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Abstract 
Computational photography combines plentiful computing, digital sensors, modern optics, actuators, probes and smart 
lights to escape the limitations of traditional film cameras and enables novel imaging applications. Unbounded 
dynamic range, variable focus, resolution, and depth of field, hints about shape, reflectance, and lighting, and new 
interactive forms of photos that are partly snapshots and partly videos are just some of the new applications found in 
Computational Photography. The computational techniques encompass methods from modification of imaging 
parameters during capture to sophisticated reconstructions from indirect measurements. We provide a practical guide 
to topics in image capture and manipulation methods for generating compelling pictures for computer graphics and for 
extracting scene properties for computer vision, with several examples. 

Many ideas in computational photography are still relatively new to digital artists and programmers and there is no up-
to-date reference text. A larger problem is that a multi-disciplinary field that combines ideas from computational 
methods and modern digital photography involves a steep learning curve. For example, photographers are not always 
familiar with advanced algorithms now emerging to capture high dynamic range images, but image processing 
researchers face difficulty in understanding the capture and noise issues in digital cameras. These topics, however, can 
be easily learned without extensive background. The goal of this presentation is to present both aspects in a compact 
form. 

The new capture methods include sophisticated sensors, electromechanical actuators and on-board processing. 
Examples include adaptation to sensed scene depth and illumination, taking multiple pictures by varying camera 
parameters or actively modifying the flash illumination parameters. A class of modern reconstruction methods is also 
emerging. The methods can achieve a ‘photomontage’ by optimally fusing information from multiple images, improve 
signal to noise ratio and extract scene features such as depth edges. The presentation briefly reviews fundamental 
topics in digital imaging and then provides a practical guide to underlying techniques beyond image processing such as 
gradient domain operations, graph cuts, bilateral filters and optimizations. 

The participants learn about topics in image capture and manipulation methods for generating compelling pictures for 
computer graphics and for extracting scene properties for computer vision, with several examples. We hope to provide 
enough fundamentals to satisfy the technical specialist without intimidating the curious graphics researcher interested 
in recent advances in photography. 

The intended audience is photographers, digital artists, image processing programmers and vision researchers using or 
building applications for digital cameras or images. They will learn about camera fundamentals and powerful 
computational tools, along with many real world examples. 

1 Introduction 

1.1 Film-like Photography 
Photography is the process of making pictures by, 
literally, ‘drawing with light’ or recording the visually 
meaningful changes in the light leaving a scene. This 
goal was established for film photography about 150 
years ago. 

Currently, 'digital photography' is electronically 
implemented film photography, refined and polished to 
achieve the goals of the classic film camera which were 
governed by chemistry, optics, mechanical shutters.  
Film-like photography presumes (and often requires)
artful human judgment, intervention, and interpretation 
at every stage to choose viewpoint, framing, timing, 
lenses, film properties, lighting, developing, printing, 
display, search, index, and labeling. 
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In this document, we plan to explore a progression away 
from film and film-like methods to something more 
comprehensive that exploits plentiful low-cost 
computing and memory with sensors, optics, probes, 
smart lighting and communication.

1.2 What is Computational Photography? 

Computational Photography (CP) is an emerging field, 
just getting started. We don't know where it will end up,  
we can't yet set its precise, complete definition, nor 
make a reliably comprehensive classification. But here 
is the scope of what researchers are currently exploring 
in this field. 

- Computational photography attempts to record a richer 
visual experience, captures information beyond just a 
simple set of pixels and makes the recorded scene 
representation far more machine readable. 

- It exploits computing, memory, interaction and 
communications to overcome long-standing limitations 
of photographic film and camera mechanics that have 
persisted in film-style digital photography, such as 
constraints on dynamic range, depth of field, field of 
view, resolution and the extent of scene motion during 
exposure.

- It enables new classes of recording the visual signal 
such as the ‘moment’ [Cohen 2005], shape boundaries 
for non-photorealistic depiction [Raskar et al 2004] , 
foreground versus background mattes, estimates of 3D 
structure, 'relightable’ photos and interactive displays 
that permit users to change lighting, viewpoint, focus, 
and more, capturing some useful, meaningful fraction of 
the 'light field' of a scene, a 4-D set of viewing rays. 

- It enables synthesis of impossible photos that could not 
have been captured at a single instant with a single 
camera, such as wrap-around views ('multiple-center-of-
projection' images [Rademacher and Bishop 1998]), 
fusion of time-lapsed events [Raskar et al 2004], the 
motion-microscope (motion magnification [Liu et al 
2005]), video textures and panoramas [Agarwala et al 
2005].  They also support seemly impossible camera 
movements such as the ‘bullet time’ (Matrix) sequence 
recorded with multiple cameras with staggered exposure 
times. 

- It encompass previously exotic forms of scientific 
imaging and data gathering techniques e.g. from 
astronomy, microscopy, and tomography. 

1.3 Elements of Computational Photography 

Traditional film-like photography involves (a) a lens, (b) 
a 2D planar sensor and (c) a processor that converts 
sensed values into an image. In addition, the 

photography may involve (d) external illumination from 
point sources (e.g. flash units) and area sources (e.g. 
studio lights).  

Computational Photography generalizes these four 
elements. 

(a) Generalized Optics: Each optical element is treated 
as a 4D ray-bender that modifies a light field. The 
incident 4D light field for a given wavelength is 
transformed into a new 4D lightfield. The optics may 
involve more than one optical axis [Georgiev et al 
2006]. In some cases, the perspective foreshortening of 
objects based on distance may be modified using 
wavefront coded optics [Dowski and Cathey 1995]. In 
recent lensless imaging methods [Zomet and Nayar 
2006] and coded-aperture imaging [Zand 1996] used for 
gamma-ray and X-ray astronomy, the traditional lens is 
missing entirely. In some cases optical elements such as 
mirrors [Nayar et al 2004] outside the camera adjust the 
linear combinations of ray bundles that reach the sensor 
pixel to adapt the sensor to the viewed scene. 

 (b) Generalized Sensors: All light sensors measure 
some combined fraction of the 4D light field impinging 
on it, but traditional sensors capture only a 2D 
projection of this lightfield.  Computational photography 
attempts to capture more; a 3D or 4D ray representation 
using planar, non-planar or even volumentric sensor 
assemblies. For example, a traditional out-of-focus 2D 
image is the result of a capture-time decision: each 
detector pixel gathers light from its own bundle of rays 
that do not converge on the focused object.  But a 
Plenoptic Camera [Adelson and Wang 1992, Ren et al 
2005] subdivides these bundles into separate 
measurements. Computing a weighted sum of rays that 
converge on the objects in the scene creates a digitally 
refocused image, and even permits multiple focusing 
distances within a single computed image. Generalizing 
sensors can extend their dynamic range [Tumblin et al 
2005] and wavelength selectivity as well.  While 
traditional sensors trade spatial resolution for color 
measurement (wavelengths) using a Bayer grid or red, 
green or blue filters on individual pixels, some modern 
sensor designs determine photon wavelength by sensor 
penetration, permitting several spectral estimates at a 
single pixel location [Foveon 2004]. 

(c) Generalized Reconstruction: Conversion of raw 
sensor outputs into picture values can be much more 
sophisticated. While existing digital cameras perform 
‘de-mosaicking,’ (interpolate the Bayer grid), remove 
fixed-pattern noise, and hide ‘dead’ pixel sensors, recent 
work in computational photography can do more.  
Reconstruction might combine disparate measurements 
in novel ways by considering the camera intrinsic 
parameters used during capture. For example, the 
processing might construct a high dynamic range scene 
from multiple photographs from coaxial lenses, from
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sensed gradients [Tumblin et al 2005], or compute sharp 
images a fast moving object from a single image taken 
by a camera with a ‘fluttering’ shutter [Raskar et al 
2006].  Closed-loop control during photography itself 
can also be extended, exploiting traditional cameras’ 
exposure control, image stabilizing, and focus, as new 
opportunities for modulating the scene’s optical signal 
for later decoding.  

(d) Computational Illumination: Photographic lighting 
has changed very little since the 1950’s: with digital 
video projectors, servos, and device-to-device 
communication, we have new opportunities to control 
the sources of light with as much sophistication as we 
use to control our digital sensors.  What sorts of spatio-
temporal modulations for light might better reveal the 
visually important contents of a scene? Harold Edgerton 
showed high-speed strobes offered tremendous new 
appearance-capturing capabilities; how many new 
advantages can we realize by replacing ‘dumb’ the flash 
units, static spot lights and reflectors with actively 
controlled spatio-temporal modulators and optics? 
Already we can capture occluding edges with multiple 
flashes [Raskar 2004],  exchange cameras and projectors 
by Helmholz reciprocity [Sen et al 2005], gather 
relightable actor’s performances with light stages 
[Wagner et al 2005] and see through muddy water with 
coded-mask illumination [Levoy et al 2004].  In every 
case, better lighting control during capture to builds 
richer representations of photographed scenes.  

2 Sampling Dimensions of Imaging 

2.1 Epsilon Photography for Optimizing Film-like 
Camera 
Think of film cameras at their best as defining a 'box' in 
the multi-dimensional space of imaging parameters.  
The first, most obvious thing we can do to improve 
digital cameras is to expand this box in every 
conceivable dimension. This effort reduces 
Computational Photography to 'Epsilon Photography', 
where the scene is recorded via multiple images, each 
captured by epsilon variation of the camera parameters. 
For example, successive images (or neighboring pixels) 
may have different settings for parameters such as 
exposure, focus, aperture, view, illumination, or the 
instant of capture. Each setting allows recording of 
partial information about the scene and the final image is 
reconstructed from these multiple observations. Epsilon 
photography is thus concatenation of many such boxes 
in parameter space; multiple film-style photos 
computationally merged to make a more complete photo 
or scene description. While the merged photo is 
superior, each of the individual photos is still useful and 
comprehensible on its own, without any of the others.  
The merged photo contains the best features from all of 
them.  

(a) Field of View:  A wide field of view panorama is 
achieved by stitching and mosaicking pictures taken by 
panning a camera around a common center of projection 
or by translating a camera over a near-planar scene. 

(b) Dynamic range: A high dynamic range image is 
captured by merging photos at a series of exposure 
values [Debevec and Malik 1997, Kang et al 2003] 

(c) Depth of field: All-in-focus image is reconstructed 
from images taken by successively changing the plane 
of focus [Agrawala et al 2005].  

(d) Spatial Resolution:  Higher resolution is achieved by 
tiling multiple cameras (and mosaicing individual 
images) [Wilburn et al 2005] or by jittering a single 
camera [Landolt et al 2001].  

(e) Wavelength resolution: Traditional cameras sample 
only 3 basis colors. But multi-spectral (multiple colors 
in the visible spectrum) or hyper-spectral (wavelengths 
beyond the visible spectrum) imaging is accomplished 
by taking pictures while successively changing color 
filters in front of the camera, using tunable wavelength 
filters or using diffraction gratings. 

(f) Temporal resolution: High speed imaging is achieved
by staggering the exposure time of multiple low-
framerate cameras. The exposure durations of individual 
cameras can be non-overlapping [Wilburn et al 2005] or 
overlapping [Shechtman et al 2002]. 

Taking multiple images under varying camera 
parameters can be achieved in several ways. The images 
can be taken with a single camera over time. The images 
can be captured simultaneously using ‘assorted pixels’ 
where each pixel is a tuned to a different value for a 
given parameter [Nayar and Narsimhan 2002]. 
Simultaneous capture of multiple samples can also be 
recorded using multiple cameras, each camera having 
different values for a given parameter. Two designs are 
currently being used for multi-camera solutions: a 
camera array [Wilburn et al 2005] and single-axis 
multiple parameter (co-axial) cameras [Mcguire et al 
2005]. 

2.2 Coded Photography 
But there is much more beyond the 'best possible film 
camera'. Instead of increasing the field of view by 
panning a camera, can we create a wrap-around view of 
an object? Panning a camera allows us to concatenate 
and expand the the box in the camera parameter space in 
the dimension of ‘field of view’. But a wrap around 
view spans multiple disjoint pieces along these 
dimensions. We can virtualize the notion of the camera 
itself if we consider it as a device that collects bundles 
of rays, each ray with its own wavelength spectrum.   
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Coded Photography is a notion of  an 'out-of-the-box' 
photographic method, in which individual (ray) samples 
or data sets are not comprehensible as ‘images’ without 
further decoding, re-binning or reconstruction. For 
example, a wrap around view is built from images taken 
with multiple centers of projection but by taking only a 
few pixels from each input image. Some other examples 
include confocal images and coded aperture images. 

We may be converging on a new, much more capable 
'box' of parameters in computational photography that 
we don't yet recognize; there is still quite a bit of 
innovation to come! 

In the rest of the document, we survey recent techniques 
that exploit exposure, focus and active illumination. 

3 High Dynamic Range 

3.1 Multiple Exposures 
One approach of capturing high dynamic range scenes is 
to capture multiple images using different exposures, 
and then merge these images. The basic idea is that 
when high exposures are used, dark regions are well 
imaged but bright regions are saturated. On the other 
hand, when low exposures are used, dark regions are too 
dark but bright regions are well imaged. If exposure 
varies and multiple pictures are taken of the same scene, 
value of a pixel can be taken from those images where 
it's neither too dark nor saturated. This type of approach 
is often referred to as exposure bracketing, and has been 
widely adopted [Morimura 1993, Burt and Kolczynski 
1993,Madden 1993,Tsai 1994]. Imaging devices usually 
contain nonlinearities, where pixel values are 
nonlinearly related to the brightness values in the scene. 
Some authors have proposed to use images acquired 
under different exposures to estimate the radiometric 
response function of an imaging device, and use the 
estimated response function to process the images before 
merging them [Mann and Picard 1995, Debevec and 
Malik 1997, Mitsunaga and Nayar 1999.] 

3.2 Sensor Design 
At the sensor level, various approaches have also been 
proposed for high dynamic range imaging. One type of 
approach is to use multiple sensing elements with 
different sensitivities within each cell [Street 1998, 
Handy 1986, Wen 1989, Hamazaki 1996]. Multiple 
measurements are made from the sensing elements, and 
they are combined on-chip before a high dynamic range 
image is read out from the chip. Spatial sampling rate is 
lowered in these sensing devices, and spatial resolution 
is sacrificed. Another type of approach is to adjust the 
well capacity of the sensing elements during 
photocurrent integration [Knight 1983, Sayag 1990, 
Decker 1998] but this gives higher noise. A different 
approach is proposed by [Brajovic and Kanade 1996], 

where the time it takes to reach saturation is measured, 
by a computation element attached to each sensing 
element. This time encodes high dynamic range 
information, as it is inversely proportional to the 
brightness at each pixel. Logarithmic sensors [Scheffer 
et al 2000] have also been proposed to increase the 
dynamic range. Brightside exploits the interline transfer 
of a charge coupled device (CCD) based camera to 
capture two exposures during a single mechanical 
shutter timing. 

High dynamic range sensor design is in progress, but the 
implementation is usually costly. A rather novel and 
flexible approach is proposed by [Nayar and Mitsunaga 
2000, Narasimhan and Nayar 2005], where exposures 
vary across space of the imager. A pattern with varying 
sensitivities is applied to the pixel array. It resembles the 
Bayer pattern in color imaging, but the sampling is made 
along the exposure instead of wavelength. The particular 
form of the sensitivity pattern, and the way of 
implementing it, are both quite flexible. One way of 
implementing it is to place a mask with cells of varying 
optical transparencies in front of the sensing array. Here, 
just as in Bayer mosaic, spatial resolution is sacrificed to 
some extent and aliasing can occur. Measurements 
under different exposures (sensitivities) are spatially 
interpolated, and combined into a high dynamic range 
image. 

4 Aperture and Focus 
Several concepts in exploiting focus and aperture 
parameters can be understood by considering the 4D 
lightfields transfer via lens and its 2D, 3D or 4D 
projection recorded on the image sensor. 

Defocus Video Matting 
Video matting is the process of recovering a high-
quality alpha matte and foreground from a video 
sequence. Common approaches require either a known 
background (e.g., a blue screen) or extensive user 
interaction (e.g., to specify known foreground and 
background elements). The matting problem is generally 
under-constrained, unless additional information is 
recorded at the time of capture. McGuire et. al. have 
proposed a novel, fully autonomous method for pulling 
a matte using multiple synchronized video cameras that 
share the center of projection but differ in their plane of 
focus [McGuire et. al 2005]. The multi-camera data 
stream over-constrains the problem and the solution is 
obtained by directly minimizing the error in filter-based 
image formation equations. Their system solves the fully 
dynamic video matting problem without user assistance: 
both the foreground and background may be high 
frequency and have dynamic content, the foreground 
may resemble the background, and the scene may be lit 
by natural (as opposed to polarized or collimated) 
illumination. The authors capture 3 synchronized video 
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streams using a 3 cameras and beam splitters. The first 
camera has a pinhole sensor has a small aperture that 
creates a large depth of field. The second and third 
cameras have large apertures, creating narrower depths 
of field focused on foreground and background, 
respectively. The foreground sensor produces sharp 
images for objects within about 0.5m of depth of the 
foreground object and defocuses objects farther away. 
The background sensor produces sharp images for 
objects from about 5m to infinity and defocuses the 
foreground object. Given the three video streams, at 
each frame the optical formation of each of the three 
images is expressed as the function of the unknowns 
background, foreground and alpha values. 

Plenoptic Camera 
Ren et. al. have developed a camera that can capture the 
4D light field incident on the image sensor in a single 
photographic exposure [Ren et al 2005]. This is 
achieved by inserting a microlens array between the 
sensor and main lens, creating a plenoptic camera. Each 
microlens measures not just the total amount of light 
deposited at that location, but how much light arrives 
along each ray. By re-sorting the measured rays of light 
to where they would have terminated in slightly 
different, synthetic cameras, one can compute sharp 
photographs focused at different depths. A linear 
increase in the resolution of images under each 
microlens results in a linear increase in the sharpness of 
the refocused photographs. This property allows one to 
extend the depth of field of the camera without reducing 
the aperture, enabling shorter exposures and lower 
image noise.  
To the photographer, the plenoptic camera operates 
exactly like an ordinary hand-held camera. The ability to 
digitally refocus and extend the depth of field is ideal of 
portraits, high-speed action and macro close-ups. In a 
related paper, the authors have derived a Fourier 
representation of photographic imaging.  The Fourier 
representation is conceptually and computationally 
simpler than the spatial domain representation.  The 
theory enables one to compute photographs focused at 
different depths more quickly from the 4D light field 
data.   

Synthetic Aperture Imaging 
Synthetic aperture focusing consists of warping and 
adding together the images in a 4D light field so that 
objects lying on a specified surface are aligned and thus 
in focus, while objects lying off this surface are 
misaligned and hence blurred. This provides the ability 
to see through partial occluders such as foliage and 
crowds, making it a potentially powerful tool for 
surveillance [Vaish et al 2004]. 

Confocal microscopy is a family of imaging techniques 
that employ focused patterned illumination and 

synchronized imaging to create cross-sectional views of 
3D biological specimens. Levoy et. al. have adapted 
confocal imaging to large-scale scenes by replacing the 
optical apertures used in microscopy with arrays of real 
or virtual video projectors and cameras [Levoy 2004]. A 
dense array of projectors allows to simulate a wide 
aperture (Synthetic Aperture Illumination) projector 
which can produce a real image with small depth of 
field. By projecting coded patterns and combining the 
resulting views using an array of virtual projectors, one 
can selectively image any plane in a partially occluded 
environment. These ideas were demonstrated on 
enhancing visibility in weakly scattering environments, 
such as murky water, to compute cross-sectional images 
and to see through partially occluded environments, 
such as foliage. 

5 Motion Blur 

Motion Deblurring using Hybrid Imaging 
Motion blur due to camera motion can significantly 
degrade the quality of an image. Since the path of the 
camera motion can be arbitrary, deblurring of motion 
blurred images is a hard problem. Previous methods to 
deal with this problem have included blind restoration of 
motion blurred images, optical correction using 
stabilized lenses, and special CMOS sensors that limit 
the exposure time in the presence of motion.  Ben-Ezra 
et. al. exploit the fundamental trade off between spatial 
resolution and temporal resolution to construct a hybrid 
camera that can measure its own motion during image 
integration [Ben-Ezra and Nayar 2005]. The acquired 
motion information is used to compute a point spread 
function (PSF) that represents the path of the camera 
during integration. This PSF is then used to deblur the 
image. Results were shown on several indoor and 
outdoor scenes using long exposure and complex camera 
motion paths. 

The hybrid imaging system proposed by the author 
consists of a high resolution primary detector and a low 
resolution secondary detector. The secondary detector is 
used to compute the motion information and the PSF. 
The motion between successive frames is limited to a 
global rigid transformation model which is computed 
using a multi-resolution iterative algorithm that 
minimizes the optical flow based error function. The 
resulting continuous PSF is then used for motion 
deblurring using the Richardson-Lucy algorithm. The 
authors used a 3M pixel Nikon still camera as the 
primary detector and a Sony DV camcoder as the 
secondary detector. The two detectors were calibrated 
offline. Results on several real sequences with exposure 
time ranging from 0.5 seconds to 4 seconds and the blur 
ranging up to 130 pixels were shown.  
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Recently, Fergus et al have shown that, in case of 
camera shake, the point spread function can be estimated 
from a single image. They exploit the natural image 
statistics on image gradients and then use the probably 
blur function to deblur the image [Fergus et al 2006]. 

Blur due to camera shake is different from blur due to 
object motion. And so far, there appears to be no good 
techniques for estimating object motion blur function. 

Coded Exposure 
In a conventional single-exposure photograph, moving 
objects or moving cameras cause motion blur. The 
exposure time defines a temporal box filter that smears 
the moving object across the image by convolution.  
This box filter destroys important high-frequency spatial 
details so that deblurring via deconvolution becomes an 
ill-posed problem. Raskar et. al. have proposed to flutter 
the camera’s shutter open and closed during the chosen 
exposure time with a binary pseudo-random sequence, 
instead of leaving it open as in a traditional camera 
[Raskar et al 2006]. The flutter changes the box filter to 
a broad-band filter that preserves high-frequency spatial 
details in the blurred image and the corresponding 
deconvolution becomes a well-posed problem.  

Results on several challenging cases of motion-blur 
removal including outdoor scenes, extremely large 
motions, textured backgrounds and partial occluders 
were presented. However, the authors assume that PSF 
is given or is obtained by simple user interaction. Since 
changing the integration time of conventional CCD 
cameras is not feasible, an external ferro-electric shutter 
is placed in front of the lens to code the exposure. The 
shutter is driven opaque and transparent according to the 
binary signals generated from PIC using the pseudo-
random binary sequence. 

6 Computational Illumination 

6.1 Flash-no flash 

The simplest form of computational illumination is 
perhaps the ubiquitous camera flash. [DiCarlo et al 
2001] first explored the idea of capturing a pair of 
images for the same camera position - one illuminated 
with ambient light only, and the other using the camera 
flash as an additional light source. They use this image 
pair to estimate object reflectance functions, an the 
spectral distribution of the ambient illumination. [Hoppe 
et al.2003] acquire multiple photos under different flash 
intensities, and allow the user to interpolate between 
them to simulate intermediate flash intensities. 

Concurrent work by [Petschnigg et al. 2004] and 
[Eisemann et al.2004] proposed very similar techniques 

of combining the information contained in the flash and 
no-flash image pair to generate a single nice image. The 
no-flash photo captures the large-scale illumination 
effects such as the ambiance of the scene. However, in a 
low-light situation, the no-flash photo generally has 
excessive noise. The flash photo in contrast has much 
lower noise and more high frequency details, but fails to 
preserve the mood of the scene. The basic idea here is to 
decouple the high and low frequency components of the 
images, and then recombine to preserve the desired 
characteristics (detail from the flash photo, and large 
scale ambiance from the no-flash photo). This 
decoupling is done using a modified bilateral filter 
called joint bilateral filter, 

The bilateral filter is basically an edge-preserving blur 
that gives the low frequency component of the photo. In 
the joint bilateral filter, the intensity difference in the 
flash photo is used. Since the flash photo has lower 
noise, this gives a better results and avoids over or under 
blurring. 

Agrawal et al. [Agrawal et al 20005] use the flash no-
flash photo pair to remove reflections and hotspots from 
flash photos. They rely on the observation that the 
orientation of image gradients due to reflectance 
geometry are illumination invariant, while those due to 
changes in illumination are not. They propose a gradient 
projection scheme to decompose the illumination effects 
from the rest of the image. Based on the ratio of the 
flash and no-flash photos, they compensate for flash 
intensity falloff due to depth. Finally, they also propose 
a unified flash-exposure space that contains photos taken 
by varying the flash intensity and the shutter speed, and 
a method for adaptively sampling this space to capture a 
flash-exposure high dynamic range image. 

Raskar et al.[Raskar et al 2004] used a multi-flash 
camera to find the silhouettes in a scene. They take four 
photos of an object with four different light positions 
(above, below, left and right of the lens). They detect 
shadows cast along the depth discontinuities are use 
them to detect depth discontinuities in the scene. The 
detected silhouettes are then used for stylizing the 
photograph and highlighting important features. They 
also demonstrate silhouette detection in a video using a 
repeated fast sequence of flashes. 

6.2 4D acquisition 

Light fields [Levoy 1996] and Lumigraph [Gortler 
1996} reduced the more general plenoptic function 
[Adelson 1991] to a four dimensional function, 
L(u,v,s,t) that describes the presence of light in free 
space, ignoring the effect of wavelength and time. Here 
(u,v) and (s,t) are the parameters on two parallel planes 
respectively that describe a ray of light in space. A 
slightly different parameterization can be used to 
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describe the incident light field on an object. If we think 
of the object surrounded by a while sphere of imaginary 
projectors looking inwards, (thetai, phii) describes the 
angular position of the projector on the unit sphere, and 
(u,v) the pixel position on that projector. Thus, the 
function Li(u,v,theta,phi) gives complete control over 
the incident light on an object in free space. Similarly a 
sphere of inward looking cameras would capture the 
entire radiant light field of an object, Lr(u,v,theta,phi). 
Debevec et al.[Debevec et al 2001] introduced the 8D 
reflectance field that describes relationship of the 
incident and radiant light fields of a scene. An additional 
dimension of time is sometimes added to describe light 
interaction with an object that changes over time. 

While the reflectance field gives a complete description 
of how light interacts with a scene, acquiring this 
complete function would require enormous amounts of 
time and storage. Significant work has been done in 
trying to acquire lower dimensional subsets of this 
function, and using it for restricted re-lighting and 
rendering. 

Most image based relighting work relies on the simple 
observation that light interacts linearly with materials 
[Nimeroff 1994, Haeberli 1992]. If a fixed camera 
makes an image Ii from a fixed scene lit only by a light 
Li , then the same scene lit by many lights scaled by 
weights wi will make an image Iout=sumi (wiIi). 
Adjusting weights lets us ``relight’’ the image, as if the 
weights modulate the lights rather than the images. 

Debevec et al.[Debevec et al 2001] used a light stage 
comprising of a light mounted on a rotating robotic arm 
to acquire the non-local reflectance field of a human 
face. The point-like light source can be thought of as a 
simplified projector with a single pixel. Thus, the 
incident light field is reduced to a 2D function. They 
acquired images of the face using a small number of 
cameras with densely sampled lighting directions. They 
demonstrated generation of novel images from the 
original viewpoints under arbitrary illumination. This is 
done by simply adjusting the weights wi to match the 
desired illumination intensity from different directions. 
They also are also able to simulate small changes in the 
viewpoint using a simple model for the skin reflectance. 
Hawkins et al.[Hawkins et al 2001] used a similar setup 
and used it for digitizing cultural artifacts. They argue 
for the use reflectance field in digital archiving instead 
of geometric models and reflectance textures. Koudelka 
et al.[Koudelka et al 2001} acquire a set of images from 
a single viewpoint as a point light source moved around 
the object, and estimate the surface geometry by using 
two set of basis images. They then estimate the apparent 
BRDF for each pixel in the images, and use this to 
render the object under arbitrary illumination. 

Debevec et al.[Debevec ey al 2002} proposed an 
enhanced light stage comprising of a large number (156) 

of inward pointing LEDs distributed on a spherical 
structure, about two meters in diameter, around the 
actor. They set each light to an arbitrary color and 
intensity to simulate the effect of a real world 
environment around the actor. The images gathered by 
the light stage, together with a mask of the actor 
captured using infrared sources and detector, were used 
to seamlessly composite the actor into a virtual set while 
maintaining consistent illumination. Malzblender et al. 
[Malzbender et al 2001] used 50 inward looking flashes 
placed on a hemispherical dome and a novel scheme for 
compressing and storing the 4D reflectance field, called 
the Polynomial Texture Map. They assumed that the 
color of a pixel changed smoothly as the light moved 
around the object, and store only the coefficients of a 
biquadratic polynomial that best models this change for 
each pixel. This highly compact representation allows 
for real time rendering of the scene with arbitrary 
illumination, and works fairly well for diffuse objects; 
specular highlights are not modeled very nicely by the 
polynomial model and result in visual artifacts. 

The free-form light stage [Masselus 2002] presented a 
way to acquire a 4D slice of the reflectance field without 
the use of an extensive light-stage. Instead, they used a 
handheld, free-moving light source around the object. 
The light position was estimated automatically from 
four diffuse spheres placed near the object in the field of 
view of the camera. The data acquisition time was 
reported as 25-30 minutes. Winnemoller et al. 
[Winnemoeller et al 2005] used dimensionality 
reduction and a slightly constrained light scanning 
pattern to estimate approximate light source position 
without the need for any additional fiducials in the 
scene. 

Akers et al. [Akers et al 2003] use spatially varying 
image weights on images acquired with a light stage 
similar to [Debevec et al 2001]. They use a painting 
interface allow an artist to locally modify the relit image 
as desired. While the spatially varying mask gives 
greater flexibility, it might also gives results that are not 
physically realizable and look unrealistic. [Anrys et 
al.2004] and [Mohan et al.2005] used a similar painting 
interface to help a novice user in lighting design for 
photography. The users sketch a target image, and the 
system finds optimal weights for each basis image to get 
a physically realizable result that is closest to the target. 
[Mohan et al.2005] argue that accurate calibration is not 
necessary for the application photographic relighting, 
and propose a novel reflector based acquisition system. 
They place a moving-head gimbaled disco light inside a 
diffuse enclosure, together with the object to be 
photographed. The spot from the light on the enclosure 
acts as an area light source that illuminates the object. 
The light source is moved by simply rotating the light 
and capturing images for various light positions. The 
idea of area light sources was also used in bayesian 
relighting [Fuchs 2005]. 
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7 Future Directions 

7.1 Smart Sensors 

Digital camera sensors typically use a color mosaic or a 
Bayer pattern of R, G, and B filters to sense 3 different 
spectral bands, forming a basis for color reproduction. 
So-called ‘demosaicing’ methods, though widely varied 
and often proprietary, convert raw, interleaved color 
sensor values from the Bayer grid into R,G,B estimates 
for each pixel with as many luminance details and as 
few chrominance artifacts as possible, but the task itself 
forces tradeoffs and continued innovation..  Sony’s four 
color CCD uses ‘emerald’ pixels which allow for 
correcting for defects in the rendition of red tones at 
certain frequencies. The Foveon sensor found in some 
Sigma digital cameras avoids the Bayer filter entirely, 
and instead detects wavelength bands for color 
according to photon penetration depths in a novel silicon 
detector design that stacks three layers of 
photodetectors, one below the other. This eliminates all 
the potential errors and artifacts of demosaicking, and 
reduces post-processing requirements substantially. 

By sensing different between neighboring pixels instead 
of actual intensities, Tumblin et al [Tumblin et al 2005] 
have shown that a ‘Gradient Camera’ can record large 
global variations in intensity.  Rather than measure 
absolute intensity values at each pixel, this proposed 
sensor measures only forward differences between them, 
which remain small even for extremely high-dynamic 
range scenes, and reconstructs the sensed image from 
these differences using Poisson solver methods.  This 
approach offers several advantages: the sensor is nearly 
impossible to over- or under-expose, yet offers 
extremely fine quantization, even with very modest A/D 
converters (e.g. 8 bits).  The thermal and quantization 
noise occurs in the gradient domain, and appears as low 
frequency ‘cloudy’ noise in the reconstruction, rather 
than uncorrelated high-frequency noise that might 
obscure the exact position of scene edges. 

Several companies now offer ‘3D cameras’ that estimate 
depth for each pixel of the images they gather.  Systems 
by Canesta and Zcam operate by precise measurement 
of the ‘time-of-flight’ (TOF) required for modulated 
infrared illumination to leave the camera, reflect from 
the scene and return to fast camera sensors.  Several 
earlier, laser-based TOF systems, e.g. Cyberware, used 
‘flying spot’ scanning to estimate depth sequentially.  
Without scanning these newer systems apply incoherent 
light (e.g. IR LEDs) and electronic gating to build 
whole-frame depth estimates at video rates. Canesta 
systems integrate the emitters in the same chip substrate 
as the detector, enabling a compact single-chip sensor 

unit; the Zcam device augments professional television 
camera units (ENG) to provide real-time depth keying 
and 3D reprojection. 

Line Scan cameras.  Several systems for critically-timed 
sports (e.g. sprints, horse racing) high-speed narrow-
view or line-scan cameras hold more opportunities for 
capturing visual appearance.  The ‘FinishLynx’ Lynx 
System Developers Inc. camera views a race finish-line 
through a narrow vertical slit, and assembles and image 
whose horizontal axis measures time instead of position. 
Despite occasionally strange distortions, the camera 
reliably depicts the first racer’s body part to cross the 
finish line as the right-most feature in the time-space 
image. 

7.2 Smart Optics 

Wavefront coded imaging.  Geometric aberrations in 
lenses cause image distortions, but these distortions can 
be modeled, computed, and in some cases robustly 
reversed.  In 1995, Dowski and Cathey introduced a 
‘wavefront coded’ optical element that forms 
intentionally distorted images with small, low cost 
optics [Dowski and Cathey 1995].  These seemingly 
out-of-focus images are computationally reversible, and 
allow reconstruction of an image with extended depth of 
focus, forming images with a focusing range up to 10X 
the abilities of conventional lenses.  What other optical 
distortions might prove similarly advantageous? 

Plenoptic Camera.  As early as 1992 [Adelson and 
Wang 1992] several researchers have recognized the 
value of sensing the direction of incident light at each 
point on the focal plane behind a lens.  Adelson’s 1992 
camera system combined a large front lens and a field of 
micro-lenses behind it, gathering what is now known as 
a 4D light field estimate, and he used it for single-lens 
stereo reconstruction.  More recently, [Ng et al 2005] 
refined the idea further with an elegant hand-held digital 
camera for light-field capture that permits digital re-
focussing and slight changes of viewpoint 
computationally.    

Recently [Georgiev et al 2006] modeled the optics of 
these cameras using ray-matrix formulation, and showed 
an intriguing alternative.  Instead of adding many tiny 
microlenses directly on top of delicate camera sensors, 
he builds a bundle large lenses and prisms attached to 
externally to the camera.  The resulting light-field 
captured allows much larger computational changes in 
viewpoint in exchange for coarser digital re-focussing. 

As these examples indicate, we have scarcely begun to 
explore the possibilities offered by combining 
computation, 4D modeling of light transport, and novel 
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optical systems.  Nor have such explorations been 
limited to photography and computer graphics. 
Computer vision, microscopy, tomography, astronomy 
and other optically driven fields already contain some 
ready-to-use solutions to borrow and extend.  For 
example, N. Ahuja has explored cameras with spinning 
dispersion plates to allow a single camera to gather 
images from many virtual viewpoints for robust stereo 
reconstruction. How might other spinning optical 
elements help with appearance capture? 

Tools for Optics 
Until recently, ray-based models of light transport have 
been entirely adequate for computer graphics and 
computer vision, sometimes extended with special-case 
models for diffraction [Stam 1999].  Some early 
excursions into wave optics models by Gershon Elber 
[Elber 1994] proved computationally intense, and 
pinhole-camera and ideal-thin-lens models of optics 
have been entirely adequate for computer graphics use.  

As computational photography considers more complex 
lens systems, ray-only models of light transport begin to 
fail; to adequately model the spatial frequency response 
and wavelength dependence of optical systems we can 
move first to ray-matrix formulations, commonly used 
for optical fiber models and single-axis multi-lens 
systems,  or move to Fourier Optics models to more 
accurately model the diffraction effects that predict the 
spatial frequency response of lens systems with 
adjustable apertures, and include accurate modeling of 
coherent light as well, including holography.  The 
classic text by Goodman [Goodman 1968] is an elegant 
introduction to this topic.  The computational 
requirements for Fourier analysis of optics is no longer 
formidable,  especially with GPU assistance, and recent 
work by [Ng 2005] has already tied lightfields to images 
by showing it follows the 4D projection-slice theorem 
[Rosenfeld and Kak, 1987] that became a fundamental 
tenet of medical tomography.   

Beyond Fourier Optics, we can resort to specialized 
lens-design descriptors such as Zernicke polynomials 
and remain within the realm of practical computation.  
Further refinement by resorting to full electromagnetic 
simulation can model polarization and optical effects 
due to structures smaller than the wavelength of light.  
These models can directly predict the optical behavior of 
superlattice structures such as iridescent butterfly wings, 
the transparency of finely-fibred structures such as the 
lens and cornea of the eye, and strange retro-reflectance 
properties of some classes of diseased cell bodies.  
While medical researchers and others are actively 
pursuing such simulations, the computational 
requirements are still daunting, and appear out of reach 
for current experiments in computational photography. 

7.3 Other Dimensions 

As noted in the ‘Assorted pixels’ paper [Nayar2003], 
photographic capture gathers optical data along many 
dimensions, and few are fully exploited.  In 4-
dimensional ray space we sense and measure more than 
simple intensity (or more formally, radiance), but also 
visually assess wavelength, time, materials, illumination 
direction and more. Polarization is also sometimes 
revealing, and the mapping from polarization direction 
of the illuminant to the polarization of reflected light is 
not a simple one: for some biological materials, the 
mappings are nonlinear and unexplored [Wu et al 2003].  
Extended exploration of wavelength dependence is 
already well advanced. Hyperspectral imaging has 
already gathered a rich and growing literature for a 
broad range of applications from astronomy to archival 
imaging of museum treasures. 

Film-style photography relies on an ‘instantaneous’ 
ideal: we attempt ‘stop time’ by capturing any 
photographed scene quickly enough to ignore any 
movement that happens during the measurement 
process. Even ‘motion pictures’ commit serial attempts 
at instantaneous capture, rather than direct sensing of the 
motions themselves.  Harold Edgerton pushed the 
instantaneous ideal to extremes by using ultra-short 
strobes to illuminate transient phenomena, and ultra-
short shutters to measure ultra-bright phenomena 
quickly, such as his famous high-speed movies of 
atomic bomb explosions.   

Digital sensors offer new opportunities for more direct 
sensing, and digital displays permit interactive display 
of the movements we capture.  Accordingly, Michael 
Cohen has proposed that the film-rooted distinction 
between ‘still’ cameras and ‘video’ cameras should 
gradually disappear.  He proposed that we need an 
intermediate digital entity he calls a ‘moment’; one 
visually meaningful action we wish to remember—a 
child’s fleeting expression of delighted surprise, a 
whisper of wind that sways the trees, etc., and it might 
fit in short video clips [Cohen 2005].  Motion sensing 
and deblurring itself can improve in the future [BenEzra 
2004, Raskar 2006]. Movement also causes difficulties 
for constructing panoramas.  However, if the movement 
is statistically consistent, it is possible to combine 
conventional image stitching operations with so-called 
‘video texturing’ [Schödl 2000] methods to create 
consistent, seamless movement that captures the 
‘moment’ of the panorama quite well. It can be further 
extended to capture video texture panoramas [Agarwala 
2005] 
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7.4 Scientific Imaging 

Scene measurement and representation in 4-D and 
beyond encompasses previously isolated "Islands" of 
Ingenious Scientific Imaging & Measuring. What can 
we learn from them? Can we extend their methods?  
Particularly promising fields include the following. 

(i) Tomography: For any penetrating measurements, 
attenuation along straight-line paths can be used to 
construct 3D images of internal structures. This is 
currently used measuring sound transmission to 
electrical capacitance, from seismographic disturbances 
to ultrasonics to X-rays.  

(ii) Spectrographic methods: complex interdependencies 
between wavelengths, reflectance, and transmissions are 
used for image forming, and broad classes of statistical 
measurements help decipher or identify useful features 
for land management, pollution studies, atmospheric 
patterns, wildlife migration, and geological and mineral 
features.. 

(iii) Confocal Methods and Synthetic Aperture methods: 
As described above, one can achieve very narrow depth-
of-field image by collecting a widely divergent rays 
from each imaged point and these methods can extend to 
macroscopic scales via multiple cameras and multiple 
video projectors. 

(iv) Fluorescence Methods: Some materials respond to 
absorbed photons by re-emitting other photons at 
different  wavelengths, a phenomena known as 
fluorescence  While very few materials fluoresce in the 
narrow range (< 1 octave!) of visible wavelengths, 
hyperspectral imaging reveals instructive fluorescence 
phenomena occur over much wider bands of 
wavelengths.  Many organic chemicals have strongly 
varied fluorescent responses to ultraviolet light, and 
some living tissues can be chemically or genetically 
tagged with fluorescent markers that reveal important 
biological processes.  Accordingly, hyperspectral 
imaging and illuminants can directly reveal chemical or 
biological features that may be further improved by 4D 
methods. 

7.5 Fantasy Configurations 
Beyond what we can do now, what would we like to 
achieve in computational photography? Freed from 
practical limits, a few fantasy devices come to mind.  If 
the goal of photography is to capture the visual essence 
of an object in front of us, then perhaps the ideal 
photography studio is not a room full of lights and box-
like cameras at all, but a flexible cloth we can rub gently 
over the surface of the object itself.  The cloth would 
hold microscopic, interleaved video projectors and video 

cameras.  It would emit hyperspectrally colorful patterns 
of light in all possible directions from all possible points 
on the cloth (a flexible 4D light source), while 
simultaneously making coordinated hyperspectral 
measurements in all possible directions from all possible 
points on the cloth (a flexible 4D camera).  Wiping the 
cloth over a surface would illuminate and photograph 
inside even the tiniest crack or vent hole of the object, 
banishing occlusion from the data set; a quick wipe 
would characterize any rigid object thoroughly. 

Suppose we wish to capture the appearance of a soft 
object, without touching it? Then perhaps a notebook-
like device made of two plates hinged together would 
help.  Each panel would consist of interleaved cameras 
and projectors in a sheet-like arrangement; simply 
placing it around the object would provide sufficient 
optical coupling between the embedded 4D illuminators 
and 4D cameras to assess the object thoroughly. 

Yet even these are not the whole answer. If the goal of 
photography is to capture, reproduce, and manipulate a 
meaningful visual experience, then the ‘camera cloth’ is 
not sufficient to capture even the most rudimentary 
birthday party.  The human experience and our personal 
viewpoint is missing.  Ted Adelson suggested ‘camera 
wallpaper’ or the ‘balloon camera’, ubiquitous sensors 
that would enable us to compute arbitrary viewpoints at 
arbitrary times.  Thad Starner and other ‘cybernauts’ 
who began personally instrumenting themselves in the 
1990s have experimented with ‘always-on’ video 
cameras, and projects at Microsoft and the MIT Media 
Lab have explored gathering ‘video memories’ of every
waking moment.  So called ‘smart dust’ sensors and 
other unstructured ubiquitous sensors might gather 
views, sounds, and appearance from anywhere in a large 
city.  What makes these moments special? What parts of 
this video will become keepsakes or evidence? How do 
we find what we care about in this flood of video?  
Computational Photography can supply us with visual 
experiences, but can't decide which one’s matter most to 
humans. 
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Computational PhotographyComputational Photography

Organisers
Ramesh Raskar

Mitsubishi Electric Research Labs
Jack Tumblin

Northwestern University

Course WebPage : 
http://www.merl.com/people/raskar/photo

Computational PhotographyComputational Photography

Course WebPage

http://www.merl.com/people/raskar/photo
Source Code, Slides, Bibliography, Links and Updates 

WelcomeWelcome

•• Understanding FilmUnderstanding Film--like Photographylike Photography

–– Parameters, Nonlinearities, RayParameters, Nonlinearities, Ray--based conceptsbased concepts

•• Image Processing and Reconstruction ToolsImage Processing and Reconstruction Tools
–– MultiMulti--image Fusion, Gradient domain, Graph Cutsimage Fusion, Gradient domain, Graph Cuts

•• Improving Camera PerformanceImproving Camera Performance
–– Better dynamic range, focus, frame rate, resolutionBetter dynamic range, focus, frame rate, resolution

•• Future DirectionsFuture Directions
–– HDR cameras, Gradient sensing, Smart optics/lightingHDR cameras, Gradient sensing, Smart optics/lighting

GoalsGoals

•• CaptureCapture--time Techniquestime Techniques

–– Manipulating optics, illumination and sensorsManipulating optics, illumination and sensors

•• Fusion and Reconstruction Fusion and Reconstruction 

–– Beyond digital darkroom experienceBeyond digital darkroom experience

•• Improving Camera PerformanceImproving Camera Performance

–– Better dynamic range, focus, frame rate, resolutionBetter dynamic range, focus, frame rate, resolution

–– Hint of shape, reflectance, motion and illuminationHint of shape, reflectance, motion and illumination

–– Computational Imaging in SciencesComputational Imaging in Sciences

•• ApplicationsApplications

–– Graphics, Special Effects, Scene Comprehension, ArtGraphics, Special Effects, Scene Comprehension, Art

Speaker:   Ramesh RaskarSpeaker:   Ramesh Raskar

Senior Research Scientist at MERL. 

His research interests include projector-based graphics, 
computational photography and non-photorealistic rendering. 
He has published several articles on imaging and photography 
including multi-flash photography for depth edge detection, 
image fusion, gradient-domain imaging and projector-camera 
systems. His papers have appeared in SIGGRAPH, 
EuroGraphics, IEEE Visualization, CVPR and many other 
graphics and vision conferences. He was a course organizer at 
Siggraph 2002 through 2005. He was the panel organizer at 
the Symposium on Computational Photography and Video in 
Cambridge, MA in May 2005 and taught a graduate level class 
on Computational Photography at Northeastern University, Fall 
2005. He is a member of the ACM and IEEE.

http://www.merl.com/people/raskar/raskar.html 

Speaker:   Jack TumblinSpeaker:   Jack Tumblin

Assistant Professor of Computer Science at Northwestern Univ.  

His interests include novel photographic sensors to assist museum 
curators in historical preservation, computer graphics and visual 
appearance, and image-based modeling and rendering. During his 
doctoral studies at Georgia Tech and post-doc at Cornell, he 
investigated tone-mapping methods to depict high-contrast scenes. 
His MS in Electrical Engineering (December 1990) and BSEE 
(1978), also from Georgia Tech, bracketed his work as co-founder 
of IVEX Corp., (>45 people as of 1990) where his flight simulator 
design work was granted 5 US Patents.  He was an Associate 
Editor of ACM Transactions on Graphics (2000-2006), a member of 
the SIGGRAPH Papers Committee (2003, 2004), and in 2001 was a 
Guest Editor of IEEE Computer Graphics and Applications.

http://www.cs.northwestern.edu/~jet
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OpportunitiesOpportunities
–– Unlocking PhotographyUnlocking Photography

•• How to expand camera capabilitiesHow to expand camera capabilities
•• Digital photography that goes beyond filmDigital photography that goes beyond film--like like 

photographyphotography
–– Think beyond postThink beyond post--capture image processingcapture image processing

•• Computation well before image processing and editing Computation well before image processing and editing 
–– Learn how to build your own cameraLearn how to build your own camera--toystoys
–– Review of 30+ recent papersReview of 30+ recent papers

–– What we will not coverWhat we will not cover
•• Film Cameras, Novel view rendering (IBR), Film Cameras, Novel view rendering (IBR), 

Color issues, Traditional image processing/editingColor issues, Traditional image processing/editing

Traditional PhotographyTraditional Photography

Courtesy: Shree Nayar

Lens

Detector

Pixels

Image

Traditional PhotographyTraditional Photography

Lens

Detector

Pixels

Image

Mimics Human Eye for a Single Snapshot:
Single View, Single Instant, Fixed
Dynamic range and Depth of field
for given Illumination in a Static
world

Computational PhotographyComputational Photography::
Optics, Sensors and ComputationsOptics, Sensors and Computations

Generalized
Sensor

Generalized
Optics

Computations

Picture

4D Ray Bender
Upto 4D

Ray Sampler

Ray Reconstruction

Merged Views, Programmable focus and
dynamic range, Closed loop Controlled
Illumination, Coded Exposure for moving
objects

Computational PhotographyComputational Photography

Novel Cameras
Generalized
Sensor

Generalized
Optics

Processing

Computational PhotographyComputational Photography Novel Illumination

Novel Cameras
Generalized
Sensor

Generalized
Optics

Processing

Light Sources

578



3

Computational PhotographyComputational Photography Novel Illumination

Novel Cameras

Scene: 8D Ray Modulator

Generalized
Sensor

Generalized
Optics

Processing

Light Sources

Computational PhotographyComputational Photography Novel Illumination

Novel Cameras

Scene: 8D Ray Modulator

Display

Generalized
Sensor

Generalized
Optics

Processing

Recreate 4D Lightfield

Light Sources

Computational PhotographyComputational Photography Novel Illumination

Novel Cameras

Scene: 8D Ray Modulator

Display

Generalized
Sensor

Generalized
Optics

Processing

4D Ray Bender
Upto 4D

Ray Sampler

Ray
Reconstruction

Generalized
Optics

Recreate 4D Lightfield

Light Sources

Modulators

4D Incident Lighting

4D Light Field

Radial Stereoscopic Imaging

(Kuthirummal, Nayar SIGGRAPH 06)

c Shree Nayar, Columbia University

Dual photographyDual photography
from diffuse reflectionsfrom diffuse reflections

the camera’s view
SenSen et al, Siggraph 2005et al, Siggraph 2005

Deblurred Image

Blurred Taxi, 200 Pixel Blur

Fluttered Shutter Photography

Raskar, Agrawal, Tumblin, Siggraph 2006
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Computational Photography

Mastering New Techniques for Lenses, Lighting and Sensors

• Ramesh Raskar and Jack Tumblin

• Book Publishers: A K Peters
• Siggraph 2006 booth: 20% off 
• Coupons 25% Off
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Jack TumblinJack Tumblin
Northwestern UniversityNorthwestern University

Core ConceptsCore Concepts

Computational PhotographyComputational Photography OUTLINEOUTLINEOUTLINE

•• What is Photography? What is Photography? 

•• What is What is ‘‘The Photographic SignalThe Photographic Signal’’??

•• Perfecting FilmPerfecting Film--Like Photography: Like Photography: 
Old Problems, New ApproachesOld Problems, New Approaches

•• Photography Beyond Film: Photography Beyond Film: 
New Goals, Methods, ExpressionsNew Goals, Methods, Expressions

‘Film-Like’ Photography‘‘FilmFilm--LikeLike’’ PhotographyPhotography

Film Camera design assumptions:Film Camera design assumptions:
–– ‘‘InstantaneousInstantaneous’’ light measurementlight measurement……

–– Of focal plane image behind a lens.Of focal plane image behind a lens.

–– Reproduce those amounts of light.Reproduce those amounts of light.

Implied:Implied:
““What we see is  What we see is  

focalfocal--plane intensities.plane intensities.””
well, nowell, no……we see we see muchmuch more!more!

(seeing is deeply cognitive)(seeing is deeply cognitive)

Our Definitions Our Definitions Our Definitions 

•• ‘‘FilmFilm--likelike’’ Photography:Photography:
–– StaticStatic ‘‘instantaneousinstantaneous’’ record of record of 

the 2D image formed by a lensthe 2D image formed by a lens

Display image Display image sensor imagesensor image

•• ‘‘ComputationalComputational’’ Photography:Photography:
–– displayed image displayed image sensor imagesensor image

–– A more expressive, controllable displayed result,A more expressive, controllable displayed result,

from transformed, merged, decoded sensor datafrom transformed, merged, decoded sensor data

What is Photography?WhatWhat isis Photography?Photography?

•• AA ‘‘bucketbucket’’ word: a neat container for messy notionsword: a neat container for messy notions
(e.g.  aviation, music, comprehension)(e.g.  aviation, music, comprehension)

•• A record of what we see,A record of what we see,
or would like to see,or would like to see,
in tangible form.in tangible form.

•• Does Does ‘‘filmfilm’’ photography photography 
always capture it?   always capture it?   no.

•• So, what do we see?So, what do we see?
Harold ‘Doc’ Edgerton 1936Harold ‘Doc’ Edgerton 1936

DisplayDisplay
RGB(x,y,tRGB(x,y,tnn))

ImageImage
I(x,y,I(x,y, ,t),t)

Light &
Optics3D Scene3D Scene

light sources,
BRDFs,
shapes,

positions,
movements,

…
EyepointEyepoint

position,
movement,
projection,

…

PHYSICALPHYSICAL PERCEIVEDPERCEIVED

WhatWhat isis Photography?Photography?

ExposureExposure
Control,Control,

tone maptone map
SceneScene
light sources,
BRDFs,
shapes,
positions,
movements,
…
EyepointEyepoint
position,
movement,
projection,
…

V
is

io
n

Photo: A Tangible RecordPhoto: A Tangible Record
Editable, storable asEditable, storable as

Film or PixelsFilm or Pixels
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3D Scene?3D Scene?
light sources,
BRDFs,
shapes,
positions,
movements,
…
EyepointEyepoint??
position, 
movement,
projection,
…
MeaningMeaning……

VisualVisual
StimulusStimulus

3D Scene3D Scene
light sources,

BRDFs,
shapes,

positions,
movements,

…
EyepointEyepoint

position,
movement,
projection,

…

PHYSICALPHYSICAL PERCEIVED PERCEIVED 
or UNDERSTOODor UNDERSTOOD

Ultimate Photographic GoalsUltimate Photographic Goals

V
is

io
n

V
is

io
n

S
en

so
r(s

S
en

so
r(s

))

C
om

pu
tin

g
C

om
pu

tin
g

Light &Light &
OpticsOptics

Photo: A Tangible RecordPhoto: A Tangible Record
SceneScene estimates we canestimates we can

capture, edit, store, displaycapture, edit, store, display

Missing:
Viewpoint Freedom 

Missing:Missing:
Viewpoint Freedom Viewpoint Freedom 

““MultipleMultiple--CenterCenter--ofof--Projection ImagesProjection Images”” RademacherRademacher, P, Bishop, G.,  SIGGRAPH '98, P, Bishop, G.,  SIGGRAPH '98

Missing:
Reliable Visual Boundaries

Missing:Missing:
Reliable Visual BoundariesReliable Visual Boundaries

5 ray sets 5 ray sets explicit geometric occlusion boundariesexplicit geometric occlusion boundaries

Ramesh Raskar, MERL, 2004

Missing:
Expressive Time Manipulations

Missing:Missing:
Expressive Time ManipulationsExpressive Time Manipulations

What other waysWhat other ways
betterbetter revealreveal
appearanceappearance to to 
human viewers?human viewers?

(Without direct shape (Without direct shape 
measurement? )measurement? )

Time for space wiggle. Time for space wiggle. Gasparini, 1998.

Can you understandCan you understand
this shape better?this shape better?

Photographic Signal: Pixels RaysPhotographic Signal: Pixels RaysPhotographic Signal: Pixels Rays

•• Core ideas are ancient, simple, seem obvious:Core ideas are ancient, simple, seem obvious:
–– Lighting: Lighting: ray sourcesray sources

–– Optics:Optics: ray bending/folding devicesray bending/folding devices

–– Sensor:Sensor: measure lightmeasure light

–– Processing:Processing: assess itassess it

–– Display:Display: reproduce itreproduce it

•• Ancient Greeks:Ancient Greeks:
‘‘eye rayseye rays’’ wipe the worldwipe the world
to feel its contentsto feel its contents……

http://http://www.mlahanas.de/Greeks/Optics.htmwww.mlahanas.de/Greeks/Optics.htm

The Photographic Signal PathThe Photographic Signal PathThe Photographic Signal Path

Computing can improve every component:Computing can improve every component:

Light SourcesLight Sources SensorsSensors
Data Types,Data Types,
ProcessingProcessing

DisplayDisplay
RaysRays

OpticsOpticsOpticsOptics

““Scene”Scene”
RaysRays

582



33

Review: How many Rays in a 3-D Scene?Review: How many Rays in a 3Review: How many Rays in a 3--D Scene?D Scene?
A 4A 4--D set of infinitesimal members.  D set of infinitesimal members.  

Imagine:Imagine:
–– Convex Enclosure of a 3D scene Convex Enclosure of a 3D scene 

–– InwardInward--facing ray camera at every surface pointfacing ray camera at every surface point

–– Pick the rays you need for ANY camera outside.Pick the rays you need for ANY camera outside.

–– 2D surface of cameras,2D surface of cameras,
2D2D ray set for each camera,ray set for each camera,

4D set of rays.4D set of rays.

(Levoy et al. SIGG’96)(Levoy et al. SIGG’96) ((GortlerGortler et al. ‘96)    et al. ‘96)    

++

4-D Light Field / Lumigraph44--D Light Field / D Light Field / LumigraphLumigraph
Measure all the Measure all the outgoingoutgoing light rays. light rays. 

4-D Illumination Field44--D Illumination FieldD Illumination Field
Same Idea: Measure all the Same Idea: Measure all the incomingincoming light rayslight rays

4D x 4D = 8-D Reflectance Field4D x 4D = 84D x 4D = 8--D Reflectance FieldD Reflectance Field

Ratio:Ratio: RRijij = (outgoing = (outgoing rayrayii) / (incoming ) / (incoming rayrayjj))

Future Photography:Future Photography:
Novel  IlluminatorsNovel  Illuminators

Novel CamerasNovel Cameras

SceneScene:: 8D Ray Modulator8D Ray Modulator

GeneralizedGeneralized
SensorSensor

GeneralizedGeneralized
ProcessingProcessing 4D Ray 4D Ray 

SamplerSampler

Ray Ray ReconstructorReconstructor

General Optics:General Optics:
4D Ray Benders4D Ray Benders

Recreated 4D Light fieldRecreated 4D Light field

LightsLights
ModulatorsModulators

4D Incident Lighting4D Incident Lighting

Vi
ew

ed
4D

Li
gh

t F
ie

ld

Vi
ew

ed
4D

Li
gh

t F
ie

ldG
en

er
al

 O
pt

ic
s:

G
en

er
al

 O
pt

ic
s:

4D
 R

ay
 B

en
de

rs
4D

 R
ay

 B
en

de
rs

Generalized DisplayGeneralized Display

Novel DisplaysNovel Displays

Expand Optics Into SoftwareExpand Optics Into SoftwareExpand Optics Into Software

Programmable Optical Devices Programmable Optical Devices 
enable new forms of:enable new forms of:

[[ NayarNayar ]]
•• OmniOmni--Directional  Lens Systems Directional  Lens Systems 

(Hi(Hi--Def 360Def 360oo videovideo……))
•• ‘‘Assorted PixelsAssorted Pixels’’ SensorsSensors

(Robust HDR, (Robust HDR, multispectralmultispectral……))
•• LenslessLensless AdaptiveAdaptive--Aperture CamerasAperture Cameras

(tracking without panning(tracking without panning……))
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Expand Scientific / Medical ImagingExpand Scientific / Medical ImagingExpand Scientific / Medical Imaging

4D light sources + 4D cameras 4D light sources + 4D cameras 
enable new forms of:enable new forms of:

[[ LevoyLevoy ]]
•• Synthetic Aperture Imaging Synthetic Aperture Imaging 

(see through trees(see through trees……))
•• Tomography Tomography 

(3(3--D volumetric imagingD volumetric imaging……))
•• ConfocalConfocal ScanningScanning

(look inside muddy water(look inside muddy water……))

‘The Ideal Photographic Signal’‘‘The Ideal Photographic SignalThe Ideal Photographic Signal’’

I CLAIM IT IS:I CLAIM IT IS:
All Rays? Some Rays? All Rays? Some Rays? ChangesChanges in Some Rays in Some Rays 

Photographic ray space is vast and redundantPhotographic ray space is vast and redundant
>8 dimensions:  4D view, 4D light, time, >8 dimensions:  4D view, 4D light, time, ,,

?   Gather only ?   Gather only ‘‘visually significantvisually significant’’ ray changes  ?ray changes  ?

? What rays should we measure ? ? What rays should we measure ? 
? How should we combine them ?? How should we combine them ?
? How should we display them   ?? How should we display them   ?

Beyond ‘Film-Like’ PhotographyBeyondBeyond ‘‘FilmFilm--LikeLike’’ PhotographyPhotography

Call itCall it ‘‘Computational PhotographyComputational Photography’’::
To make To make ‘‘meaningful ray changesmeaningful ray changes’’ tangible,tangible,

•• OpticsOptics can do morecan do more……

•• SensorsSensors can do morecan do more……

•• Light SourcesLight Sources can do morecan do more……

•• ProcessingProcessing can do morecan do more……

by applying lowby applying low--cost storage, cost storage, 
computation, and control.  computation, and control.  
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Jack TumblinJack Tumblin
Northwestern UniversityNorthwestern University

UnderstandingUnderstanding
FilmFilm--Like PhotographyLike Photography

oror ‘‘from 2D Pixels to 4D Raysfrom 2D Pixels to 4D Rays’’

Computational PhotographyComputational Photography Naïve, Ideal Film-like PhotographyNaNaïïve, Ideal Filmve, Ideal Film--like Photographylike Photography
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2D Sensor:2D Sensor:
Pixel Pixel Grid,FilmGrid,Film,,……WellWell--Lit 3D Scene:Lit 3D Scene:

‘‘Center of Center of 
Projection’Projection’

SensorSensor: a film emulsion,: a film emulsion,
: or a grid of light meters (pixels): or a grid of light meters (pixels)

RayRay

Rays and the ‘Thin Lens Law’Rays and the Rays and the ‘‘Thin Lens LawThin Lens Law’’

•• Focal lengthFocal length f:f: where parallel rays convergewhere parallel rays converge

•• Focus at infinity: Adjust for Focus at infinity: Adjust for SS22=f=f

•• Closer Focus ? Larger Closer Focus ? Larger SS22

Try it Live! Try it Live! PhysletsPhyslets……http://http://webphysics.davidson.edu/Applets/Optics/intro.htmlwebphysics.davidson.edu/Applets/Optics/intro.html

Thin Lens
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Rays and the ‘Thin Lens Law’Rays and the Rays and the ‘‘Thin Lens LawThin Lens Law’’

•• Focal lengthFocal length f:f: where parallel rays convergewhere parallel rays converge

•• Focus at infinity: Adjust for Focus at infinity: Adjust for SS22=f=f

•• Closer Focus ? Larger Closer Focus ? Larger SS22

Try it Live! Try it Live! PhysletsPhyslets……http://http://webphysics.davidson.edu/Applets/Optics/intro.htmlwebphysics.davidson.edu/Applets/Optics/intro.html
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Not One Ray, but a Bundle of RaysNotNot OneOne Ray, but a Ray, but a BundleBundle of Raysof Rays

•• BUTBUT Ray model isn’t perfect: ignores diffractionRay model isn’t perfect: ignores diffraction

•• Lens, aperture set  the pointLens, aperture set  the point--spreadspread--function (PSF)function (PSF)
(How? See: (How? See: Goodman,J.WGoodman,J.W.   ‘An Introduction to Fourier Optics’ 1968).   ‘An Introduction to Fourier Optics’ 1968)

SceneScene SensorSensor

Aperture

Lens

Basic Ray Optics: Lens  ApertureBasic Ray Optics: Lens  ApertureBasic Ray Optics: Lens  Aperture

For the For the same same focal length:focal length:

•• Larger lensLarger lens
–– Gathers a wider ray bundle:Gathers a wider ray bundle:

–– More light: brighter imageMore light: brighter image

–– Narrower depthNarrower depth--ofof--focusfocus

•• Smaller lensSmaller lens
–– dimmer imagedimmer image

–– focus becomes less criticalfocus becomes less critical
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Film-like Optics: Thin Lens FlawsFilmFilm--like Optics: Thin Lens like Optics: Thin Lens FlawsFlaws

•• Aberrations:Aberrations:
Real lenses donReal lenses don’’t converge rays perfectlyt converge rays perfectly

•• Spherical:Spherical: edge rays edge rays center rayscenter rays
•• Coma:Coma: diagonal rays focus deeper at edgediagonal rays focus deeper at edge

http://www.nationmaster.com/encyclopedia/Lens-(optics)

Lens Flaws: Chromatic 
Aberration

Lens Flaws: Chromatic Lens Flaws: Chromatic 
AberrationAberration

•• Dispersion: wavelengthDispersion: wavelength--dependent refractive indexdependent refractive index
–– (enables prism to spread white light beam into rainbow)(enables prism to spread white light beam into rainbow)

•• Modifies rayModifies ray--bending and lens focal length: f(bending and lens focal length: f( ))

•• color fringes near edges of imagecolor fringes near edges of imagehttp://http://www.swgc.mun.ca/physics/physlets/opticalbench.htmwww.swgc.mun.ca/physics/physlets/opticalbench.htmll

Chromatic Aberration Chromatic Aberration Chromatic Aberration 

•• Lens Design Fix:Lens Design Fix: MultiMulti--element lenseselement lenses
Complex, expensive, many tradeoffs!Complex, expensive, many tradeoffs!

•• Computed Fix:Computed Fix: Geometric warp for R,G,B.Geometric warp for R,G,B.
Near Lens CenterNear Lens Center Near Lens Outer EdgeNear Lens Outer Edge

Radial Distortion 
(e.g. ‘Barrel’ and ‘pin-cushion’)

Radial Distortion Radial Distortion 
((e.g.e.g. ‘‘BarrelBarrel’’ andand ‘‘pinpin--cushioncushion’’))

straight lines curve around the image center straight lines curve around the image center 

Vignette EffectsVignette EffectsVignette Effects

Bright at center, dark at edges.Bright at center, dark at edges.
Several causes compounded:Several causes compounded:

•• Edge pixels span smaller angle and center pixelsEdge pixels span smaller angle and center pixels

•• Ray path length is longer offRay path length is longer off--axisaxis

•• Internal shadowingInternal shadowing

•• Compensation:Compensation:
–– Use antiUse anti--vignetting filters, vignetting filters, 

(darkest at center)(darkest at center)

–– OR PositionOR Position--dependent dependent 
pixelpixel--detector sensitivity.detector sensitivity.

http://http://homepage.ntlworld.com/j.houghton/vignette.htmhomepage.ntlworld.com/j.houghton/vignette.htm

Film-like Color SensingFilmFilm--like Color Sensinglike Color Sensing

http://www.yorku.ca/eye/photopik.htm

EquiluminantEquiluminant CurveCurve
defines defines ‘‘luminanceluminance’’

vs. wavelengthvs. wavelength

•• Visible Light: narrow band of Visible Light: narrow band of ee’’magmag. spectrum. spectrum
•• 400400--700 nm700 nm (nm = 10(nm = 10--9 meter wavelength)9 meter wavelength)
•• (humans:<1 octave (humans:<1 octave honey bees: 3honey bees: 3--44 ‘‘octavesoctaves

do honey bees sense harmonics, see color do honey bees sense harmonics, see color ‘‘chordschords’’ ??
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Film-like Color SensingFilmFilm--like Color Sensinglike Color Sensing

www.vaytek.com/specDVC.htm

RGB spectral curves RGB spectral curves 
VaytekVaytek CCD camera CCD camera 

with Bayer gridwith Bayer grid

•• Visible Light: narrow band of Visible Light: narrow band of emagemag spectrumspectrum
•• 400400--700 nm700 nm (nm = 10(nm = 10--9 meter wavelength)9 meter wavelength)
•• At least 3 spectral bands required (e.g. R,G,B) At least 3 spectral bands required (e.g. R,G,B) 

Color SensingColor SensingColor Sensing

•• 33--chip:  vs. 1chip:  vs. 1--chip: quality vs. costchip: quality vs. cost

http://www.cooldihttp://www.cooldictionary.com/words/Bayertionary.com/words/Bayer--filter.wikipediafilter.wikipedia

1-Chip Color Sensing: 
Bayer Grid

11--Chip Color Sensing: Chip Color Sensing: 
Bayer GridBayer Grid

•• Estimate RGBEstimate RGB
atat ‘‘GG’’ celscels from from 
neighboring neighboring 
valuesvalues

http://www.cooldictionary.com/
words/Bayer-filter.wikipedia

PolarizationPolarizationPolarization

Sunlit haze is often Sunlit haze is often 
strongly polarized.  strongly polarized.  
Polarization filter yieldsPolarization filter yields
much richer sky colorsmuch richer sky colors

RAYS and PROCESSINGRAYS and PROCESSINGRAYS and PROCESSING

•• ONE Ray carries doubly infinitesimal power:ONE Ray carries doubly infinitesimal power:
Ray bundles with finite, measurable power will:Ray bundles with finite, measurable power will:

•• Span a nonSpan a non--zero areazero area

•• Fill a nonFill a non--zero solid angle zero solid angle 

•• Everything is Linear: (HUGE win!) Everything is Linear: (HUGE win!) 
Ray reflectance, transmission, absorption, scatter*Ray reflectance, transmission, absorption, scatter*……

•• Rays are REVERSIBLE.Rays are REVERSIBLE. HelmholtzHelmholtz reciprocityreciprocity

Ray bundles? Not so much: falls quickly with Ray bundles? Not so much: falls quickly with 
angle,areaangle,area growthgrowth……

Film-like Photography:
Many Limitations

FilmFilm--like Photography:like Photography:
ManyMany LimitationsLimitations

•• Optics:Optics:
Single focus distance, limited depthSingle focus distance, limited depth--ofof--field, limited fieldfield, limited field--ofof--view, view, 

internal reflections/flare/glareinternal reflections/flare/glare

•• Lighting:Lighting:
Camera has no knowledge of ray source strength, position, Camera has no knowledge of ray source strength, position, 

direction; little control (e.g. flash)direction; little control (e.g. flash)

•• Sensor:Sensor:
Exposure setting, motion blur, noise, response time, Exposure setting, motion blur, noise, response time, 

•• Processing: Processing: 
–– Quantization/color depth, camera shake,  scene movementQuantization/color depth, camera shake,  scene movement……
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ConclusionsConclusionsConclusions

•• FilmFilm--like photography methods limit digital photography to like photography methods limit digital photography to 
filmfilm--like results or less.like results or less.

•• Broaden, unlock our views of photography:Broaden, unlock our views of photography:

•• 44--D, 8D, 8--D, even 10D, even 10--D Ray Space holds the photographic D Ray Space holds the photographic 
signal.  Look for new solutions by creating, gathering, signal.  Look for new solutions by creating, gathering, 
processing RAYS, not focalprocessing RAYS, not focal--plane intensities.plane intensities.

•• Choose the best, most expressive sets of rays,Choose the best, most expressive sets of rays,
THEN find the best way to measure them.THEN find the best way to measure them.

Useful links:Useful links:Useful links:

Interactive Thin Lens Demo Interactive Thin Lens Demo 
(or search (or search ‘‘physletphyslet optical benchoptical bench’’))

www.swgc.mun.ca/physics/physlets/opticalbench.htmlwww.swgc.mun.ca/physics/physlets/opticalbench.html

For more about color:For more about color:
–– PrevPrev. SIGGRAPH courses (Stone et al.) . SIGGRAPH courses (Stone et al.) 

–– Good:Good: www.cs.rit.edu/~ncs/color/a_spectr.htmlwww.cs.rit.edu/~ncs/color/a_spectr.html

–– Good:Good: www.colourware.co.uk/cpfaq.htmwww.colourware.co.uk/cpfaq.htm

–– Good:Good: www.yorku.ca/eye/toc.htmwww.yorku.ca/eye/toc.htm
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Image Processing Image Processing 
andand

Reconstructions ToolsReconstructions Tools

Image ToolsImage Tools

•• Gradient domain operations, Gradient domain operations, 
–– Tone mapping, fusion and mattingTone mapping, fusion and matting

•• Graph cuts, Graph cuts, 
–– Segmentation and Segmentation and mosaicingmosaicing

•• Bilateral and Trilateral filters, Bilateral and Trilateral filters, 
–– DenoisingDenoising, image enhancement, image enhancement

Intensity Gradient in 1DIntensity Gradient in 1D

I(x)
1

105

G(x)
1

105
Intensity Gradient

Gradient at x,
G(x)    =    I(x+1)- I(x)

Forward Difference

Reconstruction from GradientsReconstruction from Gradients

I(x)
1

105
Intensity

G(x)
1

105
Gradient

?
?

For  n intensity values, about  n gradients 

Reconstruction from GradientsReconstruction from Gradients

I(x)
1

105
Intensity

G(x)
1

105
Gradient

1D Integration

I(x)  =  I(x-1)  +  G(x)

Cumulative sum

?

Grad X

Grad Y

Intensity Gradient in 2DIntensity Gradient in 2D

Gradient at x,y as Forward Differences 
Gx(x,y)    = I(x+1  , y)- I(x,y)
Gy(x,y)    = I(x ,  y+1)- I(x,y)

G(x,y) = (Gx , Gy)
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Intensity Gradient Vectors in ImagesIntensity Gradient Vectors in Images

Gradient Vector

Grad X

Grad Y

2D
Integration

Image Intensity Gradients in 2DImage Intensity Gradients in 2D

Sanity Check: 
Recovering Original Image

Solve 
Poisson Equation, 
2D linear system

Grad X

Grad Y

New Grad X

New Grad Y

2D
Integration

Intensity Gradient ManipulationIntensity Gradient Manipulation

Gradient 
Processing

A Common Pipeline

Modify 
Gradients

Graph and Images

Credits: Jianbo Shi

Agrawala et al, Digital Photomontage, Siggraph 2004
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Source images Brush strokes Computed labeling

Composite

Wij

Wij
i

j

V: graph node

E: edges connection nodes

Wij: Edge weight

Image pixel

Link to neighboring pixels

Pixel similarity

Segmentation = Graph partition 

Minimum Cost Cuts in a graph

Cut: Set of edges whose removal makes a graph disconnected

Si,j : Similarity between pixel i and pixel j

Cost of a cut,

A
A

Brush strokes Computed labeling

Graph Cuts for Segmentation and Mosaicing

Cut ~ String on a height field

Bilateral FilteringBilateral Filtering

[Ben Weiss, Siggraph 2006][Ben Weiss, Siggraph 2006]

InputInput Log(IntensityLog(Intensity))
Bilateral SmoothingBilateral Smoothing

Gaussian Gaussian 
SmoothingSmoothing

Start with Gaussian filtering
• Here, input is a step function + noise

output input

J f I
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Start with Gaussian filtering
• Spatial Gaussian f

output input

J f I

Start with Gaussian filtering
• Output is blurred

output input

J f I

Gaussian filter as weighted average
• Weight of depends on distance to x

),(xf )(I

output input

)(xJ

x x

The problem of edges
• Here,          “pollutes” our estimate J(x)
• It is too different 

),(xf )(I

output input

)(xJ

x

)(I

)(xI

)(I

Principle of Bilateral filtering
[Tomasi and Manduchi 1998]

• Penalty g on the intensity difference

)(xJ ),(xf ))()(( xIIg )(I
)(

1
xk

output input

x
)(xI

)(I

Bilateral filtering
[Tomasi and Manduchi 1998]

• Spatial Gaussian f

)(xJ ),(xf ))()(( xIIg )(I
)(

1
xk

output input

x
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Bilateral filtering
[Tomasi and Manduchi 1998]

• Spatial Gaussian f
• Gaussian g on the intensity difference

)(xJ ),(xf ))()(( xIIg )(I
)(

1
xk

output input

x

)(xJ )(I
)(

1
xk

output input

x

),(xf ))()(( xIIg

[Tomasi and Manduchi 1998]

• The weights are different for each output pixel

Bilateral filtering is non-linear
[Tomasi and Manduchi 1998]

• The weights are different for each output pixel

)(xJ ),(xf ))()(( xIIg )(I
)(

1
xk

output input

x x

Bilateral FilteringBilateral Filtering

• Unilateral filtering
• Smoothing using filtering

• Bilateral filtering
• Edge-preserving smoothing

[Ben Weiss, Siggraph 2006][Ben Weiss, Siggraph 2006]

InputInput Log(IntensityLog(Intensity))
Bilateral SmoothingBilateral Smoothing

Gaussian Gaussian 
SmoothingSmoothing
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Image Fusion & Image Fusion & 
ReconstructionReconstruction

Computational PhotographyComputational Photography

•• No Flash:No Flash: Candle warmth, but high noiseCandle warmth, but high noise
•• Flash:Flash: low noise, but no candle warmthlow noise, but no candle warmth

““ ”…”…aa--HewHew CainCain’’tt,, allwezzallwezz GittGitt,, WhutWhut chew chew wawntwawnt…”…” ––1969,Jagger, M. et al1969,Jagger, M. et al

Photography: Full of Tradeoffs...Photography: Full of Tradeoffs...Photography: Full of Tradeoffs...

No-flash Flash

Image Fusion & ReconstructionImage Fusion & ReconstructionImage Fusion & Reconstruction

•• Single photo: forces narrow tradeoffs:Single photo: forces narrow tradeoffs:
–– Focus, Exposure, aperture, time, sensitivity, noise,Focus, Exposure, aperture, time, sensitivity, noise,

–– Usual result: Incomplete visual appearance.Usual result: Incomplete visual appearance.

•• Multiple photos, assorted settings forMultiple photos, assorted settings for
Optics, Sensor, Lighting, ProcessingOptics, Sensor, Lighting, Processing

•• Fusion:Fusion:
‘‘Merge the best partsMerge the best parts’’ oror

•• Reconstruction:Reconstruction:
Detect changes photo changes, Detect changes photo changes, 
compute scene invariantscompute scene invariants

FUSION: BestFUSION: Best--Focus DistanceFocus Distance

Agrawala et al., 
Digital Photomontage
SIGGRAPH 2004

NEARNEAR

FUSION: BestFUSION: Best--Focus DistanceFocus Distance

Agrawala et al., 
Digital Photomontage
SIGGRAPH 2004

FARFAR

FUSION: BestFUSION: Best--Focus DistanceFocus Distance

Agrawala et al., 
Digital Photomontage
SIGGRAPH 2004
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FUSION: BestFUSION: Best--Focus DistanceFocus Distance

Agrawala et al., 
Digital Photomontage
SIGGRAPH 2004

FUSION: BestFUSION: Best--Focus DistanceFocus Distance

Agrawala et al., 
Digital Photomontage
SIGGRAPH 2004

FUSION: BestFUSION: Best--Focus DistanceFocus Distance

Agrawala et al., 
Digital Photomontage
SIGGRAPH 2004

FUSION: BestFUSION: Best--Focus DistanceFocus Distance

Agrawala et al., 
Digital Photomontage
SIGGRAPH 2004

FUSION: BestFUSION: Best--Focus DistanceFocus Distance

Agrawala et al., 
Digital Photomontage
SIGGRAPH 2004

FUSION: BestFUSION: Best--Focus DistanceFocus Distance

Agrawala et al., 
Digital Photomontage
SIGGRAPH 2004
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FUSION: BestFUSION: Best--Focus DistanceFocus Distance

Agrawala et al., 
Digital Photomontage
SIGGRAPH 2004

FUSION: BestFUSION: Best--Focus DistanceFocus Distance

Agrawala et al., 
Digital Photomontage
SIGGRAPH 2004

FUSION: BestFUSION: Best--Focus DistanceFocus Distance

Agrawala et al., 
Digital Photomontage
SIGGRAPH 2004

FUSION: BestFUSION: Best--Focus DistanceFocus Distance

Agrawala et al., 
Digital Photomontage
SIGGRAPH 2004

FUSION: BestFUSION: Best--Focus DistanceFocus Distance

Agrawala et al., 
Digital Photomontage
SIGGRAPH 2004

FUSION: BestFUSION: Best--Focus DistanceFocus Distance

Agrawala et al., 
Digital Photomontage
SIGGRAPH 2004
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Source images

‘Graph Cuts’ SolutionFUSION

What else can we extend?  What else can we extend?  What else can we extend?  

FilmFilm--Like Camera Parameters:Like Camera Parameters:
•• Field of View:Field of View: image stitching for panoramasimage stitching for panoramas
•• Dynamic Range: Dynamic Range: Radiance MapsRadiance Maps
•• Frame Rate:Frame Rate: Interleaved VideoInterleaved Video [[LevoyLevoy]]
•• Resolution:Resolution: ‘‘SuperSuper--resolutionresolution’’ methods methods [[NayarNayar]]

Visual Appearance & Content:Visual Appearance & Content:
•• Tone Map:Tone Map: Detail in every shadow and highlightDetail in every shadow and highlight
•• Color2grey:Color2grey: Keep Keep allall color changes in grayscale color changes in grayscale 
•• Temporal Continuity:Temporal Continuity: SpaceSpace--time fusiontime fusion
•• Viewpoint Constraints: Viewpoint Constraints: Multiple COP images     Multiple COP images     and moreand more……

High Dynamic Range Capture High Dynamic Range Capture High Dynamic Range Capture 

•• Series of Photos, progressive exposure timeSeries of Photos, progressive exposure time

•• Solve leastSolve least--squares matrix problem to get:  squares matrix problem to get:  
–– CameraCamera’’s response curves response curve

––Radiance at each pixel (FloatingRadiance at each pixel (Floating--Pt)Pt)

1997 SIGGRAPH 1997 SIGGRAPH DebevecDebevec (see(see www.HDRshop.comwww.HDRshop.com))

Film-Style Sensor:   Dynamic  Range LimitsFilmFilm--Style Sensor:   Dynamic  Range LimitsStyle Sensor:   Dynamic  Range Limits

Under-Exposure    
• Highlight details: Captured
• Shadow details: Lost

Over-Exposure    
• Highlight details: Lost
• Shadow details: Captured

Debevec’97 (see www.HDRshop.com)Debevec’97Debevec’97 (see(see www.HDRshop.comwww.HDRshop.com))

j=0j=0
j=1j=1

i=2i=2
j=3j=3

j=4j=4
j=5j=5

j=6j=6

j=0j=0 11 22 33 44 55 66

??
logLlogLii

P
ix

el
 V

al
ue

 Z
P

ix
el

 V
al

ue
 Z

f(logLf(logL))

???? ????
0    255 0    255 

Domain of Human Vision:Domain of Human Vision:
from ~10-6 to ~10+8 cd/m2

Range of Typical Displays:Range of Typical Displays:
from ~1 to ~100 cd/m2

starlightstarlight moonlightmoonlight office lightoffice light daylightdaylight flashbulbflashbulb

1010--66 1010--22 11 1010 100100 1010+4+4 1010+8+8

‘Tone Map’ Problem:
HDR Scene Limited Displays

‘Tone Map’ Problem:
HDR Scene Limited Displays
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...

10X10X 10X10X 10X10X

.           .           .           

•• ,,

FUSION: Multispectral WavelengthsFUSION:FUSION: MultispectralMultispectral WavelengthsWavelengths

Vegetation Mapping of the Forest 

SAR Optical Landsat

=+

Color Original Grayscale

New Method

Color2Gray: 
Salience-Preserving

Color Removal

Color2Gray: Color2Gray: 
SalienceSalience--PreservingPreserving

Color RemovalColor Removal
SIGGRAPH 2006

Gooch, Olsen, Tumblin, Gooch

Iso-Luminant ColorsIsoIso--LuminantLuminant ColorsColors

•• IsoIso--luminantluminant color changescolor changes are are 
visually important;visually important;

•• What transfer toWhat transfer to
luminance willluminance will
–– Keep them visible?Keep them visible?

–– Preserve imagePreserve image
appearance?appearance?

Control color change’s ability 
to cause luminance change

Control color Control color changechange’’ss ability ability 
to cause luminance to cause luminance changechange

= 5 = 10 = 25

crunch(x) = * tanh(x/ )
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C1,2

v

sign(|| Ci,j||) = sign( Ci,j . v )

Color 
Difference

Space

v = (cos , sin )

+ b*

+ a*- a*

-

-

+

+

- b*

Which Which hue changeshue changes
should be darker in should be darker in 
grayscale? grayscale? 

Set a polarity forSet a polarity for
The color wheel:The color wheel:

Original Color2Grey Color2Grey+Color

Two Different Foggy Conditions

RECONSTRUCTION: Clear Day from Foggy Days

Time: 3 PM

Time: 5:30 PM

Clear Day Image

Deweathering

(Shree Nayar, Srinivasa Narasimhan 00)

Varying Polarization
Yoav Y. Schechner, Nir Karpel 2005

Varying PolarizationVarying Polarization
Yoav Y. Schechner, Nir Karpel 2005Yoav Y. Schechner, Nir Karpel 2005

Best polarization state

Worst polarization state

Best polarization 
state

Recovered 
image

[Left] The raw images taken through a polarizer. [Right] White-balanced results: 
The recovered image is much clearer, especially at distant objects, than the raw image 

Varying PolarizationVarying PolarizationVarying Polarization
•• SchechnerSchechner,, NarasimhanNarasimhan,, NayarNayar

•• Instant Instant dehazingdehazing
of images using of images using 
polarizationpolarization

Ramesh Raskar, Ramesh Raskar, KarhanKarhan Tan, Rogerio Feris, Tan, Rogerio Feris, 
JingyiJingyi Yu, Matthew TurkYu, Matthew Turk

Mitsubishi Electric Research Labs (MERL), Cambridge, MAMitsubishi Electric Research Labs (MERL), Cambridge, MA

U of California at Santa BarbaraU of California at Santa Barbara

NonNon--photorealistic Camera: photorealistic Camera: 
Depth Edge Detection Depth Edge Detection andand Stylized Rendering Stylized Rendering usingusing

MultiMulti--Flash ImagingFlash Imaging
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Our MethodCanny

RECONSTRUCT: Depth Discontinuities

Internal and external
Shape boundaries, Occluding contour, Silhouettes

600



8

Both…BothBoth……

Reconstructed 
Edges

Merged Result
Merged 
Photos

Reconstruct:   Light Source Angles 
from camera, without calibration

ReconstructReconstruct:   Light Source Angles :   Light Source Angles 
from camera, without calibrationfrom camera, without calibration

““Light Waving”  EG 2005 (Light Waving”  EG 2005 (WinnemollerWinnemoller, Mohan, Tumblin, Gooch), Mohan, Tumblin, Gooch)

Raking Camera for PentimentiRaking Camera for Raking Camera for PentimentiPentimenti

Dec. 2005: Kirk Dec. 2005: Kirk VuillemotVuillemot, Art Institute of Chicago, positions, prepares, Art Institute of Chicago, positions, prepares
““Man with MoustacheMan with Moustache…”…” 1915, Pablo Picasso1915, Pablo Picasso

http://www.artic.edu/aic/collections/eurptg/highlight_item?acc=1http://www.artic.edu/aic/collections/eurptg/highlight_item?acc=1952.1116&page=25952.1116&page=25

Jack Tumblin, Jack Tumblin, AnkitAnkit Mohan, ChiMohan, Chi--Yin Cheung, Eric Russell]Yin Cheung, Eric Russell]

••New form of opticalNew form of optical--
only `only `PentimentiPentimenti’’
(‘regrets):(‘regrets):

••FresnelFresnel ReflectanceReflectance
reveals artist’s reveals artist’s 
overpaintingoverpainting,,
scrapings, scrapings, 
& revisions& revisions

‘Raking Camera’‘‘Raking CameraRaking Camera’’

Octagonal ReflectorOctagonal Reflector

4.5m x 4.5m x 1.5m4.5m x 4.5m x 1.5m

‘Raking Camera’ Art Inst. Chicago ‘‘Raking CameraRaking Camera’’ Art Inst. Chicago Art Inst. Chicago 

Octagonal ReflectorOctagonal Reflector

4.5m x 4.5m x 1.5m4.5m x 4.5m x 1.5m

•• 1 top view camera1 top view camera
(not visible)(not visible)

‘Raking Camera’ Art Inst. Chicago‘‘Raking CameraRaking Camera’’ Art Inst. ChicagoArt Inst. Chicago

Octagonal ReflectorOctagonal Reflector

4.5m x 4.5m x 1.5m4.5m x 4.5m x 1.5m

•• 1 top view camera1 top view camera

•• 2 steered lights2 steered lights
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‘Raking Camera’ Art Inst. Chicago ‘‘Raking CameraRaking Camera’’ Art Inst. Chicago Art Inst. Chicago 

Octagonal ReflectorOctagonal Reflector

4.5m x 4.5m x 1.5m4.5m x 4.5m x 1.5m

•• 1 top view camera1 top view camera

•• 2 steered lights2 steered lights

•• 3 raking cameras3 raking cameras

(120(120oo spacing)spacing)

2001 SIGGRAPH
Malzbender, HPlabs

AA MostlyMostly
22--D MethodD Method

Reconstruction:Reconstruction:
Polynomial Texture MapsPolynomial Texture Maps

Store just Store just 66
coefficientscoefficients

at each pixel, at each pixel, 
get get Interactive Interactive 

rere--lighting...lighting...

X-ray Study: we cancel the backing?XX--ray Study: we cancel the backing?ray Study: we cancel the backing? Pentimenti: 
Can we see, follow the revisions? 

PentimentiPentimenti::
Can we see, follow the revisions? Can we see, follow the revisions? 

Shape-Time PhotographyShapeShape--Time PhotographyTime Photography

Freeman et al 2003

Visually Expressive ‘Time Fragments’Visually Expressive Visually Expressive ‘‘Time FragmentsTime Fragments’’

•• DuchampDuchamp
–– Nude Descending a StaircaseNude Descending a Staircase
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FUSION: Time/Space MixturesFUSION: Time/Space MixturesFUSION: Time/Space Mixtures

Richard Hundley 2001Richard Hundley 2001

Concluding QuestionsConcluding QuestionsConcluding Questions

•• How should we modify How should we modify ‘‘filmfilm--likelike’’ photography photography 
to better gather the to better gather the ‘‘visually essentialvisually essential’’
(not just the (not just the ‘‘optically essentialoptically essential’’))
contents of a scene?  contents of a scene?  
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Ramesh Raskar, Computational Illumination

Computational IlluminationComputational Illumination

Ramesh Raskar
Mitsubishi Electric Research Labs

Course WebPage : 
http://www.merl.com/people/raskar/photo/

Ramesh Raskar, Computational Illumination

Computational
Illumination

Computational PhotographyComputational Photography Novel Illumination

Novel Cameras

Scene: 8D Ray Modulator

Display

Generalized
Sensor

Generalized
Optics

Processing

4D Ray Bender
Upto 4D

Ray Sampler

Ray
Reconstruction

Generalized
Optics

Recreate 4D Lightfield

Light Sources

Modulators

4D Incident Lighting

4D Light Field

Computational IlluminationComputational Illumination

Novel Cameras

Scene: 8D Ray Modulator

Display

Generalized
Sensor

Generalized
Optics

Processing

4D Ray Bender
Upto 4D

Ray Sampler

Ray
Reconstruction

Generalized
Optics

Recreate 4D Lightfield

Light Sources

Modulators

4D Light Field

Programmable
4D Illumination field +
time + wavelength

Programmable
4D Illumination field +
time + wavelength

‘Smarter’ Lighting Equipment

What Parameters Can We Change ?What Parameters Can We Change ?

Edgerton 1930’sEdgerton 1930’s

Not Special Cameras but Special Lighting
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Edgerton 1930’sEdgerton 1930’s

Multi flash
Sequential Photography

Stroboscope
(Electronic Flash)

Shutter
Open

Flash Time

Ramesh Raskar, Computational Illumination

Computational Illumination:Computational Illumination:
Programmable 4D Illumination Field + Time + WavelengthProgrammable 4D Illumination Field + Time + Wavelength

•• Presence or Absence, Duration, BrightnessPresence or Absence, Duration, Brightness
–– Flash/NoFlash/No--flashflash

•• Light positionLight position
–– MultiMulti--flash for depth edgesflash for depth edges
–– Programmable dome (image reProgrammable dome (image re--lighting and matting)lighting and matting)

•• Light color/wavelengthLight color/wavelength
•• Spatial ModulationSpatial Modulation

–– Synthetic Aperture IlluminationSynthetic Aperture Illumination
•• Temporal ModulationTemporal Modulation

–– TV remote, Motion Tracking, Sony IDTV remote, Motion Tracking, Sony ID--cam, RFIGcam, RFIG
•• Exploiting (uncontrolled) natural lighting conditionExploiting (uncontrolled) natural lighting condition

–– Day/Night FusionDay/Night Fusion

Ramesh Raskar, Computational Illumination

Computational IlluminationComputational Illumination
•• Presence or Absence, Duration, BrightnessPresence or Absence, Duration, Brightness

–– Flash/NoFlash/No--flashflash
•• Light positionLight position

–– MultiMulti--flash for depth edgesflash for depth edges
–– Programmable dome (image reProgrammable dome (image re--lighting and matting)lighting and matting)

•• Light color/wavelengthLight color/wavelength

•• Spatial ModulationSpatial Modulation
–– Synthetic Aperture IlluminationSynthetic Aperture Illumination

•• Temporal ModulationTemporal Modulation
–– TV remote, Motion Tracking, Sony IDTV remote, Motion Tracking, Sony ID--cam, RFIGcam, RFIG

•• General lighting conditionGeneral lighting condition
–– Day/NightDay/Night

Denoising Challenging Images

Available light:
+ nice lighting

- noise/blurriness
- color

No-flash

Flash:
+ details
+ color

- flat/artificial

Flash

Denoise no-flash image using flash image

Flash

No-flash

Result

Elmar Eisemann and Frédo Durand , Flash Photography Enhancement via Intrinsic 
Relighting

Georg Petschnigg, Maneesh Agrawala, Hugues Hoppe, Richard Szeliski, Michael Cohen, 
Kentaro Toyama. Digital Photography with Flash and No-Flash Image Pairs
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+ original lighting
+ details/sharpness
+ color

Result

No-flash

Transfer detail from flash image to no-flash image
Cross-Bilateral Filter based Approach

FlashAmbient

Build Exposure HDR image

• Multiple images with different exposure

– Debevec & Malik, Siggraph 97
– Nayar & Mitsunaga, CVPR 00

Increasing Exposure

Fl
as
h
In
te
ns
ity

Build Flash HDR image

Build
Flash Exposure
HDR image

Exposure

Fl
as
h
In
te
ns
ity

Agrawal, Raskar, Nayar, Li
Siggraph05
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Ramesh Raskar, Computational Illumination

Varying Exposure time Varying Flash brightness Varying both

Capturing HDR Image

Flash Result      Reflection LayerAmbient

Flash and Ambient Images
[ Agrawal, Raskar, Nayar, Li      Siggraph05 ]

Intensity Gradient Vectors in Flash and Ambient Images

Same gradient 
vector direction Flash Gradient Vector

Ambient Gradient Vector

Ambient Flash

No reflections

Reflection Ambient Gradient 
Vector

Different gradient 
vector direction

With reflections

Ambient Flash

Flash Gradient Vector

Residual 
Gradient 
Vector

Intensity Gradient 
Vector Projection

Result Gradient Vector

Ambient Flash Result Residual

Reflection Ambient Gradient 
Vector

Flash Gradient 
Vector

Ramesh Raskar, Computational Illumination

Computational IlluminationComputational Illumination
•• Presence or Absence, Duration, BrightnessPresence or Absence, Duration, Brightness

–– Flash/NoFlash/No--flashflash

•• Light positionLight position
–– Programmable dome (image reProgrammable dome (image re--lighting and matting)lighting and matting)
–– MultiMulti--flash for depth edgesflash for depth edges

•• Spatial ModulationSpatial Modulation
–– Synthetic Aperture IlluminationSynthetic Aperture Illumination

•• Temporal ModulationTemporal Modulation
–– TV remote, Motion Tracking, Sony IDTV remote, Motion Tracking, Sony ID--cam, RFIGcam, RFIG

•• General lighting conditionGeneral lighting condition
–– Day/NightDay/Night
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Ramesh Raskar, Computational Illumination

Synthetic LightingSynthetic Lighting
Paul Paul HaeberliHaeberli, Jan 1992, Jan 1992

Ramesh Raskar, Computational Illumination

TableTable--top Computed Lighting for top Computed Lighting for 
Practical Digital Photography Practical Digital Photography 

Ankit Mohan, Jack TumblinAnkit Mohan, Jack Tumblin
Northwestern UniversityNorthwestern University

Bobby Bobby BodenheimerBodenheimer
Vanderbilt UniversityVanderbilt University

Cindy Grimm, Cindy Grimm, ReynoldReynold BaileyBailey
Washington University in St. LouisWashington University in St. Louis

Ramesh Raskar, Computational Illumination

Move shadow 
back

Soften this 
shadow

Make this 
brighter

Remove this 
specular highlight

Make this darker

Ramesh Raskar, Computational Illumination

Target

Result

Sketch Your Desires, OptimizeSketch Your Desires, Optimize

Ramesh Raskar, Computational Illumination

DebevecDebevec et al. 2002: ‘Light Stage 3’et al. 2002: ‘Light Stage 3’

Ramesh Raskar, Computational Illumination

ImageImage--Based Actual ReBased Actual Re--lightinglighting

Film the background in Milan,Film the background in Milan,
Measure incoming light,Measure incoming light,

Light the actress in Los AngelesLight the actress in Los Angeles

Matte the backgroundMatte the background

Matched LA and Milan lighting.Matched LA and Milan lighting.

Debevec et al., SIGG2001
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Computational IlluminationComputational Illumination

Novel Cameras

Scene: 8D Ray Modulator

Display

Generalized
Sensor

Generalized
Optics

Processing

4D Ray Bender
Upto 4D

Ray Sampler

Ray
Reconstruction

Generalized
Optics

Recreate 4D Lightfield

Light Sources

Modulators

4D Light Field

Programmable
4D Illumination field +
time + wavelength

Programmable
4D Illumination field +
time + wavelength

Ramesh Raskar, Computational Illumination
[Debevec et al. 2002]

[Debevec et al. 2000] [Masselus et al. 2002]

[Masselus et al. 2003] [Malzbender et al. 2002]

[Matusik et al. 2002]

A 4A 4--D Light SourceD Light Source

Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera

Ramesh Raskar, Karhan Tan, Rogerio Feris, 
Jingyi Yu, Matthew Turk

Mitsubishi Electric Research Labs (MERL), Cambridge, MA
U of California at Santa Barbara
U of North Carolina at Chapel Hill

NonNon--photorealistic Camera: photorealistic Camera: 
Depth Edge Detection Depth Edge Detection andand Stylized Rendering Stylized Rendering usingusing

MultiMulti--Flash ImagingFlash Imaging

Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera

Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera
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Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera

Depth Discontinuities

Internal and external
Shape boundaries, Occluding contour, Silhouettes

Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera

Our MethodCanny

Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera

Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera

Canny Intensity 
Edge Detection

Our Method

Photo Result
Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera

Shadows

Clutter

Many Colors

Highlight Shape Edges

Mark moving parts

Basic colors

A New ProblemA New Problem
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Ramesh Raskar, Computational Illumination

Computational IlluminationComputational Illumination
•• Presence or AbsencePresence or Absence

–– Flash/NoFlash/No--flashflash
•• Light positionLight position

–– MultiMulti--flash for depth edgesflash for depth edges
–– Programmable dome (image reProgrammable dome (image re--lighting and matting)lighting and matting)

•• Spatial Modulation (IntraSpatial Modulation (Intra--flash 2D Modulation)flash 2D Modulation)
–– Camera flash = ProjectorCamera flash = Projector
–– Synthetic Aperture IlluminationSynthetic Aperture Illumination
–– Dual PhotographyDual Photography

•• Temporal ModulationTemporal Modulation
–– TV remote, Motion Tracking, Sony IDTV remote, Motion Tracking, Sony ID--cam, RFIGcam, RFIG

•• General lighting conditionGeneral lighting condition
–– Day/NightDay/Night

Synthetic aperture 
imaging + illumination

LevoyLevoy et al 2004et al 2004

Marc Levoy

What does synthetic aperture 
illumination look like?

Marc Levoy

Underwater confocal imaging
with and without SAP

Dual PhotographyDual Photography

Scene

PhotocellProjector

Dual PhotographyDual Photography

Scene

PhotocellProjector
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Dual PhotographyDual Photography

Scene

PhotocellProjector

Dual PhotographyDual Photography

Scene

PhotocellProjector Camera

camera

The 4D transport matrixThe 4D transport matrix::
Contribution of each projector pixel to each camera pixelContribution of each projector pixel to each camera pixel

scene

projector camera

The 4D transport matrix:The 4D transport matrix:
Contribution of each projector pixel to each camera pixelContribution of each projector pixel to each camera pixel

scene

projector

SenSen et al, Siggraph 2005et al, Siggraph 2005

camera

The 4D transport matrix:The 4D transport matrix:
Which projector pixel contribute to each camera pixelWhich projector pixel contribute to each camera pixel

scene

projector

SenSen et al, Siggraph 2005et al, Siggraph 2005

??

Dual photographyDual photography
from diffuse reflectionsfrom diffuse reflections

the camera’s view
SenSen et al, Siggraph 2005et al, Siggraph 2005
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Ramesh Raskar, Computational Illumination

Computational IlluminationComputational Illumination
•• Presence or AbsencePresence or Absence

–– Flash/NoFlash/No--flashflash
•• Light positionLight position

–– MultiMulti--flash for depth edgesflash for depth edges
–– Programmable dome (image reProgrammable dome (image re--lighting and matting)lighting and matting)

•• Light color/wavelengthLight color/wavelength

•• Spatial ModulationSpatial Modulation
–– Synthetic Aperture IlluminationSynthetic Aperture Illumination

•• Temporal ModulationTemporal Modulation
–– TV remote, Motion Tracking, Sony IDTV remote, Motion Tracking, Sony ID--cam, RFIGcam, RFIG

•• General lighting conditionGeneral lighting condition
–– Day/NightDay/Night

Ramesh Raskar, Computational Illumination

Computational IlluminationComputational Illumination
•• Presence or AbsencePresence or Absence

–– Flash/NoFlash/No--flashflash
•• Light positionLight position

–– MultiMulti--flash for depth edgesflash for depth edges
–– Programmable dome (image reProgrammable dome (image re--lighting and matting)lighting and matting)

•• Light color/wavelengthLight color/wavelength

•• Spatial ModulationSpatial Modulation
–– Synthetic Aperture IlluminationSynthetic Aperture Illumination

•• Temporal ModulationTemporal Modulation
–– TV remote, Motion Tracking, Sony IDTV remote, Motion Tracking, Sony ID--cam, RFIGcam, RFIG

•• Natural lighting conditionNatural lighting condition
–– Day/Night FusionDay/Night Fusion

Ramesh Raskar, CompPhoto Class Northeastern, Fall 2005

A Night Time Scene: 
Objects are Difficult to Understand due to Lack of Context 

Dark Bldgs

Reflections on 
bldgs

Unknown 
shapes

Ramesh Raskar, CompPhoto Class Northeastern, Fall 2005

Enhanced Context :
All features from night scene are preserved, but background in clear 

‘Well-lit’ Bldgs

Reflections in 
bldgs windows

Tree, Street 
shapes

Ramesh Raskar, CompPhoto Class Northeastern, Fall 2005

Background is captured from day-time 
scene using the same fixed camera 

Night Image 

Day Image

Result: Enhanced Image 

‘Smarter’ Lighting Equipment

Programmable ParametersProgrammable Parameters
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Computational IlluminationComputational Illumination

Novel Cameras

Scene: 8D Ray Modulator

Display

Generalized
Sensor

Generalized
Optics

Processing

4D Ray Bender
Upto 4D

Ray Sampler

Ray
Reconstruction

Generalized
Optics

Recreate 4D Lightfield

Light Sources

Modulators

4D Light Field

Programmable
4D Illumination field +
Time + Wavelength

Programmable
4D Illumination field +
Time + Wavelength

Ramesh Raskar, Computational Illumination

Computational Illumination:Computational Illumination:
Programmable 4D Illumination Field + Time + WavelengthProgrammable 4D Illumination Field + Time + Wavelength

•• Presence or Absence, Duration, BrightnessPresence or Absence, Duration, Brightness
–– Flash/NoFlash/No--flashflash

•• Light positionLight position
–– MultiMulti--flash for depth edgesflash for depth edges
–– Programmable dome (image reProgrammable dome (image re--lighting and matting)lighting and matting)

•• Spatial ModulationSpatial Modulation
–– Flash as ProjectorFlash as Projector
–– Synthetic Aperture IlluminationSynthetic Aperture Illumination

•• Temporal ModulationTemporal Modulation
–– TV remote, Motion Tracking, Sony IDTV remote, Motion Tracking, Sony ID--cam, RFIGcam, RFIG

•• Exploiting (uncontrolled) natural lighting conditionExploiting (uncontrolled) natural lighting condition
–– Day/Night FusionDay/Night Fusion
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Smart Optics, 
Modern Sensors and 

Future Cameras 

Course WebPage : 
http://www.merl.com/people/raskar/photo

Computational Photography

Novel Cameras
Generalized
Sensor

Generalized
Optics

Processing

Light Sources

Future Directions

• Scientific Imaging
– Tomography, Deconvolution, Coded Aperture Imaging

• Computational Illumination
– Light stages, Domes, Light waving, Towards 8D

• Smart Optics
– Handheld Light field camera, Programmable imaging/aperture

• Smart Sensors 
– HDR Cameras, Gradient Sensing, Line-scan Cameras, Demodulators

• Speculations

Wavefront Coding: 
10X Depth of Field

http://www.cdm-optics.com/site/extended_dof.php

• Traditional Lens: 
– Defocus (‘circle of confusion) 

dependent on distance from plane 
of focus

Wavefront Coding: 
10X Depth of Field

http://www.cdm-optics.com/site/extended_dof.php

• Traditional Lens: 
– Defocus dependent on distance 

from plane of focus

• Cubic Phase Plate
– Defocus nearly independent of 

distance
– All points ‘blurred’
– Deconvolve to get sharper image

Todor Georgeiv et al 2006

Integral Photography
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Georgeiv et al 2006
Light field photography using a 

handheld plenoptic camera

Ren Ng, Marc Levoy, Mathieu Brédif,
Gene Duval, Mark Horowitz and Pat Hanrahan

Conventional versus light field 
camera Conventional versus light field camera

uv-plane st-plane

Conventional versus light field 
camera

uv-planest-plane

Prototype camera

4000 × 4000 pixels  ÷ 292 × 292 lenses  =  14 × 14 pixels 
l

Contax medium format camera Kodak 16-megapixel sensor

Adaptive Optics microlens array 125 square-sided microlenses
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Digital refocusing

refocusing  =  summing windows 
extracted from several microlenses

Example of digital refocusing Extending the depth of field 

conventional photograph,
main lens at  f / 22

conventional photograph,
main lens at  f / 4

light field, main lens at f / 4,
after all-focus algorithm

[Agarwala 2004]

Future Directions

• Scientific Imaging
– Tomography, Deconvolution, Coded Aperture Imaging

• Computational Illumination
– Light stages, Domes, Light waving, Towards 8D

• Smart Optics
– Handheld Light field camera, Programmable imaging/aperture

• Smart Sensors 
– HDR Cameras, Gradient Sensing, Line-scan Cameras, Demodulators

• Speculations

Novel SensorsNovel Sensors

•• ColorColor
–– FoveonFoveon

•• Dynamic RangeDynamic Range
–– HDR Camera, Log sensingHDR Camera, Log sensing
–– Gradient sensingGradient sensing

•• IdentityIdentity
–– DemodulationDemodulation

•• 3D3D
–– ZCamZCam,, CanestaCanesta

•• MotionMotion
–– Line scan CameraLine scan Camera
–– Flutter ShutterFlutter Shutter
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Foveon: All Colors at a Single Pixel High Dynamic Range

http://www.cybergrain.com/tech/hdr/

Fuji's SuperCCD S3 Pro camera has a chip with high and low sensitivity sensors 
per pixel location to increase dynamic range 

Gradient Camera

Sensing Pixel Intensity Difference with
Locally Adaptive Gain

Ramesh Raskar, MERL
Work with Jack Tumblin, Northwestern U, 

Amit Agrawal, U of Maryland

High Dynamic Range Images

Scene Intensity camera 
saturation map

Gradient camera 
saturation map

Intensity camera fail to capture range
Gradients saturate at very few isolated pixels

Natural Scene Properties

x1

105

x
1

105

Intensity Gradient

Intensity Histogram Gradient Histogram

1 105 -105 105

Original Image
Intensity values ranging from 0 to 1800

Intensity ramp plus low contrast logo

Intensity Camera Image
8 bit camera for 1:1000 range

Problem: . saturation at high intensity regions

Log Camera Image
8 bit log for 1:106 range

Problem: Visible quantization effects at high intensities

Locally Adaptive Gain
Pixel divided by the average of local neighborhood. 

Thus the low frequency contents are lost and only 
detail remains.

Gradient Camera Image
In proposed method, we sense intensity 
differences. We use a 8 bit A/D with 
resolution of log(1.02) to capture 2% 
contrast change between adjacent pixels. 
Notice that the details at both high and low 
intensities are captured.
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Gradient Camera

• Two main features
1. Sense difference between neighboring pixel intensity

At each pixel, measure ( x , y ) , x = Ix+1,y - Ix,y        ,           y = Ix,y+1 - Ix,y

2. With locally adaptive gain

• Gradient camera is very similar to locally adaptive gain camera
• Locally Adaptive Gain Camera 

– Gain is different for each pixel
– Problem: Loses low frequency detail and preserves only high frequency features (edges)

• Gradient Camera
– The gain is same for four adjacent pixels
– Difference between two pixels is measured with same gain on both pixels
– Reconstruct original image in software from pixel differences by solving a linear system 

(solving Poisson Equation)

Camera Pipeline

2D Integration to 
reconstruct the 

image

Local gain 
adaptive to 
difference

Difference
between 

pixels

On-board Hardware Software

Detail Preserving

Intensity Camera Log Intensity Camera Gradient Camera

Log cameras capture range but lose detail
Intensity cameras capture detail but lose range

Quantization

Original Image Uniform 
quantization 3 bits

Log Uniform 
quantization 3 bits

Log Uniform gradients
quantization 3 bits

GradCam requires 
fewer bits

In the reconstructed 
image, error is pushed 
to high gradient pixel 

positions which is 
visually imperceptible

Intensity Histogram

1 105

Gradient Histogram

-105 105

Demodulating Cameras
Simultaneously decode signals from blinking 
LEDs and get an image 

Sony ID Cam
Phoci

Motion Capture Cameras
Visualeyez™ VZ4000 Tracking System
PhaseSpace motion digitizer
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Demodulating Cameras
Decode signals from blinking LEDs + image 

Sony ID Cam
Phoci

Motion Capture Cameras

3D Cameras

• Time of flight
– ZCam (Shuttered Light Pulse)

• Phase Decoding of modulated illumination
– Canesta (Phase comparison)

– Phase difference = depth

– Magnitude = reflectance

• Structured Light
– Binary coded light and triangulation

ZCam (3Dvsystems), 
Shuttered Light Pulse

Resolution : Resolution : 
1cm for 21cm for 2--7 meters7 meters

Graphics can inserted behind and between characters

CanestaCanesta: Modulated Emitter: Modulated Emitter

Phase ~ distance Phase ~ distance 
Amplitude ~ reflectanceAmplitude ~ reflectance

Motion _ _
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Line Scan Camera: PhotoFinish 2000 Hz 

Fluttered Shutter Camera
Raskar, Agrawal, Tumblin Siggraph2006

Figure 2 results

Input Image

Rectified Image to make motion lines parallel to scan lines. 
Image Deblurred by solving a linear system. No post-processing

Approximate cutout of the blurred image containing the 
taxi (vignetting on left edge). Exact alignment of cutout 

with taxi extent is not required.
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Novel SensorsNovel Sensors

•• ColorColor
–– FoveonFoveon

•• Dynamic RangeDynamic Range
–– HDR Camera, Log sensingHDR Camera, Log sensing
–– Gradient sensingGradient sensing

•• IdentityIdentity
–– DemodulationDemodulation

•• 3D3D
–– ZCamZCam,, CanestaCanesta

•• MotionMotion
–– Line scan CameraLine scan Camera
–– Flutter ShutterFlutter Shutter

Perspective? Or Not?Perspective? Or Not?

Agrawala et al, Long Scene Panoramas, Siggraph 2006

Rademacher et al, MCOP, Siggraph 1998

Multiperspective Camera?Multiperspective Camera?

[ Jingyi Yu’ 2004 ]
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Fantasy ConfigurationsFantasy Configurations

•• ‘‘ClothCloth--cam’: ‘Wallpapercam’: ‘Wallpaper--cam’cam’
–– Fusion of  4D light emission and 4D capture in the surface of a Fusion of  4D light emission and 4D capture in the surface of a 

cloth…cloth…
–– Invisible cloakInvisible cloak

•• Floating Cam:Floating Cam:
–– AdAd--hoc wireless networks form camera arrays in environment…hoc wireless networks form camera arrays in environment…

•• Other ray sets:Other ray sets:
–– MultilinearMultilinear camerascameras

(linear combination of 8 types) (linear combination of 8 types) 
[Yu, McMillan’04, ’05][Yu, McMillan’04, ’05]

GoalsGoals

•• CaptureCapture--time Techniquestime Techniques

–– Manipulating optics, illumination and sensorsManipulating optics, illumination and sensors

•• Fusion and Reconstruction Fusion and Reconstruction 

–– Beyond digital darkroom experienceBeyond digital darkroom experience

•• Improving Camera PerformanceImproving Camera Performance

–– Better dynamic range, focus, frame rate, resolutionBetter dynamic range, focus, frame rate, resolution

–– Hint of shape, reflectance, motion and illuminationHint of shape, reflectance, motion and illumination

–– Computational Imaging in SciencesComputational Imaging in Sciences

•• ApplicationsApplications

–– Graphics, Special Effects, Scene Comprehension, ArtGraphics, Special Effects, Scene Comprehension, Art
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