θ

)2
]

(25)

and it is equal to the variance when the estimator is unbiased.

Monte Carlo form factor computation

Three different ways of computing the patch-to-patch form

factor Fi j are here reviewed (for a brief survey, see [Bek99]).

Uniform area sampling and uniformly distributed local and

global lines can be used to estimate the form factors:

• Uniform area sampling

To calculate the patch-to-patch form factor (7)

Fi j =
1

Ai

Z

Ai

Z

A j

cosθx cosθy

πr2
xy

V (x,y)dAxdAy

we take random points x and y on patches i and j respec-

tively (Figure 6). This means taking as pdf f (x,y) = 1
AiA j

,

which is a uniform distribution.

A primary estimator F̂1
i j is given by

F̂1
i j =

1

Ai

F(x,y)

f (x,y)
=

1

Ai

F(x,y)
1

AiA j

= A jF(x,y) (26)

where (x,y) is a pair of random points. It is easy to see that

this estimator is unbiased (E[F̂1
i j] = Fi j) and its variance is

given by

V [F̂1
i j] =

Z

Ai

Z

A j

(A jF(x,y))2 1

AiA j
dAxdAy −F

2
i j (27)

We can see that a strong singularity for abutting patches

is produced due to the term r4
xy in the denominator of the

integrand. In this case, this technique is not satisfactory,

as the variance can be very high [Bek99].

For N samples of pairs (x,y), the form factor integral is

approximated by the secondary estimator:

F̂1
i j = A j

1

N

N

∑
k=1

F(xk,yk) (28)

x
x

x

x5
x

3 5
y y

y

y
4

4
3

A

Ai

j

12

2

y
1

Figure 6: Form factor Fi j can be computed by taking ran-

dom points on patches i and j.

• Uniformly distributed lines

– Local lines A local line is a ray with its origin uni-

formly distributed on the surface of i and its direction

distributed according to the cosine with respect to the

normal at the origin. So, we estimate the integral (7)

Fi j =
1

Ai

Z

Ai

Z

Ωx→ j

cos θx

π
V (x,y)dAxdωx

taking as pdf f (x,wx) = 1
Ai

cos θx

π .

An unbiased primary estimator F̂2
i j takes the value 1 if

the local line hits the patch j directly and 0 if not. Let

us recall that if a random variable X takes the values

1 and 0 with probabilities p and 1− p, its variance is

given by V [X ] = p(1− p) [Pap84]. Thus,

V [F̂2
i j] = Fi j(1−Fi j) (29)

A secondary estimator for Fi j is given by

F̂2
i j =

Ni j

Ni
(30)

where Ni is the number of local lines with origin on

i and Ni j is the number of local lines with origin on i

that hit j. It shows clearly that the form factor Fi j can

be interpreted as the fraction of local lines with origin

on i that have j as the nearest patch intersected (Figure

7a).

– Global lines

Global lines [Sbe93] can be generated by putting the

scene within a sphere and selecting pairs of random

points on the surface of this sphere. The lines con-

necting each pair of points are uniformly distributed

throughout the scene. So, the form factor Fi j can also

be considered as the probability of a global line that,

crossing i, hits j (Figure 7b). It can be shown that each
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i

j

k

Fi j = 3/7 Fi k = 2/7

i

j

k

Fi j = 3/7 Fi k = 2/7 Fk j = 1/4

(a) (b)

Figure 7: Form factors can be computed with local (a) and global lines (b).

line can contribute to the computation of several form

factors (Figure 8).

Also, it is important to note that, from integral geom-

etry [San76, Sbe96], the probability that, for a planar

patch, a global line intersects patch i is proportional to

Ai.

A secondary estimator for Fi j is given by

F̂3
i j =

Ni j

Ni
(31)

where Ni is the number of global lines which cross i

and Ni j is the number of global lines that, crossing i,

hit j. Its variance is

V [F̂3
i j] =

1

Ni
Fi j(1−Fi j) (32)

To sample with global lines is equivalent to casting,

for each patch, a number of local lines proportional to

its area.

Observe that the variance will be higher for smaller

patches as Ni is proportional to Ai. If we identify the lines

connecting two patches with visibility, the form factor

gives us the visibility between patches [Sbe96].

1.5. Solution to the Radiosity Equation

The classic radiosity method consists of the following steps

[CW93, SP94, Gla95]:

• Discretise the environment into patches

• Compute the form factors Fi j for each pair of patches i

and j (form factor matrix)

• Solve the system of linear equations

• Display the solution

In this method, the input data are the geometric information

about the scene (for the form factors), the physical properties

of the materials (for the emissivities and reflectances), and

viewing conditions [SP94].

The radiosity equation (6), which refers to a single patch,

can be expressed as a system of np linear equations. This

linear system can be written in the form

B = E +RB (33)

θ

θ

θx
1

θy
1

x

y

2

2

1

2

4

3

6

5

7

1

y

x

1

y
2

x
2

Figure 8: Each segment of a global line contributes to the

computation of two form factors. Thus, the depicted line is

used in four form factor computations.

where B and E are, respectively, the vectors of radiosities

and emittances, and R is the np × np matrix of the terms

ρiFi j. The solution B of such a system can be written as a

Neumann series. As ρi is strictly less than 1, the matrix R

has a norm strictly less than 1. In this case, the Neumann

series converges and we can write the radiosity vector as a

sum of an infinite series:

B = E +RE +R
2
E + · · ·+R

n
E + · · · (34)

Since R represents the effect of one reflection on all the sur-

faces of the scene, RnE can be interpreted as the radiosity

obtained after n rebounds of the emitted light through the

scene.

In the literature, different iterative solution methods

[SP94, Gla95] are available to solve the radiosity and power

systems: Jacobi relaxation, Gauss Seidel relaxation, South-

well relaxation, and also their respective stochastic versions

[Shi90, SP94, NFP95, Neu95, NNB97, Bek99].
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1.6. Random Walks and Markov Chains

A discrete random walk [KW86, Rub81] is a Monte Carlo

technique used to solve linear systems of equations. A ran-

dom walk in a scene can be considered as a Markov chain

[Col74, CT91, MR95]. This is a discrete stochastic process

defined over a set of states S = 1,2, . . . ,n which is described

by a transition probability matrix P. In each step, the imagi-

nary particle (or ray) makes a transition from its current state

i to a new state j with transition probability Pi j. The transi-

tion probabilities only depend on the current state. A Markov

chain can also be seen as a sequence of random variables

Xk,k = 0 . . .∞, in which each Xk,k ≥ 1, depends only on

the previous Xk−1 and not on the ones before. The random

variables Xk indicate the probability of finding an imaginary

particle in each state i after k steps from an initial distribution

given by X0.

Thus, for all i, j ∈ S, we have ∑
n
j=1 Pi j = 1. Also, if we

are in state i, the probability of being in state j after n steps

is (Pn)i j or Pn
i j. Under certain conditions, which are met in

the context of this dissertation, the probabilities of finding

the particle in each state i converge to a stationary distribu-

tion w = {w1, . . . ,wn} after a number of steps. The station-

ary or equilibrium probabilities wi fulfil the relation wi =

∑
n
j=1 w jPji and also the reciprocity relation wiPi j = w jPji.

A transition probability matrix is said to be aperiodic if

it has no periodic state [Col74]. A periodic state is a state

that can be visited back by a path starting from it only at

multiples of a given period. A probability matrix is said to be

irreducible if there is always a path between any two states.

The form factor matrix F meets all the required conditions

to be a valid transition matrix of a random walk. The states

of the random walk correspond to the patches of a scene and

np denotes the number of patches. In order to determine the

next state of a random walk, the form factors of the current

patch need to be sampled. Such sampling can be carried out

easily without having to compute the form factors explicitely

[Shi90, PM92, FP93, Sbe97].

For the purpose of our work we are mainly interested in

the following two properties [Sbe96]:

1. If the form factor matrix F is irreducible and aperiodic,

then we have

lim
m→∞

(Fm)i j →
A j

AT
= a j (35)

for all the patches of a scene, where A j is the area of patch

j, AT = ∑
np

i=1 Ai, and a j is the relative area of patch j.

Thus, as the stationary or equilibrium distribution for a

Markov chain is defined as the limit of the mth power of

the transition matrix when m grows to infinity, if we know

the areas of the patches, we also know the stationary dis-

tribution a = {ai} of the random walk.

2. When the length of a random walk with transition ma-

trix F grows to infinity, the number of hits on any patch

i becomes proportional to ai, independently of where the

random walk started its trajectory.

A Markov chain with a stationary distribution is called

ergodic. Thus, the form factors correspond to an ergodic

Markov chain.

When the states form a countable set, as stated before, the

Markov chain is called a discrete chain. When the states are

not countable, the chain is called continuous. For instance,

when taking infinitesimal areas dx at each point x on the sur-

faces S of the scene as the states and differential form factors

F(x,y), with x,y ∈ S as transition probabilities, a continuous

Markov chain with stationary distribution w(x) = 1
AT

results.

It can be shown that in flatland the stationary probabil-

ities of the resulting discrete Markov chain are given by

wi = Li

LT
= li, where LT is the total length of all segments

of the scene and Li is the relative length of segment i. When

taking infinitesimal lengths dx at each point x on the set of

segments L of the scene as the states and differential form

factors F(x,y), with x,y∈ L as transition probabilities, a con-

tinuous Markov chain with stationary distribution w(x) = 1
LT

results.

1.7. Hierarchical Radiosity

The classic radiosity method means the entire matrix of form

factors has to be computed before a solution can be obtained.

This is the most costly step in all the process. To manage

the complexity of this problem, different strategies can be

used to reduce the number of form factors that need to be

computed. Obviously, we also have to take into account the

accuracy of the solution. A good strategy has to balance the

reduction of the number of patches and the precision of the

illumination.

Some techniques have been introduced in order to reduce

the computational cost: progressive refinement, substructur-

ing, adaptive refinement and hierarchical refinement. Other

techniques try to reduce the number of form factors arriving

at a solution within a given error bound [SP94].

The hierarchical refinement algorithm was first introduced

in [HSA91] by Hanrahan and Salzman. Additional informa-

tion can be found in [SP94, Gla95]. This algorithm is based

on the objective of reducing the number of form factors

needed to propagate the light through the environment: “At

the first this may hardly seem possible; after all, the form

factors describe the interaction of light between pairs of sur-

faces. How can we delete any of them and still hope to get

an accurate solution?” [Gla95]. Hanrahan and Salzman ob-

served that the N-body problem and the form factor problem

were very similar. It is worth noting that both problems are

based on the interaction between all pairs of objects and also

that the gravitational force and the form factor have a similar

mathematical expression. The idea behind both problems is

that “small details don’t matter when we are far away from
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something” [Gla95]. Thus, the clustering algorithms of the

N-body problem were applied to radiosity, resulting in the

hierarchical radiosity algorithm.

If each of the N particles exerts interactions on the other

N − 1 particles, thus there exist O(N2) interactions to ac-

count for. But two distant groups of particles can be con-

sidered, in terms of interaction, as two single particles. In

hierarchical radiosity the particles are substituted by patches

and these are subdivided into smaller elements if necessary,

in order to achieve an accurate light transport between them.

The main objective is to obtain an accurate piecewise con-

stant approximation of the radiosity on all the elements. To

do this, the mesh is generated adaptively: when a constant

radiosity assumption on patch i is not valid for the radiosity

due to another patch, the refinement algorithm will refine i in

a set of subpatches or elements. Finally, a multiresolution el-

ement mesh will enable us to accurately represent the energy

transport between patches [Gla95].

An oracle or refinement criterion, based on an error es-

timation, informs us if a subdivision of the surfaces is

needed. The oracle takes geometrical and visibility informa-

tion about the patches and also the source radiosity and re-

ceiver reflectance, and returns whether or not the interaction

is valid. Some of them will need further refinement, until a

certain level where no further refinement is needed or a pre-

viously imposed bound on the area of the patches is reached.

Its cost should not make the method prohibitive.

Bekaert et al. [BNN∗98] have incorporated hierarchical

refinement in Monte Carlo radiosity (more specifically in

stochastic Jacobi radiosity) by means of per-ray refinement.

1.8. Refinement Criteria

In this section, we review some refinement criteria for hi-

erarchical radiosity †. The cheapest and most widely-used

oracle has been the power-based oracle [HSA91]. However,

it leads to unnecessary subdivisions in smoothly illuminated

unoccluded regions receiving a lot of power. As an alterna-

tive, oracles based on the smoothness of the geometrical ker-

nel and the received radiosity have been proposed [SAS92,

GSCH93,LTG93,PB95,LSG94,BW96,SSS97,HS98]. Nev-

ertheless, oracles based on kernel smoothness also have the

problem of unnecessary subdivisions where the kernel is un-

bounded, and the ones based on received radiosity rely on a

costly accurate computation of form factors. All in all, the

additional cost invested in both smoothness-based oracles,

mainly through visibility computations, may outweigh the

improvements obtained [Bek99].

The application of a good refinement criterion and strat-

egy is fundamental for the efficiency of the hierarchical re-

finement algorithm. Next we review some oracles proposed

in the past.

† This section follows closely the discussion in [Bek99]

Oracle based on transported power

Hierarchical refinement radiosity was initially presented

for constant radiosity approximations by Hanrahan et al.

[HSA91]. A cheap form factor estimate Fi j which ignores

visibility was used to measure the accuracy of an interaction

from an element j to an element i. If max(Fi j,Fji) exceeds

a given threshold ε, the larger of the two elements i and j

is subdivided using regular quadtree subdivision. Otherwise,

the candidate link is considered admissible.

Hanrahan et al. [HSA91] also observed that the number of

form factors can be reduced considerably without affecting

image quality by weighting the link error estimates Fi j with

the source element radiosity B j and receiver element area

Ai. Weighting with receiver reflectance ρi also further re-

duces the number of links without deteriorating image qual-

ity. Thus, the power-based criterion to stop refinement can

be given by

ρiAiFi jB j < ε (36)

Other strategies [TH93, FH96] can also be used to reduce

the number of form factors by taking visibility information

about candidate interactions into account. We can see that

power-based refinement criterion uses no information about

the variation of the received radiosity across the receiver

element. This results, for instance, in sub-optimal shadow

boundaries and excessively fine refinement in smooth areas.

The main advantage of criterion (36) is its very low compu-

tational cost while yielding a fair image quality.

Oracle based on kernel smoothness

In order to improve on power-based refinement, the variation

of the radiosity kernel between a pair of elements is taken

into account. In [SAS92], the refinement criterion is given

by

ρi(F
max
i j −F

min
i j )A jB j < ε (37)

where Fmax
i j = maxx∈Ai,y∈A j

F(x,y) and Fmin
i j =

minx∈Ai,y∈A j
F(x,y) are the maximum and minimum

radiosity kernel values and are estimated by taking the

maximum and minimum value computed between pairs of

random points on both elements (Ai and A j represent the

surfaces of the elements), ε is a predefined threshold, B j is

the source radiosity and ρi the receiver reflectivity.

A similar approach was used in [GSCH93] in order to

drive hierarchical refinement with higher-order approxima-

tions. When applied to constant approximations, the refine-

ment criterion is given by

ρimax(Fmax
i j −F

av
i j ,F

av
i j −F

min
i j )A jB j < ε (38)

where Fav
i j = Fi j/A j is the average radiosity kernel value.

Kernel variation is a sufficient condition for received radios-

ity variation, but not a necessary condition [Bek99].
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Oracle based on smoothness of received radiosity

Because bounding kernel variation is not a necessary con-

dition for bounding received radiosity variation, we can ex-

pect that hierarchical refinement based on kernel smoothness

will yield hierarchical meshes with more elements and links

than required. Optimal refinement can be expected by di-

rectly estimating how well the radiosity B j(x), received at

x ∈ Ai from A j, is approximated by a linear combination of

the basis functions on Ai, i.e., by estimating the discretisa-

tion error directly.

This approach was first proposed by Lischinski et al.

[LTG93] for constant approximations. Pattanaik and Boua-

touch [PB95] proposed a similar strategy for linear basis

functions. Other approaches are given in [LSG94, BW96,

SSS97,HS98]. The computation cost of kernel and radiosity

smoothness-based oracles has not yet been found to com-

pensate for the gain in mesh quality [Bek99].

2. The Scene as a Discrete Channel

In order to apply information theory tools to a scene, we

model the scene in two equivalent ways:

• A random walk

A discrete random walk (section 1.6 ) in a discretised

scene is a discrete Markov chain where the transition

probabilities are the form factors and the stationary dis-

tribution is given by the relative area of patches (Figure

9).

• An information channel

A scene can be interpreted as a discrete information chan-

nel where the input and output variables take values over

the set of patches (the relative area of patches is the proba-

bility distribution of these variables) and the channel tran-

sition matrix is the form factor matrix.

1
2

3
4

5

6

A
0

A1

A2

A
3

A
4

A
5

A6

Figure 9: Discrete random walk in a scene.

In previous sections (section 1.6 and Part II), we reviewed

the most basic concepts about a Markov chain and an infor-

mation channel. Now, to work with a scene, the following

mapping or transformation is done from those general defi-

nitions:

• For a discrete Markov chain:

– number of states: n =⇒ number of patches: np

– transition probability: Pi j =⇒ form factor: Fi j

– stationary probability of state i: wi =⇒ relative area of

patch i: ai = Ai

AT

• For a discrete information channel with random variables

X and Y :

– probability distributions of X and Y : p and q =⇒ rela-

tive area of patches: a = {ai} = { Ai

AT
}

– conditional probability: p j|i =⇒ form factor: Fi j

2.1. Discrete Scene Visibility Entropy

From the above assumptions, we define the discrete scene

visibility entropy rate, or simply scene visibility entropy, as

HS = H(Y |X) = −
np

∑
i=1

ai

np

∑
j=1

Fi j logFi j (39)

The scene entropy can be interpreted as the average uncer-

tainty that remains about the destination patch of a random

walk (or ray) when the source patch is known. It also ex-

presses the average information content of a random walk

in a scene. Moreover, HS can also be seen as the average of

the entropies of all patches, where the entropy of a patch i is

defined by

Hi = H(Y |X = i) = −
np

∑
j=1

Fi j logFi j (40)

and thus (39) can be written as

HS =
np

∑
i=1

aiHi (41)

The entropy of patch i expresses the uncertainty (or igno-

rance) of a ray exiting from i about the destination patch. In

fact, it is the Shannon entropy of the form factors of patch i.

The Bayes theorem can be now expressed by the reci-

procity property of the form factors (8)

pi j = aiFi j = a jFji ∀i, j (42)

Also, we define the scene visibility positional entropy as

HP = H(X) = H(Y ) = −
np

∑
i=1

ai logai (43)

which may be interpreted as the uncertainty on the position

(patch) of a ray traveling an infinite random walk. It is the

Shannon entropy of the stationary distribution.

The joint entropy of a scene is given by

HJ = H(X ,Y) = −
np

∑
i=1

np

∑
j=1

aiFi j logaiFi j (44)

This entropy can be interpreted as the uncertainty about the

pair position-target of a ray in an infinite random walk. It is
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the Shannon entropy of a random variable with probability

distribution {aiFi j}.

2.2. Discrete Scene Visibility Mutual Information

The discrete scene visibility mutual information is defined as

IS = I(X ,Y) = H(Y )−H(Y |X)

= −
np

∑
i=1

ai log ai +
np

∑
i=1

ai

np

∑
j=1

Fi j logFi j (45)

and can be interpreted as the amount of information that the

destination patch conveys about the source patch, and vice

versa. IS is a measure of the average information transfer in

a scene.

Let us remember that mutual information can be de-

fined as a Kullback-Leibler distance (see Part II): I(X ,Y) =
DKL({pi j}‖{piq j}). Thus, scene mutual information is the

distance or discrimination between the scene probability dis-

tribution {pi j}= { Ai

AT
Fi j} and the independence distribution

of a scene {piq j} = {aia j}. It can also be expressed as

IS =
np

∑
i=1

np

∑
j=1

aiFi j log
aiFi j

aia j

=
np

∑
i=1

np

∑
j=1

aiFi j log
Fi j

a j
(46)

2.3. Properties

In a discretised scene the following properties are met:

• From the reciprocity property of the form factors (8), the

reversibility of the channel (and also of the Markov chain)

can be obtained: HS = H(Y |X) = H(X |Y ).
• HJ = HP +HS = 2HP − IS = 2HS + IS (Figure 10)

I

H

H HP P

J

S SHSH

Figure 10: Venn diagram of a scene.

• If all the patches have the same area, then ai = 1
np

and

Fi j = Fji, for all i and j, and therefore

HS = −
1

np

np

∑
i=1

np

∑
j=1

Fi j logFi j =
1

np

np

∑
i=1

Hi (47)

and

HP = lognp (48)

If all the Fi j are also equal, then HS reaches its maximum

value: HS = HP = lognp. The minimum value for HS will

be reached when all the form factors from any patch are

near zero except one with value near 1: HS ≈ 0.

3. Randomness versus Correlation

As we have seen in the previous section, scene visibility en-

tropy HS is a general measure of the uncertainty or infor-

mation content associated with a scene: “The entropy den-

sity provides an answer to the question: in a Markov chain,

given the knowledge of the previous symbol, how uncertain

are you, on average, about the next symbol?” [Fel97]. Thus,

HS can be seen as the intrinsic unpredictability or the irre-

ducible randomness associated with the chain. HS is also the

expected minimum number of bits per symbol required to

code a random walk in a scene.

On the other hand, scene mutual information IS, which

expresses the average information transfer, is a measure of

the dependence or correlation between the different parts of

a scene. According to W.Li [Li90], “it is now well under-

stood that mutual information measures the general depen-

dence, while the correlation function measures the linear de-

pendence, and mutual information is a better quantity than

the correlation function to measure dependence”.

3.1. Maximum and Minimum Scene Entropy

It is especially interesting to ask about the extremal cases

of maximum and minimum visibility entropy, which cor-

respond to the maximum disorder (unpredictability or ran-

domness in the ray path) and the maximum order (pre-

dictability), respectively. We must remark here that the con-

cepts of order and disorder are not directly referred to the

collocation of objects in space, but to visibility criteria. Max-

imum unpredictability can be obtained in scenes with no

privileged visibility directions, and maximum predictability

in the contrary case.

Both cases can be illustrated with the following two ex-

amples:

• The maximum entropy is exemplified by the interior of an

empty sphere divided into equal area patches. Here all the

form factors are equal and the uncertainty of the destina-

tion patch is maximum:

HS = HP = lognp (49)

This means that no visibility direction is privileged and

the information transfer is zero: IS = 0.

The sphere represents independence, equilibrium, homo-

geneity. It is modeled by a channel where the variables X

and Y are independent, because in a sphere Fi j = a j and,

thus, pi j = aiFi j = aia j . This is the expression of inde-

pendence in a scene. Thus, if the independence is repre-

sented by a sphere, the discrete scene mutual information
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expresses the distance between a given scene and a sphere

discretised with the same number and area distribution of

the patches.

Note that if the number of patches is doubled, the infor-

mation content (entropy) of an empty sphere with equal

area patches increases by one bit.

• The minimum entropy can be represented by a scene with

almost touching objects, as for instance two near concen-

tric spheres with a suitable discretisation. In this case there

are strongly privileged visibility directions. This system is

highly correlated and the information transfer is large.

3.2. Empirical Results

In this section we show the behaviour of the entropy and

mutual information in simple scenes. In the following exper-

iments, form factors have been computed using global lines

(see section 1.4).

3.2.1. Different scenes but the same discretisation of the

environment

In scenes with the same discretisation (as in Figure 11/Table

1, where we have a cubical enclosure with 512 interior

cubes), and consequently with the same HP, where the in-

terior objects have simply been displaced, we can observe

that the increase of entropy remains compensated by a mu-

tual information decrease, and vice versa: more randomness

means less correlation (Figure 11a), less randomness means

more correlation (Figure 11c). The Venn diagrams in Figure

12 illustrate this behaviour.

Scene HS IS

Fig.11a 6.761 4.779

Fig.11b 5.271 6.270

Fig.11c 4.849 6.692

Table 1: Entropy and mutual information for Figures 11a,

11b and 11c. For each scene, HP = 11.541 and 107 global

lines have been used to compute the form factors.

3.2.2. The same scene but different discretisations of the

environment

How does scene entropy behave with an increase in the num-

ber of patches? According to information theory, when the

number of patches goes to infinity, the scene entropy also

goes to infinity, but scene mutual information tends to a fi-

nite value (see the next chapter, section 7). So, in general,

the increase in HS has to be greater than the increase in IS.

This fact is partially illustrated in Table 2, corresponding to

Figure 13, where we have a cubical enclosure with three dif-

ferent regular discretisations of its surfaces (600, 2400, and

5400 patches, respectively). We can see that, for each scene,

HP = lognp, as all the patches have the same area. The Venn

diagrams in Figure 14 illustrate the behaviour of the entropy

and mutual information of these scenes.

Scene HS IS HP

Fig.13a 7.838 1.391 9.229

Fig.13b 9.731 1.498 11.229

Fig.13c 10.852 1.547 12.399

Table 2: Results for a cubical enclosure with different dis-

cretisations of its surfaces (Figure 13). 109 global lines have

been used to compute the form factors.

3.2.3. Normalized measures

In order to account for changes in the proportion of random-

ness (HS) and correlation (IS) in a scene, these can be nor-

malized by dividing them by the positional entropy HP. So,

they range from 0 to 1.

Normalized scene entropy can be defined as

HS =
HS

HP
(50)

and normalized scene mutual information as

IS =
IS

HP
= 1−

HS

HP
(51)

In the literature, normalized mutual information is consid-

ered as a measure of correlation [CT91]. Also, it can be use-

ful to normalize HS and IS with respect to the joint entropy

HJ: ĤS = HS

HJ
and ÎS = IS

HJ
. Obviously, they also range from

0 to 1. A similar approach has been used as a measure of 3D

medical image alignment [Stu97].

In the sequence of results of Table 3, where we start with

an empty cubical enclosure (Figure 13a) and then we add

small interior cubes (Figures 15, 16, 11a, and 11c), we can

observe how the normalized entropy decreases when we in-

troduce progressively more cubes. This fact increases the

correlation in the scene, to the detriment of its randomness,

in spite of the fact that HP also increases.

(a) (b)

Figure 15: (a) Random and (b) clustered configurations with

27 cubes.
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(a) (b) (c)

Figure 11: A random configuration and two clustered configurations with 512 cubes.

IS SHSH IS SHSH SHSIHS

(a) (b) (c)

Figure 12: Venn diagrams corresponding to different scenes with the same discretisation. The size of the circles (HP) remains

the same in all the diagrams.

(a) (b) (c)

Figure 13: Three empty cubical enclosures with their surfaces regularly discretised into (a) 10×10, (b) 20×20, and (c) 30×30

patches, respectively. The total number of patches is, respectively, 600, 2400, and 5400.

IS SHSH IS SHSH IS SHSH

(a) (b) (c)

Figure 14: Venn diagrams corresponding to the scenes of Figure 13 where we have a cubical enclosure with successive refine-

ments. The size of the circles (HP) increases with the number of patches.
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(a) (b)

Figure 16: (a) Random and (b) clustered configurations with 64 cubes.

Scene HS IS HS

Fig.13a 7.821 1.408 0.847

Fig.15a 7.780 1.669 0.823

Fig.15b 7.589 1.861 0.803

Fig.16a 7.709 2.009 0.793

Fig.16b 7.606 2.112 0.783

Fig.11a 6.761 4.779 0.586

Fig.11c 4.849 6.692 0.420

Table 3: Results for the empty scene of Figure 13a and the

scenes with 27, 64 and 512 small cubes of Figures 13a, 15,

16, 11a, and 11c. For each scene, 107 global lines have been

cast.

From the previous results, we see that scene entropy (ran-

domness) tends to increase with the number of patches and

scene mutual information (correlation) tends to increase with

the number of objects within a enclosure. So, the increase in

the number of patches and the increase in the number of ob-

jects work in different (but complementary) directions.

4. Complexity of a Scene

Scene complexity has often been expressed as the number of

patches into which a scene is subdivided. But, what do we

really expect scene complexity to measure? In our context,

scene complexity has to answer the question of how difficult

it is to compute the visibility and radiosity of a scene with

sufficient accuracy. Studying scene complexity will help to

improve our knowledge about the behaviour of the visibility

and radiosity of a scene.

To solve the illumination in a diffuse environment, we

need to simulate the interreflection of light between all the

surfaces. This simulation presents typical characteristics of

complex behaviour. The difficulty in obtaining a precise il-

lumination solution depends on

• the degree of dependence between all the surfaces

• how the interaction between these surfaces changes in de-

pendence when the system is subdivided

• the degree of unpredictability

The two first considerations can be represented by a statisti-

cal complexity measure, which quantifies correlation, struc-

ture, or interdependence between the parts of a system, and

the third one by the entropy, which measures randomness

or unpredictability. In this work, the word complexity is re-

served for a measure of statistical complexity and entropy is

referred to as randomness.

The most representative measures of statistical complex-

ity are excess entropy and mutual information. For scene vis-

ibility, the following proposition is fulfilled:

Proposition 1 From the point of view of scene visibility, the

excess entropy (see Part II) becomes the mutual information.

Proof. From definitions in Part II and section 2, we have

H(X1, . . . ,Xn) = H(X1)+ . . .+H(Xn|X1, . . . ,Xn−1)

= H(X1)+ H(X2|X1)+ . . .+H(Xn|Xn−1)

= HP +(n− 1)HS

Thus, E = limn→∞(HP +(n−1)HS−nHS) = HP−HS = IS.

2

So, we propose taking the mutual information as a mea-

sure of scene complexity.

According to Feldman, Rohilla, and Crutchfield:

• “It has become (in our sense) more broadly understood

that a system’s randomness and unpredictability fail to

capture its patterns and correlational structure.” [FC98]

• Entropy and mutual information are orthogonal or com-

plementary: “Complexity and randomness each capture a

useful property to describe how a process manipulates in-

formation” [SC99].

Entropy and mutual information express two basic aspects of

scene complexity. But, we are sure that other measures could

capture other perspectives of the scene complexity. Remem-

ber that one of the most basic formulae of information theory

(see part II) relates entropy to mutual information:

H(X) = H(X |Y )+ I(X ,Y) (52)
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Thus, complexity and randomness are combined in the same

expression.

A very simple approach would be to consider that the

complexity can be represented by the number of patches. It

is true that scene entropy is strongly dependent on np and

increases with it, with a maximum value of lognp. How-

ever, as we will see in this chapter, scene mutual information

presents a very different behaviour with respect to np.

5. Continuous Scene Visibility Mutual Information

A scene is a continuous system. Thus, by discretising a scene

into patches, a distortion or error is introduced. In a way, to

discretise means to make it uniform, and consequently some

information is lost. Obviously, the maximum accuracy of the

discretisation is accomplished when the number of patches

tends to infinity. Since the continuous mutual information

expresses with maximum precision the information transfer

or correlation in a scene, it will be considered as the main

measure of the scene complexity. On the other hand, discrete

mutual information will represent the complexity of a discre-

tised scene.

Similarly to the previous chapter, now the scene is mod-

eled by a continuous random walk (Figure 17) or by a con-

tinuous information channel. As we have seen in Part II, the

mutual information between two continuous random vari-

ables X and Y is the limit of the mutual information between

their discretised versions. On the contrary, the entropy of a

continuous random variable does not equal the entropy of its

discretised version in the limit of a finer discretisation.

1

0
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x
4

1 6xx
x
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x
3

x2
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3
4

5

6

Figure 17: Continuous random walk in a scene.

Thus, in a scene, discrete mutual information IS converges

to continuous mutual information Ic
S when the number of

patches tends to infinity:

I
c
S = lim

np→∞

IS (53)

In this chapter we will see that this result is very important

for this dissertation because it will enable us to calculate the

distance to the ideal discretisation, represented by the con-

tinuous mutual information.

Scene visibility entropy however tends to infinity when

the number of patches tends to infinity:

lim
np→∞

HS = ∞ (54)

As we have seen (section 1.6), when the states form an

uncountable set, we deal with a continuous Markov chain.

We can obtain the continuous formulae for the entropy and

mutual information of a scene from the respective discrete

definitions using the following substitutions:

• Each state by an infinitesimal area and each summatory

by an integral.

• wi = Ai

AT
=⇒ 1

AT
. This means substituting the discrete

probability of taking patch i by the continuous probability

of selecting any point.

• Fi j =⇒ F(x,y). This means substituting the patch-to-

patch form factor by the point-to-point form factor. Re-

member that the value of F(x,y) is
cosθxcosθy

πr2
xy

for mutually

visible points, or zero otherwise, θx and θy being the an-

gles which the normals at x and y form with the segment

joining x and y, and rxy the distance between x and y (see

section 1.3).

In the same way, the continuous formulae for a scene can

also be obtained from the continuous formulae of the en-

tropy and mutual information (see Part II) by applying the

following substitutions:

• dx =⇒ dAx, dy =⇒ dAy

• p(x) =⇒ 1
AT

• p(y|x) =⇒ F(x,y)
• p(x,y) =⇒ 1

AT
F(x,y)

Thus, we obtain

• Continuous positional entropy

H
c
P = −

Z

S

1

AT
log

1

AT
dAx = logAT (55)

• Continuous scene visibility entropy

H
c
S = −

Z

S

Z

S

1

AT
F(x,y) logF(x,y)dAxdAy (56)

• Continuous scene visibility mutual information

I
c
S = logAT +

Z

S

Z

S

1

AT
F(x,y) logF(x,y)dAxdAy

=

Z

S

Z

S

1

AT
F(x,y) log(AT F(x,y))dAxdAy (57)

For example, in the interior of an empty sphere, as any

pair (x,y) fulfills F(x,y) = 1
AT

, the result obtained is, as ex-

pected, Ic
S = 0. Remember that, in a sphere, IS = 0 and thus

limnp→∞ IS = Ic
S = 0.

Note that Hc
P and Hc

S are not invariant to a change in the

scale of a scene. For our objectives, we are only interested

in their discrete versions, which are always invariant to a

change in the scale. IS and Ic
S also have this desirable prop-

erty.
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6. Monte Carlo Computation of the Scene Visibility

Complexity

Now we will show how the continuous mutual information

can be computed using local or global lines.

6.1. Monte Carlo Integration

The continuous mutual information integral can be solved by

Monte Carlo integration. Reparametrizing the integral, we

have

I
c
S =

Z

S

Z

S

1

AT
F(x,y) log(AT F(x,y))dAxdAy

=

Z

S

Z

Ωx

1

AT

cosθx

π
log(AT F(x,y(x,ωx)))dAxdωx

(58)

where y(x,ωx) is the point visible from x in the ωx direc-

tion. Now we can use cos θx

πAT
as probability density function

(
R

S

R

Ωx

cos θx

πAT
dAxdωx = 1). Drawing samples according to

this distribution means simply selecting first a random point

in the scene upon the area and a direction upon the form

factor distribution. This can be achieved with local lines or

global lines. The result obtained is

I
c
S ≈

1

N

N

∑
k=1

log(AT F(xk,yk(xk,ωxk))

=
1

N

N

∑
k=1

log
(

AT cosθxk cosθyk

πr2
xkyk

)
(59)

In the global line case, N stands for the total number of seg-

ments of the global lines or the number of pairs of points

considered, which is the total number of intersections di-

vided by two (see Figure 8). In the local line case, N rep-

resents the total number of local lines used in a scene and

the quantity of lines cast from each patch, Ni, proportional

to its area (Ni = Ai

AT
N). In this chapter, the scene complexity

has been calculated using both global and local lines.

6.2. Empirical Results

We begin by computing the complexity of platonic solids

and the Cornell box (Figure 1a). In Table 4, we can observe

that the minimum complexity corresponds to a sphere and

the maximum complexity to a tetrahedron. As we expected,

the polyhedra that are nearer to the sphere are less complex,

i.e., they have less correlation. Thus, complexity appears to

be inversely proportional to the number of faces. The com-

plexity of the Cornell box is clearly greater than the one for

the empty cube, as we have increased the cube complexity

by introducing objects in its interior.

In addition, in Table 5, we show the complexity for the

scenes of Figure 18. In Figure 18a, an object, made up of a

table and four chairs, is situated in the middle of a room. In

Figures 18b and 18c, arrays of 4 or 16 objects have been

situated in the middle of the same room. In Figures 18d,

Scene Ic
S

sphere 0

icosahedron 0.543

dodecahedron 0.825

octahedron 1.258

cube 1.609

tetrahedron 2.626

Cornell box 3.274

Table 4: Complexity of platonic solids and the Cornell box.

For each scene, 106 global lines have been cast.

18e and 18f, the same 16 objects have been distributed in

different ways. We can see that the introduction of objects

increases the complexity and that the scenes with the same

objects (18c, 18d, 18e and 18f) show similar complexities.

In this case, the increase in complexity is produced when

there are objects near the walls because this fact increases

the correlation in the scene.

7. Complexity and Discretisation

Now, we will try to show that the scene complexity Ic
S is

closely related to the difficulty in obtaining an accurate dis-

cretisation. In a way, to discretise a scene is to model it. “A

system is not complex by some abstract criterion but be-

cause it is intrinsically hard to model” [BP97]. This point

of view is compatible with W.Li’s comment that: “An intu-

itively satisfactory definition of complexity should measure

the amount of effort put in that generates correlations in a

sequence. Of course, one cannot be sure that all the effort is

spent on generating correlations. As a result, a measure of

correlation typically provides a lower bound of a measure of

complexity, and might be a reasonable estimate of the com-

plexity” [Li91].

7.1. Continuous versus Discrete Mutual Information

From Part II, we know that

• The mutual information between two continuous random

variables is the limit of the mutual information between

their discretised versions.

• Refinement can never decrease the discrete mutual infor-

mation.

• The continuous mutual information is the least upper

bound for the discrete mutual information.

Now, if we apply these results to scene visibility, we find

that:
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(a) (b) (c)

(d) (e) (f)

Figure 18: (a) An object, composed of a table and four chairs, and (b) an array of 4 objects with the same composition, have

been situated in the middle of a room. (c, d, e, f) The same 16 objects have been distributed in four different ways.

Scenes Fig.18a Fig.18b Fig.18c Fig.18d Fig.18e Fig.18f

Ic
S 3.837 4.102 5.023 5.043 5.044 5.089

Table 5: Complexity of the scenes of Figure 18. For each scene, 106 global lines have been cast.

• If any patch is divided into two or more patches, the dis-

crete mutual information IS of the new scene increases or

remains the same.

• The continuous scene visibility mutual information is the

least upper bound to the discrete scene visibility mutual

information.

Thus, a scene fulfils:

I
c
S − IS ≥ 0 (60)

Initially, these results were proved in [FS98, FdABS99]. In

the next chapter, we give a general proposition proving these

properties for visibility, radiosity and importance.

As we can see in Tables 6 and 7, corresponding to Fig-

ures 13 and 11(a), respectively, the computational cost of Ic
S

is much lower than the cost of IS: with few lines Ic
S can be

computed with enough precision, unlike IS which needs a

lot of lines to get a precise measurement. Observe that IS in-

creases with the number of patches but is always less than Ic
S .

We can also see that, due to the Monte Carlo error, the value

of the discrete mutual information decreases (until conver-

gence is achieved) with the increase in the number of lines

cast. With few lines per patch, the values of the form factors

give us an erroneous high correlation.

In Tables 8 and 9, corresponding to Figures 19 and 20, we

also show how discrete mutual information IS increases with

the mesh refinement.

Scene Lines (106) HS IS Ic
S

Fig.13a 0.1 6.482 2.747 1.610

Fig.13a 10 7.821 1.408 1.612

Fig.13a 1000 7.838 1.391 1.610

Fig.13b 0.1 5.342 5.887 1.608

Fig.13b 10 9.420 1.809 1.611

Fig.13b 1000 9.731 1.498 1.610

Fig.13c 0.1 4.313 8.086 1.610

Fig.13c 10 9.684 2.715 1.611

Fig.13c 1000 10.852 1.547 1.610

Table 6: Results for the cubical enclosure of Figure 13 with

different discretisations of its surfaces. For each scene, 105,

107, and 109 global lines have been cast.

Lines (106) 0.01 0.1 1 10

IS 8.773 6.398 5.171 4.779

Ic
S 5.650 5.636 5.631 5.632

Table 7: Discrete and continuous mutual information for a

scene with 512 cubes (Figure 11a).
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(a) (b) (c)

Figure 19: Three different discretisations for a tetrahedron. The total number of patches is, respectively, 4, 151, and 793.

(a) (b) (c) (d)

Figure 20: Four different discretisations for the Cornell box. The total number of patches is, respectively, 19, 196, 826, and

1924.

Scene Patches IS Ic
S

Fig.19a 4 0.415 2.626

Fig.19b 151 1.217 2.626

Fig.19c 793 1.445 2.626

Table 8: Ic
S and IS for the scenes in Figure 19. For each

scene, 107 local lines have been cast.

Scene Patches Lines (106) IS Ic
S

Fig.20a 19 10 0.690 3.273

Fig.20b 196 10 2.199 3.273

Fig.20c 826 10 2.558 3.273

Fig.20d 1924 100 2.752 3.273

Table 9: Ic
S and IS for the scenes in Figure 20.

7.2. Discretisation Accuracy

We know that the difference Ic
S − IS (60), always positive, ex-

presses the loss of information transfer due to the discretisa-

tion. From this assumption, we can now take a leap forward

with two fundamental proposals. The first appears naturally

in an information-theory context and the second will be ex-

perimentally checked:

1. From an information-theory point of view, the ideal dis-

cretisation is the one that captures all the information

transfer in a scene. Thus, between different discretisa-

tions of the same scene, the most precise will be the one

that has a higher discrete mutual information IS, i.e., the

one that best captures the information transfer. With this

in mind, we can express the discretisation error as the

difference

δ
v = I

c
S − IS (61)

and the relative discretisation error as the quotient

δ
v
=

Ic
S − IS

Ic
S

(62)

The relative discretisation accuracy is given by IS

Ic
S
.

2. Continuous mutual information Ic
S expresses the difficulty

in obtaining an accurate discretisation. The higher the Ic
S

(i.e., when there is more information transfer in a scene),

the more difficult it is to obtain an accurate discretisa-

tion, and probably more refinements will be necessary to

achieve a given precision. From this point of view, the

difficulty in discretising the interior of an empty sphere is

null (the discretisation error is always equal to zero). The

polyhedra that are “nearer” to the sphere are less complex

than the others, and so easier to discretise.
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8. Loss of Information Transfer due to the

Discretisation

To obtain a refinement criterion based on the discretisation

error between two patches, we need to consider both contin-

uous and discrete patch-to-patch information transfers.

8.1. Mutual Information Matrix

As we have seen, discrete scene mutual information is given

by

IS =
np

∑
i=1

np

∑
j=1

aiFi j log
(Fi j

a j

)
(63)

From this formula, the term

Ii j = aiFi j log
(Fi j

a j

)
(64)

can be considered as an element of a mutual information ma-

trix, and it is easy to see that Ii j = I ji. Each element repre-

sents the information transfer between patches i and j. Also,

we can consider that

Ii =
np

∑
j=1

aiFi j log
(Fi j

a j

)
(65)

expresses the information transfer from patch i. Thus, we can

write

IS =
np

∑
i=1

Ii =
np

∑
i=1

np

∑
j=1

Ii j (66)

If we analyze the terms Ii j , we observe that negative val-

ues appear when Fi j < a j . This situation reflects a very low

interaction between the two patches involved. On the other

hand, using the concavity property of the logarithm function

(see Part II), it is easy to see that Ii ≥ 0 (substituting ak, bk ,

and n by Fi j, a j , and np, respectively).

The information transfer between two patches can be ob-

tained more accurately if we consider the continuous mutual

information between them. Thus, from the continuous mu-

tual information, we obtain the following results.

Continuous information transfer:

I
c
S =

Z

S

Z

S

1

AT
F(x,y) log(AT F(x,y))dAxdAy

=
np

∑
i=1

np

∑
j=1

Z

Ai

Z

A j

1

AT
F(x,y) log(AT F(x,y))dAxdAy

(67)

Continuous information transfer due to patch i:

I
c
i =

np

∑
j=1

Z

Ai

Z

A j

1

AT
F(x,y) log(AT F(x,y))dAxdAy

(68)

Continuous information transfer between patches i and j:

I
c
i j =

Z

Ai

Z

A j

1

AT
F(x,y) log(AT F(x,y))dAxdAy (69)

This continuous measure expresses with maximum precision

the visibility information transfer between two elements.

8.2. Discretisation Error Between Two Patches

As we have seen (section 7.2), a general discretisation error

for a scene can be given by

δ = I
c
S − IS ≥ 0 (70)

In order to propose a refinement oracle for hierarchical

radiosity, we are interested in the contribution to this dis-

cretisation error of the patch-to-patch interaction (i.e., dis-

cretisation error between two patches). So, we calculate, re-

spectively, the difference between continuous and discrete

patch-to-patch mutual information. For each one, three dif-

ferent Monte Carlo techniques can be used: patch-to-patch

random lines, local lines and global lines.

1. Patch-to-patch random lines: The computation of (69)

I
c
i j =

Z

Ai

Z

A j

1

AT
F(x,y) log(AT F(x,y))dAxdAy

can be done with an area-to-area sampling (section 1.4),

i.e., using random lines joining both elements i and j (the

pdf is 1
AiA j

). For Ni j lines, we have

I
c
i j ≈

AiA j

AT

1

Ni j

Ni j

∑
k=1

F(xk,yk) log
(

F(xk,yk)AT

)
(71)

where xk and yk are, respectively, the end-points on

patches i and j of the k-th line.

From (64), Ii j can be expressed as

Ii j =
AiFi j

AT
log
(Fi jAT

A j

)
=

AiA j

AT

Fi j

A j
log
(Fi j

A j
AT

)
(72)

Now, taking
Fi j

A j
≈ 1

Ni j
∑

Ni j

k=1
F(xk,yk) (28), we obtain the
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visibility discretisation error between patches i and j:

δ
v
i j = I

c
i j − Ii j

≈
AiA j

AT

(
1

Ni j

( Ni j

∑
k=1

F(xk,yk) log
(

F(xk,yk)AT

))

−
Fi j

A j
log
(Fi j

A j
AT

))

=
AiA j

AT

(
1

Ni j

( Ni j

∑
k=1

F(xk,yk) log(F(xk,yk))
)

−
Fi j

A j
log
(Fi j

A j

))

=
AiA j

AT

(
1

Ni j

( Ni j

∑
k=1

F(xk,yk) log(F(xk,yk))
)

−
(

1

Ni j

Ni j

∑
k=1

F(xk,yk)
)

log
(

1

Ni j

Ni j

∑
k=1

F(xk,yk)
))

≥ 0

(73)

where we have used the log-sum inequality (see Part II).

This difference gives us the discretisation error between

two elements and it is used as the basis for our mutual-

information-based (MI-based) oracle. Observe also that

δv
i j is symmetric: δv

i j = δv
ji.

2. Local or global lines:

The computation of Ic
i j can also be done with uniformly

distributed local or global lines (section 1.4). From (59),

we obtain

I
c
i j ≈

AiFi j

AT

1

Ni j

Ni j

∑
k=1

log(AT F(xk,yk)) (74)

where Ni j is the number of local lines or segments of

global lines which connect patches i and j. Hence, we

find

δ
v
i j = I

c
i j − Ii j

≈
AiFi j

AT

(
1

Ni j

( Ni j

∑
k=1

log(F(xk,yk))
)
− log

Fi j

A j

)

(75)

As we expected, it is easy to see that the discretisation error

between two spherical patches is equal to zero.

9. Mutual-Information-Based Oracle for Hierarchical

Radiosity

We introduce in this section an information-theory oracle

based on the radiosity kernel smoothness to be used in the

hierarchical refinement algorithm. As the refinement strat-

egy in hierarchical radiosity deals with one pair of elements

at a time, we have to look for a similar interaction in our

information theory framework.

The fundamental idea in our approach is the following: the

difference between continuous and discrete patch-to-patch

(or element-to-element) mutual information, i.e., discretisa-

tion error, gives us the loss of information transfer or the

maximum potential gain of information transfer between two

elements. Hence this difference can be interpreted as the

benefit to be gained by refining and can be used as a deci-

sion criterion.

9.1. An Oracle Based on the Discretisation Error

between Two Patches

To obtain a mutual-information-based oracle, we take a simi-

lar approach to the classic smoothness-based oracles, which

multiplies ρiB j (from the radiosity equation (6)) by an ex-

pression of the visibility gradient between the two patches

involved. In our case, the visibility gradient is given by the

discretisation error δv
i j = Ic

i j − Ii j, which also represents the

variation of the radiosity kernel.

Our oracle will be based on the following considerations:

• In the radiosity equation (6)

Bi = Ei +ρi

np

∑
j=1

Fi jB j

the contribution of patch j to the radiosity of patch i is

given by ρiFi jB j. Thus, the geometric factor, i.e., the ra-

diosity kernel, is weighted by ρiB j.

• The kernel-smoothness-based oracles reviewed in section

1.8, such as

ρi(F
max
i j −F

min
i j )A jB j < ε

and

ρimax(Fmax
i j −F

av
i j ,F

av
i j −F

min
i j )A jB j < ε

, try to capture the variation of the radiosity kernel using

the maximum and minimum kernel values.

Our oracle proposal takes these two facts on board,

weighting the variation of the radiosity kernel (expressed by

the visibility discretisation error δv
i j between two patches)

by ρiB j. So, we find that the mutual-information-based (MI-

based) oracle is given by

ρiδ
v
i jB j < ε (76)

which can be computed with Ni j element-to-element random

lines between elements i and j:

ρiAiA jB j

AT

(
1

Ni j

( Ni j

∑
k=1

F(xk,yk) log(F(xk,yk))
)

−
(

1

Ni j

Ni j

∑
k=1

F(xk,yk)
)

log
(

1

Ni j

Ni j

∑
k=1

F(xk,yk)
))

< ε

(77)

Observe that in this expression the receiver area appears

weighting the oracle and thus avoiding an excessively small

receiver subdivision.
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It is important to note that δv
i j can be used as an oracle for

visibility. This only takes into account the variation of the

radiosity kernel and the areas of the patches involved.

9.2. Empirical Results

To check the performance of the MI-based oracle, we

have implemented a power-based oracle (36), a classic

kernel-smoothness-based (KS-based) oracle (38) and our

MI-based oracle (77) in the hierarchical Monte Carlo radios-

ity [BNN∗98] method of the RenderPark [Com00] system

(www.renderpark.be). It should be noted that our ora-

cle can be used with any hierarchical radiosity method.

In our experiments, we use two scenes: the Cornell box

(Figures 21 and 24) and the cube room (Figures 22, 23

and 25). Six different discretisations were generated for the

Cornell box: three coarse (Figure 21I) and three finer ones

(Figure 21II). These discretisations have been obtained from

three meshing strategies based, respectively, on transported

power (36) (Figures 21a.I and 21a.II), classic kernel smooth-

ness (38) (Figures 21b.I and 21b.II), and mutual information

(77) (Figures 21c.I and 21c.II). In a similar way, we com-

pared our strategy with the KS-based strategy using two dif-

ferent views of the cube room scene (Figures 22 and 23).

Both KS-based and MI-based oracles were evaluated for

each discretisation decision with 10 element-to-element ran-

dom lines (except in Figures 24 and 25, where only 4 rays

were used). For the power-based oracle we used a cheap

form factor estimate (see section 1.8).

In Figures 21I and 21II we see the behaviour of the three

oracles for two different levels of discretisation. Using the

power-based and KS-based oracles, the shadow of the small

cube gets an accurate representation only at the finer level

of discretisation, whereas the MI-based oracle already pro-

duces a good representation in the coarse mesh. The power-

based oracle overdiscretises the rear wall and the top of the

prism, as expected, while the smoothness-based oracles cor-

rect this effect. However, the MI-based oracle supports the

change from a coarse to a finer mesh much better (see again

the rear wall).

Figures 22 and 23 show the behaviour of the classic KS-

based and MI-based oracle for the cube room scene. Observe

the accurate representation of the shadow of the chair near

the right wall (Figure 22b) and front wall (Figure 23b) ob-

tained by the MI-based oracle. Observe also the much better

discrimination in the mesh, seen for instance on the floor

and walls, and how the shadows on the table are represented

more accurately in Figure 23b.

In Figures 24 and 25, the robustness of the classic KS-

based and MI-based oracle are tested against a decrease from

10 to 4 point-to-point form factor computations for each ora-

cle evaluation. The performance of the classic KS-based ora-

cle degenerates to a degree similar to the power-based oracle,

see for instance the rear wall in Figure 24a (compare with

Figures 21b.I) and the same happens in Figure 25a (compare

with Figures 22a). On the other hand, the MI-based oracle

maintains most of its good performance (compare Figure

24b with Figures 21c.II). See also the shadow of the chair

near the right wall in Figures 25b and 22b.

In Figure 26 we show a more accurate solution computed

with the MI-based oracle, 10 element-to-element random

lines for each oracle evaluation and 2684260 rays for radios-

ity computation.
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(a.III) Power-based (b.III) KS-based (c.III) MI-based

Figure 21: Power-based (a), KS-based (b) and MI-based (c) methods with the Cornell box scene. A coarse mesh is shown in

(I) with 1051 (a.I), 1039 (b.I), and 1047 (c.I) patches, with 19472 rays for the radiosity computation. A fine mesh is shown in

(II) with 1979 (a.II), 1955 (b.II), and 1995 (c.II) patches, with 116780 rays for the radiosity computation. The Gouraud shaded

solution for (II) is shown in (III). For images (b) and (c), 10 rays are cast for each oracle evaluation.
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(a.I) KS-based (b.I) MI-based

(a.II) KS-based (b.II) MI-based

Figure 22: KS-based (a) and MI-based (b) methods with the cube room scene showing the mesh (I) and Gouraud shaded

solution (II). The number of patches is 13902 and 13878, respectively. For each scene, we cast 402650 rays for radiosity

computation and 10 rays for each oracle evaluation.

(a.I) KS-based (b.I) MI-based

(a.II) KS-based (b.II) MI-based

Figure 23: A different view of the scene shown in Figure 22.

c© The Eurographics Association 2007.

668



Miquel Feixas, Jaume Rigau, and Mateu Sbert / Applications of Information Theory to Computer Graphics

(a) KS-based (b) MI-based (c) MI-based

Figure 24: KS-based (a) and MI-based (b) methods with the Cornell box scene showing the mesh. The number of patches is

875 and 891, respectively. For each scene, we cast 19458 rays for radiosity computation and 4 rays for each oracle evaluation.

The Gouraud shaded solution for (b) is shown in (c).

(a.I) KS-based (b.I) MI-based

(a.II) KS-based (b.II) MI-based

Figure 25: KS-based (a) and MI-based (b) methods with the cube room scene showing the mesh (I) and Gouraud shaded

solution (II). The number of patches is 13690 and 13758, respectively. For each scene, we cast 402565 rays for radiosity

computation and 4 rays for each oracle evaluation.
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(a) (b)

(c) (d)

Figure 26: MI-based method with the scene shown in Figure 22. The number of patches is 18338. We cast 2684260 rays for

radiosity computation and 10 rays for each oracle evaluation.
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Applications of Information Theory to Computer Graphics
Part IV: Adaptive Refinement for Ray-tracing

Jaume Rigau, Miquel Feixas, and Mateu Sbert

University of Girona, Spain

1. Introduction

Although ray-tracing is a straightforward and powerful im-
age synthesis technique, it usually requires many rays per
pixel to eliminate the aliasing or noise in the final image.
However, not all the pixels in the image require the same
number of rays. The edge of an object, the contour of a
shadow, and a high illumination gradient will require a much
better treatment than a region with almost uniform illumi-
nation. To this effect, many pixel supersampling refinement
criteria have been defined in the literature.

The measures used in these criteria are based on intensi-
ties (image space) and also on geometry (object space). They
are also useful for an adaptive subdivision of image space for
progressive refinement [PS89]. Some of them have been ap-
plied in the image based rendering field for weighting pixel
colour for reconstruction [PCD∗97] and adaptive sampling
strategies [DC96, DCV97], and creating a priority scheme
for sampling in interactive rendering [SS00]. The final ob-
jective is always to find the best final-image quality with a
reasonable cost. In order to do this, we have to sample each
pixel of the image plane carefully. It is essential to have a
quantitative measure in order to evaluate when there is suffi-
cient information about the pixel.

The data of a sample set through the pixel can be used
to calculate a pixel homogeneity measure from two differ-
ent points of view: radiance and visibility. The information
which we will manipulate will be exclusively colour (radi-
ance) and geometry (visibility), essential parameters for de-
ciding on the “quality” of a pixel. In this context, the Shan-
non entropy will be interpreted as a measure of the degree
of homogeneity of a pixel in the sense that the more hetero-
geneous the pixel, the more difficult it is to obtain its actual
value. From it, we associate homogeneity with quality, so
that the need for pixel refinement is proportional to the lack
of quality (i.e., heterogeneity of the samples). The idea be-
hind the new scheme is to obtain sufficient information in

the refinement algorithm in order to find out the sampling
needs.

Consequently, in this part we present a framework for
entropy-based sampling applied to ray-tracing methods.
First, definitions of new measures of pixel quality based on
entropy are presented (§3). Next, we present the pixel quality
as a measure of pixel contrast (§4). Then, this contrast is ap-
plied to classic supersampling ray-tracing (§5) and adaptive
sampling (§6). This framework is easily adaptable to other
stochastic processes which require measures of quality in or-
der to reach decisions.

2. Previous Work

Three principal subproblems make up the process of obtain-
ing a good quality image: efficient sample generation, adap-
tive control of the sampling rate, and filtering for image re-
construction [PS89]. Many approaches are to be found to
deal with them:

1. Different pixel sampling methods have been introduced,
among them: jittered sampling [CPC84, DW85], Poisson
disk sampling [DW85, Mit87, MF92], hierarchical sam-
pling [Kaj86], complete stratification at each refinement
level [Sch91], importance sampling [Shi90], and quasi-
Monte Carlo sampling [KH94, OA96].

2. Diverse refinement criteria for adaptive sampling, based
on colour intensities and/or scene geometry, can be found
to control the sampling rate: Dippé and Wold [DW85]
present an error estimator based on the RMS signal to
noise ratio and also consider its variance as a function of
the number of samples; Mitchell [Mit87] proposes a con-
trast [Cae81] based on the characteristics of the human
eye; Lee et al. [LRU85], Purgathofer [Pur86], and Tam-
storf and Jensen [TJ97] develop different methods based
on the variance of the samples with their respective con-
fidence intervals.

3. Samples are filtered to produce the final pixel values. Dif-
ferent filter shapes have been used in image reconstruc-
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tion: box filter, triangular filter, Gaussian filter, multi-
stage filter, etc. (see [Gla95]).

We review here three commonly used refinement criteria:
contrast, depth difference, and variance of the samples.

Mitchell, in [Mit87], uses a contrast measure [Cae81] for
each RGB channel defined by

C =
Imax− Imin
Imax + Imin

, (1)

where Imin and Imax are, respectively, the minimum and max-
imum light intensities of the channel. Supersampling is done
if any contrast is higher than a given threshold. Mitchell pro-
poses RGB threshold values (0.4, 0.3 and 0.6, respectively)
based on the relative sensitivity of the visual system.

In [SS00], within an interactive rendering context, Sim-
mons uses a priority value pc based on the above concepts
(contrast and perception) [Mit87, Gla95] defined by

pc = .4
rmax− rmin
rmax + rmin

r + .3
gmax−gmin
gmax +gmin

g+ .6
bmax−bmin
bmax +bmin

b

(2)

where max, min, and the overline represent, respectively,
the maximum, minimum, and average values for r, g, and
b colour channels.

On the other hand, a useful and simple geometric mea-
sure for refinement is depth difference, used recently in im-
age based rendering [DC96, DCV97, PCD∗97] and interac-
tive rendering [SS00]. Depth difference is given by

pd = 1− dmin
dmax

(3)

where dmax and dmin represent maximum and minimum dis-
tance. In [SS00], pc and pd measures are combined in

pv = δpc +(1−δ)pd (4)

with δ = 0.9.

The basic idea of variance-based methods [LRU85,Pur86,
TJ97] is to continue sampling until the confidence level or
probability that the true value L is within a given tolerance d
of the estimate value L̂ is 1−α:

Pr[L ∈ (L̂−d, L̂ +d)] = 1−α. (5)

Mitchell considers that variance is a poor measure of visual
perception of local variation [Mit87]. Kirk and Arvo showed
that these methods are biased and proposed a simple correc-
tion scheme [KA91].

Refinement criteria have also been applied in the image-
based rendering field to weight pixel colour for reconstruc-
tion purposes [PCD∗97] and adaptive sampling strategies
[DC96, DCV97]. Also Bolin and Meyer [BM98] have de-
veloped a perceptually-based approach using statistical and
vision models.

3. Pixel Quality

In this section we introduce a new pixel quality measure, the
pixel entropy. This measure will be defined from the infor-
mation provided by set of samples on the image plane. We
use the following sets:

◦ Let P be the set of pixels of the image plane with |P| =
Np > 0.

◦ Let Sp be the set of samples of a pixel p ∈ P with |Sp| =
Np

s > 1.
◦ Let SP be the set of samples of the image plane where

SP = ∪p∈PSp with |SP|= NP
s = ∑p∈P Np

s .

The implementation of a sample consists in casting a ray
rΘ

v from a scene viewpoint v through the image plane and,
in particular, through a pixel: Θ ∈ Ωv→P. Let us consider
that each sample s ∈ SP that hits a scene surface gives us
information about the colour, distance and orientation of the
hit point with respect to the viewpoint.

The definition of entropy

H(X) =−
n

∑
i=1

pi log pi, (6)

measures the expectation of the surprise of the distribution
p and it can be considered also to be a measure of its ho-
mogeneity. From the sample set and from the entropy, two
different quality measures are defined, pixel colour entropy
and pixel geometry entropy, based on the colour and geome-
try respectively.

3.1. Pixel Colour Entropy

Our first objective is to define the pixel colour entropy. We
start with a global definition of entropy concerning all the
samples passing through the image plane. We consider that
the colour belongs to a colour system c structured in com-
ponents called colour channels. Without loss of generality,
in the majority of cases our colour measures will refer to a
single channel c ∈ c, c(s) being the colour channel data of a
sample s ∈ S (e.g., radiance, luminance, and RGB values).

Let us consider the probability of each image plane sam-
ple as its colour channel contribution relative to the whole of
the image plane sample set. Thus,

Definition 1 The image plane channel entropy of a channel
c is given by

Hc(P) =−
NP

s

∑
i=1

ri logri ri =
c(si)

∑
NP

s
j=1 c(s j)

, (7)

where ri represents the channel colour fraction of sample
si ∈ SP.

This measure can be interpreted as the colour channel ho-
mogeneity of the samples passing through the image plane.
Analogously, at the pixel level, we consider the probability
of each pixel sample as its colour channel contribution rela-
tive to the whole of the pixel sample set. Then,
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Definition 2 The pixel channel entropy of a channel c is
given by

Hc(p) =−
Np

s

∑
i=1

pi log pi pi =
c(si)

∑
Np

s
j=1 c(s j)

, (8)

where pi represents the channel colour fraction of sample
si ∈ Sp.

From the properties of the entropy, the image plane chan-
nel entropy ranges from 0 to logNP

s and the pixel channel
from 0 to logNp

s . The maximum values are obtained when
the channel colour of all the samples is the same (i.e., we
have an uniform probability distribution). Using the group-
ing property of entropy (see Part II) it is easy to see that
image plane and pixel channel entropies can be related in
the following way:

Hc(P) =
Np

∑
i=1

qiH
c(pi)−

Np

∑
i=1

qi logqi =
Np

∑
i=1

qiH
c(pi)+Hc

I (P),

(9)
where qi = ∑

Npi
s

j=1 r j is the importance (sum of probabilities)
of pixel pi, Hc(pi) is the channel entropy of pixel pi, and
Hc

I (P) = −∑
Np

i=1 qi logqi is the importance entropy of the
image plane calculated from the importance of each pixel.
Thus, the global entropy of the image plane is the sum of
all the pixel entropies, weighted by the importance of each
pixel, and the importance entropy obtained from the impor-
tance of each pixel.

The image plane and pixel entropies can be interpreted as
the colour homogeneity or uniformity measured by its sample
set and thus can be considered measures of the quality of the
colour channel (i.e., lack of heterogeneity and noise). We
can also observe that the entropy increases with the number
of samples. In order to give a pixel quality measure between
0 and 1, the pixel channel entropy can be normalised with
logNp

s . Thus,

Definition 3 The pixel channel quality of a channel c is
given by

Qc(p) =
Hc(p)
logNp

s
. (10)

If we want to consider the global quality of a pixel, we need
only mix its set of channels. Then,

Definition 4 The pixel colour quality of a colour system c
is given by the weighting of its pixel channel qualities:

Qc(p) = ∑c∈c wcQc(p)
∑c∈c wc , (11)

where wc is the weight of channel c.

The weighted values depend on each colour system. With-
out a priori information, the same weight per channel can
be considered, otherwise a weight based on human percep-
tion (for an sRGB system, wR = 0.2126, wG = 0.7152, and
wB = 0.0722). This measure will enable us to define a new

colour contrast measure for pixel sampling (§4.1). Note that
the larger the number of samples the more accurate the qual-
ity measure.

In Fig. 1.b, we present a colour quality map to show the
colour quality of all the pixels from Fig. 1.a using an sRGB
colour system with the same weight by channel. With re-
spect to the colour scale used, the minimum quality corre-
sponds to the blue and the maximum to the red (in order to
observe more details in the colour quality maps, the outliers
are reduced to the borders of the interval [−kσ,kσ] where σ

is the standard deviation of the results and k is a parameter
that modulates the width of the interval). A low quality in
shadow areas and edges can be observed.

3.2. Pixel Geometry Entropy

Similar concepts introduced in the above section can be de-
fined in this one with respect to a geometric measure. If
x = Λ(v,Θ) is the hitpoint of a sample ray s = rΘ

v , the geo-
metric information of each sample is given by θ

−Θ
nx (i.e., the

angle of the normal at the hit point) and by the distance rvx
between this point and the origin of the ray (i.e., ray length).
We take

g(s) =
cosθ

−Θ
nx

r2
vx

(12)

as a geometry factor of a sample. This value provides a qual-
ity measure of visibility of a scene point from the observer’s
point of view.

Let us define the probability of each image plane sam-
ple as its relative geometric contribution to the whole image
plane sample set.

Definition 5 The image plane geometry entropy is given by

Hg(P) =−
NP

s

∑
i=1

ri logri ri =
g(si)

∑
NP

s
j=1 g(s j)

, (13)

where ri represents the geometry fraction of sample si ∈ SP.

Considering the probability of each pixel sample as its rel-
ative geometrical contribution to the whole of the pixel sam-
ple set we have

Definition 6 The pixel geometry entropy is given by

Hg(p) =−
Np

s

∑
i=1

pi log pi pi =
g(si)

∑
Np

s
j=1 g(s j)

, (14)

where pi represents the geometry fraction of sample si ∈ Sp.

Analogously to the pixel colour entropy (9), an identical
relation can be established between the geometric entropies
of the image plane and the pixel. We can also normalise the
pixel geometry entropy and therefore,
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Definition 7 The pixel geometry quality is given by

Qg(p) =
Hg(p)
logNp

s
. (15)

In Fig. 1.c we show the geometry quality map from
Fig. 1.a based on a grey scale. The lowest entropy corre-
sponds to the darkest part, the highest entropy to the lightest
(the outliers have the same treatment as in the colour quality
maps). Observe that the edges have a very low entropy and
are very clearly emphasised.

4. Pixel Contrast

In this section we present new pixel contrast measures based
on pixel entropy (§3). As the entropy represents the homo-
geneity of the information brought back by the samples (i.e.,
rays crossing a pixel), we can define a simple measure which
expresses the diversity or contrast of a pixel.

4.1. Pixel Colour Contrast

In the colour theory, the colour contrast is the phenomenon
that alters the observation of the colours depending on their
surroundings (the origin of the colour contrast is the way in
which the information is transmitted from the retinal pho-
toreceptors to the brain and the name of this study is the
colour opponency theory [Gla95]). We use the same words
to express the degree of heterogeneity of the colour in the re-
gion defined by a pixel given that this value depends directly
on the colours that are around it. As we have seen, Hc(p)
represents the entropy or the degree of colour homogeneity
of pixel p. From this measure,

Definition 8 The pixel channel contrast of a channel c is
given by

Cc(p) = 1−Qc(p) = 1− Hc(p)
logNp

s
. (16)

It represents the colour channel heterogeneity or contrast of
a pixel with a range of [0,1]. We can also introduce the pixel
binary contrast from minimum and maximum colour chan-
nel probabilities captured by this pixel. This measure is ob-
tained from the binary entropy of these values. Thus,

Definition 9 The pixel channel binary contrast of a channel
c is given by

Cc
b(p) = 1−Hc

b(p)Hc
b(p) = H({ pmin

pmin + pmax
,

pmax

pmin + pmax
}),

(17)
where Hc

b(p) is the binary entropy of the minimum and max-
imum channel colour probabilities, pmin and pmax, respec-
tively.

Both measures, Hc
b(p) and Cc

b(p), range also between 0 and
1 due to the fact that, in this case, only two values are taken
into account. As we will see in our experiments, this binary
measure yields more radical contrast than Cc(p).

Similarly to previous works [Mit87,Gla95,SS00], we can
obtain the colour contrast of a pixel by averaging all the
colour channel contrasts weighted by their respective impor-
tances (colour channel average). This avoids oversampling
on the areas with small colour values. Then, considering all
the colour channels,

Definition 10 The pixel colour contrast of a colour system
c is given by the weighting of its pixel channel contrasts:

Cc(p) = ∑c∈c wccCc(p)
∑c∈c wcc

c =
1

Np
s

Np
s

∑
i=1

c(si), (18)

where the channel contrasts are weighted by perceptual co-
efficients wc, and c is the colour average in channel c of all
s ∈ Sp.

Definition 11 The pixel colour binary contrast of a colour
system c is given by

Cc
b(p) = ∑c∈c wccCc

b(p)
∑c∈c wcc

. (19)

In an sRGB system, the colour contrast measures (CsRGB

and CsRGB
b ) have three channels with coefficients wR, wG,

and wB. These values depend on the specific use of con-
trast, but in general they can take the values proposed in the
pixel colour quality (11), or also, for a perceptual balance of
the channels, they can take those of the thresholds proposed
in [Mit87, SS00]: 0.4, 0.3, and 0.6, respectively.

This last option is chosen in the next examples where a
colour contrast map is used as a visual representation of the
contrast measures in the same way that the quality map is
used for the quality measures. Thus, in Fig. 2 we show dif-
ferent colour contrast maps to compare the heuristic (2), pc
(Fig. 2.b), with measures Cc (Fig. 2.c), and Cc

b (Fig. 2.d).
Another comparison is shown in Fig. 3 with a more com-
plex scene. We can observe how these measures present a
very good behaviour in critical areas (represented by warm
colours) such as object edges and shadow contours. With re-
spect to Fig. 2.b and Fig. 3.b, our measures are more dis-
criminating, especially the binary contrast.

4.2. Pixel Geometry Contrast

As we have seen in (14), Hg represents the entropy or the
degree of geometric homogeneity of a pixel. From this mea-
sure,

Definition 12 The pixel geometry contrast is given by

Cg(p) = 1−Qg(p) = 1− Hg(p)
logNp

s
. (20)

Similarly to the above section, we introduce the pixel bi-
nary contrast from minimum and maximum geometry factor
probabilities of this pixel. Thus,
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(a) Reference (b) Qc (c) Qg

Figure 1: Colour and geometry quality maps. (a) Reference image obtained with Np
s = 8. (b) Pixel colour quality QsRGB with

the same weight per channel. (c) Pixel geometry quality Qg.

Definition 13 The pixel geometry binary contrast is given
by

Cg
b(p) = 1−Hg

b (p)Hg
b (p) = H({ pmin

pmin + pmax
,

pmax

pmin + pmax
}),

(21)
where Hg

b (p) is the binary entropy of the minimum and
maximum geometry factor probabilities, pmin and pmax re-
spectively.

A third case can also be considered:

Definition 14 The pixel logarithmic-difference contrast is
given by

Cg
log(p) = log pmax− log pmin = log

pmax

pmin
. (22)

This measure, introduced in Rigau et al. [RFBS01], is based
on the gradient between the minimum and maximum com-
plexity segments. As we will see, Cg

log(p) also shows a good
behaviour.

For the previous reference scene in Fig. 2.a, we now
show the geometry contrast measures using the correspond-
ing maps in Figs. 4.a–c. These maps are compared with the
map in Fig. 4.d, created using the depth difference heuristic
pd (3). The same comparison is carried out for the reference
scene Fig. 3.a in Fig. 5. It can be seen that our measures cap-
ture the majority of edges because we take into account two
components: distance and orientation. These geometry con-
trast maps have been generated by using the representation
scale of the colour contrast maps in order to be able to com-
pare, visually with each other, how the two types of contrast,
colour (Fig. 3) and geometry (Fig. 5), work. The specialisa-
tion of each of the contrasts is evident: colour maps show
the heterogeneity of regions while geometric maps identify
edges.

4.3. Pixel Colour-Geometry Contrast

Finally, a combination of colour and geometry contrasts is
considered. This combination enables us to graduate, with
a coefficient δ between 0 and 1, the influence of both mea-
sures. Then,

Definition 15 The pixel contrast of colour system c is given
by

Cc(p) = δCc(p)+(1−δ)Cg(p). (23)

This combination can be made with any type of pixel colour
contrast and geometry contrast. In general, good behaviour
has been shown with binary contrasts (colour and geometry),
and δ ∈ [0.8,0.95].

We show for another scene, Fig. 6, two different lin-
eal combinations. On the one hand, in Fig. 6.a we use the
priority-value combination pv (4), made up also of colour, pc
(2), and geometry, pd (3). And, on the other hand, in Fig. 6.b
we combine our measures Cc

b (19) and Cg (20). The same
values Np

s = 4 and δ = 0.9 are used in both cases. A signifi-
cant difference is observed: our combination tends to obtain
more radical contrasts (highly or less complex cases) as op-
posed to the other option which takes values in a far more
homogeneous interval. The explanation lies in the behaviour
of the binary colour contrast which works exclusively with
the extreme data.

5. Entropy-Based Supersampling

In this section, we apply the newly defined contrast measures
to supersampling in a stochastic ray-tracing implementation.

5.1. Method

Ray-tracing is a point-sampling-based technique for image
synthesis. Rays are traced from the camera through a pixel to
sample radiance at the hitpoint in the scene, where radiance
is usually computed by a random walk method. Since a finite
set of samples is used, some of the information in the scene
is lost. Thus, aliasing errors are unavoidable [DW85]. These
errors can be reduced by using extra sampling, called super-
sampling, in regions where the sample values vary most.

In order to obtain reliable data to achieve photo-realistic
effects (e.g., diffuse and specular interreflections, shadow
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(a) Reference (b) pc

(c) Cc (d) Cc
b

Figure 2: Colour contrast maps. (a) Reference image obtained with Np
s = 8. (b) Pixel colour contrast pc (2). (c) Pixel colour

contrast Cc. (d) Pixel colour binary contrast Cc
b.

(a) Reference (b) pc

(c) Cc (d) Cc
b

Figure 3: Colour contrast maps. (a) Reference image obtained with Np
s = 8. (b) Pixel colour contrast pc (2). (c) Pixel colour

contrast Cc. (d) Pixel colour binary contrast Cc
b.

Credit: Modelled by Gregory J. Ward, Albany (CA), USA.
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(a) Cg (b) Cg
b

(c) Cg
log (d) pd

Figure 4: Geometry contrast maps from Fig. 2.a obtained with Np
s = 8. (a) Pixel geometry contrast Cg. (b) Pixel geometry

binary contrast Cg
b . (c) Pixel logarithmic-difference contrast Cg

log. (d) Pixel depth difference pd .

(a) Cg (b) Cg
b

(c) Cg
log (d) pd

Figure 5: Geometry contrast maps from Fig. 3.a obtained with Np
s = 8. For a visual comparison between the geometry and

colour contrast in Fig. 3, the thermic scale is used. (a) Pixel geometry contrast Cg. (b) Pixel geometry binary contrast Cg
b . (c)

Pixel logarithmic-difference contrast Cg
log. (d) Pixel depth difference pd .

Credit: Modelled by Gregory J. Ward, Albany (CA), USA.
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(a) pv (b) Cc

Figure 6: Pixel contrast obtained with Np
s = 4 and a lineal combination with δ = 0.9. (a) Pixel priority-value pv (4). (b) Pixel

contrast Cc using Cc
b and Cg.

Credit: Model included in RenderPark [Com00], Computer Graphics Research Group, Department of Computer Science,
Katholieke Universiteit Leuven, Leuven, Belgium.

and penumbra, depth of field, motion blur, and translu-
cency), the regions of the scene with the most complex il-
lumination would need a more intensive treatment than a
region with almost uniform illumination. This way of su-
persampling is called adaptive sampling [DW85, PS89]. A
pixel is first sampled at a relatively low density. From this set
of samples, a refinement criterion is used to decide whether
more sampling is required or not. Finally, all the samples are
used to obtain the final pixel colour values. We can consider
two kinds of adaptive sampling: first, when the refinement
criterion plays the role of an oracle which decides the place
and the quantity of supersampling necessary in one evalua-
tion of the initial sampling only and, second, when the re-
finement criterion constantly evaluates the information re-
ceived because of a supersampling and acts in consequence
until it becomes satisfied. In this work we use the term super-
sampling exclusively for the first case and adaptive sampling
for the second (§6).

We implement a simple supersampling technique: the
sample set S will be proportionally distributed over the im-
age plane with respect to the contrast Cc estimated in each
p ∈ P. This is equivalent to the use of the pixel contrast as
an oracle. For definition of the measure itself (§4), the cost
in samples is controlled by the diversity of colour and geom-
etry in the pixel (i.e., low quality). Given that a high contrast
is synonymous of low pixel quality and low contrast of high
quality pixel, the measure adapts the densities of sampling
to the necessity of improvement in pixel quality. Remember-
ing the importance of each one of the samples and without
more prior information, this system will improve, on aver-
age, the pixel quality in particular and the image in general.
The generic procedure is made up of three sequentially quite
different phases:

Oracle A pixel contrast is selected as oracle and a first esti-
mate of actual contrast per pixel is obtained using an ini-
tial stratified sampling against the image plane. Usual val-
ues are 2, 4, and 8 (np

s ). If we consider that the total num-
ber of samples NP

s destined for the image is prefixed, the

final value of the average of samples per pixel is Np
s = NP

s
Np

and then, 1 < np
s � bNp

s c where the left side inequality
is due to the definition of the measure of contrast and the
right side inequality to being able to carry out supersam-
pling. The result of this phase is the answer from the ora-
cle: the contrast map.

Sampling The unused samples in the calculation of the con-
trast, Np(Np

s − np
s ), are proportionally distributed to the

values of contrast obtained per pixel. In each one of them,
the sampling is also carried out with stratification. The
distribution of the new set of samples gathers informa-
tion from the scene in the regions of more diversity, with
a proportional effort on this. The result of this phase is
a supersampling directed exclusively by the contrast map
generated in the previous phase.

Reconstruction The colour information gathered in the
previous phase is put together with that obtained in the
initial phase. Its evaluation allows us to achieve a more
precise vision of the contents of the pixel and as a re-
sult an improvement in its quality. It only remains for the
signal to be recuperated and to carry out the resampling
process for each one of the pixels p ∈ P with any of the
reconstruction methods applicable to the sampling system
used. The result of this phase is the solution for the image
plane thanks to the assignment of the final colour to all of
its pixels.

This proceeding is adaptable in any of its phases (e.g.,
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stochastic ray-tracing method, pattern of initial sampling, su-
persampling method, and filters).

5.2. Results

Here, we show an example of our contrast measure Cc (23)
used as a supersampling oracle in path-tracing.

In Fig. 7.a.i we show a supersampling image obtained
with Np

s = 32 in the following way. First, a uniform stratified
sampling with np

s = 8 has been made in order to obtain the
contrast map in Fig. 7.a.ii. Secondly, this map has been used
in the supersampling process with an average of 24 rays per
pixel. And thirdly, in order to analyse the behaviour of the
contrast, the signal reconstruction in the last phase is carried
out by a piece-wise continuous reconstruction using a box
filter. The final pixel value corresponds to its signal average.
The contrast measure used is a colour and geometry combi-
nation with δ = 0.5 based on binary contrasts Cc

b (19) and
Cg

b (21). This means that the more critical the area, the more
supersampled it is (warm colours), and the less critical, the
more undersampled it is (cool colours, with a minimum of
8 rays per pixel). Two detailed regions are compared from
the supersampling image (Figs. 7.b–c.i) and a similar im-
age obtained by uniform stratified sampling with Np

s = 32
(Figs. 7.b–c.ii). We can observe a decrease in noise in the
supersampled regions, and a better representation of shadow
contour and edges.

6. Entropy-Based Adaptive Sampling

In (9) we have seen that image plane and pixel channel en-
tropies are related thanks to the grouping property of en-
tropy. It is important to note that this kind of decomposi-
tion can be applied recursively if the pixels are recursively
subdivided. We will show in this section that this recursive
decomposition provides us with a natural method of deal-
ing with an adaptive sampling technique. Our scheme, valid
for any pixel sampling and ray-tracing method, is applied to
stochastic ray-tracing and compared with other options.

6.1. Adaptive Sampling

In order to obtain a realistic image, the aliasing has to be re-
duced by adapting the density sampling to the complexity of
the region aiming at a good balance between cost and qual-
ity. We consider three phases in order to describe a generic
process of adaptive sampling [Gla95] (Fig. 8), for which the
scheme used in the supersampling procedure of §5.1 is a par-
ticular case:

Initial sampling An initial sampling pattern at a predeter-
mined density is established. Normally, in order to choose
its density we assume that the signal has a Nyquist rate
similar to the frequency of the reconstruction samples
(e.g., one sample per pixel (the minimum number of sam-
ples per pixel fulfils Np

s > 1 (§3)). It is also usual for this

density to be constant across the space, even though in the
next phase, it should be increased locally if necessary.

Refinement tree The image space is divided up into regions
(e.g., pixels). For each one of them, a refinement test ge-
ometry selects a subset of samples for evaluation. A re-
finement test is a criterion used for the evaluation of one
or more characteristics which estimate the good quality
of the current density. If the result is negative, a new set
of samples are generated at the points indicated by the
new sampling geometry and the process goes back to the
refinement test geometry until the refinement criterion de-
cides that the density of sampling in the region is accurate
enough. The result of this process is a refinement tree of
the image space where every node is a region with a den-
sity of sampling adapted to its own signal. In order to con-
trol extreme cases, it is usual to dispose of other criteria
to finish the recursion (e.g., minimum area of the regions
and/or maximum depth of tree).

Reconstruction The information of the signal collected at
every region is unified by a reconstruction process and, if
necessary, sent to a filtering process. Finally, a resampling
process (e.g., centre of pixel) determines the final values
for each of the pixels on the image plane.

Note that however much we increase the density of sam-
pling locally, given that the signal is not usually band-
limited, the sampling theory tell us that we can never cap-
ture it correctly. Thus, fine details of edges, shadings, tex-
tures, and others will hardly have enough quality in the final
image. The approximation done by the method consists in
looking for the minimum set of samples which estimates the
signal locally accurately enough. A critical subproblem ap-
pears in each of its phases [PS89] and many approaches are
found to deal with them (§2).

We focus our attention on obtaining an adaptive algorithm
centred mainly on the refinement tree phase bringing a new
perspective to the subproblem of controlling the sampling
rate (new refinement criterion).

6.2. Recursive Entropy Tree

The natural way to represent information is by entropy,
which in our context is interpreted as a measure of the degree
of homogeneity of a region. Thus, using an entropy crite-
rion means to evaluate the homogeneity (§3) or heterogene-
ity (§4) on a pixel. The fundamental idea behind our scheme
is to capture the information in the refinement tree which
results from the recursive decomposition of the entropy.

Generalising the grouping property of entropy, the en-
tropy can be recursively decomposed in the following way:
Let X be a discrete random variable over the set X =
{x1, . . . ,xn} with probability distribution p = {p1, . . . , pn}.
Let us consider a partition of the set X in m-disjoint sets
Y = {Y1, . . . ,Ym} where |Y j|= n j. Let us associate the dis-
crete random variable Y to Y with probability distribution
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(a.i) Supersampling image (a.ii) Oracle Cc for (a.i)

(b.ii) Close-up from (a.i) (b.ii) Close-up from uniform sampling

(c.i) Close-up from (a.i) (c.ii) Close-up from uniform sampling

Figure 7: Entropy-based supersampling versus uniform sampling. (a.i) Supersampling with an Np
s = 32. (a.ii) Binary contrast

map Cc used as oracle to obtain (a.i). It has been calculated with np
s = 8, Cc

b, Cg
b , and δ = 0.5. Close-up details from (a.i) are

shown in (b-c.i). They are compared with the same regions, (b-c.ii) respectively, taken from a uniform stratified sampling image
with Np

s = 32.
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Figure 8: Adaptive sampling process with three phases: initial sampling (blue), refinement tree (gold), and image reconstruc-
tion (green).

q = {q1, . . . ,qm} where q j = ∑
n j
k=1 p jk ( jk ∈ {1, . . . ,n}), and

a new discrete random variable Y j to each set Y j with proba-
bility distribution r j = {r j1 , . . . ,r jn j

} where r jk =
p jk
q j

. Then

H(X) =
m

∑
j=1

q jH(Y j)−
m

∑
j=1

q j logq j. (24)

This formula can be written as H(X) = Hin(Y)+Hout(Y)
where Hin(Y) = ∑

m
j=1 q jH(Y j) and Hout(Y) = H(Y ) =

−∑
m
j=1 q j logq j represent, respectively, the hidden informa-

tion (pending to be discovered) and the information already
acquired in the descent of the tree created from an Y parti-
tion (Fig. 9).

In our case, (24) can also be interpreted taking into ac-
count only one colour channel (8) in the following way:

• H(X) represents the entropy of the image plane.
• H(Y j) represents the entropy of each root pixel.
• Probability q j is the proportion between the channel

colour of pixel j and the sum of the channel colour of
all pixels. It can be considered the “importance” of pixel
j.

The decomposition of entropy can be recursively extended
to the subpixels. This interpretation can also be applied to
geometry entropy (14).

In our approach, probabilities are obtained by stochastic
sampling. From the definition of entropy, we can see that
when the number of samples tends to infinity, entropy also
goes to infinity. In fact, we can consider that the original
continuous scene contains infinite information. The follow-
ing sampling algorithm will extract more information from
the regions with more sample variation.

6.3. Algorithm

We present a new adaptive scheme for adaptive sampling,
complementary to the entropy-based supersampling method
(§5.1), with the important feature that it is based on the re-
cursive expression of the Shannon entropy (i.e., the entropy
tree). For the sake of simplicity, in the following analysis

we only consider the colour information of one channel, al-
though in the final algorithm we will take the combination
of colour and geometry contrasts into account (23).

A general description of our algorithm is as follows: On
the image plane we sample each pixel to capture the colour
of hitpoints and thus evaluate the information content (en-
tropy) from the colour probability distribution. If the infor-
mation of a pixel is high enough (i.e., the rays provide us
with sufficient colour homogeneity on that pixel), refinement
is not made, and the colour reconstruction of this pixel is
done. When the information is not high enough, this pixel is
subdivided into regions and we proceed in the same way for
each region (subpixel). “The approach will be to make sure
that all the samples in a given region are similar in some
specified way, so we can feel that we have captured what is
happening in a region of the signal” [Gla95].

This recursive process defines a tree with two well-
separated phases for a pixel:

◦ Pixel refinement. Until enough information is extracted
(tree descent).

◦ Pixel colour. Computation of the final colour (tree ascent).

The descent in the refinement tree can be interpreted as a
progressive gain in information. The information acquired
at each level is added together so that, at the end of the re-
finement process, the total information from the tree is the
sum of the information obtained over all the branches (24).
The measure used to capture the information will be the pixel
contrast (§4).

Before introducing the algorithm we will give the defini-
tions of the data used in it. Concerning the tree data structure,
n represents the tree level where

◦ n = 0 is the image level (root).
◦ n = 1 is the pixel level (composed of Np pixels of the im-

age).
◦ n > 1 is the subpixel level.

We consider an n-node at any node of the tree with a level
of n > 0 (i.e., no root). The set of data is described in Ta-
ble 1. To compute the final colour of a pixel, we follow a path
through the tree (Fig. 10). In the analysis below, we focus our
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to (24), they all have the same value: H(a) = H(b) = H(c) = 2.445.

attention on the tree-path k of length m going from pixel k0
to subpixel km−1. In this path, pn represents the probability
of the tree-branch at level n and qn the importance of the n-
node. In our algorithm, this quantity appears naturally due to
recursive decomposition of the entropy (see (24), Fig. 9, and
Fig. 10). The value of importance is given by the probability
of the n-node:

qn =

{
1, if n = 0,

p0 · · · pn−1 =
c0,k0

∑i∈R0
c0,i

∏
n−1
`=1 p`, if n > 0.

(25)

For our purposes, qn does not need to be normalised, thus
we omit the normalisation constant ∑i∈R0

c0,i and we take
qn = c0,k0 ∏

n−1
`=1 p`.

Proposition 1 The computation of qn can be simplified to
(in an abuse of notation, all the superindexes corresponding
to arithmetic expressions must be interpreted as a power)

qn ≈
cn

Nn−1
r

. (26)

Observe first that for a given path and n > 0, the colour
cn of an n-node is more accurate than the colour average of
its respective region, kn−1, in the preceding level. Thus, the
accuracy of pn, and at the same time of qn, can be increased
by substituting cn−1,kn−1 for cn. Let us prove now (26) by
induction.

Proof: For n = 1,

qn = c0,k0 ≈ c1 =
c1

N0
r

=
cn

Nn−1
r

.

Hypothesis: ∀0<`<n.q` = c`

N`−1
r

. Then, for n > 1

qn = c0,k0

n−1

∏
`=1

p` = qn−1 pn−1

=
cn−1

Nn−2
r

cn−1,kn−1

∑i∈Rn−1
cn−1,i

≈ cn−1

Nn−2
r

cn

cn−1Nr
=

cn

Nn−1
r

. �

Now we can proceed to explain the algorithm. In the de-
scent phase we sample an n-node and compute the con-
trast using expression Cc (23). In (18) we must substitute
the channel importance c by qn and, according to §4, for a
sRGB colour system we can take the perceptual coefficients
wR = 0.2126, wG = 0.7152 and wB = 0.0722 which capture
the sensitivity of human colour perception [Com98].

Thus, for each n-node, the colour contrast (18) converts
into

Cc
n = ∑

c∈c
wcCc

nqc
n (27)

and the colour and geometry combination (23) will be

Cc
n = δCc

n +(1−δ)Cg
n . (28)

Note that this expression could also be calculated from the
respective binary versions of colour and geometry contrasts
(§4).

In the algorithm, we subdivide the pixel or subpixel when
the contrast of an n-node is not less than a given thresh-
old (Cc

n ≥ ε). Thus, the phase of ascent begins when the
test fails (Cc

n < ε). This happens because either the contrast
(which represents the colour heterogeneity) or the impor-
tance (qn → 0 for growing n) are low. In this phase, each
n-node in the path provides its colour estimation ĉn from the
signal reconstructed for each c(s) where s ∈ Sn.
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id description asserts

Nr
Number of regions in which an n-node can potentially be
subdivided. Nr > 1∧A1≤i≤Nr = An−node

Nr

Nr
s Number of samples of an n-node. Nr

s ≥ Nr∧Nr
s ∈ NrN

+

Rn Set of regions of an n-node. |R0|= Np∧∀n>0. |Rn|= Nr

Sn Set of samples of an n-node. |S0|= Nr
sNp∧∀n>0. |Sn|= Nr

s

Sn,i Set of samples of an n-node region i ∈ Rn.
Sn =

S
i∈Rn

Sn,i

|Sn,i|= |Sn|
|Rn| = Nr

s
Nr

k
Path-tree k = (k0, . . . ,km−1) where kn is the region chosen
at level n. m > 0∧∀n<m. kn ∈ Rn

cn Average colour channel data in an n-node. cn = 1
|Sn| ∑s∈Sn

c(s)

cn,i Average colour in an n-node region i ∈ Rn.
cn,i = 1

|Sn,i| ∑s∈Sn,i
c(s)

cn = 1
|Rn| ∑i∈Rn

cn,i

pn Probability of region kn of an n-node in a path k. pn =
∑s∈Sn,kn

c(s)

∑s∈Sn c(s) = cn,kn
∑i∈Rn cn,i

qn Probability of an n-node in a path k. qn = ∏
n−1
`=0 p`

Table 1: Description of the data set of the refinement phase of entropy-based adaptive sampling in an image plane of Np pixels.
An n-node is a node of level n > 0 in the refinement-tree.
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Figure 10: A refinement-tree-path k = (k0,k1,k2) of length m = 3 of entropy-based sampling. The number of regions of an
n-node is Nr = 4. We show the computation of the k0-pixel colour: c0,k0 = c1 from the refinement (red) and reconstruction (blue)
phases. The probabilities pn and importances qn are computed in the refinement phase to evaluate the entropy contrast (23).
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The final colour of an n-node is given by

cn =

{
ĉn, if Cc

n < ε,

∑i∈Rn
cn,i, otherwise,

(29)

where cn,i is the final colour of i-region of the n-node. Fi-
nally, we get c1 for the colour of the pixels (or equivalently
c0,k0 in the path considered). An example of this process is
shown in Fig. 10.

Observe that importance sampling is naturally integrated
in the algorithm. Following importance sampling criteria a
function should be sampled proportionally to its value which
is what we obtain with our adaptive descent.

6.4. Results

For the purpose of comparison, in Fig. 12 we present the
results for different techniques for the test scene in Fig. 11.
We compare the following methods:

• Classic contrast (CC): A recursive adaptive sampling
scheme based on contrast by channel (1) (with thresholds
proportional to the visual system) weighted by its respec-
tive channel colour average [Gla95,SS00]. The maximum
recursive level has been limited to 4 (Fig. 12.a).

• Importance-weighted contrast (IC): The same as in CC
but each channel contrast is weighted with the respective
importance q (26), as in our approach (Fig. 12.b).

• Confidence test (CT): Statistical approach based on a con-
fidence interval (5) with a confidence level of α = 0.1 and
a tolerance t = 0.025 (Fig. 12.c).

• Entropy-based contrast (EC): Our approach (29) taking
only colour contrast, δ = 1 in (28) (Fig. 12.d).

Observe that the EC approach can be easily implemented
on any standard hierarchical algorithm, using importance
(26) and the new refinement criterion (28), with negligible
additional cost.

In CC, IC, and EC, the number of subdivisions is Nr = 4
and the number of samples is Nr

s = 8. To compute the con-
trast measures for the refinement decision, the samples have
been cast in a stratified way at each n-node (i.e., pixel or
subpixel) and re-used at the next levels in the tree. In CT,
groups of 8 samples were added in a stratified way until
meeting the condition of the criterion. An implementation
of classic path-tracing with next event estimator was used to
compute all images. The parameters were tuned so that all
four test images were obtained with a similar average num-
ber of rays per pixel (Np

s = 60) and computational cost. The
resulting images are shown in Figs. 12.∗.i with close-ups in
Figs. 12.∗.ii. A sampling density map (SDM) for each one is
given in Figs. 12.∗.iii (generated under the same conditions
as the quality (§3) and contrast (§4) maps; warm colours cor-
respond to the highest sampling rate and cold colours to the
lowest)

The overall aspect of the images in Figs. 12.∗.i shows that
our supersampling scheme performs best. Observe, for in-
stance, the reduced noise in the shadows cast by the ob-
jects. This is further checked in the close-up images in
Figs. 12.∗.ii. Observe also the detail of the sphere shadow
reflected on the pyramid. It is important to note that we man-
aged to improve the classic contrast approach in CC greatly
by including the importance used in our scheme (compare
results in Fig. 12.a with Fig. 12.b). A comparison of the
SDMs shows a better discrimination of complex regions of
the scene in the entropy case against the classic contrast case.
This explains the better results obtained by our approach.
Moreover, the confidence test approach CT (Fig. 12.c) also
performs better than the classic contrast-based methods CC
(Fig. 12.a) and IC (Fig. 12.b). The SDM of CT also explains
why it performs better. However, it is unable to render the re-
flected shadows under the mirrored pyramid and sphere with
precision (see close-up in Fig. 12.c.ii).

In Table 2 we show two measures (error and quality) ob-
tained in Figs. 12.∗.i–ii with respect to the test scene in
Figs. 11.i–ii, respectively. We select the root of the mean
square error (it is calculated from the MSE of each colour
channel) (RMSE) and the peak signal to noise ratio (PSNR)
to evaluate the results (measure of the quality of a recon-
structed image compared with an original image computing
the ratio between the maximum possible power of a signal
and the power of corrupting noise that affects the fidelity of
its representation). Because many signals have a very wide
dynamic range, PSNR is usually expressed in terms of the
logarithmic decibel scale: 10 log10(I

2
max/MSE) dB. For each

one, we consider a weight balanced by every colour chan-
nel (RMSEa and PSNRa) and a perceptual one (RMSEp and
PSNRp) in accordance with the sRGB system (wR = 0.2126,
wG = 0.7152, and wB = 0.0722. These measures reflect the
good behaviour mentioned in CT and EC oracles (i.e., low
RMSEs and high PSNRs). Although the error obtained using
our approach is bigger than that with CT method, the visual
results are better in the EC case (observe Figs. 12.c–d). This
is due to the fact that the measures do not manage to reflect
exactly the perceptual quality of the image. The EC images
look better because the oracle distributes the samples in the
perceptual critical regions more accurately (see SDMs).

Now, we present a test using the geometry component
with 1− δ = 0.1 in (28) and, at the same time, the binary
contrast in colour and geometry. To do this, our approach is
compared with the priority-value combination (4) made up
of a colour contrast of the CC type and also by an usual ge-
ometry factor. Perceptual coefficients are taken equal as in
our approach in both cases (§6.3). The tree depth level is
set to 4 and the Nr

s is reduced by half (i.e., 4 samples) but
maintaining the average per pixel (i.e., Np

s = 60).

The images obtained are shown in Fig. 13. In Fig. 13.a,
the entropy-contrast Cc

n (28) with Cc (18) and Cg (20). In
Fig. 13.b, the binary-entropy contrast: Cc

n using Cc
b (19)
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(i) General view (ii) Close-up of (i)

Figure 11: Reference image used in the test in Fig. 12: (i) general view and (ii) close-up of (i). The image has been obtained
with a path-tracing algorithm with 1,024 samples per pixel in a stratified way.

oracle general view close-up
RMSEa RMSEp PSNRa PSNRp RMSEa RMSEp PSNRa PSNRp

CC 13,727 13,599 25,379 25,461 20,276 20,024 21,991 22,100
IC 8,124 8,110 29,935 29,951 13,751 13,568 25,364 25,481
CT 5,194 5,174 33,822 33,855 8,407 8,338 29,638 29,710
EC 6,937 7,018 31,308 31,207 9,886 9,933 28,231 28,189

Table 2: The RMSE and PSNR of CC, IC, CT, and EC oracles applied to the general view (Fig. 11.i) and close-up (Fig. 11.ii)
of the test scene. The average number of rays per pixel is Np

s = 60 in all methods.

and Cg
b (21). And, in Fig. 13.c, the priority-value approach

pv (4) with pc (2) and pd (3). The respective SDMs from
Figs. 13.∗.i are shown in Figs. 13.∗.ii.

We see from comparing the images that the entropy con-
trast is much better than the classic contrast used here. Ob-
serve for instance the ceiling, the shadows and the mirroring
wall. A drawback of our approach is the peaks of high ra-
diance that we observe on the right wall because this region
is undersampled in our method. However, this effect can be
easily solved by a filtering technique. The comparison of the
SDMs shows a better discrimination of complex regions of
the scene in the entropy case (Figs. 13.a–b.ii) against the
priority-value contrast case (Fig. 13.c.ii). This explains the
better results obtained with our approach.

Finally, in Fig. 14.a we show another scene obtained with
our approach using an average of Np

s = 200 and δ = 0.95.
Observe, in Fig. 14.b, how well the SDM works out both the
geometry and colour details as in the shadow contours on the
walls (the remaining spiked noise could easily be eliminated
by filtering with an image smoothing method).
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(a.i) CC (a.ii) Close-up of (a.i) (a.iii) SDM of (a.i)

(b.i) IC (b.ii) Close-up of (b.i) (b.iii) SDM of (b.i)

(c.i) CT (c.ii) Close-up of (c.i) (c.iii) SDM of (c.i)

(d.i) EC (d.ii) Close-up of (d.i) (d.iii) SDM of (d.i)

Figure 12: Results of comparisons: (a) adaptive sampling scheme based on classic contrast (CC), (b) importance-weighted
contrast (IC), same as in (a) but weighting with importance q (26), (c) confidence test method (CT), and (d) entropy-based
method (EC) with colour contrast only (δ = 1). By columns: (i) shows the resulting images, (ii) close-up of regions of (i),
and (iii) the sampling density maps of (i). The average number of rays per pixel is Np

s = 60 in all methods, with a similar
computational cost.
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(a.i) Entropy contrast (a.ii) SDM of (a.i)

(b.i) Binary-entropy contrast (b.ii) SDM of (b.i)

(c.i) Priority-value contrast (c.ii) SDM of (c.i)

Figure 13: Images obtained with adaptive sampling where Np
s = 60 and Nr

s = 4: (a) entropy contrast, (b) binary-entropy
contrast, and (c) priority-value contrast. By columns: (i) Image sampled and (ii) sampling density map of (i).
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(a) Entropy-based contrast (b) SDM of (a)

Figure 14: Image obtained with entropy-based adaptive sampling where Np
s = 200 and δ = 0.95. (a) Sampled image. (b)

Sampling density map of (a).
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Part V: Viewpoint Selection and Mesh Saliency

Miquel Feixas, Mateu Sbert, and Francisco González García

University of Girona, Spain

1. Introduction

In computer graphics, several viewpoint quality measures

have been applied in areas such as scene understand-

ing [PB96, VFSH01, PPB∗05], scene exploration [AVF04,

SPT06], image-based modeling [VFSH03], and volume

visualization [BS05, TFTN05, VFSG06, JS06]. In other

areas, such as object recognition and mobile robotics,

best view selection is also a fundamental task. Many

works have demonstrated that the recognition process

is view-dependent [PRC81, BET95, TBZB97, BTB99].

In [TBZB97], the authors found that “visual recognition may

be explained by a view-based theory in which viewpoint-

specific representations encode both quantitative and qual-

itative features”. In robotics, the simultaneous localization

and mapping problem (SLAM) requires that the robot de-

cides on its own the necessary motions to construct the most

accurate map possible. In [GBL02], an algorithm is pro-

posed to guide the robot through a series of good positions,

where ‘good’ refers to the expected amount and quality of

the information that will be revealed at each new location.

The basic question underlying the viewpoint selection

study and application is “what is a ‘good’ scene viewpoint?”

Obviously, this question does not have a unique answer. De-

pending on our objective, the best viewpoint can be, for

instance, the most representative one or the most unsta-

ble one, i.e., the one that maximally changes when it is

moved within its close neighborhood [BS05]. [PRC81] and

[BTB99] have presented different experiments demonstrat-

ing that observers prefer views (called canonical views) that

avoid occlusions and that are off-axis (such as a three-quarter

viewpoint), salient (the most significant characteristics of an

object are visible), stable and with a large number of visible

surfaces.

Extending the work initiated in [VFSH01, SPFG05], in

this tutorial we will present a unified and robust framework

to deal with viewpoint selection and mesh saliency. Given

a set of viewpoints surrounding the object, we define an in-

formation channel between the viewpoints and the polygons

of the object. From this channel, the viewpoint mutual in-

formation is used to obtain the best views of an object, to

calculate the stability of a viewpoint, and to guide the object

exploration. Then, we reverse the channel and we compute

both the information and the saliency associated with each

polygon. Finally, this polygonal saliency is used to calcu-

late how salient is a viewpoint and is incorporated to view-

point mutual information to drive the viewpoint selection.

Our framework is also applicable to any set of viewpoints

in a closed scene and, although only the geometric proper-

ties of an object have been considered, other aspects such as

lighting could be incorporated.

In these notes, we only present some related work (Sec-

tion 2) and the viewpoint channel (Section 3). Other aspects

of the viewpoint framework (viewpoint similarity and un-

stability, object exploration, saliency, information-theoretic

ambient occlusion, best view selection, etc.) can be found in

the slides corresponding to this Part V.

2. Related Work

We review now some viewpoint quality measures for polyg-

onal models. In [PB96], the quality of a viewpoint v of a

scene is computed using the heuristic measure (HM) given

by

C(v) =
∑

n
i=1⌈

Pi(v)
Pi(v)+1

⌉

n
+

∑
n
i=1 Pi(v)

r
, (1)

where Pi(v) is the number of pixels corresponding to the

polygon i in the image obtained from the viewpoint v, r is

the total number of pixels of the image (resolution of the im-

age), and n is the total number of polygons of the scene. In

this formula, ⌈x⌉ denotes the smallest integer, greater than or

equal to x. The first term in (1) gives the fraction of visible

surfaces with respect to the total number of surfaces, while

the second term is the ratio between the projected area of the
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scene (or object) and the screen area (thus, its value is 1 for

a closed scene).

From the definition of entropy (see Part II), the viewpoint

entropy (VE) [VFSH01] has been defined from the relative

area of the projected polygons over the sphere of directions

centered at viewpoint v. Thus, the viewpoint entropy was

defined by

Hv = −
N f

∑
i=0

ai

at
log

ai

at
, (2)

where N f is the number of polygons of the scene, ai is

the projected area of polygon i over the sphere, a0 repre-

sents the projected area of background in open scenes, and

at = ∑
N f

i=0 ai is the total area of the sphere. The maximum

entropy is obtained when a certain viewpoint can see all the

polygons with the same projected area. The best viewpoint is

defined as the one that has maximum entropy. In molecular

visualization, both maximum and minimum entropy views

show relevant characteristics of a molecule [VFSL06].

A new viewpoint quality measure, called viewpoint

Kullback-Leibler distance (VKL) [SPFG05], has been de-

fined by

KLv =
N f

∑
i=1

ai

at
log

ai

at

Ai

AT

, (3)

where ai is the projected area of polygon i, at = ∑
N f

i=1 ai, Ai is

the actual area of polygon i and AT = ∑
N f

i=1 Ai is the total area

of the scene or object. The VKL measure is interpreted as the

distance between the normalized distribution of projected ar-

eas and the ‘ideal’ projection, given by the normalized dis-

tribution of the actual areas. In this case, the background can

not be taken into account. The minimum value 0 is obtained

when the normalized distribution of projected areas is equal

to the normalized distribution of actual areas. Thus, to select

views of high quality means to minimize KLv.

Apart from the previous references on viewpoint quality

measures, [PPB∗05] describe a number of different ways

to measure the goodness of a view of an object. After an-

alyzing different view descriptors, they conclude that no sin-

gle descriptor does a perfect job and possibly a combina-

tion of them would amplify the advantage that each one has.

Given a sphere of viewpoints, [YSY∗06] compute the sim-

ilarity between each two disjoint views using Zernike mo-

ments analysis and obtain a similarity weighted spherical

graph. A view is considered to be stable if all edges inci-

dent on its viewpoint in the spherical graph have high sim-

ilarity weights. [AVF04] and [SPT06] present two different

exploration algorithms guided by viewpoint entropy and the

total curvature of a visible surface, respectively. In the vol-

ume rendering field, [BS05], [TFTN05] and [JS06] use an

extended version of viewpoint entropy and [VFSG06] intro-

duce the viewpoint mutual information. [CSCF07] use view-

point entropy as a perceptual measure for mesh simplifica-

tion.

Based on the investigation on canonical views,

[GRMS01] present a new method for constructing im-

ages, where the viewpoint is chosen to be both off-axis and

‘natural’, and [LME06] obtain the viewing direction from

the combination of factors such as saliency, occlusion, sta-

bility and familiarity. [LVJ05] have introduced the saliency

as a measure for regional importance for graphics meshes

and [KV06] presented a visual-saliency-based operator to

enhance selected regions of a volume. [GCO06] introduced

a method for partial matching of surfaces by using the

abstraction of salient geometric features and a method to

construct them.

3. Viewpoint Channel

In this section, we introduce an information channel between

a set of viewpoints and the set of polygons of an object to

deal with viewpoint selection. Then we define the viewpoint

mutual information to select the most representative views

of an object.

3.1. Viewpoint Mutual Information

Our viewpoint selection framework is constructed from an

information channel V → O between the random variables

V (input) and O (output), which represent, respectively, a set

of viewpoints and the set of polygons of an object (see Fig-

ure 1(a)). This channel, which we call viewpoint channel, is

defined by a conditional probability matrix obtained from

the projected areas of polygons at each viewpoint. View-

points will be indexed by v and polygons by o. Throughout

the development of this viewpoint framework, the capital let-

ters V and O as arguments of p() will be used to denote prob-

ability distributions. For instance, while p(v) will denote the

probability of a single viewpoint v, p(V ) will represent the

input distribution of the set of viewpoints.

The viewpoint channel can be interpreted as an observa-

tion channel where the conditional probabilities represent

the probability of seeing a determined polygon from a given

viewpoint (see Figure 1(b)). The three basic elements of this

channel are:

• Conditional probability matrix p(O|V ), where each el-

ement p(o|v) = ao

at
is defined by the normalized pro-

jected area of polygon o over the sphere of directions

centered at viewpoint v. Conditional probabilities fulfil

∑o∈O
p(o|v) = 1. In our approach, background is not

taken into account but it could be considered as another

polygon.

• Input distribution p(V ), which represents the probability

of selecting a viewpoint. In our experiments, p(V ) will be

obtained from the normalization of the projected area of

the object at each viewpoint. This can be interpreted as the
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probability that a random ray originated at v hits (sees) the

object. This assignation is consistent with the objective of

selecting the viewpoints which see more projected area.

Let us remember that this is a characteristic of a canonical

view (see Section 1). The input distribution can also be

interpreted as the importance assigned to each viewpoint

v. For instance, the input distribution could also be defined

by p(v) = 1
Nv

, where Nv is the number of viewpoints.

• Output distribution p(O), defined by

p(o) = ∑
v∈V

p(v)p(o|v), (4)

which represents the average projected area of polygon

o, i.e., the probability of polygon o to be hit (seen) by a

random ray cast from the viewpoint sphere.

From the previous definitions, the conditional entropy is

given by the average of all viewpoint entropies:

H(O|V ) = − ∑
v∈V

p(v) ∑
o∈O

p(o|v) log p(o|v)

= ∑
v∈V

p(v)H(O|v), (5)

where H(O|v) = −∑o∈O
p(o|v) log p(o|v) is the viewpoint

entropy Hv (2) and measures the degree of uniformity of the

projected area distribution at viewpoint v. Let us observe that

Hv has been now rewritten in a different form. Both entropies

H(O|v) and H(O|V ) tend to infinity when polygons are in-

finitely refined. This makes these measures very sensitive to

the discretisation of the object and in general not appropriate

to evaluate the quality of a viewpoint.

We now devote our attention to the mutual information

between V and O, that expresses the degree of dependence

or correlation between the set of viewpoints and the object.

Mutual information is given by

I(V,O) = ∑
v∈V

p(v) ∑
o∈O

p(o|v) log
p(o|v)

p(o)

= ∑
v∈V

p(v)I(v,O), (6)

where we define

I(v,O) = ∑
o∈O

p(o|v) log
p(o|v)

p(o)
(7)

as the viewpoint mutual information (VMI), which gives us

the degree of dependence between the viewpoint v and the

set of polygons, and it is a measure of the quality of view-

point v. Consequently, mutual information I(V,O) can be in-

terpreted as the average viewpoint quality. Quality is consid-

ered here equivalent to representativeness. It is also impor-

tant to indicate that the level of resolution of the viewpoint

sphere will determine the accuracy of the measures.

In our framework, the best viewpoint is defined as the one

that has minimum VMI. High values of the measure mean

a high dependence between viewpoint v and the object, in-

dicating a highly coupled view (for instance, between the

viewpoint and a small number of polygons with low average

visibility). On the other hand, the lowest values correspond

to the most representative or relevant views, showing the

maximum possible number of polygons in a balanced way.

3.2. Discussion

Note that I(v,O) = KL(p(O|v)|p(O)), where p(O|v) is the

conditional probability distribution between v and the ob-

ject and p(O) is the marginal probability distribution of O,

which in our case corresponds to the distribution of the aver-

age of projected areas. It is worth observing that p(O) plays

the role of the target distribution in the KL distance and also

the role of the optimal distribution since our objective is that

p(O|v) becomes similar to p(O) to obtain the best views.

On the other hand, this role agrees with intuition since p(O)
is the average visibility of polygon o over all viewpoints,

i.e., the mixed distribution of all views, and we can think of

p(O) as representing, with a single distribution, the knowl-

edge about the scene. Note the difference between VMI (7)

and VKL (3), due to the fact that in the last case the distance

is taken with respect to the actual areas.

In [VFSG06], it has been shown that the main advantage

of VMI over VE is its robustness to deal with any type of

discretisation or resolution of the volumetric dataset. The

same advantage can be observed for polygonal data. Thus,

while a highly refined mesh will attract the attention of VE,

VMI will be almost insensitive to changes in the mesh res-

olution. This behavior of both measures with respect to the

discretization can be deduced from the mathematical analy-

sis of VE and VMI. For instance, let us assume that a reg-

ular polygon o of the object is subdivided into two equal

parts o1 and o2 such that p(o1|v) = p(o2|v), p(o1) = p(o2),
p(o|v) = p(o1|v) + p(o2|v) and p(o) = p(o1) + p(o2). As-

suming that only the term referred to polygon o can change

in the formulas for VE (2) and VMI (7), we analyze their

variation after the subdivision of o. The variation of VE is

given by

δH(O|v) = −p(o1|v) log p(o1|v)− p(o2|v) log p(o2|v)−

(−p(o|v) log p(o|v)) = p(o|v).

Therefore, VE increases with a value p(o|v) after the sub-

division. On the other hand, the variation of VMI is given

by

δI(v,O) = p(o1|v) log
p(o1|v)

p(o1)
+ p(o2|v) log

p(o2|v)

p(o2)
−

p(o|v) log
p(o|v)

p(o)
= 0.

Thus, VMI remains invariant to the proposed subdivision. In

general, if we compare both measures for different discreti-

sations, mutual information will give similar results and VE

will show an erratic behavior. Note that HM is also highly

dependent on the discretisation, since the first term in (1) is
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(a) Viewpoint sphere. (b) Probability distributions of channel V → O.

Figure 1: Viewpoint information channel.

given by the quotient between the number of visible poly-

gons and the total number of polygons. The behavior of all

these measures with respect to the discretisation will be ex-

perimentally shown in the next section.
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Applications of Information Theory to Computer Graphics

Part VI: View Selection in Scientific Visualization

Ivan Viola
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1. Introduction

Concepts for optimal viewpoint estimation in com-

puter graphics have been intensively studied in the past

decade. These concepts (reviewed in Part V) accommodate

information-theoretic measures into viewpoint characteris-

tics such as viewpoint entropy, which is based on projected

area and number of visible polygons. These accommodation

of information-theory measures have been used for estimat-

ing the most informative viewpoint or a minimal set of view-

points that characterize given polygonal scene in a most ex-

pressive way.

Viewpoint selection is of increasing interest for the sci-

entific visualization research. Approaches for estimation

of most informative viewpoints for scientific data sets are

somehow similar to those, developed for polygonal data,

however there are differences that arise due to different fo-

cus of scientific visualization. One difference, as opposed

to polygonal graphics, is that the underlying data is larger

and more complex. Scientific data is originating from mea-

surements and simulations that have very heterogeneous re-

sulting output. Some data types can be aligned to a struc-

ture as a grid, other types are missing such a structure and

are represented as sparse points without any connectivity in-

formation. Medical data sets are often represented as scalar

values per sample point. In other areas, such as meteorolog-

ical or flow simulations, several attributes per sample point

are usual. Many natural phenomena are studied through their

development in time. These studies are represented through

time-varying data sets, of which visualization is often effec-

tive way of providing insights. Moreover scientific data of-

ten differ in the level of semantics. Some data contain solely

measurements without any a priori knowledge about struc-

tures, other data sets contain information about most relevant

structures (e.g., critical points in flow data). Summarizing,

the heterogeneity among scientific data types, as opposed to

simple polygonal scene, is aligned with heterogeneity in vi-

sualization approaches of viewpoint quality computation.

Second aspect of scientific visualization, as opposed to

standard computer graphics, is that it serves gaining in-

sights of complex underlying data. There is always a purpose

that drives visualization, usually in form of needs abstracted

from industry, sciences, or medicine. Here visualization can

serve two purposes, exploration of new, partly unknown data

by way of visual analysis by a group of domain users and

dissemination of knowledge gained during the exploration

process towards another spectrum of audience. Computer-

guided viewpoint selection seems to be promising tool for

addressing both scenarios, knowledge gain as well as knowl-

edge dissemination.

In this part of the tutorial we are reviewing state-of-the-

art view selection strategies for volume visualization. We

start with approaches where viewpoint selection for polyg-

onal data has been adapted for view selection on density

volumes. Next we review approaches for viewpoint quality

measures for time-varying volumes, in terms of estimation

of static informative viewpoints for the entire time span or

a dynamic viewpoint showing whole time series by contin-

uously changing the viewpoint position to show most of the

information.

After describing how information-theoretic measures can

be applied for unclassified volumetric data, we give more

space to approaches that incorporate higher level semantics

into viewpoint selection. In particular we focus on guided

navigation technique denoted as importance-driven focus

of attention where information-theoretic measures work on

volumetric data organized into objects of varying impor-

tance. We give an outlook towards semantics-driven view-

point selection and review early work in this promising di-

rection.

2. Optimal Views for Volume Data

Techniques to measure informativeness of a viewpoint re-

flect how much of the overall scene is visible through par-

ticular viewpoint. These metrics differ according to infor-
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mation provided in the data as well as according to the aim

of visualization. In the following we will review view selec-

tion techniques where knowledge about the data is limited to

voxel values and visual mapping specification.

2.1. Viewpoint Estimation for Interval Volumes

One of the first approaches on view selection for vol-

ume data has been done on evaluation of viewpoint en-

tropy on extracted iso-surfaces or interval volumes respec-

tively [TFTN05]. This approach represents a transition be-

tween surface-based visibility estimation working on poly-

gons and purely voxel-based visibility estimation. The view-

point quality measure here is viewpoint entropy (see Part V),

applied to faces of iso-surfaces or interval volumes. These

interval volumes or iso-surfaces represent set of features di-

rectly derived from the original data values that can be op-

tionally weighted by average opacity specified by transfer

function as importance distribution among features. View-

point quality considers feature arrangement in order to avoid

feature overlapping.

This technique performs quite well during the visibility

estimation phase and the viewpoint selection calculations

are nearly real-time. This might be of considerable advan-

tage, however, this approach does not compute visibilities

of the volume but of surfaces surrounding volumes instead.

Therefore very little portion of information contained in the

volume is processed. The only way how the volume informa-

tion is integrated into the viewpoint estimation process is the

importance computed by the average opacity of the interval

volume. Figure 1 shows best and worst views at set of inter-

val volumes extracted from the hydrogen data set including

bounding sphere plot indicating viewpoints quality.

2.2. View Selection for Static and Temporal Data

In parallel to the interval volumes approach discussed above,

the viewpoint selection algorithm [BS05] that evaluates vis-

ibility of the volume directly, has been proposed. Viewpoint

selection for volumes is an adaptation of the viewpoint en-

tropy approach for polygonal data to compute the visibility

from volume, i.e., voxels, by substituting the area visibil-

ity distribution of faces by the distribution obtained from

the quotient between the voxel visibility and the voxel im-

portance (noteworthiness factor). Importance distribution is

defined per-voxel and is equal to the opacity value speci-

fied in the transfer function. This means more opaque voxels

will get more prominence than the low opacity ones. This

work has additionally suggested information-theoretic mea-

sures for clustering views according to similarity using the

Jensen-Shannon divergence (see parts II and V). In addition,

this work proposes scheme for estimation of static viewpoint

on time-varying data. This is realized through conditional

entropy where the different random variable distributions are

obtained from neighboring time-steps.

This work proposes to perform visibility calculations di-

rectly on the volume and thus conveying more information

about the volume as compared to the interval volume ap-

proach. In addition, the partitioning approach enables to cap-

ture entire scene by small set of snapshots. The viewpoint

estimation is considering the temporal aspect in the eval-

uation instead of evaluating viewpoint for every time step

separately. The importance distribution, however, is on the

per-voxel level meaning that the data is not organized into

higher semantics other than original data elements. Figure 2

shows tooth data set from several viewpoints that together

capture the most of information about the scene and a static

viewpoint on time-varying shockwave data set.

Previously mentioned approach on view selection for vol-

umes has been recently extended to support dynamic view-

point change for static and time-varying data [JS06] enabling

guided flythrough over most interesting viewpoints. The new

approach in addition modifies the voxel relevance function

by incorporating shape characteristics and color in addition

to opacity value.

3. View Selection Using Higher-Level Semantics

Above mentioned approaches are focusing on how to esti-

mate good viewpoints driven by values in the data or as-

signed visual representation. They do not incorporate addi-

tional gained knowledge about the data and do not specif-

ically address particular application scenario. In this sec-

tion we will focus on view selection techniques that incor-

porate higher-level knowledge. Voxels or polygons are or-

ganized into higher-level semantics, i.e., objects. Sufficient

knowledge about the data is gained beforehand in a user-

steered classification process. View selection explicitly tar-

gets gained knowledge dissemination in form of guided nav-

igation with enhancement of features in focus.

First we will discuss focus of attention approach based on

varying importance distribution among objects. The second

discussed approach targets guided navigation for knowledge

dissemination for medical intervention planning.

3.1. Importance-Driven Focus of attention

Importance-driven focus of attention [VFSG06] provides a

guided navigation through pre-classified features in the volu-

metric data set. Object of interest (focus) is directly specified

by user. A characteristic viewpoint for this object is selected

in combination with a visually pleasing discrimination of the

focus from the remaining context information. By chang-

ing the object of interest, both viewpoint settings and visual

parameters are smoothly modified to put emphasis on the

newly selected object of interest. Characteristic viewpoints

are estimated in an information-theoretic framework using

viewpoint mutual information, a measure adapted from in-

formation theory (see part V). Both stages, i.e., the interac-

tive focusing approach and the identification of character-
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istic viewpoints, are controlled by an intuitive importance

distribution among structures within the volumetric data.

Focus of attention needs visual discrimination of interest-

ing objects from other elements in the scene. It is realized

through a visual emphasis of the object of interest, while

other objects presented as context are visually suppressed.

Changes in opacity and color saturation are used to control

the visual emphasis.

In addition to visual discrimination, objects in focus have

to be shown from a good and characteristic view where most

of the focus structures are perceivable. The most interesting

object must not be occluded by less relevant parts. If possible

the focus should be in front of other features. In case where

the feature of interest is always occluded by other features,

cut-away views or other concepts from illustration are be in-

cluded into the visualization. Furthermore a proper orienta-

tion of the up-vector of the viewpoint and a proper position-

ing of the focus are important to consider in the viewpoint

specification.

Finding a viewpoint where the characteristics of a spe-

cific feature are clearly visible naturally requires the visibil-

ity estimation of the feature under specific viewing settings.

It requires ray casting of the whole data set from various

viewpoints similarly to view selection for volumes discussed

above (see Section 2.2). Visibility computation is based on

the opacity contribution of each voxel and object visibil-

ity is computed as the sum of voxel visibilities belonging

to the object. Voxel membership to a particular object is a

fuzzy value, i.e., voxel may belong to several objects at the

same time. Additionally two weights influence the visibil-

ity of an object, i.e., image-space weight and object-space

weight. Image-space weight penalizes the visibility of ob-

jects when they are located outside the image center. Object-

space weight assigns higher visibility to objects which are

closer to the viewing plane and penalizes those that are more

far away.

Object visibility is then mapped to a conditional probabil-

ity of the object for a given viewpoint. These values are used

for computation of good viewpoints for a given object by

using information-theoretic framework based on viewpoint

mutual information and combined with object importance

information.

After selecting visual representations of objects and by

identifying representative viewpoints, the crucial informa-

tion to perform interactive focus of attention is available.

The importance distribution is in the interactive part a direct

mapping of user’s interest. Importance is directly mapped

to focus discrimination and level of ghosting in cut-away

views. The viewpoint transformation is also controlled by

importance distribution, smoothly changing to characteristic

viewpoint of selected object.

Guided navigation drives user’s focus to the object of in-

terest, although still allowing to manipulate the viewpoint

manually for custom inspection. In this scenario the object

of interest is represented densely and clearly visible by using

interactive cut-away views. After the manual viewpoint ma-

nipulation is finished, the viewpoint smoothly changes back

to the characteristic viewpoint of the object in focus. User is

then free to select another object to be focused onto. Focus-

ing on a specific feature in the human hand dataset is shown

in Figure 3. Viewpoint smoothly changes from characteristic

viewpoint for the entire volume to viewpoint emphasizing

the object of interest. As shown, parallel to the viewpoint

change, the focus is discriminated from neighboring struc-

tures and the level of ghosting is continuously suppressing

visual representation of occluding structures.

3.2. Semantics-Driven Guided Navigation

Viewpoint selection for intervention planning [KMP07] esti-

mates visibility of objects from extracted iso-surfaces. Good

viewpoints are estimated using many parameters with ad-

justable influence: object entropy, importance of occluders,

size of unoccluded surface, preferred view region by sur-

geons, distance to viewpoint, and viewpoint stability. As ex-

ample how tightly is viewpoint estimation bound to specific

application is demonstrated by one of parameters: the dis-

tance to important feature defines importance of other fea-

tures (e.g., neck muscles close to lymph node which is in fo-

cus). Furthermore guided navigation supports close zooming

to the object of interest. Guided navigation through lymph

nodes in the neck data set is shown in Figure 4.

Strong contribution of the domain knowledge parameters

in the viewpoint selection computation shows that semantic-

driven techniques outperform other existing automatic view

selection techniques in a specific visualization scenario. This

statement has been supported by evaluation of a user study

that significantly included medical domain users.

4. Conclusion

Selection of a preferred viewpoint without targeting spe-

cific application is a very subjective choice. High knowledge

about the data and the purpose of selecting particular view-

point for a very specific application is moving viewpoint

selection from subjective taste to more objective character-

istics. Current trend in visualization research indicates that

this is the direction for a good good viewpoint estimation.

The work on viewpoint selection for intervention planning

nicely demonstrates this trend.
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(a) (b)

Figure 1: Viewpoint estimation for interval volumes [TFTN05]: (a) best and worst views at interval volumes extracted from

data set containing simulated electron density distribution in a hydrogen atom; (b) the sphere plot shows the viewpoint quality

distribution where the green color encodes low quality viewpoints and the red encodes good and informative viewpoints. Best

and worst views are indicated by a black and white dot respectively. Used by permission.

Figure 2: View selection for static and time-varying volumes [BS05]: (upper row) four selected views on the tooth data set from

four bounding sphere partitions; (bottom row) time-series of the shockwave data set from best temporal domain preserving

viewpoint. Used by permission.

Figure 3: Importance-driven focusing [VFSG06]: Smooth guided navigation from overall characteristic viewpoint to focus on

object of interest.
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Figure 4: Semantics-driven view selection [KMP07]: Guided navigation through features in the human neck data set assists

studying the correspondence between focus objects, i.e., lymph nodes and surrounding tissue such as neck muscle. Used by

permission.
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