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Abstract
For many years, it was a challenge to produce realistic virtual crowds for special effects in movies. Now, there is
a new challenge: the production of real-time autonomous Virtual Crowds. Real-time crowds are necessary for
games, VR systems for training and simulation and crowds in Augmented Reality applications. Autonomy is the
only way to create believable crowds reacting to events in real-time. This course will present state-of-the-art
techniques and methods.
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Necessary background and potential target audience for
the  tutorial: experience  with  computer  animation  is
recommended but  not  mandatory.  The course is  intended
for animators, designers, and students in computer science.

     
Detailed outline of the tutorial

The necessity to model virtual populations occurs in many
applications  of  computer  animation  and simulation.  Such
applications  encompass  several  different  domains  –
representative  or  autonomous  agents  in  virtual
environments,  perceptual  metrics  and  human  factors,
training,  education,  simulation-based  design,  and
entertainment. Realistically reproducing dynamic life in the

real-time simulation of virtual environments is also a great
challenge. 

In this course, we will first present in detail  the different
approaches  to  creating  virtual  crowds,  including  particle
systems  with  flocking  techniques  using  attraction  and
repulsion forces,  copy and pasting techniques,  and agent-
based methods. 

We  will  survey  methods  for  animating  the  individual
members that make up a crowd, encompassing a variety of
approaches,  with  particular  focus  on  how example-based
synthesis  methods  can  be  adapted  for  crowds.  Agent
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architectures  for  scalable  crowd  simulation  will  also  be
presented.

The  course  will  cover  the  topics  of  real-time  crowd
rendering,  including image-based/impostor,  polygonal and
point-based techniques. The topic of Level of Detail (LOD)
crowd  animation  will  also  be  covered,  not  only  for
rendering,  but  also  for  animation.  Perceptual  issues  with
respect  to  the  appearance  and  movement  of  crowds  of
characters will be addressed.

New challenges in the production of real-time crowds for
games,  VR  systems  for  training  and  simulation  will  be
presented and analysed, with an emphasis on techniques for
highly  scalable  crowd  rendering.  The  course  will  be
illustrated  with  many  examples  from  recent  movies  and
real-time applications in Emergency Scenarios and Cultural
Heritage  (such  as  adding  virtual  audiences  in  Roman  or
Greek theaters).
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Daniel Thalmann is Professor and Director of The Virtual
Reality Lab (VRlab) at EPFL, Switzerland. He is a pioneer
in  research  on  Virtual  Humans.  His  current  research
interests  include  Real-time   Virtual  Humans  in  Virtual
Reality,  Networked Virtual  Environments,  Artificial  Life,
and Multimedia.  He is coeditor-in-chief of the Journal of
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the   editorial  board  of  the  Visual  Computer  and 4  other
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“Handbook of Virtual Humans”, published by John Wiley
and Sons and coauthor of several books. He received his
PhD in Computer Science in 1977 from the University of
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University Paul-Sabatier in Toulouse, France, in 2003.
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of  the  Computer  Science  department  in  Trinity  College
Dublin,  where  she  also  leads  the  Graphics,  Vision
andVisualisation  group  (GV2).  Her  research  interests
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Graphics,  Vision  and  Visualization  Group  in  Trinity
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cloth simulation.

Barbara Yersin is a PhD student at the VRLab, EPFL. She
has  achieved  her  Master  project  at  the  University  of
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simulation and animation.

Jonathan  Maïm  is  PhD  student  at  VRlab  at  the  Swiss
Federal  Institute  of  Technology  in  Lausanne  (EPFL).  In
April  2005,  he  receives  a  Master  Degree  in  Computer
Science from EPFL after achieving his Master Project at the
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Abstract

Crowds are part of our everyday experience; nevertheless, in virtual worlds they are still relatively rare. In the

past, main reasons hindering a wider use of virtual crowds in the real-time domain were their high demands on

both general and graphics performance coupled with high costs of content production. The situation is, though,

changing fast; market forces are pushing performance of the consumer hardware up, reaching and surpassing per-

formance of professional graphics workstations from just few years ago. With current consumer-grade personal

computers it is possible to display 3D virtual scenes with thousands of animated individual entities at interactive

framerates. In this report, we present the related works on the subject of groups and crowd simulation discussing

several areas such as behavioral simulation, crowd motion control, crowd rendering and crowd scenario author-

ing.

Keywords: Autonomous agents, behavioral animation, computer graphics, crowd simulations, flocking, image-
based rendering, multi-agent systems, impostors, virtual reality.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
Animation I.3.3 [Picture/Image Generation]: Display algorithms I.2.11 [Distributed Artificial Intelligence]: Mul-
tiagent systems

1. Introduction to crowd simulations

Although collective behavior has been studied since as early
as the end of the nineteenth century [LeB95], attempts to
simulate it by computer models are quite recent, with most
of the works done only in the mid and late nineties. In the
past years researchers from a broad range of fields such as
architecture [SOHTG99, PT01, TP02], computer graphics
[BG96, HB94, MT01, Rey87, TLC02b, UT02, BMdOB03],
physics [HM95, HFV00, FHV02], robotics [MS01],
safety science [Sim04, Sti00, TM95a], training sys-
tems [Bot95, VSMA98, Wil95], and sociology
[JPvdS01, MPT92, TSM99] have been creating simu-

lations involving collections of individuals. Nevertheless,
despite apparent breadth of the crowd simulation research
basis, it can be noted that interdisciplinary exchange of
ideas is rare; researchers in one field are usually not very
aware of works done in the other fields.

Most approaches were application-specific, focusing on
different aspects of the collective behavior, using differ-
ent modeling techniques. Employed techniques range from
those that do not distinguish individuals such as flow and
network models in some of the evacuation simulations
[TT92], to those that represent each individual as being con-
trolled by more or less complex rules based on physical laws
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[HFV00, HIK96], chaos equations [SKN98] or behavioral
models in training systems [Wil95] or sociological simula-
tions [JPvdS01].

We can distinguish two broader areas of crowd simula-
tions. The first one is focusing on a realism of behavioral
aspects with usually simple 2D visualizations like evacu-
ation simulators, sociological crowd models, or crowd dy-
namics models. In this area, a simulated behavior is usu-
ally from a very narrow, controlled range (for example, peo-
ple just flying to exit or people forming ring crowd struc-
tures) with efforts to quantitatively validate correspondence
of results to real world observations of particular situations
[TM95b]. Ideally, a simulation’s results would be then con-
sistent with data sets collected from field observations or
video footage of real crowds either by human observers
[SM99] or by some automated image processing method
[CYC99, MVCL98]. Visualization is used to help to under-
stand simulation results, but it is not crucial. In most cases, a
schematic representation, with crowd members represented
by colored dots, or sticky figures, is enough, sometimes even
preferable as it allows highlighting important information.

In the second area, a main goal is high quality visual-
ization (for example, in movie productions and computer
games), but usually the realism of the behavior model is not
the priority. What is important is a convincing visual result,
which is achieved partly by behavior models, partly by hu-
man intervention in the production process. A virtual crowd
should both look well and be animated in a believable man-
ner, the emphasis of the research being mostly on render-
ing and animation methods. Crowd members are visualized
as fully animated three dimensional figures that are textured
and lit to fit into the environment [TLC02b]. Here, behavior
models do not necessarily aim to match quantitatively the
real world, their purpose is more in alleviating of human an-
imators work, and to be able to respond to inputs in case of
interactive applications.

Nevertheless, a recent trend seems to be a convergence
of both areas, where visualization oriented systems are try-
ing to incorporate better behaviors models to ease creation
of convincing animations [Ant98, Cha04] and behavior ori-
ented models are trying to achieve better visualization, espe-
cially in the domain of evacuation simulators [Exo04, STE].
We can expect that the most demanding applications would
be training systems, where both valid replication of the be-
haviors and high quality visualization is necessary for a
training to be effective.

1.1. Requirements and constrains for crowd modeling

Real-time crowds bring different challenges compared to the
systems either involving small number of interacting char-
acters (for example, the majority of contemporary computer
games), or non-real-time applications (as crowds in movies,
or visualizations of crowd evacuations after off-line model

computations). In comparison with single-agent simulations,
the main conceptual difference is the need for efficient va-
riety management at every level, whether it is visualization,
motion control, animation or sound rendering. As everyday
experiences hint, virtual humans composing a crowd should
look different, move different, react different, sound differ-
ent and so forth. Even if assuming perfect simulation of a
single virtual human would be possible, still creating a sim-
ulation involving multiple such humans would be a difficult
and tedious task. Methods easing control of many charac-
ters are needed; however such methods should still preserve
ability to control individual agents.

In comparison with non-real-time simulations, the main
technical challenge is increased demand on computational
resources whether it is general processing power, graphics
performance or memory space. One of the foremost con-
straining factors for real-time crowd simulations is crowd
rendering. Fast and scalable methods both to compute be-
havior, able to take into account inputs not known in ad-
vance, and to render large and varied crowds, are needed.
While non-real-time simulations are able to take advantage
of knowing a full run of the simulated scenario (and there-
fore, for example, can run iteratively over several possible
options selecting the globally best solution), real-time simu-
lations have to react to the situation as it unfolds in the mo-
ment.

2. Crowd simulation areas

In order to create a full simulation of the crowd in the vir-
tual environment, many issues have to be solved. The areas
of relevance for crowd simulation and some associated ques-
tions include:

Crowd behavior generation: How should a virtual crowd
respond to changes in their surroundings? How should
agents respond to behaviors of other agents? What is an
appropriate way of modeling perception for many agents?
[Rey87, TT94, HB94, BCN97, BH97, Rey99, Mus00]
[UT02, NG03]

Crowd motion control: How should virtual entities move
around and avoid collisions with both a static environment
and dynamic objects? How can a group move in a coordi-
nated manner? [ALA∗01, GKM∗01, AMC03, LD04]

Integration of crowds in virtual environments:

Which aspects of the environment need to be mod-
eled? Which representation of environmental ob-
jects is best suited for fast behavior computation?
[FBT99, BLA02, KBT03, LMA03]

Virtual crowd rendering and animation: How to display
many animated characters fast? How to display a wide va-
riety of appearances? How to generate varied animations?
[ABT00, LCT01, TLC02a, WS02]

Interaction with virtual crowds: How and which infor-
mation should be exchanged between real and virtual
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humans? What is the most efficient metaphor to direct
crowds of virtual extras? [FRMS∗99, UdHCT04]

Generation of virtual individuals: How to generate a het-
erogeneous crowd? How to create a population with de-
sired distribution of features? [GKMT01, SYCGMT02]

Authoring of scenarios: How to author complex crowd
scenes in an efficient way? How to distribute crowd mem-
bers in designated areas? How to distribute features over
a population? [Che04, UdHCT04]

Many of these aspects are to a greater or lesser extent in-
tertwined. For example, efficiency of rendering constrains
the possible variety of behaviors and appearances; higher-
level behavior generation controls lower-level motion sys-
tems, but the behavior should also respond appropriately to
collisions encountered while moving; the behavior model
affects interaction possibilities; the environment representa-
tion affects possible behaviors; authoring tools allow han-
dling of more complex behavior and environment represen-
tations and so on.

3. Overview of crowd simulations

3.1. Crowd evacuation simulators

One of the largest areas where crowd behaviors have been
modeled is the domain of safety science and architecture
with the dominant application of crowd evacuation simu-
lators. Such systems model movements of a large number
of people in usually closed and well-defined spaces like
inner areas of buildings [TM95a], subways [Har00], ships
[KMKWS00] or airplanes [OGLF98]. Their goal is to help
designers to understand the relation between the organiza-
tion of space and human behavior [OM93].

The most common use of evacuation simulators is the
modeling of crowd behavior in case of forced evacuation
from a confined environment due to some threat like fire
or smoke. In such a situation, a number of people have to
evacuate the given area, usually through a relatively small
number of fixed exits. Simulations are trying to help with
answering questions like: Can the area be evacuated within
a prescribed time? Where do the hold-ups in the flow of peo-
ple occur? Where are the likely areas for a crowd surge to
produce unacceptable crushing pressure? [Rob99] The most
common modeling approach in this area is the use of cellular
automata serving both as a representation of individuals and
a representation of the environment.

Simulex [TM95a, Sim04] is a computer model simulating
the escape movement of persons through large, geometri-
cally complex building spaces defined by 2D floor plans and
connecting staircases. Each individual has attributes such as
position, body size, angle of orientation and walking speed.
Various algorithms as distance mapping, way finding, over-
taking, route deviation and adjustment of individual speeds
due to proximity of crowd members are used to compute

egress simulation, where individual building occupants walk
towards and through the exits.

K. Still developed a collection of programs named Legion
for simulation and analysis of the crowd dynamics in evacu-
ation from constrained and complex environments like stadi-
ums [Sti00]. Dynamics of crowd motion is modeled by mo-
bile cellular automata. Every person in the crowd is treated
as an individual, calculating its position by scanning its local
environment and choosing an appropriate action.

3.2. Crowd management training systems

The modeling of crowds has also been essential in police and
military simulator systems used for training in how to deal
with mass gatherings of people.

CACTUS [Wil95] is a system developed to assist in plan-
ning and training for public order incidents such as large
demonstrations and marches. The software designs are based
on a world model in which crowd groups and police units
are placed on a digitized map and have probabilistic rules
for their interactive behavior. The simulation model repre-
sents small groups of people as discrete objects. The be-
havioral descriptions are in the form of a directed graph
where the nodes describe behavioral states (to which corre-
spond actions and exhibited emotions) and transitions rep-
resent plausible changes between these states. The transi-
tions depend on environmental conditions and probability
weightings. The simulation runs as a decision making ex-
ercise that can include pre-event logistic planning, incident
management and debriefing evaluation.

Small Unit Leader Non-Lethal Training System

[VSMA98] is a simulator for training US Marines Corps
in decision making with respect to the use of non-lethal
munitions in peacekeeping and crowd control operations.
Trainees learn rules of engagement, the procedures for
dealing with crowds and mobs and ability to make decisions
about the appropriate level of force needed to control,
contain, or disperse crowds and mobs. Crowds move within
a simulated urban environment along instructor-predefined
pathways and respond both to actions of a trainee and to
actions of other simulated crowds. Each crowd is character-
ized by a crowd profile - series of attributes like fanaticism,
arousal state, prior experience with non-lethal munitions,
or attitude toward Marines. During an exercise, the crowd
behavior computer model operates in real time and responds
to trainee actions (and inactions) with appropriate simulated
behaviors such as loitering, celebrating, demonstrating, riot-
ing and dispersing according to set of Boolean relationships
defined by experts.

3.3. Sociological models of crowds

Despite being a field primary interested in studying collec-
tive behavior, only a relatively small number of works on
crowd simulations have been done in sociology.
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McPhail et al. [MPT92] studied individual and collective
actions in temporary gatherings. Their model of the crowd
is based on perception control theory [Pow73] where each
separate individual is trying to control his or her experience
in order to maintain a particular relationship to others: in this
case it is a spatial relationship with others in a group. The
simulation program called GATHERING graphically shows
movement, milling, and structural emergence in crowds. The
same simulation system was later used by Schweingruber
[Sch95] to study the effects of reference signals common
to coordination of collective behavior and by Tucker et al.
[TSM99] to study formation of arcs and rings in temporary
gatherings.

Jager et al. [JPvdS01] modeled clustering and fighting in
two-party crowds. Crowd is modeled by a multi-agent simu-
lation using cellular automata with rules defining approach-
avoidance conflict. The simulation consists of two groups of
agents of three different kinds: hardcore, hangers-on and by-
standers, the difference between them consisting in the fre-
quency with which they scan their surroundings. The goal of
the simulation was to study effects of group size, size sym-
metry and group composition on clustering, and ’fights’.

3.4. Group behavior in robotics and artificial life

Researchers working in the field of artifical life are interested
in exploring how group behavior emerges from local behav-
ioral rules [Gil95]. Software models and groups of robots
were designed and experimented with in order to understand
how complex behaviors can arise in systems guided by sim-
ple rules. The main source of inspiration is nature, where,
for example, social insects efficiently solve problems such
as finding food, building nests, or division of labor among
nestmates by simple interacting individuals without an over-
seeing global controller. One of the important mechanisms
contributing to a distributed control of the behavior is stig-
mergy, indirect interactions among individuals through mod-
ifications of the environment [BDT99].

Dorigo introduced ant systems inspired by behaviors of
real ant colonies [Dor92]. Ant algorithms have been success-
fuly used to solve a variety of discrete optimization problems
including travelling salesman problem, sequential ordering,
graph colouring or network routing [BDT00]. Besides in-
sects, also groups of more complex organisms such as flocks
of birds, herds of animals and schools of fish have been stud-
ied in order to understand principles of their organization.
Recently, Couzin et al. presented a model how animals that
forage or travel in groups can make decisions even with a
small number of informed individuals [CKFL05].

Principles from biological systems were also used to de-
sign behavior controllers for autonomous groups of robots.
Mataric studied behavior-based control for a group of robots,
experimenting with a herd of 20 robots whose behavior
repertoire included safe wandering, following, aggregation,

dispersion and homing [Mat97]. Molnar and Starke have
been working on assignment of robotic units to targets
in a manufacturing environments using a pattern forma-
tion inspired by pedestrian behavior [MS01]. Martinoli ap-
plied swarm intelligence principles to autonomous collec-
tive robotics, performing experiments with robots that were
gathering scattered objects and cooperating to pull sticks out
of the ground [Mar99]. Holland and Melhuish experimented
with a group of robots doing sorting of objects based on ant
behaviors where ants sort larvae and cocoons [HM99]. In an
interesting work a robot was used to control animal behav-
ior, Vaughan et al. developed a mobile robot that gathers a
flock of real ducks and manoeuvres them safely to a specied
goal position [VSH∗00].

3.5. Crowds in virtual worlds

In order to have a persuasive application using crowds in vir-
tual environments, various aspects of the simulation have to
be addressed, including behavioral animation, environment
modeling and crowd rendering. If there is no satisfactory
rendering, even the best behavior model will not be very
convincing. If there is no good model of a behavior, even a
simulation using the best rendering method will look dumb
after only few seconds. If there is no appropriate model of
the environment, characters will not behave believably, as
they will perform actions at wrong places, or not perform at
all.

The goal of behavioral animation is to ease the work
of designers by letting virtual characters perform au-
tonomously or semi-autonomously complicated motions
which otherwise would require large amounts of human an-
imators’ work; or, in case of interactive applications, the be-
havioral models allow characters to respond to user initi-
ated actions.

In order for a behavior to make sense, besides characters,
also their surrounding environment has to be modeled, not
just graphically but also semantically. Indeed, a repertoire of
possible behaviors is very dependent on what is and what is
not included in a model of the environment. It happens very
often that the environment is visually rich, but the interaction
of characters with it is minimal.

Finally, for interactive applications, it is necessary to dis-
play a varied ensemble of virtual characters in an efficient
manner. Rendered characters should visually ’fit’ into the en-
vironment, they should be affected by light and other effects
in the same manner as their surroundings.

Next, we will present representative works for each of
these topics grouped according to their main focus.

Behavioral animation of groups and crowds

Human beings are arguably the most complex known crea-
tures, therefore they are also the most complex creatures
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to simulate. A behavioral animation of human (and hu-
manoid) crowds is based on foundations of group simula-
tions of much more simple entities, notably flocks of birds
[Rey87, GA90] and schools of fish [TT94]. The first pro-
cedural animation of flocks of virtual birds was shown in
the movie by Amkraut, Girard and Karl called Eurhythmy,
for which the first concept [AGK85] was presented at The
Electronic Theater at SIGGRAPH in 1985 (final version was
later presented at Ars Electronica in 1989). The flock motion
was achieved by a global vector force field guiding a flow of
flocks [GA90].

In his pioneer work, Reynolds [Rey87] described a dis-
tributed behavioral model for simulating aggregate motion
of a flock of birds. The technical paper was accompanied
by an animated short movie called “Stanley and Stella in:
Breaking the Ice” shown at the Electronic Theater at SIG-
GRAPH ’87. The revolutionary idea was that a complex be-
havior of the group of actors can be obtained by simple lo-
cal rules for members of the group instead of some enforced
global condition. The flock is simulated as a complex par-
ticle system, with the simulated birds (called boids) being
the particles. Each boid is implemented as an independent
agent that navigates according to its local perception of the
environment, the laws of simulated physics, and the set of
behaviors. The boids try to avoid collisions with one another
and with other objects in their environment, match velocities
with nearby flock mates and move towards a center of the
flock. The aggregate motion of the simulated flock is the re-
sult of the interaction of these relatively simple behaviors of
the individual simulated birds. Reynolds later extended his
work by including various steering behaviors as goal seek-
ing, obstacle avoidance, path following or fleeing [Rey99],
and introduced a simple finite-state machines behavior con-
troller and spatial queries optimizations for real-time inter-
action with groups of characters [Rey00].

Tu and Terzopoulos proposed a framework for anima-
tion of artificial fishes [TT94]. Besides complex individual
behaviors based on perception of the environment, virtual
fishes have been exhibiting unscripted collective motions
as schooling and predator evading behaviors analogous to
flocking of boids.

An approach similar to boids was used by Bouvier et
al. [BG96, BCN97] to simulate human crowds. They used
a combination of particle systems and transition networks
to model crowds for the visualization of urban spaces. At
the lower level, attraction and repulsion forces, analogous
to physical electric forces, enable people to move around
the environment. Goals generate attraction forces, obstacles
generate repulsive force fields. Higher level behavior is mod-
eled by transition networks with transitions depending on
time, visiting of certain points, changes of local population
densities and global events.

Brogan and Hodgins [BH97, HB94] simulated group be-
haviors for systems with significant dynamics. Compared

to the boids, a more realistic motion is achieved by tak-
ing into account physical properties of the motion, such as
momentum or balance. Their algorithm for controlling the
movements of creatures proceeds in two steps: first, a per-
ception model determines the creatures and obstacles visible
to each individual, and then a placement algorithm deter-
mines the desired position for each individual given the lo-
cations and velocities of perceived creatures and obstacles.
Simulated systems included groups of one-legged robots, bi-
cycle riders and point-mass systems.

Musse and Thalmann [Mus00, MT01] presented a hier-
archical model for real-time simulation of virtual human
crowds. Their model is based on groups, instead of individu-
als: groups are more intelligent structures, individuals follow
the groups specification. Groups can be controlled with dif-
ferent levels of autonomy: guided crowds follow orders (as
go to certain place or play a particular animation) given by
the user in run-time; programmed crowds follow a scripted
behavior; and autonomous crowds use events and reactions
to create more complex behaviors. The environment com-
prises a set of interest points, which signify goals and way-
points; and a set of action points, which are goals that have
associated some actions. Agents move between waypoints
following Bezier curves.

Recently, another work was exploring group model-
ing based on hierarchies. Niederberger and Gross [NG03]
proposed an architecture of hierarchical and heteroge-
neous agents for real-time applications. Behaviors are de-
fined through specialization of existing behavior types and
weighted multiple inheritance for creation of new types.
Groups are defined through recursive and modulo based pat-
terns. The behavior engine allows for the specification of a
maximal amount of time per run in order to guarantee a min-
imal and constant framerates.

Ulicny and Thalmann [UT01, UT02] presented a crowd
behavior simulation with a modular architecture for multi-
agent system allowing autonomous and scripted behavior of
agents supporting variety. In their system, the behavior is
computed in layers, where decisions are made by behavioral
rules and execution is handled by hierarchical finite-state
machines.

Perceived complexity of the crowd simulation can be in-
creased by using level of details (LOD). O’Sullivan et al.
[OCV∗02] described a simulation of crowds and groups
with level of details for geometry, motion and behavior.
At the geometrical level, subdivision techniques are used
to achieve smooth rendering LOD changes. At the motion
level, the movements are simulated using adaptive levels of
detail. Animation subsystems with different complexities,
as a keyframe player or a real-time reaching module, are
activated and deactivated based on heuristics. For the be-
havior, LOD is employed to reduce the computational costs
of updating the behavior of characters that are less impor-
tant. More complex characters behave according to their
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motivations and roles, less complex ones just play random
keyframes.

Environment modeling for crowds

Environment modeling is closely related to the behavioral
animation. The purpose of the models of the environment
is to facilitate simulation of entities dwelling in their sur-
rounding environments. Believability of virtual creatures can
be greatly enhanced if they behave in accordance with their
surroundings. On the contrary, the suspense of disbelief can
be immediately destroyed if they perform something not ex-
pected or not permitted in the real world, such as passing
through the wall or walking on the water. The greatest ef-
forts have been therefore directed to representations and al-
gorithms preventing ’forbidden’ behaviors to occur: till quite
recently the two major artificial intelligence issues concern-
ing game development industry were collision avoidance
and path-planning [Woo99, DeL00].

Majority of the population in the developed world lives in
cities; it is there where most of the human activities take
place nowadays. Accordingly, most of the research have
been done for modelling of virtual cities. Farenc et al.
[FBT99] introduced an informed environment dedicated to
the simulation of virtual humans in the urban context. The
informed environment is a database integrating semantic and
geometrical information about a virtual city. It is based on a
hierarchical decomposition of a urban scene into environ-
ment entities, like quarters, blocks, junctions, streets and so
on. Entities can contain a description of the behaviors that
are appropriate for agents located on them; for example,
sidewalk tells that it should be walked on, or bench tells that
it should be sit on. Furthermore, the environment database
can be used for a path-finding that is customized according
to the type of the client requesting the path, so that, for ex-
ample, a pedestrian will get paths using sidewalks, but a car
will get paths going through roads.

Another model of a virtual city for a behavioral anima-
tion was presented by Thomas and Donikian [TD00]. Their
model is designed with the main emphasis on a traffic simu-
lation of vehicles and pedestrians. The environment database
is split into two parts - a hierarchical structure containing a
tree of polygonal regions, similar to the informed environ-
ment database; and a topological structure with a graph of
a road network. Regions contain information on directions
of circulation, including possible route changes at intersec-
tions. The agents then use the database to navigate through
the city.

In a recent work, Sung et al. [SGC04] presented a new
approach to control the behavior of a crowd by storing be-
havioral information into the environment using structures
called situations. Compared to previous approaches, envi-
ronmental structures (situations) can overlap; behaviors cor-
responding to such overlapping situations are then composed
using probability distributions. Behavior functions define

probabilities of state transitions (triggering motion clips) de-
pending on the state of the environment features or on the
past state of the agent.

On the side focused on more generic path-planning
issues, several works have been done. Kallmann et al.
[KBT03] proposed a fast path-planning algorithm based on
a fully dynamic constrained Delaunay triangulation. Bayazit
et al. [BLA02] used global roadmaps to improve group be-
haviors in geometrically complex environments. Groups of
creatures exhibited behaviors such as homing, goal search-
ing, covering or shepherding, by using rules embedded
both in individual flock members and in roadmaps. Tang
et al. [TWP03] used a modified A* algorithm working on
grid overlayed over a hight-map generated terrain. Recently,
Lamarche and Donikian [LD04] presented a topological
structure of the geometric environment for a fast hierarchical
path-planning and a reactive navigation algorithm for virtual
crowds.

Crowd rendering

Real-time rendering of a large number of 3D characters is a
considerable challenge; it is able to exhaust system resources
quickly even for state of the art systems with extensive mem-
ory resources, fast processors and powerful graphic cards.
’Brute-force’ approaches that are feasible for a few charac-
ters do not scale up for hundreds, thousands or more of them.
Several works have been trying to circumvent such limita-
tions by clever use of graphics accelerator capabilities, and
by employing methods profiting from the fact that our per-
ception of the scene as a whole is limited.

We can perceive in full details only a relatively small
part of a large collection of characters. A simple calculation
shows that to treat every crowd member as equal is rather
wasteful. Modern screens can display around two millions
of pixels at the same time, where fairly complex character
can contain approximately ten thousand triangles. Even if
assuming that every triangle would be projected to a single
pixel, and that there would be no overlap of characters, the
screen fully covered by a crowd would contain only around
two hundred simultaneously visible characters. Of course, in
reality the number would be much smaller, a more reason-
able estimate is around a few dozen of fully visible char-
acters, with the rest of the crowd being either hidden behind
these prominent characters or taking significantly less screen
space. Therefore it makes sense to take full care only of the
foremost agents, and to replace the others with some less
complex approximations. Level of details techniques then
switch visualizations according to position and orientation
of the observer.

Billboarded impostors are one of the methods used to
speed up crowd rendering. Impostors are partially trans-
parent textured polygons that contain a snapshot of a full
3D character and are always facing the camera. Aubel et
al. [ABT00] introduced dynamically generated impostors to
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render animated virtual humans. In their approach, an im-
postor creating process is running in parallel to full 3D sim-
ulations, taking snapshots of rendered 3D characters. These
cached snapshots are then used over several frames instead
of the full geometry until a sufficient movement of either
camera or a character will trigger another snapshot, refresh-
ing the impostor texture.

In another major work using impostors, Tecchia et al.
[TLC02a] proposed a method for real-time rendering of an-
imated crowd in a virtual city. Compared to the previous
method, impostors are not computed dynamically, but are
created in a preprocessing step. Snapshots are sampled from
viewpoints distributed in the sphere around the character.
This process is repeated for every frame of the animation.
In run-time, images taken from viewpoints closest to the
actual camera position are then used for texturing of the
billboard. Additionally, the silhouettes of the impostors are
used as shadows projected to a ground surface. Multitextur-
ing is used to add variety by modulating colors of the im-
postors. In a later work they added lighting using normal
maps [TLC02b]. Their method using precomputed impos-
tors is faster than dynamical impostors, however it is very
demanding on texture memory, which leads to lower image
quality as size of textures per character and per animation
frame have to be kept small.

A different possibility for a fast crowd display is to
use point-based rendering techniques. Wand and Strasser
[WS02] presented a multi-resolution rendering approach
which unifies image based and polygonal rendering. They
create a view dependant octree representations of every
keyframe of animation, where nodes store either a polygon
or a point. These representations are also able to interpolate
linearly from one tree to another so that in-between frames
can be calculated. When the viewer is at a long distance, the
human is rendered using point rendering; when zoomed in,
using polygonal techniques; and when in between, a mix of
the two.

An approach that has been getting new life is the one of
geometry baking. By taking snapshots of vertex positions
and normals, complete mesh descriptions are stored for each
frame of animation. Since current desktop PCs have large
memories many such frames can be stored and re-played. A
hybrid approach of both baked geometry and billboarding
is to be presented at I3d, where only a few actors are fully
geometrical while the vast number of actors are made up of
billboards [DHOO05].

What is common to all approaches is instancing of tem-
plate humans, by changing the texture or color, size, orien-
tation, animation, animation style and position. This is care-
fully taken care of to smoothly transition from one represen-
tation to another so as not to create pops in representation
styles. In the billboarding scenario this is done by applying
different colors on entire zones such as torso, head, legs and
arms. This way the texture memory is used more efficiently

as the templates are more flexible. For the geometrical ap-
proaches these kind of differences are usually represented
using entirely different textures as the humans are too close
just to change basic colour for an entire zone [UdHCT04].

Crowds in non-real time productions

One of the domains with a fastest growth of crowd simu-
lations in recent years are special effects. While only ten
years ago, there were no digital crowds at all, nowadays al-
most every blockbuster has some, with music videos, tele-
vision series and advertisements starting to follow. In com-
parison with crowds of real extras, virtual crowds allow to
significantly reduce costs of production of massively popu-
lated scenes and allow for bigger creative freedom because
of their flexibility. Different techniques, as replications of
real crowd video footage, particle systems or behavioral an-
imation, have been employed to add crowds of virtual ex-
tras to shots in a broad range of movies, from historical
dramas [Tit97, Gla00, Tro04], through fantasy and science
fiction stories [Sta02, The03, Mat03], to animated cartoons
[The94, Ant98, A b98, Shr04].

The main factors determining the choice of techniques are
the required visual quality and the production costs allowed
for the project [Leh02]. It is common to use different tech-
niques even in a single shot in order to achieve the best vi-
suals - for example, characters in the front plane are usually
real actors, with 3D characters taking secondary roles in the
background.

Although a considerable amount of work was done on
crowds in movies, only relatively little information is avail-
able, especially concerning more technical details. Most
knowledge comes from disparate sources, for example, from
“making-of” documentary features, interviews with special
effect crew or industry journalist accounts. For big budget
productions, the most common approach is in-house devel-
opment of custom tools or suites of tools which are used
for a particular movie. As the quality of the animation is
paramount, large libraries of motion clips are usually used,
produced mainly by motion capture of live performers. All
production is centered around shots, most of the times only
few seconds long. In contrast to real-time simulations, there
is little need for continuity of the simulation over longer pe-
riods of the time. It is common that different teams of peo-
ple work on parts of the shots which are then composited in
post-processing.

The most advanced crowd animation system for non real-
time productions is Massive; used to create battle scenes for
The Lord of the Ringsmovie trilogy [Mas04]. InMassive, ev-
ery agent makes decisions about its actions depending on its
sensory inputs using a brain composed of thousands of logic
nodes [Koe02]. According to brain’s decision, the motion is
selected from extensive library of motion captured clips with
precomputed transitions. For example, in the second part
of the trilogy over 12 millions of motion captured frames
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(equivalent to 55 hours of animation) was used. Massive also
uses rigid body dynamics, a physics-based approach to facil-
itating realistic stunt motion such as falling, or animation of
accessories. For example, a combination of physics-based
simulation and custom motion capture clips was used to cre-
ate the scene of “The Flooding of Isengard” where orcs are
fleeing from a wall of water and falling down the precipice
[Sco03].

In comparison with real-time application, the quality of
motion and visuals in non real-time productions is far supe-
rior, however it comes at a great cost. For example for The
Lord of the Rings: The Two Towers, rendering of all digi-
tal characters took ten months of computations on thousands
computer strong render farm [Doy03].

Crowds in games

In current computer games virtual crowds are still relatively
rare. The main reason is that crowds are inherently costly,
both in terms of real-time resources requirements and for
costs of a production. Nevertheless, the situations is starting
to change, with real-time strategy genre leading the way as
increase of sizes of involved armies has direct effect on a
gameplay [Rom04, The04a].

The main concern for games is the speed of both ren-
dering and behavior computation. In comparison with non
real-time productions, the quality of both motion and ren-
dering is often sacrificed in a trade-off for fluidity. Similarly
to movies production, computer games often inject into vir-
tual world realism coming from real world by using large
libraries of animation, which are mostly motion captured.
The rendering uses level-of-details techniques, with some ti-
tles employing animated impostors [Med02].

To improve costs of behavior computations for games
that involve a large number of simulated entities, sim-
ulation level-of-detail techniques have been employed
[Bro02, Rep03]. In such techniques, behavior is computed
only for a characters that are visible or near to be visible to
a player. Characters are created in a space around the player
with parameters set according to some expected statistical
distributions, the player lives in a “simulation bubble”. How-
ever, handling simulation LOD is much more complex as
handling of rendering LOD. It is perfectly correct not to
compute visualization for agents that are not visible, but not
computing behaviors for hidden agents can lead to an inco-
herent world. In some games it is common that the player
causes some significant situation (for example, traffic jam),
looks away, and then after looking back, the situation is
changed in an unexpected way (a traffic jam is “magically”
resolved).

In case the scenario deals with hundreds or thousands of
entities, many times the selectable unit with distinct behav-
ior is a formation of troops, not individual soldiers. What
appears to be many entities on the screen is indeed only

one unit being rendered as several visually separated parts
[Sho00, Med02, Pra03].

A special case are sport titles such as various football,
basketball or hockey simulations, where there is a large
spectator crowd, however only of very low details. In the
most cases there is not even a single polygon for every
crowd member (compared to individual impostors in strat-
egy games). Majority of the crowd is just texture with trans-
parency applied to stadium rows, or to a collection of rows,
and only few crowd members, close to the camera can be
very low polygon count 3D models.

Crowd scenario authoring

No matter how good is a crowd rendering or a behavior
model, a virtual crowd simulation is not very useful, if it
is too difficult to produce a content for it. The authoring pos-
sibilities are an important factor influencing the usability of
crowd simulation system, especially when going beyond a
limited number of "proof-of-concept" scenarios. When in-
creasing the number of involved individuals it becomes more
difficult to create unique and varied content of scenarios with
large numbers of entities. Solving one set of problems for
crowd simulation (such as fast rendering and behavior com-
putation for large crowds) creates a new problem of how to
create content for crowd scenarios in an efficient manner.

Only recently, researchers started to explore the ways how
to author crowd scenes. Anderson et al. [AMC03] achieved
interesting results for a particular case of flocking animation
following constrains. Their method can be used, for instance,
to create and animate flocks moving in shapes. Their algo-
rithm generates a constrained flocking motion by iterating
simulation forwards and backwards. Nevertheless, their al-
gorithm can get very costly when increasing the number of
entities and simulation time.

Ulicny et al. [UdHCT04] proposed a method to create
complex crowd scenes in an intuitive way using a Crowd-
Brush tool. By employing a brush metaphor, analogous to
the tools used in image manipulation programs, the user can
distribute, modify and control crowd members in real-time
with immediate visual feedback. This approach works well
for creation and modification of spatial features, however the
authoring of temporal aspects of the scenario is limited.

Sung et al. [SGC04] used a situation-based distributed
control mechanism that gives each agent in a crowd specific
details about how to react at any given moment based on
its local environment. A painting interface allows to spec-
ify situations easily by drawing their regions on the envi-
ronment directly like drawing a picture on the canvas. Com-
pared to previous work where the user adds, modifies and
deletes crowd members, here the interface operates on the
environment.

Chenney [Che04] presented a novel technique for repre-
senting and designing velocity fields using flow tiles. He ap-
plied his method on a city model with tiles defining the flow
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of people through the city streets. Flow tiles drive the crowd
using the velocity to define the direction of travel for each
member. The use of divergence free flows to define crowd
motion ensures that, under reasonable conditions, the agents
do not require any form of collision detection.

4. Discussion

We presented an overview of the works on crowd simula-
tions done in different fields such as sociology, safety sci-
ence, training systems, computer graphics or entertainment
industry. Based on the analysis of published research works
and data available on industry applications, we made follow-
ing observations.

Domain specificity: While some of the know-how is
transferable across the fields, each of the domains dealing
with crowds poses unique challenges and requires different
solutions. It is indeed the targeted application that drives
most of the design choices while creating a simulation of
the crowd. There is no "silver bullet" solution, the ultimate
crowd simulation that would be fitting all purposes. Fea-
tures that are advantageous for one purpose are disadvan-
tages in the other and trade-offs have to be resolved in a
different manner. For example, most of the crowd evacua-
tion simulators use discrete 2D grid representation of the
world as it is easier to handle, to analyze and to validate.
However, such representation is too coarse for crowd simu-
lations with 3D articulated bodies. The controller that drives
a virtual humanoid in a movie or a computer game has to
be more complex than the behavior model that drives 2D
dots. It is not enough to decide global position and orien-
tation of the entity; features like type of the motion, its dy-
namics and transition, or biomechanical constrains have to
be taken into account. A simple re-application of evacua-
tion models to 3D visualizations leads to awkward, unreal-
istic looking animations. Humans can get easily enchanted
by seeing artificial objects performing behaviors that are not
expected from them (such as geometrical primitives fleeing
in 2D labyrinth), but are very critical at evaluating of (what
are expected to be) the other people. Motions that look rea-
sonable for 2D dots can look very artificial when applied
to virtual humans. Even a relatively straightforward tran-
sition from segmented skeletons to fully skinned bodies in
many cases reveals disturbing imperfections in the motion.
For applications where the visual quality is the most impor-
tant (as in movies or games), the behavior has to be con-
strained by availability of motions and transitions among the
motions (for example, when using physically based simula-
tion [HB94] or motion graphs [SGC04]).

Application focus: The consequence of the crowd mod-
els being domain specific is that in the majority of cases the
applications are focusing either on the realism of behavioral
aspects, or on the quality of the visualization. The most rep-
resentative examples of the former category are evacuation
simulations, which are usually validated on a large scale sta-

tistical parameters such as the number of the people passing
through a particular exit in a defined time interval. Behaviors
of individuals are not detailed and not defined beyond the
narrow scope of the simulation; for example, before or after
the incident people are either static or have random Brown-
ian motion. The examples of the latter category are crowds in
movies and games, where the goal of the behavior model is
to alleviate designers from the tedious tasks of orchestration
of animation for large number of entities or to respond to the
actions of the user. The repertoire of behaviors is larger; for
example, as the most common use of virtual crowds are bat-
tles scenes, virtual armies have to be able to navigate around
the environment, to attack using different weapons and to
defend themselves against various enemies. The most chal-
lenging area for crowd simulation are training simulations
as there is a need for both behavior realism and persuasive
visualization. Present crowd management training systems
have been focusing on training strategical skills therefore
giving more emphasis on behavioral simulation with visu-
alization being only schematic. Tactical on-site training of
crowd management with the trainee immersed in the virtual
world is not yet explored.

Crowd models: It is difficult to transfer current knowl-
edge about real crowds from social sciences into crowd sim-
ulations. Most of the sociology work on crowds is about
macroscopic behavior, not directly dealing with actions of a
particular person in particular situation in particular time in-
stance. Methodological observations about microscopic be-
haviors are sparse: sociological models based on collected
real data have a limited scope. The quality of the crowd
behavior model is prominent in safety science applications;
however, despites calls for including more knowledge about
psychology into evacuation models [Sim95], most of the cur-
rent applications still model behavior of the crowd based
more on physical than on psychological principles. Demands
on crowd models are different for entertainment industry ap-
plications. For production purposes it is preferable to be able
to control the crowd instead of just observing the results of
the model. Emergent behavior has sense as far as it alleviates
designers from tedious tasks. The crowd can be controlled
"top-down" where the group behavior is imposed by design,
or "bottom-up", where the collective behavior emerges from
the behavior of individuals. Group based approaches have
the advantage of easier handling when group membership
does not need to change, however they bring the disadvan-
tage of overhead when group membership changes often.

Trends: Virtual crowds are a relatively new topic, with
majority of the research and commercial applications done
in the past few years, especially concerning real-time
crowds. The most visible trend is the increase of the number
of simulated entities; new techniques together with rapidly
evolving hardware allows to handle bigger crowds. Another
recently appearing trend is about going beyond simple quan-
titative improvements towards increasing of complexity of
entities at all levels - whether it is visualization, anima-
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tion, or behaviors. Both quantitative and qualitative improve-
ments require novel methods, as in the most cases it is not
straightforward to apply the method that work for small
number of entities to a large crowd. Similarly to other ar-
eas in computer graphics and virtual reality simulations, the
major driving force of the innovation starts to be the enter-
tainment industry resulting from the large investments due to
increasing revenues from entertainment applications. For ex-
ample, many movies with virtual crowds were blockbusters
with revenues in order of hundreds of millions of the dollars
and more [Sta02, Mat03, The03, Shr04] allowing to finance
large internal research and development (R&D) teams. Even
the military, which used to be one of the largest traditional
sponsors of the simulation research, starts to use in some
cases commercial entertainment technologies for its training
instead of costly own R&D [Mac01, ZHM∗03].

5. Future challenges and conclusions

We see several possible directions for future research in the
area of interactive crowd simulations:

Heterogeneity: In current crowd simulation systems, the
whole crowd is constituted by the same type of agents.
Even while creating the individuality of the agents by
varying parameters, the principle of the behavior compu-
tation is the same for every entity. It is possible to create
a heterogeneous crowd simulation, where different agents
can have completely different behavior computation en-
gines. Such architecture could, for example, lead to an in-
crease of the behavioral variety, while keeping individuals
simpler compared to a homogeneous simulation with the
same variety.

Scalability: In order to increase the number of simu-
lated entities, the crowd simulation should be scalable
[SGC04]. This can be achieved, for example, by using
behavior and animation level-of-details[ACF01, AW04],
where there are a different computational demands for
agents, depending on their relative position to the ob-
server. The behavior model should then allow to work
with different fidelity, for example, by using iterative al-
gorithms, or also heterogeneous crowds could be em-
ployed.

Variety: The variety of the virtual crowd can be enhanced
by adapting methods, capable of producing higher levels
of the variety, for the crowd simulations. The natural can-
didates are methods, which deal with variety sources in
the real people, such as parametric generation of bodies
[Seo03] or faces [BV99].

Parallelization: The computation of the crowd simulation
can be speeded up by using parallelization [QMHZ03].
However, the parallelization of the agents becomes practi-
cal only for the hardware that supports a parallel execution
of more threads than there are potentially parallelizable
application components. For example, recently US mili-
tary experimented with a combat simulation running on

128 node Linux cluster handling 100.000 entities (which
means that each sequential node took care of on average
780 entities) [The04b].

The rapid adoption of the crowd simulation in movies and
other non real-time productions in recent years shows that
there is a great demand for virtual crowds. It is not so diffi-
cult to imagine why - humans are social creatures and real
world reflects this fact, most of the people are surrounded
by other people. It is therefore expected to see crowds in the
works of both fact and fiction.

A similar reasoning holds also for interactive virtual en-
vironments such as computer games, training systems or ed-
ucational applications - we expect to see them populated.
However, while in movies it can be still possible, even if
not practical, to use crowd of real extras, interactive appli-
cations have to rely fully on the virtual crowds. As already
current generation personal computers are capable of han-
dling thousands of real-time virtual characters, we believe
that in coming years there will be more and more interactive
virtual crowds.

We can expect to see a convergence between non real-
time and real-time domains, in a manner similar to other ar-
eas in computer graphics. The convergence will be fueled
both by increases in the power of both general purpose and
graphics processors and by the development of novel meth-
ods and algorithms. In non real-time applications, the real-
time methods can be used to improve the productivity for
creating crowd scenes because of shorter production cycles
and immediacy of the changes allowing new ways of author-
ing. On the other hand, in real-time applications, there will
be improvements in quality of both rendering and behaviors
moving towards the results possible before only by lengthy
computations in non-real time productions.
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__________________________________________________________________________
Abstract
Interactive systems, games, VR and multimedia systems require more and more flexible Virtual Humans
with individualities. There are mainly two approaches: 
1) Recording the motion using motion capture systems, then to try to alterate such a motion to create this
individuality. This process is tedious and there is no reliable method at this stage.
2) Creating computational models which are controlled by a few parameters. One of the major problem is
to  find  such models  and to  compose them to  create  complex  motion.  Such models  can be  created  for
walking, grasping, but also for groups and crowds.

___________________________________________________________________________________________________

1. Introduction
     

Virtual  humans simulations are  becoming each time
more popular.  Nowadays many systems are available to
animate virtual humans. Such systems encompass several
different  domains,  as:  autonomous  agents  in  virtual
environments, human factors analysis, training, education,
virtual  prototyping,  simulation-based  design,  and
entertainment. In the context of Virtual Humans, a Motion
Control Method (MCM) specifies how the Virtual Human
is  animated  and  may  be  characterized  according  to  the
type of information it privileged in animating this Virtual
Human.  For  example,  in  a  keyframe  system  for  an
articulated  body,  the  privileged  information  to  be  The
problem is basically to be able to generate variety among a
finite set of motion requests and then to apply it to either
an  individual  or  a  member  of  a  crowd.  A  single
autonomous agent and a member of the crowd present the
same kind of 'individuality'. The only difference is at the
level of the modules that control the main set of actions.
With this formulation, one can also see that the personality
of an agent (i.e. the set of noisy actions) can be preserved
whenever it is in a crowd, alone. Figure 1 shows a group
of Virtual Humans in a room and Figure 2 Virtual Humans
in city.

The problem is basically to be able to generate variety
among a finite set of motion requests and then to apply it
to either an individual or a member of a crowd. A single
autonomous agent and a member of the crowd present the
same kind of 'individuality'. The only difference is at the
level of the modules that control the main set of actions.
With this formulation, one can also see that the personality
of an agent (i.e. the set of noisy actions) can be preserved
whenever it is in a crowd, alone.

Figure 1. A group of Virtual Humans

Figure 2. Virtual Humans in a city 

To  create  this  flexible  Virtual  Humans  with
individualities, there are mainly two approaches:

• Recording  the  motion  using  motion  capture
systems  (magnetic  or  optical),  then  to  try  to
alterate  such  a  motion  to  create  this
individuality. This process is tedious and there is
no reliable method at this stage. 
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• Creating  computational  models  which  are
controlled  by  a  few  parameters.  One  of  the
major  problem is  to  find  such  models  and  to
compose them to create complex motion. Such
models  can  be  created  for  walking,  running,
grasping,  but  also  for  interaction,  groups,  and
crowds.

2. Motion Capture and Retargeting

The first approach consists in recording the motion (Fig.
3)  using  motion  capture  systems  (magnetic  or  optical),
then  to  try  to  alterate  such  a  motion  to  create  this
individuality.  This  process  is  tedious  and  there  is  no
reliable method at this stage. Even if it  is fairly easy to
correct one posture by modifying its angular parameters
(with  an  Inverse  Kinematics  engine,  for  instance),  it
becomes a difficult  task to perform this  over the whole
motion  sequence  while  ensuring  that  some  spatial
constraints  are  respected over  a  certain time range,  and
that  no  discontinuities  arise.  When one  tries  to  adapt  a
captured motion to  a  different  character,  the  constraints
are usually violated, leading to problems such as the feet
going into the ground or a hand unable to reach an object
that the character should grab. The problem of adaptation
and  adjustment  is  usually  referred  to  as  the  Motion
Retargeting Problem. 

Figure 3. Motion capture

Witkin and Popovic [WP95] proposed a technique for
editing motions, by modifying the motion curves through
warping  functions  and  produced  some  of  the  first
interesting results.  In a more recent paper [PW99],  they
have extended their method to handle physical elements,
such as mass and gravity, and also described how to use
characters with different numbers of degrees of freedom.
Their algorithm is based on the reduction of the character
to an abstract character which is much simpler and only
contains  the  degrees  of  freedom  that  are  useful  for  a
particular  animation.  The  edition  and  modification  are
then computed on this  simplified character  and mapped
again onto the end user skeleton. Bruderlin and Williams
[BW95] have described some basic facilities to change the
animation,  by  modifying  the  motion  parameter  curves.
The user can define a particular posture at time t, and the
system  is  then  responsible  for  smoothly  blending  the
motion  around  t  .  They  also  introduced  the  notion  of
motion  displacement  map,  which  is  an  offset  added  to
each motion curve. The Motion Retargeting Problem term

was brought up by Michael Gleicher [G98]. He designed a
space-time constraints solver, into which every constraint
is added, leading to a big optimisation problem. He mainly
focused  on  optimising  his  solver,  to  avoid  enormous
computation  time,  and  achieved  very  good  results.
Bindiganavale  and  Badler  [BB98]  also  addressed  the
motion  retargeting  problem,  introducing  new  elements:
using the zero-crossing of the second derivative to detect
significant changes in the motion, visual attention tracking
(and the way to handle the gaze direction) and applying
Inverse Kinematics to enforce constraints, by defining six
sub-chains (the two arms and legs, the spine and the neck).
Finally, Lee and Shin [JS99] used in their system a coarse-
to-fine hierarchy of B-splines to interpolate the solutions
computed by their Inverse Kinematics solver.  They also
reduced the complexity of the IK problem by analytically
handling the degrees of freedom for the four human limbs

Lim and Thalmann [LT00] have addressed an issue of
solving customers’ problems when applying evolutionary
computation. Rather than the seemingly more impressive
approach  of  wow-it-all-evolved-  from-nothing,  tinkering
with existing models can be a more pragmatic approach in
doing so. Using interactive evolution, they experimentally
validate this point on setting parameters of a human walk
model for computer animation while previous applications
are  mostly  about  evolving  motion  controllers  of  far
simpler creatures from scratch. 

Given a captured motion associated to its Performer
Skeleton,  we decompose  the  problem of  retargeting  the
motion to the End User Skeleton into two steps

• First,  computing  the  Intermediate  Skeleton
matrices by orienting the Intermediate Skeleton
bones to reflect the Performer Skeleton posture
(Motion Converter).  

• Second, setting the End User Skeleton matrices
to  the  local  values  of  the  corresponding
Intermediate Skeleton matrices.

The first task is to convert the motion from one hierarchy
to  a  completely  different  one.  We  introduce  the
Intermediate Skeleton model to solve this, implying three
more  subtasks:  manually  set  at  the  beginning  the
correspondences between the two hierarchies,  create  the
Intermediate Skeleton and convert the movement. We are
then  able  to  correct  the  resulting  motion  and  make  it
enforce Cartesian constraints by using Inverse Kinematics.
When  considering  motion  conversion  between  different
skeletons,  one quickly notices that it  is very difficult  to
directly map the Performer Skeleton values onto the End
User  Skeleton,  due  to  their  different  proportions,
hierarchies  and  axis  systems.  This  raised  the  idea  of
having  an  Intermediate  Skeleton:  depending  on  the
Performer Skeleton posture, we reorient its bones to match
the same directions. We have then an easy mapping of the
Intermediate Skeleton values onto the End User Skeleton.
The  first  step  is  to  compute  the  Intermediate  Skeleton
(Anatomic  Binding  module).  During  the  animation,
motion conversion takes two passes, through the Motion
Converter  and  the  Motion  Composer  (which  has  a
graphical user interface).

3. Creating Computational Models
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The second approach consists  in  creating computational
models which are controlled by a few parameters. One of
the major problem is to find such models and to compose
them  to  create  complex  motion.  Such  models  can  be
created for example for walking.

Walking has global and specific characteristics. From
a  global  point  of  view,  every  human-walking  has
comparable joint angle variations. However, at a close-up,
we notice that individual walk characteristics are overlaid
to the global walking gait.

We  use  the  walking  engine  described  in  [BMT90]
which  has  been  extended  in  the  context  of  a  european
project  on  virtual  human  modeling  [BCH95].  Our
contribution consists in integrating the walking engine as a
specialized action in the animation framework. Walking is
defined  as  a  motion  where  the  center  of  gravity
alternatively balances from the right to the left side. It has
the following characteristics

• at any time, at least one foot is in contact with
the floor, the ‘single support’ duration (ds).

• there exists a short instant during the walk cycle,
where both feet are in contact with the floor, the
‘double support’ duration (dds).

• it  is  a  periodic  motion  which  has  to  be
normalized  in  order  to  adapt  to  different
anatomies.

The  joint  angle  variations  are  synthesized  by  a  set  of
periodic motions which we briefly mention here:

• sinus functions with varying amplitudes and
frequencies for the humanoid’s global
translations (vertical, lateral and frontal) and the
humanoid’s pelvic motions (forward/backward,
left/right and torsion) 

• periodic functions based on control points and
interpolating hermite splines.They are applied to
the hip flexion, knee flexion, ankle flexion, chest
torsion, shoulder flexion and elbow flexion. 

The  parameters  of  the  joint  angle  functions  can  be
modified  in  a  configuration  file  in  order  to  generate
personalized  walking  gaits,  ranging  from  tired  to
energetic, sad to happy, smart to silly. The algorithm also
integrates  an  automatic  speed  tuning  mechanism which
prevents  sliding  on  the  supporting  surface.  Many  high
level  parameters  can  be  adjusted  dynamically,  such  as
linear  and  angular  velocity,  foot  step  locations  and  the
global  walk  trajectory.  The  walk  engine  has  been
augmented by a specialized action interface  and its  full
capacity  is  therefore  available  within  the  animation
framework. The specialized action directly exports most
common high level  parameter adjustment functions.  For
fine-tuning,  it  is  still  possible  to  explicitly  access  the
underlying motion generator. The walk animation engine
has  been  developed  in  the  early  nineties.  However  it
suffered  from  not  being  easily  combined  with  other
motions, for example a walking human giving a phone call
with a wireless phone was hardly possible. Now, that the
walking  engine  is  integrated  as  a  specialized  action,  a
walking  and  phoning  human  is  easily  done,  simply  by
performing the walk together with a ‘phone’-keyframe for

example.  In  Figure  4,  we  show  an  example  of
parameterized. 

Figure 4. Individualized walking

More recently, Glardon et al. [GBT04] have proposed
a novel approach to generate new generic human walking
patterns using motion-captured data, leading to a real-time
engine intended for virtual humans animation. The method
applies  the  PCA  (Principal  Component  Analysis)
technique on motion data acquired by an optical system to
yield  a  reduced  dimension  space  where  not  only
interpolation,  but  also  extrapolation  are  possible,
controlled  by  quantitative  speed  parameter  values.
Moreover,  with  proper  normalization  and  time  warping
methods,  the  generic  presented  engine  can  produce
walking motions with continuously varying human height
and  speed  with  real-time  reactivity.  Figure  5  shows
examples.

Figure 5. Examples of PCA-based walking humans

4. Crowds and Groups

Animating  crowds  [MT01]  is challenging  both  in
character animation and a virtual city modeling.  Though
different textures and colors may be used, the similarity of
the virtual people would be soon detected by even non-
experts,  say,  “everybody  walks  the  same  in  this  virtual
city!”. It is, hence, useful to have a fast and intuitive way
of  generating  motions  with  different  personalities
depending  on  gender,  age,  emotions,  etc.,  from  an
example  motion,  say,  a  genuine  walking  motion.  The
problem is basically to be able to generate variety among a
finite set of motion requests and then to apply it to either
an individual or a member of a crowd. It also needs very
good tools to tune the motion [EBM00].
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The proposed solution addresses two main issues: i)
crowd  structure  and  ii)  crowd  behavior.  Considering
crowd  structure,  our  approach  deals  with  a  hierarchy
composed of crowd, groups and agents, where the groups
are the most complex structure containing the information
to be distributed among the individuals. Concerning crowd
behavior,  our  virtual  agents  are  endowed with  different
levels of autonomy. They can either act according to an
innate  and  scripted  crowd  behavior  (programmed
behavior), react as a function of triggered events (reactive
or autonomous behavior) or be guided by an interactive
process  during  simulation  (guided  behavior).  We
introduced the term <guided crowds> to define the groups
of virtual agents that can be externally controlled in real
time  [MBC98].  Figure  6  shows  a  crowd  guided  by  a
leader.

Figure 6. Crowd guided by a leader

In our  case,  the  intelligence,  memory,  intention and
perception are focalized in the group structure. Also, each
group can obtain one leader.  This leader can be chosen
randomly by the crowd system, defined by the user or can
emerge from the sociological rules. Concerning the crowd
control  features,  The  crowd  aims  at  providing
autonomous,  guided  and  programmed  crowds.  Varying
degrees  of  autonomy  can  be  applied  depending  on  the
complexity of the problem. Externally controlled groups,
<guided groups>, no longer obey their scripted behavior,
but act according to the external specification. At a lower
level, the individuals have a repertoire of basic behaviors
that  we  call  innate  behaviors.  An  innate  behavior  is
defined  as  an  “inborn”  way  to  behave.  Examples  of
individual innate behaviors are goal seeking behavior, the
ability  to follow scripted or guided events/reactions,  the
way  trajectories  are  processed  and  collision  avoided.
While the innate behaviors are included in the model, the
specification of scripted behaviors is done by means of a
script  language.  The groups  of  virtual  agents  whom we
call  <programmed groups> apply  the  scripted behaviors
and do not need user intervention during simulation. Using
the script language, the user can directly specify the crowd
or  group  behaviors.  In  the  first  case,  the  system
automatically distributes the crowd behaviors among the
existing groups. Events and reactions have been used to
represent behavioral rules. This reactive character of the
simulation  can  be  programmed  in  the  script  language
(scripted  control)  or  directly  given  by  an  external
controller. We call the groups of virtual agents who apply
the behavioral rules <autonomous groups>.

The train station simulation (Figure 7) includes many
different  actions  and  places,  where  several  people  are

present and doing different things. Possible actions include
“buying a ticket”,  “going to shop“,  ”meeting someone”,
“waiting  for  someone”,  “making  a  telephone  call”,
“checking  the  timetable”,  etc.  This  simulation  uses
external  control  to  guide  some  crowd behaviors  in  real
time. 

Figure 7. Train station simulation.

More  recently,  we  developed  a  new  crowd  engine
allowing to display up to 50'000 thousands virtual humans
in real-time. This makes Computational models even more
important. Figure 8 shows two examples.

Figure 8. Examples of large crowds.

5. Perception

Let’s now consider the simulation of a referee during a
tennis match. He has to decide if the ball is out or in. One
solution is to calculate the intersection between the impact
point  of  the ball  and the court  lines. Such an analytical
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calculation will lead to the decision that the ball is out for
0.01 millimeters. Ridiculous, nobody in reality could take
such  an  objective  decision,  this  is  not  believable.  The
decision should be based on the evaluation of the visual
aspect of the scene as perceived by the referee. 

In a  more general context, it is tempting to simulate
perception  by  directly  retrieving  the  location  of  each
perceived object straight from the environment. This is of
course the fastest solution (and has been extensively used
in video-games until the mid-nineties) but no one can ever
pretend that it is realistic at all (although it can be useful,
as we will  see later  on). Consequently, various ways of
simulating  visual  perception  have  been  proposed,
depending on whether geometric or semantic information
(or both) are considered. Renault et al. introduced first the
concept  of  synthetic  vision  [RMT90]  then  extended  by
Noser  et  al..[NRT95].  Tu  and  Terzopoulos  [TT94]
implemented  a  realistic  simulation  of  artificial  fishes.
Other  authors  [KL99]  [BG95]  [PO02]  also  provided
synthetic  vision approaches.  In the next  section, we are
going to compare now rendering-based vision, geometric
vision and database access.

5.1 Synthetic Vision

Rendering-based vision from Noser  and Renault  et  al.
[NRT95] is achieved by rendering of-screen the scene as
viewed by the agent. During the process, each individual
object in the scene is assigned a different colour, so that
once the 2D image has been computed, objects can still be
identified: it is then easy to know which object is in sight
by  maintaining  a  table  of  correspondences  between
colours  and  objects’  IDs.  Furthermore,  highly  detailed
depth  information  is  retrieved  from  the  view  z-buffer,
giving  a  precise  location  for  each  object.  An  other
application  of  synthetic  vision  is  real-time  collision
avoidance for multiple agents: in this case, each agent is
perceiving the others, and dynamically creates local goals
so that it avoids others while trying to reach its original
global goal.

Rendering-based  vision  is  the  most  elegant  method,
because it  is the more realistic  simulation of vision and
addresses  correctly  vision  issues  such  as  occlusion  for
instance.  However,  rendering  the  whole  scene  for  each
agent  is  very  costly  and  for  real-time  applications,  one
tend to favour geometric vision. 

One problem is how to decide that an object is in the
field of view of the Virtual  Human and that he/she can
identify it. We can imagine for example that the Virtual
Human’s  wife  is  in  front  of  the  VH  but  hidden  by  a
wardrobe and on the computed 2D image contains only
one pixel for the wife, can he recognize his wife based on
such a detail ?

Bordeux  et  al.  [BBT99]  has  proposed  a  perception
pipeline architecture into which filters can be combined to
extract  the  required  information.  The  perception  filter
represents the basic entity of the perception mechanism.
Such a filter receives a perceptible entity from the scene as
input,  extracts  specific  information about  it,  and finally
decides to let it pass through or not. 

The criteria used in the decision process depends on
the  perception  requirements.  For  virtual  objects,  they

usually involve considerations about the distance and the
relative direction of the object, but can also be based on
shape, size, colour, or generic semantic aspects, and more
generally on whatever the agent might need to distinguish
objects. Filters are built with an object oriented approach:
the very basic filter for virtual objects only considers the
distance to the object,  and its descendants refine further
the selection.

Actually, the structure transmitted to a filter contains,
along with the object to perceive, a reference to the agent
itself and previously computed data about the object. The
filter can extend the structure with the results of its own
computation, for example the relative position and speed
of  the  object,  a  probable  time to  impact  or  the  angular
extension of the object from the  agent s  point of  view.
Since a perception filter does not store data concerning the
objects that passed through it, it is fully reentrant and can
be used by several agents at the same time. This allows the
creation of  a  common pool  of  filters  at  the  application,
each  agent  then  referencing  the  filters  it  needs,  thus
avoiding useless duplication.

 
However, the major problem with Geometric vision is

to find the proper formulas when intersecting volumes (for
instance, intersecting the view frustum of the agent with a
volume  in  the  scene).  One  can  use  bounding  boxes  to
reduce the  computation time,  but  it  will  always be less
accurate  than  Synthetic  vision.  Nevertheless,  it  can  be
sufficient  for  many  applications  and,  as  opposed  to
rendering-based  vision,  the  computation  time  can  be
adjusted  precisely  by  refining the  bounding volumes of
objects. 

Database  access  makes  maximum  use  of  the  scene
data available in the application, which can be distributed
in  several  modules.  For  instance,  the  objects  position,
dimensions  and  shape  are  maintained  by  the  rendering
engine  whereas  semantic  data  about  objects  can  be
maintained  by  a  completely  separate  part  of  the
application.  Due  to  scalability  constraints  as  well  as
plausibility  considerations,  the  agents  generally  restrain
their perception to a local area around them instead of the
whole scene. This method is generally chosen when the
number  of  agents  is  high.  In  Musse’s  [MT01]  crowd
simulation,  human agents  directly  know the  position  of
their neighbours and compute coherent collision avoidance
trajectory.  As  said  before,  the  main  problem  with  the
method is the lack of realism, which can only be alleviated
by using one of the other methods. 

These  various  approaches  to  visual  perception  have
their advantages and disadvantages dependent essentially
of  the  complexity  and  the  context  of  the  scenes.  But,
finally no approach can solve common problematics as the
following  one:  What  makes  a  little  girl  to  be  lost  in  a
crowd ? The child will be lost if she just does not know
where is her family. Now imagine a virtual crowd where
each individual  is indexed. It  will  be extremely easy fo
find where is the girl (index 345) and the parents (index
748).  At  this  stage,  we  could  just  activate  a  function
making  the  girl  walking  towards  his  parents.  This  is
completely unrealistic from a behavioural point of view.

5.2 Memory
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Noser et al.  [NRT95] made a few years ago a character
trying  to  find  the  exit  from  a  maze.  To  simulate  the
memory process, they used an octree structure to store the
information see by the character. The results were that the
second time,  it  was  straightforward  for  the  character  to
find the  exit.  Again,  this  is  not  so convincing as never
somebody  could  remember  all  the  paths  inside  a  maze.
This  kind  of  memory  can  then  easily  be  linked  to  the
synthetic vision: the 2D rendering and the corresponding
z-buffer data are combined in order to determine whether
the corresponding voxel  of  the  scene is  occupied by an
object or not. By navigating through the environment, the
agent  will  progressively  construct  a  voxel-based
representation of it. Of course, a rough implementation of
this  method  would  suffer  from  dramatic  memory  cost,
because of the high volume required to store all voxels.
Noser proposed to use octrees instead which successfully
reduces the amount of data. Once enough information has
been gathered through exploration, the agent is then able
to locate things and find its way.

Peters  and  O’Sullivan  [PO02]  propose  a  system  of
memory based on what is referred to a “stage theory” by
Atkinson  and  Shiffrin  [AS68].  They  propose  a  model
where  information  is  processed  and  stored  in  3  stages:
sensory  memory,  short-term  memory,  and  long-term
memory. 

Although these approaches are quite interesting, they
do not solve the following simple problematics. Imagine
now  a  Virtual  Human  inside  a  room  containing  100
different  objects.  Which  objects  can  we  consider  as
memorized by the Virtual Human ? Can we decide that
when an object is seen by the actor, it should be stored in
his  memory.  To  answer  this  question,  we  have  just  to
consider the popular family game consisting in showing
20 objects during 2 minutes to people and asking them to
list  the  objects.  Generally  nobody is  able  to  list  the 20
objects. Now, how to model this inability to remember all
objects ?

5.3 Integration of Virtual Sensors

The modelling of an AVA gaining its independence with
regard to its  virtual  representation remains an important
theme  in  research  and  is  very  close  to  autonomous
robotics.  It  helps  also  to  understand  and  model  human
behaviour. 

The AVA collects information only through the virtual
sensors  described  earlier  (Figure  9).   We  assume  that
vision is the main canal of information between the AVA
and its environment as indicated by the standard theory in
neuroscience for multi-sensorial integration [E98].

Figure 9: A schematic representation of our  ALifeE.
Virtual  Vision  discovers  the  VE,  constructs  the
different types of Perception and updates the AVA’s
Cognitive Map to obtain a multi-perceptive mapping.
Then  the  Control  Architecture  uses  both  the
“cognitive  maps“  and  the  “memory  model“  to
interact with the learning, development, and control
processes of the AVA (Virtual Human Controller).

The sensorial modalities update the AVA’s cognitive
map  to  obtain  a  multi-sensorial  mapping.  For  example,
visual memory in the AVA's internal memory is used for a
global move from point A to point B. Should obstacles be
present, it would have to be replaced for a local move by
direct vision of the environment.

In our  approach,  we tried to  integrate all  the multi-
sensorial information from the AVA's virtual sensors. In
fact,  an  AVA  in  a  VE  may  have  different  degrees  of
autonomy and different sensorial canals depending on the
environment.  For  instance,  an  AVA  moving  in  a  VE
represented  by  a  well-lit  room  will  use  primarily  the
sensorial  information  of  vision.  However  if  the  light  is
turned off, the AVA will appeal to the acoustic or tactile
sensorial  information  in  the  same  way  a  human  would
move around in a dark room [SKA02].

From  this  observation  we  derive  the  hypotheses
underlying  our  ALifeE  framework  approach.  They  are
backed up by the  latest  research in  neuroscience  [P02],
which describes  a  partial  re-mapping at  the  behavioural
level of the human including:

Assignment: the prediction of the acoustic position of
an  object  from  its  visual  positions  requires  a
transformation  from its  eye-centred (vision  sensor)
coordinates  to  its  head-centred ones  (auditory
sensor). The comparison of these two types of results
can be used to  determine whether  the acoustic and
visual  signals  are  directly  connected  to  the  same
object.
Recoding:  the  choice  of  the  reference  frame  to
integrate the sensorial signals.
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6. Conclusion

In order to develop truly interactive multimedia systems
with Virtual Humans, games, and interactive movies, we
need a flexible way of animating these Virtual Humans.
Altering motion obtained from a motion capture system is
not  the  best  solution.  Only   computational  models  can
offer  this  flexibility  unless  powerful  motion  retargeting
methods  are  developed,  but  in  this  case  they  will  look
similar to computational models. 
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Abstract

To simulate realistic virtual crowds in real time, three main requirements need satisfaction. First of all, quantity,

i.e., the ability to simulate thousands of characters in real time. Secondly, quality, because each virtual human

composing a crowd needs to look unique in its appearance and animation. Finally, realism in terms of crowd

motion and navigation. In this tutorial, we explain how all objectives can be reached together. We first detail an

efficient and versatile architecture able to simulate thousands of characters in real time. Then, state-of-the-art

techniques to transform similar instances of a crowd into unique individuals are introduced. Finally, a hybrid

motion planning approach, able to manage navigation and obstacle avoidance in real time, is presented. Overall,

we show that it is possible to combine these three aspects to simulate large, realistic, and visually appealing

crowds in real time.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism - Animation

1. Introduction

In these turorial notes, we focus on technical aspects for cre-
ating an architecture sustaining real-time crowd simulation
composed of several thousand of varied individuals planning
for their path and avoiding collision. We begin the tutorial
with a description of the different virtual human representa-
tions commonly used in crowd simulation in Section 2 and
how each of them can cast shadows. Then, in Section 3, we
introduce our crowd architecture, and the pipeline developed
to process crowds in real time. In Section 4, we detail several
techniques that can be efficiently used to vary the appear-
ance of similar characters, instantiated from a same human
template. Finally, we also present in Section 5 a hybrid and
scalable motion planning architecture able to manage thou-
sands of characters in complex environments in real time.
Our conclusion is presented in Section 6.

2. Virtual Human Representations

In an ideal world, graphic cards would be able, at each frame,
to render an infinite number of triangles with an arbitrary
complex shading on them. To visualize crowds of virtual
humans, we would simply use thousands of very detailed

meshes, e.g., capable of hand and facial animation. Unfor-
tunately, in spite of the recent programmable graphics hard-
ware advances, we are still compelled to stick to a limited
triangle budget per frame. This budget is spent wisely to be
able to display dense crowds without too much perceptible
degradations. The concept of levels of detail (LOD), exten-
sively treated in the literature (see Luebke et al. [LWC∗02])
is exploited to meet our real-time constraints. For a crowd
of virtual humans specifically, and depending on the loca-
tion of the camera, a character is rendered with a particular
representation, resulting from the compromise of rendering
cost and quality. In this Section, we first introduce the data
structure we use to create and simulate virtual humans: the
human template. Then, we describe the three levels of de-
tail a human template uses: the deformable mesh, the rigid
mesh, and finally the impostor.

2.1. Human Template

A type of human such as a woman, man, or child is described
as a human template, which consists of :

• A skeleton, composed of joints, representing articulations,
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• A set of meshes, all respresenting the same virtual human,
but with a decreasing number of triangles,

• Several appearance sets, used to vary its appearance,
• A set of animation sequences which it can play.

Each rendered virtual human is derived from a human
template, i.e., it is an instance of a human template. In or-
der for all the instances of a same human template to look
different, we use several appearance sets, that allow to vary
the texture applied to the instances, as well as modulate the
colors of the texture (see Section 4).

2.2. Deformable Mesh

A deformable mesh is a representation of a human tem-
plate composed of triangles. It is enveloping a skeleton of
78 joints, used for animation: when the skeleton moves, the
vertices of the mesh follow smoothly its joint movements,
similarly to our skin. We call such an animation a skeletal
animation. Each vertex of the mesh is influenced by one or
a few joints. Thus, at every keyframe of an animation se-
quence, a vertex is deformed by the weighted transformation
of the joints influencing it. The corresponding equation is:

v(t) =
n

∑
i=1

χtiχ
−re f
i v

re f (1)

where v(t) is the deformed vertex at time t, χti is the global

transform of joint i at time t, χ
−re f
i is the inverse global

transform of the joint in the reference position, and vre f is
the vertex in its reference position. This technique is known
as skeletal subspace deformation, or skinning.

The skinning can be efficiently performed by the GPU:
the deformable mesh sends the joint transformations of its
skeleton to the GPU, that takes care of moving each vertex
according to its joint influences. However, it is important to
take into account the limitations of graphic cards (Shader
Model 2 & 3 [nvi06]), that can store only up to 256 atomic
values, i.e., 256 vectors of four floating points. The joint
transformations of a skeleton can be sent to the GPU as 4x4
matrices, i.e., four atomic values. This way, the maximum
number of joints a skeleton can have reaches:

256
4

= 64 (2)

When wishing to perform hand and facial animation, 64
joints are not sufficient. Our solution is to send each joint
transformation to the GPU as a unit quaternion and a transla-
tion, i.e., two atomic values. This allows to double the num-
ber of joints possible to send. Note that one usually does not
wish to use all the atomic structures of a GPU exclusively
for the joints of a skeleton, since it is usually exploited to
process other data.

Rendering deformable meshes is very costly, due primar-
ily to a pipeline flush occuring each time a new virtual hu-
man is rendered, and also to the expensive vertex skinning

and joint transmission. Nevertheless, it would be a great
quality drop to do without them, indeed :

• They are the most flexible representation to animate, al-
lowing even for facial and hand animation (if using a suf-
ficiently detailed skeleton),

• Such animation sequences, called skeletal animations, are
cheap to store: for each keyframe, only the transforma-
tion of deforming joints, i.e., those moved in the anima-
tion, need to be kept. Thus, a tremendous quantity of those
animations can be exploited in the simulation, increasing
crowd movement variety,

• Procedural and composited animations are suited for this
representation, e.g., idle motions can be generated on-the-
fly (see for example Egges et al. [EGMT06]),

• Blending is also possible for smooth transitions between
different skeletal animations.

Unfortunately, the cost of using deformable meshes as the
sole representation of virtual humans in a crowd is too pro-
hibitive. We therefore use them in a limited number and only
at the fore-front of the camera. Note that before switching to
rigid meshes, we use several deformable meshes, keeping
the same animation algorithm, but with a mesh of a decreas-
ing number of triangles.

Skinned and textured deformable meshes require skilled
designers. But once finished, they are automatically used as
the raw material to derive all subsequent representations: the
rigid meshes and the impostors.

2.3. Rigid Meshes

A rigid mesh is a precomputed geometric posture of a de-
formable mesh, thus sharing the very same appearance. A
rigid animation sequence is always inspired from an original
skeletal animation, and from an external point of view, both
look alike. However, the process to create them is different.
To compute a keyframe of a rigid animation, the correspond-
ing keyframe for the skeletal animation is retrieved. It pro-
vides a skeleton posture (or joint transformations). Then, as
a preprocess, each vertex is deformed on the CPU, in opposi-
tion to a skeletal animation, where the vertex deformation is
achieved online, and on the GPU. Once the rigid mesh is de-
formed, it is stored as a keyframe, in a table of vertices, nor-
mals (3D points), and texture coordinates (2D points). This
process is repeated for each keyframe of a rigid animation.
At runtime, a rigid animation is simply played as the suc-
cession of several postures or keyframes. There are several
advantages in using such a rigid mesh representation:

• It is much faster to display, because the skeleton defor-
mation and vertex skinning stages are already done and
stored in keyframes. The communication between the
CPU and the GPU is kept to a minimum, since no joint
transformation needs to be sent, and pipeline flushing is
significantly reduced.
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• It looks exactly the same as the skeletal animation used to
generate it.

The gain in speed brought by this new representation is con-
siderable. It is possible to display about 10 times more rigid
meshes than deformable meshes (see Section 3.5 for detailed
results). However, the rigid meshes need to be displayed far-
ther from the camera than deformable meshes, because they
allow for neither procedural animations, nor blending, and
no composited, facial, or hand animation is possible.

2.4. Impostor

An impostor is the less detailed representation, and exten-
sively exploited in the domain of crowd rendering [TLC02,
DHOO05,MR06]. An impostor represents a virtual human
with only two textured triangles, forming a quad, which is
enough to give the wanted illusion at long range from the
camera. Similarly to a rigid animation, an impostor anima-
tion is a succession of postures, or keyframes, inspired from
an original skeletal animation. The main difference with a
rigid animation is that it is only a 2D image of the posture
that is kept for each keyframe, instead of the whole geom-
etry. Creating an impostor animation is complex and time
consuming. Thus, its construction is achieved in a prepro-
cess, and the result is then stored into a database in a binary
format (see Section 3.4), similarly to a rigid animation. We
detail here how each keyframe of an impostor animation is
developed. The first step when generating such a keyframe
for a human template is to create two textures, or atlas:

• A normal map, storing in its texels the 3D normals as
RGB components. This normal map is necessary to ap-
ply the correct shading to the virtual humans rendered as
impostors. Indeed, if the normals were not saved, a terri-
ble shading would be applied to the virtual human, since
it is represented with only two triangles. Switching from
a rigid mesh to an impostor would thus lead to awful pop-
ping artefacts.

• A UVmap, storing in its texels the 2D texture coordinates
as RG components. This information is also very impor-
tant, because it allows to apply correctly a texture to each
texel of an impostor. Otherwise, we would need to gener-
ate an atlas for every texture of a human template.

Since impostors are only 2D quads, we need to store nor-
mals and texture coordinates from several points of view,
so that, at runtime, when the camera moves, we can display
the correct keyframe from the correct camera view point. In
summary, each texture described above holds a single mesh
posture for several points of view. This is why we also call
such textures atlas. We illustrate in Figure 1 a 1024x1024 at-
las for a particular keyframe. The top of the atlas is used to
store the UV map, and its bottom the normal map. The main
advantage of impostors is that they are very efficient, since
only two triangles per virtual human are displayed. Thus,
they constitute the biggest part of the crowd. However, their

Figure 1: A 1024x1024 atlas storing the UV map (above)

and the normal map (below) of a virtual human performing

a keyframe of an animation from several points of view.

rendering quality is poor, and thus they cannot be exploited
close to the camera. Moreover, the storage of an impostor
animation is very costly, due to the high number of textures
that need to be saved. We summarize in Table 2 the perfor-

Figure 2: Storage space in [Mb] for one second of an ani-
mation clip of (a) a deformable mesh, (b) a rigid mesh, and

(c) an impostor.

mance and animation storage for each virtual human repre-
sentation. We observe that each step down the representa-
tion hierarchy allows to increase by an order of magnitude
the number of displayable characters. We also note that the
faster the display of a representation the bigger the anima-
tion storage. Finally, rigid meshes and impostors are stored
in GPU memory, which is usually much smaller than CPU
memory. Figure 3 summarizes the shared resources inside a
human template.
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Figure 3: shared resources between representations inside a

human template.

2.5. Shadows

In our architecture, illumination ambiances are set from four
directional lights, whose direction and diffuse and ambient
colors are prealably (or interactively) defined by the de-
signer. The light coming from the sun is the only one pro-
voking shadows. As we lack a real-time global illumination
system, the three other lights are present to provide enough
freedom for the designer to give a realistic look to the scene.
This configuration has given us satisfaction as we mainly
work on outdoor scenes. See Figure 6 (left) and 7 for results.

Virtual humans cast shadows on the environment and, re-
ciprocally, the environment casts shadows on them. This is
achieved using a shadow mapping algorithm [Wil78] imple-
mented on the GPU. At each frame, virtual humans are ren-
dered twice:

• The first pass is from the directional light view perspec-
tive, i.e., the sun. The resulting z-buffer values are stored
in the shadow map.

• The second pass is from the camera view perspective.
Each pixel is transformed into light perspective space and
its z value is compared with the one stored in the shadow
map. Thus, it is possible to know if the current pixel is in
shadow or not.

So, we need to render twice the number of virtual humans

Figure 4: Shadowed scene with apparent directional light

frustum.

really present. Though with modern graphics hardware, ren-
dering to a z-only framebuffer is twice as fast as render-
ing to a complete framebuffer, one expects a certain drop in
the frame rate. Moreover, standard shadow mapping suffers
from important aliasing artefacts located at shadow borders.
Indeed, the resolution of the shadow map is finite, and the
bigger the scene, the more aliasing artefacts appear. To alle-
viate this limitation, several strategies are used:

• Dynamically constrain the shadow map resolution to vis-
ible characters, and

• Combine percentage closer filtering [RSC87] with
stochastic sampling [Coo86], to obtain fake soft shad-
ows [Ura05].

We now further describe how to dynamically constrain the
shadow map resolution to visible characters. A directional
light, as its name indicates, is defined only by a direction.
Rendering from a directional light implies using an ortho-
graphic projection, i.e., its frustum is a box, as depicted
in Figure 4. An axis-aligned bounding box (AABB) is a
box whose faces have normals that coincide with the basis
axes [MH99]. They are very compact to store; only its two
extreme points are necessary to determine the whole box.
AABB are often used as bounding volumes, e.g., in a first
pass of a collision detection algorithm, to efficiently elimi-
nate simple cases.

A directional light necessarily has an orthographic frus-
tum aligned along its own axes. So, we can consider this
frustum as an AABB. The idea is, at each frame, to compute
the box englobing all the visible virtual humans, so that it is
as tight as possible. Indeed, using an AABB as small as pos-
sible allows to have a less stretched shadow map. At each
frame, we compute this AABB in a four-step algorithm:

1. The crowd AABB is computed in world coordinates,
using visible navigation graph vertices. By default, the
AABB height is set to two meters, in order to bound the
characters at their full height.

2. The light space axes are defined, based on the light nor-
malized direction Lz:
Lx = normalize( (0,1,0)T ˆ Lz ).
Ly = normalize( Lz ˆ Lx ).
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3. The directional light coordinate system is defined as the
3x3 matrixMl = [Lx,Ly,Lz].

4. The eight points composing the AABB (in world coordi-
nates) are multiplied by M−1

l
, i.e., the transpose of Ml.

This operation expresses these points in our light coordi-
nate system.

Note that remultiplying the obtained points by Ml would
express the crowd AABB back into world coordinates. In
Figure 4 are illustrated the shadows obtained with this algo-
rithm. Practically, to be able to choose an adequate resolu-
tion given the situation, e.g., detailed shadows for characters
close to the camera, we use three different shadowmaps: one
for the shadows cast by the environment, one for the people
(deformable and rigid meshes) near the camera, and one for
people far from it (impostors).

3. Architecture

The main problem when dealing with thousands of char-
acters is the quantity of information that needs to be pro-
cessed for each one of them. Such a task is very demand-
ing, even for modern processors. Simple approaches, where
virtual humans are processed one after another, in no spe-
cific order, provokes costly state switches for both the CPU
and GPU. For an efficient use of the available computing
power, and to approach hardware peak performance, data
flowing through the same path need to be grouped. In this
Section, we present an architecture able to handle, early in
its pipeline, the sorting of virtual human related data into
grouped slots, allowing the simulation of thousands of char-
acters. Moreover, it is versatile enough to be stressed in very
different scenarii, e.g., in confined environments like an au-
ditorium or a classroom, as well as in large-scale environ-
ments like a crowded fun fair or city.

The Section is divided as follows: first, in Section 3.1,we
briefly introduce the human data structure our architecture
employs. Then, we delve into each of the pipeline stages
in Section 3.2. In Section 3.3, motion kits, a data structure
specifically developed for managing the different levels of
detail at the animation stage are described. Concerning effi-
ciency of storage and data management, we mainly employ
a database to store all the virtual human related data, as de-
tailed in Section 3.4. Finally, in Section 3.5, we show the
overall performance of our architecture.

3.1. Human Data Structures

Virtual human instances are shared in several data structures,
and a unique identifier is associated to each one of them.
Our crowd data structure is mainly composed of two arrays.
An array of body entities, and an array of brain entities. The
unique identifier of each virtual human is used to index these
arrays and retrieve specific data, which is distributed in a

Figure 5: Crowd architecture pipeline.

body and brain entity. Body data consists in all the param-
eters used at every frame, like the position and orientation
of the virtual human. Brain data is more related to behav-
ior parameters, and is less regularly exploited. By separating
these parameters from the body entity, we tighten the storage
of very often used data. Indeed, such a regrouping improves
performance: in a recent work [PdHCM∗06], while experi-
menting different steering methods, we observed that with
a varying number of characters in a very large scale (tens
of thousands), the performance of the different methods re-
mained about the same. Memory latency to jump from an
instance to the other was the bottleneck when dealing with
big crowds.

3.2. Pipeline Stages

In this Section, we first provide a short reminder on the navi-
gation graph structure, which is used for crowd motion plan-
ning (see Section 5), but also provides a very convenient
structure to process the virtual humans hierarchically instead
of individually. Then, we detail the stages of the pipeline il-
lustrated in Figure 5.

For a given scene, a navigation graph is provided and used
to steer virtual humans along predefined paths. The graph is
composed of a set of vertices, represented in the scene as
vertical cylinders where no collision with the environment
can occur. Two vertices can be connected by an edge, rep-
resented as a gate between two overlapping cylinders (see
Figure 8). When several cylinders overlap, their consecutive
gates delimit a corridor. In a scene, a path to follow is de-
fined as a sequence of gates to reach one after the other,
i.e., simple sub-goals for the chosen steering method (See
Section 5 for more details). During simulation, each vertex
keeps a list of the ids of virtual human currently travelling
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Figure 6: (left) Virtual humans navigating in a complex en-

vironment. (right) Similar image with apparent levels of de-

tail; in red: the rigid meshes, in green: the impostors.

Figure 7: Dense crowd in a large environment.

Figure 8: Virtual humans steering along a path sustained by

a navigation graph structure (in green and white). Overlap-

ping vertices form gates (in red). Consecutive gates on the

path form corridors (in black).

through it. Pettre et al. [PdHCM∗06,PGT07] fully detail the
necessary steps to construct navigation graph from an arbi-
trary 3D scene. Here follows the detailed description of each
pipeline stage.

The LOD Selector is the first stage of the pipeline. It
receives as input a navigation graph filled with virtual hu-

man ids and the camera view frustum. The role of the LOD
Selector entity is to categorize graph vertices, i.e., to score
each one of them for further processing. We have two dif-
ferent scores to attribute to each vertex. Firstly, a level of
detail (LOD), determined by finding the distance from the
vertex to the camera and its eccentricity from the middle of
the screen. This LOD score is then used to choose the appro-
priate virtual human representation inside the vertex. Sec-
ondly, the LOD Selector associates with each vertex a score
of interest, resulting in an environment divided into regions
of different interest (ROI). For each region, we choose a dif-
ferent motion planning algorithm. Regions of high interest
use accurate, but more costly techniques, while regions of
lower interest may exploit simpler methods (See Section 5
for more details).

The LOD Selector uses the navigation graph as a hierar-
chical structure to avoid testing individually each character.
The processing of data is achieved as follows: firstly, each
vertex of the graph is tested against the camera view frus-
tum, i.e., frustum culled. Empty vertices are not even scored,
nor further held in the process for the current frame; indeed,
there is no interest to keep them in the subsequent stages
of the pipeline. On the other hand, vertices filled with at
least one character and outside the camera view are kept,
but they are not assigned any LOD score, since they are out-
side the view frustum, and thus, their virtual humans are not
displayed. As for their ROI score, they get the lowest one:
no dynamic collision avoidance between pedestrians need be
achieved. However, even if they are not in the camera field,
virtual humans contained in these vertices need a minimal
simulation to sporadically move along their path. Without
care, when they quit the camera field, they immediately stop
moving, and thus, when the camera changes its point of view,
packages of stagnant characters suddenly move again, caus-
ing a disturbing effect for the user. Finally, the vertices that
are filled and visible are assigned a higher ROI score, and
then are further investigated to sort their embedded virtual
humans by human template, LOD, and appearance set.

At the end of this first stage, we obtain two lists. The first
one contains all virtual human ids, sorted by human tem-
plate, by LOD, and finally by appearance set. The second list
contains occupied vertices, sorted by ROI. Obtaining such
lists takes some time. However, it is very useful to group
data and process through the next stages of the pipeline. We
illustrate in the following pseudo-code how the first list is
typically used in the next stages of the pipeline:
For each human template:

apply human template common data

operations, e.g., get its skeleton,

For each LOD:

apply LOD common data operations,

e.g., enable LOD specific shader program,

For each appearance set:

apply appearance set common data

operations, e.g., bind textures,

For each virtual human id:

get body or brain structure from the id,

apply specific operations on it.

The second stage is the Simulator, which uses the second
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list to iterate through all ROI slots and obtain the correspond-
ing filled vertices. At this stage, virtual humans are consid-
ered as individual 3D points, and depending on the ROI, the
proper motion planning method is applied. Please, refer to
Section 5 for more details on the techniques used for each
ROI.

The Animator is responsible for the animation of the
characters, whichever the representation they are using. The
slots of visible virtual humans, sorted by human template,
LOD, and appearance set in the LOD Selection phase,
are the main data structure used in this stage. Below is
described the specific tasks that are achieved for the de-
formable meshes:

For each human template:

get its skeleton,

For each deformable mesh LOD:

For each appearance set:

For each virtual human id:

get the corresponding body,

update the animation time (between 0.0 and 1.0),

perform general skeletal animation,

perform facial skeletal animation,

perform hand skeletal animation.

Since the virtual humans are also sorted by LOD, we can it-
erate over the deformable meshes without having to check
that they actually are deformable. Performing a skeletal ani-
mation, whether it is for the face, the hands or all the joints
of a virtual human, can be summarized in four steps. First,
the correct keyframe, depending on the animation time, is
retrieved. Note that at this step, it is possible to perform
a blending operation between two animations. The final
keyframe used is then the interpolation of the ones retrieved
from each animation. The second step is to duplicate the
original skeleton relative joint matrices in a cache. Then,
in the cache, the matrices of the joints modified by the
keyframe are overwritten. Finally, all the relative matrices
(including those not overwritten) are multiplied to obtain
global matrices, and each of them is post-multiplied by the
inversed global matrices of the skeleton. Note that optional
animations, like facial animation, are usually performed only
for the best deformable mesh LOD, i.e., the most detailed
mesh, at the fore-front.

For the rigid meshes, the role of the Animator is much
reduced, since all the deformations are pre-computed (see
Section 2):

For each human template:

For each rigid mesh LOD:

For each appearance set:

For each virtual human id:

get the corresponding body,

update the animation time (between 0.0 and 1.0).

Note that we do not iterate over all LOD slots, since we
are only concerned with the rigid meshes. Once again, the
sorting achieved in the LOD Selection stage ensures that we
are exclusively iterating over rigid meshes, without costly
tests.

Finally, for the impostors, since a keyframe of an impos-
tor animation is only represented by two texture atlases, no

specific deformation needs to be achieved. However, we as-
sign the animator a special job: to update a new list of vir-
tual human ids, specifically sorted to allow a fast rendering
of impostors. Indeed, at initialization, and for each human
template, a special list of virtual human ids is created, sorted
by appearance set, impostor animation, and keyframe. The
first task achieved by the Animator is to reset the impos-
tor specific list in order to refill it accordingly to the current
state of the simulation. Then, to refill this list, an iteration is
performed over the current up-to-date list, the one sorted by
human template, LOD, and appearance set (updated in the
LOD Selection stage):

For each human template:

get its impostor animations,

For the only impostor LOD:

For each appearance set AS:

For each virtual human id:

get the corresponding body,

update the animation time (between 0.0 and 1.0),

get body’s current impostor animation id a,

get body’s current impostor keyframe id k,

put virtual human id in special list[AS][a][k].

This way, the impostor specific list is updated every time the
data passes through the Animator stage, and is thus ready to
be exploited at the next stage, the Renderer.

The Renderer represents the phase where draw calls are
issued to the GPU to display the crowd. As detailed in Sec-
tion 2.5, rendering shadows is a two-pass algorithm, and
achieved in this stage: first, deformable and rigid meshes,
and impostors are sequentially rendered from the point of
view of the sun, i.e., the main directional light. Then, they are
consecutively rendered from the point of view of the camera.
To diminish state change overhead, the number of draw calls
are minimized, thanks to our slots of visible humans sorted
by human template, LOD and appearance set. In the follow-
ing pseudo-code, we show the second pass in the deformable
mesh rendering process:

For each human template:

For each deformable mesh LOD:

bind vertex, normal, index, and texture buffer,

send to the GPU the joint ids influencing each vertex,

send to the GPU their corresponding weights,

For each appearance set:

send to the GPU texture specular parameters,

bind texture and segmentation maps,

For each virtual human id:

get the corresponding body,

send the joint orientations from cache,

send the joint translations from cache.

This second pass is preceded by another pass, used to com-
pute the shadows. Note that in this first pass, the process is
quite similar, although data useless for shadow computation
is not sent, e.g., normal and texture parameters. In this ren-
dering phase, one can see the full power of the sorted lists:
all the instances of a same deformable mesh have the same
vertices, normals and texture coordinates, Thus, these co-
ordinates need to be binded only once per deformable mesh
LOD. The same applies for the appearance sets: even though
they are used by several virtual humans, each needs to be
sent only once to the GPU. Note that each joint transforma-
tion is sent to the GPU as two vectors of four floating points
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(see Section 2.2), retrieved from the cache filled in the Ani-
mation phase.

For the rigid meshes, the process is quite different, since
all the vertex deformations have been achieved in a prepro-
cess. We develop here the second pass in pseudo-code:

For each human template:

For each rigid mesh LOD:

bind texture coordinate buffer,

bind indices buffer,

For each appearance set:

send to the GPU texture specular parameters,

bind texture and segmentation maps,

For each virtual human id:

get the corresponding body,

get the correct rigid animation keyframe,

bind its vertex and normal buffer.

In the rendering phase of the rigid meshes, only the texture
coordinates and indices can be binded at the LOD level, in
opposition to the deformable meshes, where all mesh data is
binded at this level. The reason is obvious: for a deformable
mesh, all the components representing its mesh information
(vertices, normals, etc.) are the same for all instances. It
is only later, on the GPU, that the mesh is deformed to fit
the skeleton posture of each individual. For a rigid mesh,
its texture coordinates, along with its indices (to access the
buffers), remain the same for all of their instances. How-
ever, since the vertices and normals are displaced in a pre-
process and stored in the keyframes of a rigid animation, it
is only at the individual level, where we know the animation
played, that their binding can be achieved. Note that since
the vertices sent to the GPU are already deformed, there is
no specific work to be achieved in the vertex shader. Con-
cerning the shadow computation phase, i.e., the first pass, the
pseudo-code is the same, but without sending useless data,
like normal and texture information.

Rendering impostors is fast, thanks to the virtual human
id list sorted by human template, appearance set, animation,
and keyframe, that is updated at the Animation phase. Here
follows the corresponding pseudo-code:

For each human template:

get its impostor animations,

For each appearance set:

bind texture and segmentation maps,

For each impostor animation:

For each keyframe:

bind normal map,

bind UV map,

For each virtual human id:

get the corresponding body,

get the correct point of view,

send to GPU texture coordinates where

to get the correct virtual human posture

and point of view.

The Path Planner is performing the collision avoidance
between virtual humans. It is at the Simulator stage that sub-
goals are set several frames ahead, and that the followed di-
rections are interpolated by steering methods. The Path Plan-
ner cares only for collision avoidance, and runs at a lower
frequency than the other presented stages. Note that we put
this stage and the next one, the Behavior, after the Renderer,
because the GPU is paralelly rendering. So, instead of wait-
ing for the frame to finish being rendered, we concurrently

use the CPU. The different algorithms used by the Path Plan-
ner are detailed in Section 5.

The Behavior is the phase exploiting the slots of virtual
humans reaching new navigation graph vertices. All along
the entire pipeline, virtual humans cannot change their cur-
rent animation or steering, because it would invalidate our
various sorted slots. This last stage is thus the only one which
is allowed to change the steering and current animation se-
quence of virtual humans. It is always achieved at the end of
the pipeline, one frame ahead. Basically, each time a charac-
ter is entering a new graph vertex (detected at the Simulator
phase), we apply a probability to change the steering and /
or animation. For instance, a character entering a new vertex
with a walk animation clip has a probability to start playing
another animation sequence, e.g., an idle one.

3.3. Motion Kits

We have developed three levels of representation for the
virtual humans: the deformable meshes, the rigid meshes,
and the impostors (see Section 2). When playing an anima-
tion sequence, a virtual human is treated differently depend-
ing on its current distance and eccentricity to the camera,
i.e., the current level of detail it uses. For clarity purpose, we
recall giving an animation clip a different name depending
on which level of detail it applies to. An animation clip in-
tended for a deformable mesh is a skeletal animation, one for
a rigid mesh is a rigid animation, and finally, an animation
clip for an impostor is an impostor animation.

We have already shown that the main advantage of us-
ing less detailed representations is the speed of rendering.
However, for the memory, the cost of storing an animation
sequence for a deformable, a rigid mesh, or an impostor is
impressively growing (see Figure 2). From this, it is obvious
that the number of animation sequences stored must be lim-
ited for the less detailed representations. It is also true that
we want to keep as many skeletal animation clips as possi-
ble for the deformable meshes, firstly, because their storage
requirement is cheap, and secondly, for variety purpose. In-
deed, deformable meshes are at the forefront, close to the
camera, and several virtual humans playing the same anima-
tion clip are immediately noticed.

The issue arising is then the switching from a level of rep-
resentation to another. For instance, what should happen if a
deformable mesh performing a walk cycle reaches the limit
at which it switches to the rigid mesh representation? If a
rigid animation with the same walk cycle (same speed) has
been precomputed, switching is done smoothly. However, if
the only rigid animation available is a fast run cycle, the vir-
tual human will “pop” from a representation to the other,
greatly disturbing the user. We therefore need each skeletal
animation to be linked to a ressembling rigid animation, and
similarly to an impostor animation. For this reason, we have
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developed the motion kit data structure. We first describe the
motion kit data structure in Section 3.3.1 and then its imple-
mentation in Section 3.3.2

3.3.1. Data Structure

A motion kit holds several items:

• A name, identifying what sort of animation it represents,
e.g., walk_1.5ms,

• Its type, determined by four identifiers: action, subaction,
left arm action, and right arm action,

• A link to a skeletal animation,
• A link to a rigid animation,
• A link to an impostor animation.

Each virtual human knows only the current motion kit it
uses. Then, at the Animator stage, depending on the distance
of the virtual human to the camera, the correct animation
clip is used. Note that there is always a 1:1 relation between
the motion kits and the skeletal animations, i.e., a motion
kit is useless if there is no corresponding skeletal animation.
As for the rigid and impostor animations, their number is
much smaller than for skeletal animations, and thus, several
motion kits may point to the same rigid or impostor anima-
tion. For instance, imagine a virtual human using a motion
kit representing a walk cycle at 1.7 m/s. The motion kit has
the exact skeletal animation needed for a deformable mesh
(same speed). If the virtual human is a rigid mesh, the mo-
tion kit may point to a rigid animation at 1.5 m/s, which
is the closest one available. And finally, the motion kit also
points to the impostor animation with the closest speed. The
presented data structure is very useful to easily switch from
a representation to another. In Figure 9, we show a schema
representing a motion kit and its links to different animation
clips. All the motion kits and the animations are stored in a
database, along with the links joining them (see Section 3.4).
One may wonder what the four identifiers are for. They are
used as categories to sort the motion kits. With such a clas-
sification, it is easy to randomly choose a motion kit for a
virtual human, given certain constraints. Firstly, the action
type describes the general kind of movement represented by
the motion kit. It is defined as either:

• stand: for all animations where the virtual human is stand-
ing on its feet,

• sit : for all animations where the virtual human is sitting,
• walk : for all walk cycles, or
• run : for all run cycles.

The second identifier is the subaction type, which more re-
strains the kind of activity of the motion kit. Its list is nonex-
haustive, but it contains descriptors such as talk, dance, idle,
etc. We have also added a special subaction called none,
which is used when a motion kit does not fit in any of the
other subaction types. Let us note that some action / subac-
tion couples are likely to contain no motion kit at all. For
instance, a motion kit categorized as a sit action and a dance

subaction is not likely to exist. The third and fourth identi-
fiers: left and right arm actions are used to add some specific
animation to the arms of the virtual humans. For instance, a
virtual human can walk with the left hand in its pocket and
the right hand holding a cellphone. For now, we have three
categories that are common to both identifiers: none, pocket,
and cellphone. However, this list can be extended to other
possible arm actions. For instance, holding an umbrella, pull
a caster suitcase, or scratch one’s head.

Figure 9: Example of motion kit structure. On the left, a vir-

tual human instantiated from a human template point to the

motion kit it currently uses. In the center, a motion kit with

its links identifying the corresponding animations to use for

all human templates.

When one creates a varied crowd, it is simple for each
virtual human to ask randomly for one of all the motion kits
available. If the need is more specific, like a crowd follow-
ing a path, it is easy to choose only the adequate walk / run
motion kits, thanks to the identifiers.

3.3.2. Implementation

In our architecture, the motion kits are stored in a four-
dimensional table:

Table[ action id][ subaction id]

[left arm action id][right arm action id].

For each combination of the four identifiers, a list of motion
kits corresponding to the given criteria is stored. As pre-
viously mentioned, not all combinations are possible, and
thus, some lists are empty. In Figure 10, a virtual human is
playing a skeletal animation, linked to a motion kit with the
following identifiers: walk, none, cellphone, pocket. In our
architecture, an animation (whatever its level of detail) is de-
pendent on the human template playing it : for a deformable
mesh, a skeletal animation sequence specifies how its skele-
ton is moved, which causes the vertices of the mesh to get
deformed on the GPU. Since each human template has its
own skeleton, it is impossible to share such an animation
with other human templates. Indeed, it is easy to imagine
the difference there is between a child and an adult skeleton.
For a rigid animation, it is the already deformed vertices and
normals that are sent to the GPU, thus such an animation is
specific to a mesh, and can only be performed by a virtual
human having this particular set of vertices, i.e., issued from
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Figure 10: A virtual human using a motion kit with identi-

fiers: walk, none, cellphone, pocket.

the same human template. Finally, an impostor animation
clip is stored as a sequence of pictures of the virtual human.
It is possible to modify the texture and color used for the
instances of the same human template, but it seems obvious
that such animation pictures cannot be shared by different
human templates. This specificity is reflected in our imple-
mentation, where three lists of skeletal, rigid, and impostor
animations are stored for each human template.

It follows that each motion kit should also be human
template-dependent, since it has a physical link to the cor-
responding animation triplet. However, this way of manag-
ing the data is far from optimal, because usually, an anima-
tion (whatever its level of detail) is always available for all
the existing human templates. It means that, for instance, if
a template possesses an animation imitating a monkey, all
other human templates are likely to have it. Thus, making
the information contained in a motion kit human template-
dependent would be redundant. We introduce 2 simple rules
that allow us to keep a motion kit independent from a human
template:

1. For any motion kit, all human templates have the corre-
sponding animations.

2. For all animations of all human templates, there is a cor-
responding motion kit.

We now explain how, thanks to these assertions, we can keep
a motion kit independent from the human templates and still
know to which animation triplet it should link. First, note
that each human template contains amongst other things:

• A list of skeletal animations,
• A list of rigid animations,
• A list of impostor animations.

Now, following the two rules mentioned above, all human
templates contain the same number of skeletal animations,
the same number of rigid animations, and the same number
of impostor animations. If we manage to sort similarly these

animation lists for all human templates, we can link the mo-
tion kits with them by using their index in the lists. We show
a simple example in Figure 9, where a structure representing
the human templates is depicted: each human template con-
tains a list of skeletal, rigid, and impostor animations. On
the left of the image, a motion kit is represented, with all its
parameters. Particularly, it possesses three links that indicate
where the corresponding animations can be found for all hu-
man templates. These links are represented with arrows in
the figure, but in reality, they are simply indices that can be
used to index each of the three animation lists for all human
templates.

With this technique, we are able to treat all motion kits
independently from the human templates using them. The
only constraint is to respect the rules (1) and (2).

3.4. Database Management

We use the locomotion engine of Glardon et al. [GBT04b,
GBT04a] to generate various locomotion cycles. Although
this engine is fast enough to generate a walk or run cycle
in real-time, it cannot keep up that rythm with thousands of
virtual humans. When this problem first occured, the idea of
precomputing a series of locomotion cycles and store them
in a database came up. Since then, this system has proved
very useful for storing other unchanging data. The main ta-
bles that can be found in the database are the following:

• Skeletal animations,
• Rigid animations,
• Impostor animations,
• Motion kits,
• Human templates, and
• Accessories.

In this Section, we detail what advantages and drawbacks we
meet by using such a database, and what kind of information
we can safely store there.

As previously mentioned, all the skeletal, rigid and im-
postor animations can neither be generated online, nor at
the initialization phase of the application, because the user
would have to wait during an important amount of time be-
fore the simulation launch. This is why the database is used.
With it, the only work that needs to be done at initialization
is to load the animation sequences, so that they are ready
when needed at runtime. Although this loading phase may
look time consuming, it is quite fast, since all the animation
data is serialized into a binary format. Within the database,
the animation tables have four important fields †: unique id,
motion kit id, template id and serialized data. For each an-
imation entry A, its motion kit id is later used to create the

† By field, understand a column in the database that allows for
queries.
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necessary links (see previous Section), while its template id
is needed to find to which human template A belongs. It also
allows to restrain the number of animations to load to the
strict minimum, i.e., only those needed for the human tem-
plates used in the application. It is mainly the serialized data
that allows to distinguish a skeletal from a rigid or a impostor
animation. For a skeletal animation, we mainly serialize all
the information concerning the orientation of each joint for
each keyframe. With a rigid animation, for each keyframe, a
set of already deformed vertices and normals are saved. Fi-
nally, for a impostor animation, two series of images of the
human template are kept (the normal and the UV map) for
several keyframes and points of view.

Another table in the database is used to store the motion
kits. It is important to note that since they are mainly com-
posed of simple data, like integers and strings (see previous
Section), they are not serialized in the database. Instead, each
of their elements is introduced as a specific field: unique id,
name, speed, four identifiers (action id, subaction id, left arm
action id, right arm action id), and two special motion kit ids
(rigid motion kit id, impostor motion kit id). When loading
a motion kit M from the database, its basic information, i.e.,
speed, name, etc., are directly extracted to be saved in our ap-
plication. Each of the two special motion kit ids is an index
referring to another motion kit. This reference is necessary to
complete the linking between M and its corresponding rigid
and impostor animations.

We have introduced in the database a table in order to
store the unchanging data of the human templates. Indeed,
we have some human templates already designed and ready
to be used in the crowd simulation. This table has the follow-
ing fields: unique id, name, skeleton hierarchy, and skeleton
posture. The skeleton hierarchy is a string summarizing the
skeleton features, i.e., all the joint names, ids, and parent.
When loading a human template, this string is used to create
its skeleton hierarchy. The skeleton posture is a string giving
the default posture of a skeleton : with the previous field, the
joints and their parents are identified, but they are not placed.
In this specific field, we get for each joint its default position
and orientation, relatively to its parent. As one can notice,
for now the human template table is incomplete, e.g., the ap-
pearance sets are missing, and no information is serialized,
similarly to the motion kits. This is mainly due to a lack of
time (indeed, as of today, our crowd simulator is still being
developed). But it certainly is an advantage to further fill this
table with more data in a binary format, so that the loading
of human templates is faster at initilization.

Finally, the database possesses two tables dedicated to ac-
cessories. An accessory is a mesh used to add variety and
believability to the appearance of the virtual humans. For
instance, it can be a hat, a pair of glasses, a bag, etc. (see
Section 4.3 for more details). In a first table, we store the el-
ements specific to an accessory, independently from the hu-
man template wearing it : unique id, name, type, serialized

data. In the serialized data is stored all the vertex, normal
and texture information to make an accessory displayable.
The second table is necessary to share information between
the accessories and the human templates. As specified in
Section 4.3, the displacement of a specific accessory rela-
tively to a joint is different for each human template. This
displacement is stored as a matrix. So, in this second table,
we employ a field template id and a field accessory id to
know exactly where the field matrix must be used. Thus, for
each accessory / human template couple, corresponds an en-
try within this table. Note that we also store there the joint
to which the accessory needs to be attached. This is because
in some special cases, they may differ from a skeleton to an-
other. For instance, when we attach a back pack to a child
template, the joint used is a vertebra that is different from
the one for an adult template.

Using a database to store serialized information has
proven to be very useful, because it greatly accelerates the
initialization time of the application. The main problem is
its size, which increases each time a new element is intro-
duced into it. However, with real-time constraints, we allow
ourselves to have a sufficiently large database within reason-
able limits to obtain varied crowds.

3.5. Performance

We have just detailed the different necessary steps to cre-
ate and exploit a fast architecture for simulating crowds. We
first showed the interest of using several representations, i.e.,
deformable meshes, rigid meshes, and impostors. Then, we
fully detailed each step of our pipeline for fast animation and
rendering of thousands of virtual humans. Through the use
of motion kits, we allowed for switching smoothly from a
representation to another, limiting animation popping arte-
facts. We exposed how a database can be exploited to store
all unchanging data, and finally, we introduced a shadow
map algorithm adapted to crowds.

We now expose the performance obtained with this archi-
tecture. In Figure 2, the various storage requirements, de-
pending on the animation types are exposed. In Figure 11,
we compare the frame rates obtained in two cases. Firstly,
when sorted virtual human lists are exploited, as detailed
in Section 3.1. Secondly, when the Animator and Renderer
stages do not use sorted lists, but directly each virtual human,
one after another, in no spescific order. With such a process,
all the information needed by the GPU has to be sent for
each virtual human, independently from the data that may be
shared by several of them. As one can observe in Figure 11,
when using highly detailed deformable meshes, the results
obtained with or without sorted lists are almost similar. This
can be explained by the communications sent from the CPU
to the GPU (joint transmission): such transmissions imply a
pipeline flush for each rendered virtual human, thus becom-
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Figure 11: Frames per second obtained for (a) highly de-

tailed deformable meshes, (b) simple deformable meshes,

(c) rigid meshes, and (d) impostors. The red lines show the

results obtained when working with sorted lists, the green

ones with a naive approach. The stars indicate the results

for 30 frames per second. (e) Conditions in which the tests

have been achieved: five human templates, steering and an-

imation enabled, no shadows, no accessories, no collision

avoidance.

ing the bottleneck of the application. However, when less de-
tailed representations are exploited, the advantage of sorting
the lists becomes clear. A few images directly obtained from
our running architecture are shown in Figure 6(left) and 7(c).
In Figure 6(right), one can observe the distance at which the
virtual humans switch to lower representations: in red are the
rigid meshes, and in green the impostors.

4. Crowd Variety

When simulating a small group of virtual humans, it is easy
to make them look singularly different: one can use several
human templates and textures for each virtual human present
in the scene, and assign them different animations. However,
when the group extends to a crowd of thousands of people,
this solution becomes unfeasible. First, in terms of design,
it is unimaginable to create one mesh and series of anima-
tions per individual. Moreover, the memory space required
to store all the data would be far too demanding. There is
no direct solution to this problem, but it is however possi-
ble to achieve good results by multiplying the levels where
variety can be introduced. First of all, several human tem-
plates can be used. Secondly, for each template, several tex-
tures can be designed. Thirdly, the color of each part of a
texture can be varied so that two virtual humans issued from
the same template and sharing the same texture have not the
same clothes / skin / hair color. Finally, we also develop the
idea of accessories, which allows a human mesh to be "aug-
mented" with various objects such as a hat, a watch, a back
pack, glasses, etc. Variety can also be achieved through an-
imation. We mainly concentrate on the locomotion domain,
where we vary the movements of the virtual humans in two
ways. Firstly, by generating in a preprocess several locomo-
tion cycles (walk and run) at different speeds, that are then
played by the virtual humans online. Secondly, we use of-
fline inverse kinematics to enhance the animation sequences
with particular movements, like having a hand in the pocket,
or at the ear as if making a phone call. In the following Sec-
tion, we further develop each necessary step to vary a crowd
in appearance: in Section 4.1, we show the three levels where
variety can be achieved. Then, in Section 4.2, we detail how
we segment the texture of a virtual human in order to apply
varied colors to each identified body part. Moreover, acces-
sories are fully explained in Section 4.3. We also describe
animation variety in Section 4.4.

4.1. Variety at Three Levels

When referring to appearance variety, we mean how we
modulate the rendering aspect of each individual of a crowd.
This term is completely independent from the animation se-
quences played, the motion planning or the behavior of the
virtual humans. First of all, let us remind that a human tem-
plate is a data structure containing:

• A skeleton, defining what and where are its joints,
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• A set of meshes, representing its different levels of detail,
• Several appearance sets, i.e., textures and their corre-
sponding segmentation maps,

• A set of animation sequences that can only be played by
this human template.

For further indications on the human template structure, the
reader is invited to refer to Section 2. We apply appearance
variety at three different levels. The first, coarsest level is
simply the number of human templates used. It seems ob-
vious that the more human templates, the more variety. In
Figure 12, we show five different human templates to illus-
trate this. The main issue when designing many human tem-
plates is the time required to design them and the memory
requirements to store them. Their number needs thus to be
limited. In order to mitigate this problem, we further vary the
human templates by creating several textures and segmenta-
tion map sets for each one of them. For simplification, we
designate a texture and its associated segmentation maps as
an appearance set. The second level of variety is represented
by the texture of an appearance set. Indeed, once an instance
of a human template is provided with an appearance set, it
automatically assumes the appearance of the corresponding
texture. Of course, changing appearance set, and thus, tex-
ture, does not change the shape of the human template. For
instance, if its mesh contains a pony tail, it will remain what-
ever the texture applied. However, it can impressively mod-
ify the appearance of the human template. In Figure 13, we
show five different textures applied to the same human tem-
plate. Finally, at the third level, we can play with color vari-
ety on each body part of the texture, thanks to the segmenta-
tion maps of the appearance set. We fully dedicate the next
Section to this particular level. In Figure 14, we show several
color modulated instances of a single mesh and appearance
set.

Figure 12: Five different human templates.

4.2. Color Variety

Human templates possess several textures, improving the
sense of variety. But too often, characters sharing the same

Figure 13: Five different textures of a single human tem-

plate.

Figure 14: Several color varied instances of a single mesh

and texture.

texture, i.e., looking exactly the same, appear in the vicin-
ity of the camera, breaking the feeling of uniqueness of the
spectator. Differentiating character body parts and then ap-
plying a unique combination of colors to each of them is a
way to obtain variation inside a single texture.

4.2.1. Principles of the Method

Previous work on increasing the variety in color appearance
for the characters composing a crowd share the common idea
of storing the segmentation of body parts in a single alpha
layer, i.e., each body part is represented by a defined level
of intensity of the alpha channel. Tecchia et al. [TLC02] use
multi-pass rendering and the alpha channel to select parts
to render for impostors. Dobbyn et al. [DHOO05] and De
Heras et al. [dHCSM∗05] avoid multi-pass rendering by us-
ing programmable graphics hardware. They also extend the
method for being usable by 3D virtual humans too. Figure 15
depicts a typical texture and its associated alpha zone map.
The method is based on texture color modulation: the final
colorCb of each body part is a modulation of its texture color
Ct by a random colorCr:

Cb =CtCr. (3)
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Colors Cb, Ct , and Cr can take values between 0.0 and 1.0.
In order to have a large panel of reachable colors, Ct should
be as light as possible, i.e., near to 1.0. Indeed, if Ct is too
dark, the modulation by Cr will give only dark colors. On
the other hand, if Ct is a light color, the modulation by Cr
will provide not only light colors, but also dark ones. This
explains why part of the texture has to be reduced to a light
luminance, i.e., the shading information and the roughness
of the material. The drawback of passing the main parts of
the texture to luminance is that funky colors can be gener-
ated, i.e., characters are dressed in colors that do not match.
Some constraints have to be added when modulating colors
randomly.

Figure 15: Typical RGBA image used for color variety. The

RGB part composes the texture and the alpha the segmenta-

tion map.

4.2.2. HSB Color Spaces

The standard RGB color model representing additive color
primaries of red, green, and blue is mainly used for specify-
ing color on computer screens. With this system, it is hard to
constrain colors effectively (see Figure 16). In order to quan-
tify and control the color parameters applied to the crowd, a
user-friendly color is used. Smith [Smi78] proposed a model
that deals with everyday life color concepts, i.e., hue, satu-
ration and brightness, which are more linked to the human
color perception than the RGB system. This system is called
the HSB (or HSV ) color model (see Figure 17):

• the hue defines the specific shade of color, as a value be-
tween 0 and 360 degrees,

• the saturation denotes the purity of the color, i.e., highly
saturated colors are vivid while low saturated colors are
washed-out, like pastels. Saturation can take values be-
tween 0 and 100, and

• the brightness measures how light or dark a color is, as a
value between 0 and 100.

In the process of designing virtual human color variety, lo-
calized constraints are dealt with: some body parts need very
specific colors. For instance, skin colors are taken from a
specific range of unsaturated shades with red and yellow

Figure 16: Random color system (a) versus HSB control (b).

Figure 17: HSB color space. Hue is represented by a circu-

lar region. A separate square region may be used to repre-

sent saturation and brightness, i.e., the vertical axis of the

square indicates brightness, while the horizontal axis corre-

sponds to saturation.

dominance, almost deprived of blue and green. Eyes are de-
scribed as a range from brown to green and blue with differ-
ent levels of brightness. These simple examples show that
one cannot use a random color generator as is. The HSB
color model enables control of color variety in an intuitive
an flexible manner. Indeed, as shown in Figure 18, by spec-
ifying a range for each of the three parameters, it is possible
to define a 3D color space, called the HSB map.

Figure 18: The HSB space is constrained to a three dimen-

sional color space with the following parameters (a): hue

from 20 to 250, saturation from 30 to 80 and brightness from
40 to 100. Colors are then randomly chosen inside this space
to add variety on the eyes texture of a character (b).
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4.2.3. Segmentation Maps

The method presented in Section 4.2.1 is perfectly adequate
when viewing crowds at far distances. However, when some
individuals are close to the camera, the method tends to
have too sharp transitions between body parts. There is no
smooth blending between different parts, e.g., the transition
between skin and hair, as depicted in Figure 19. Also, char-
acter closeups bring the need for a new method capable of
handling detailed color variety, for instance, subtle make-up
effects for female characters. Moreover, at short distances,
materials should be illuminated differently to obtain realis-
tic characters at the forefront. To obtain a detailed color va-
riety method, we propose, for each appearance set, to use
segmentation maps.

Figure 19: Closeup of the transition between skin and hair:

artifacts in previous methods when segmenting body parts in

a single alpha layer (left), smooth transitions between parts

with our method (right).

A segmentation map is a four channel image, delimit-
ing four body parts (one per channel) and sharing the same
parameterization as the texture of the appearance set. The
intensity of each body part is thus defined throughout the
whole body of each character, i.e., 256 levels of intensity are
possible for each part, 0 meaning it is not present at this lo-
cation, and 255 meaning it is fully present. For our virtual
humans, we have made experiments with eight body parts,
i.e., two RGBA segmentation maps per appearance set. The
results are satisfying for our specific needs, but the method
can be used with more segmentation maps if more parts are
needed. For instance, it would be possible to use the method
for adding color variety to a city by creating segmentation
maps for buildings. Using segmentation maps to efficiently
distinguish body parts also provides two advantages over
previous methods:

• Possibility to apply different illumination models to each
body part. With previous methods, achieving such effects
requires costly fragment shader branching.

Figure 20: Bilinear filtering artifacts in the alpha layer can

be seen in the right zoomed-in version, near the borders of

the orange shirt, the green tie and the red vest [Mau05].

• Possible mipmapping activation and use of linear filter-
ing, which greatly reduce aliasing. Since previous meth-
ods use the alpha channel of the texture to segment their
body parts, they cannot benefit from this algorithm, which
causes the appearance of artefacts at body part seams (see
Figure 20).

Figure 21 depicts the different effects achievable with our
color variety method: make-up, cloth patterns, freckles, etc,
and localised specular parameters. The segmentation maps
are designed manually. Ideally, for a given pixel, we wish the
sum of the intensity of each body part to reach 255. When
designing the segmentation maps with a software like Adobe
Photoshop, unwanted artefacts may later appear within the
smooth transitions between body parts. Indeed, some pixel
sums of intensity levels may not reach 255. For instance,
imagine the transition between the hair and the skin of a vir-
tual human. A pixel of the segmentation map may reach a
contribution of 100 for the skin part, while the hair part con-
tribution is of 120. Their sum amounts to 220. Although this
is not an issue while designing the segmented body parts
in Photoshop, it leads to problems when trying to normal-
ize the contributions in the application. Indeed, with sim-
ple normalization, such pixels compensate the uncomplete
sum with a black contribution, thus producing a final color
much darker than expected. This is illustrated in Figure 22.
The proposed solution is to compensate this lack with white
instead of black, to get a real smooth transition without un-
wanted dark zones. The results obtained with our three levels
of appearance variety are illustrated in Figure 23, where sev-
eral instances of a single human template are displayed, tak-
ing full advantage of all available appearance sets and color
variety.

4.2.4. Color Variety Storage

Each segmentation map of a human template is divided
into four different body parts. Each of these parts has
a specific color range, and specularity parameters. The

c© The Eurographics Association 2007.

63



J. Maïm, B. Yersin and D. Thalmann / Real-Time Crowds: Architecture, Variety and Motion Planning

Figure 21: Examples of achievable effects through appear-

ance sets (make-up, freckles, clothes design, etc), and per

body part specular parameters (shiny shoes, glossy lips, etc).

Figure 22: A blue to red gradient. (a) The sum of the red

and blue contributions does not reach 255 in some pixels,

causing the gradient to suffer from an unwanted black con-

tribution, (b) A white contribution is added so that the sum

of contributions is always 255.

Figure 23: Several instances of a single human template,

exploiting all its appearance sets and color variety.

eight body parts we need are designed in two different
segmentation maps, i.e., two RGBA images, each con-
taining four channels and thus four body parts. At its
birth, each character is assigned a unique set of eight ran-
dom colors from the constrained color spaces, similarly to
De Heras et al [dHCSM∗05]. These eight colors are stored
in eight contiguous RGB texels, starting at the top-left of a
1024× 1024 image, called Color Look Up Table (CLUT).
We show an illustration of a CLUT in Figure 24. Therefore,
if a 1024× 1024 image is used for storing the CLUT, it is
possible to store a set of up to:

1024 ·1024
8

= 131,072 (4)

unique combinations of colors. Note that illumination pa-
rameters are set per body part and thus not saved within the
CLUT, but directly sent to the GPU.

4.3. Accessories

We have already described how to obtain varied clothes and
skin colors by using several appearance sets. Unfortunately,
even with these techniques, the feeling of watching the same
person is not completely overcome. The main reason is the
lack of variety in the human templates used. Indeed, it is
very often the same human template (or a small number of
them) that is used for the whole crowd, resulting in large
groups of similarly shaped humans. We cannot increase too
much the number of human templates, because it requires
a lot of work for a designer: create the human template, its
textures, its skinning, its different levels of detail, etc. Note
that the number of human templates is also limited by The
storage. However, in real life, people have different haircuts,
they wear hats or glasses, carry bags, etc. These particulari-
ties may look like details, but it is with the sum of those de-
tails that we are able to distinguish anyone. In this Section,
we first explain what exactly are accessories. Then, we show
from a technical point of view the different kinds of acces-
sories we have identified, and how to develop each of them
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Figure 24: A CLUT image used to store the color of each

virtual human body parts and accessories.

in a crowd application. An accessory is a simple mesh rep-
resenting any element that can be added to the original mesh
of a virtual human. It can be a hat as well as a handbag, or
glasses, a clown nose, a wig, an umbrella, a cellphone, etc.
Accessories have two main purposes: firstly, they allow to
easily add appearance variety to virtual humans. Secondly,
they make characters look more believable: even without in-
telligent behavior, a virtual human walking around with a
shopping bag or a cellphone looks more realistic than the
one just walking around. The addition of accessories allows
a spectator to identify himself to a virtual human, because
it performs actions that the spectator himself does everyday.
We basically distinguish two different kinds of accessories
that are incrementally complex to develop. The first group
is composed of accessories that do not influence the move-
ments of a virtual human. For instance, whether someone
wears a hat or not will not influence the way he walks. The
second group gathers the accessories requiring a small varia-
tion in the animation clip played, e.g., a virtual human mov-
ing with an umbrella or with a bag still walks the same way,
but the arm in contact with the accessory needs an adapted
animation sequence.

4.3.1. Simple Accessories

The first group of accessories does not necessitate any partic-
ular modification of the animation clips played. They simply
need to be correctly "placed" on a virtual human. Each ac-
cessory can be represented as a simple mesh, independent
from any virtual human. First, let us lay the problem for a
single character. The issue is to render the accessory at the

correct position and orientation, accordingly to the move-
ments of the character. To achieve this, we can "attach" the
accessory to a specific joint of the virtual human. Let us take
a real example to illustrate our idea : imagine a walking per-
son wearing a hat. Supposing that the hat has the correct size
and does not slide, it basically has the same movement as
the head of the person as he walks. Technically, this means
that the series of matrices representing the head movement
are the same for the hat movement. However, the hat is not
placed at the exact position of the head. It usually is on top
of the head and can be oriented in different ways, as shown
in Figure 25. Thus, we also need the correct displacement
between the head joint position and the ideal hat position on
top of it. In summary, to create a simple accessory, our needs
are the following:

• For each accessory:

– A mesh (vertices, normals, texture coordinates),
– A texture,

• For each human template / accessory couple:

– The joint to which it must be attached,
– A matrix representing the displacement of the acces-
sory, relatively to the joint.

Note that the matrix representing the displacement of the ac-
cessory is not only specific to one accessory, but specific to
each human template / accessory couple. This allows us to
vary the position, the size, and the orientation of the hat de-
pending on which virtual human mesh we are working with.
This is depicted in Figure 25, where the same hat is worn dif-
ferently by two human templates. It is also important to note
that the joint to which the accessory is attached is also depen-
dent on the human template. This was not the case at first : a
single joint was specified for each accessory, independently
from the human templates. However, we have noticed that
depending on the size of a virtual human, some accessories
may have to be attached to different joints. For instance, a
backpack is not attached to the same vertebra if it is for a
child or a grown up template. Finally, with this information,
we are able to assign each human template a different set of
accessories, increasing greatly the feeling of variety.

4.3.2. Complex Accessories

The second group of accessories we have identified is the
one that requires slight modifications of the animation se-
quences played. Concerning the rendering of the accessory,
we still keep the idea of attaching it to a specific joint of
the virtual human. The additional difficulty is the modifica-
tion of the animation clips to make the action realistic. For
instance, if we want to add a cellphone accessory, we also
need the animation clips allowing the virtual human to make
a phone call. We focus only on locomotion animation se-
quences. Our raw material is a database of motion captured
walk and run cycles that can be applied to the virtual hu-
mans. From each animation clip, an adjustment of the arm
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Figure 25: Two human templates wearing the same hat, in

their default posture. The pink, yellow and blue points rep-

resent the position and orientation of the root, the head joint

(m1), and the hat accessory (m2), respectively.

motion is performed in order to obtain a new animation clip
integrating the wanted movement, e.g., hand close to the ear.
These animation modifications can be generalized to other
movements that are independent from any accessory, for in-
stance, hands in the pockets. This is why we fully detail the
animation adaptation process in Section 4.4.2.

4.3.3. Loading and Initialization

In this Section, we focus on the architectural aspect of acces-
sories, and how to assign them to all virtual humans. First of
all, each accessory has a type, e.g., "hat" or "back pack".
We differentiate seven different types, but this number is ar-
bitrary. In order to avoid the attribution of, for instance, a
cowboy hat and a cap on the same head, we never allow a
character to wear more than one accessory of each type. To
distribute accessories to the whole crowd, we need to extend
the following data structures (introduced in Section 2):

• Human template: each human template is provided with
a list of accessory ids, sorted by type. This way, we know
which template can wear which accessory. This process is
necessary, since all human templates cannot wear all ac-
cessories. For instance, a school bag would suit the tem-
plate of a child, but for an adult template, it would look
much less believable,

• Body entity: each body entity possesses one accessory
slot per existing type. This allows to later add up to seven
accessories (one of each type) to the same virtual human.

We also create two data structures to make the accessory dis-
tribution process efficient:

• Accessory entity: each accessory itself possesses a list of
body ids, representing the virtual humans wearing it. They
are sorted by human template.

• Accessory repository: an empty repository is created to
receive all accessories loaded from the database. They are
sorted by type.

At initialization, the above data structures are filled. We de-
tail this process in the following pseudo-code:

For each accessory in database:

load its data contained in the database,

create its vertex buffer (for later rendering),

insert it into the accessory repository (sorted by type).

For each human template h:

For each accessory a suitable to h :

insert a’s id into h’s list l (sorted by type).

For each body b:

get human template h of b,

get accessory id list l of h,

For each accessory type t in l:

choose randomly an accessory a of type t,

assign a to the correct accessory slot of b,

push b’s id in a’s body id list (sorted by hu-

man template).

The process of filling these data structures is done only once
at initialization, because we assume that once specific ac-
cessories have been assigned to a virtual human, they never
change. However, it would be easy to change online the ac-
cessories worn, through a call to the last loop. Note that a
single vertex buffer is created for each loaded accessory, in-
dependently from the number virtual humans wearing it.

4.3.4. Rendering

Since the lists introduced in the previous Section are all
sorted accordingly to our needs, the rendering of accessories
is much facilitated. We show in the following pseudo-code
our pipeline:

1 For each accessory type t of the repository:

2 For each accessory a of type t:

3 bind vertex buffer of a,

4 send a’s appearance parameters to the GPU,

5 get a’s list l of body ids (sorted by human template).

6 For each human template h in l:

7 get the joint j of h to which a is attached,

8 get the original position matrix m1 of j,

9 get the displacement matrix m2 of couple [a,h],

10 For each body b of h:

11 get matrix m3 of b’s current position,

12 get matrix m4 of j’s current deformation for b,

13 multiply current modelview matrix by mi (i=1..4),

14 call to vertex buffer rendering.

Although this pseudo-code may seem complex at first sight,
it is quite simple and well optimized to minimize state
switches. First of all, at line (3), each accessory has its vertex
buffer binded. We can process this way, independently from
the bodies, because an accessory never changes its shape or
texture. Then, we process through each accessory’s body id
list (5). This list is sorted by human template (6), allow-
ing us to retrieve information common to all its instances,
i.e., the joint j to which is attached the accessory (7), along
with its original position matrix m1 in the skeleton (8), and

c© The Eurographics Association 2007.

66



J. Maïm, B. Yersin and D. Thalmann / Real-Time Crowds: Architecture, Variety and Motion Planning

the original displacement matrix m2 between m1 and the de-
sired position of the accessory (9). An example with a hat at-
tached to the head joint of two human templates is illustrated
in Figure 25. Once the human template data is retrieved, we
iterate over each body wearing the accessory (10). A body
entity also has specific data that is required: its position for
the current frame (11), and the displacement of its joint, rel-
atively to its original position, depending on the animation
played (12). Figure 26 illustrates the transformation repre-
sented by these matrices. Finally, by multiplying the matri-
ces extracted from the human template and body data, we are
able to define the exact position and orientation of the acces-
sory (13). The rendering of the vertex buffer is then called
and the accessory is displayed correctly (14).

Figure 26: Left: a human template in default posture. Right:

the same human template playing an animation clip. The dis-

placement of the body, relatively to the origin (m3) is de-
picted in pink, the displacement of the head joint due to the

animation clip (m4) in yellow.

4.3.5. Empty Accessories

We have identified seven different accessory types. And,
through the accessory attribution pipeline, we assign seven
accessories per virtual human. This number is important and
the results obtained can be unsatisfying: indeed, if all char-
acters wear a hat, glasses, jewelry, a back pack, etc, they
look more like christmas trees than believable people. We
need the possibility to have people without accessories too.
To allow for this, we could simply randomly choose for each
body accessory slot, whether it is used or not. This solution
works, but a more efficient one can be considered. Indeed,
at the rendering phase of a large crowd, testing each slot of
each body to know whether it is used or not implies useless
code branching, i.e., precious computation time. We there-
fore propose a faster solution to this problem by creating
empty accessories. An empty accessory is a fake one, pos-
sessing no geometry nor vertex buffer. It only possesses a

unique id, similarly to all other accessories. At initialization,
before loading the real accessories from the database, the
following pseudo-code is executed:

For each accessory type $t$:

create one empty accessory e of type $t$,

put $e$ in the accessory repository (sorted by type),

For each human template $h$:

put $e$’s id in $h$’s accessory id list.

The second loop over the human templates is necessary
in order to make all empty accessories compatible with
all human templates. Once this preprocess done, the load-
ing and attribution of accessories is achieved as detailed in
Section 4.3.3. This fore introduction of empty accessories
causes later their possible insertion in some of the accessory
slots of the bodies. Note that if, for instance, a body entity
gets an empty accessory for hat, reciprocally, the id of this
body will be added to the empty accessory’s body id list.
This is illustrated with an example in Figure 27. One may
wonder how the rendering is achieved. If keeping the same
pipeline as detailed in Section 4.3.4, we meet troubles when
attempting to render an empty accessory. Moreover, some
useless matrix computation would be done. Our solution is
simple. Since the empty accessories are the first ones to be
inserted into the accessory repository (sorted by type), we
only need to skip the first element of each type to avoid their
computation and rendering. The pseudo code given in Sec-
tion 3.4 only needs a supplementary line, which is:

1b skip first element of t.

With this solution, we take full advantage of accessories, ob-
taining varied people, not only through the vast choice of
accessories, but also through the possibility of not wearing
them. And there is no need for expensive tests within the
rendering loop. In Figure 28, we show the results obtained
when using accessories in addition to the appearance variety
detailed in Section 2.

Figure 27: Left: a representation of the accessory reposi-

tory, sorted by type. Each accessory possesses its own list

of body ids. Reciprocally, all bodies possess slots filled with

their assigned accessories. Right: illustrated example of the

accessory slots for body with id 1.
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Figure 28: Several instances of a single human template,

varied through the appearance sets, color variety, and ac-

cessories.

4.3.6. Color Variety Storage

In Section 4.2.4, we detail how to apply color variety to the
different body parts of a texture. The same method can be
applied to the accessories. A human texture is segmented
in eight body parts, each having its specific color range. At
initialization, for each instantiated virtual human and each
body part, a color is randomly chosen in a range to modu-
late the original color of the texture. Since accessories are
smaller and less complex than virtual humans, we only use
four different parts, i.e., one segmentation map per appear-
ance set. Then, similarly to the characters, each instance of
each accessory is randomly assigned four colors within the
HSB ranges defined for each part. These four random colors
have also to be stored. We reemploy the CLUT used for stor-
ing the virtual humans color variety to save the colors of the
accessories. In order not to confuse the color variety of the
body parts and those of the accessories, we store the latter
contiguously from the bottom-right of the CLUT (see Fig-
ure 24). Each character thus needs eight texels for its own
color variety and 7∗4 other texels for all its potential acces-
sories. This sums up to 36 texels per character. A 1024x1024
CLUT is therefore able to roughly store more than 29000
unique color variety sets.

4.3.7. scalability

We can simulate a high number of virtual humans, thanks
to our different representations. It is important to note that
the above description of accessories solves only the case
of dynamically animated virtual characters, i.e., deformable
meshes. However, if we want to ensure continuity when
switching from a representation to another, it is important
to also find a solution for the other LOD : a hat on the head
of a virtual human walking away from the camera cannot
suddenly disappear when the virtual human is switching to
a lower representation. We develop here how to make ac-
cessories scalable. First, let us detail how accessories can be
scaled to fit rigid meshes. An accessory has an animation clip
of its own, similar to the animation of a particular joint of a

virtual human. If we wanted to simply apply the rigid mesh
principle to accessories, we would have to store an important
quantity of information:
For each rigid animation:

For each keyframe:

For each vertex of the accessory:

save its new position which is found through

the animation matrices,

save its corresponding normal, which is found

through the animation matrices.

As one can see, this pipeline corresponds to the one used
to store the vertices and normals of a rigid mesh at each
keyframe of a defined animation clip. If we analyze this
pipeline, we can observe that there is a clear redundancy
in the information stored: firstly, an accessory is never de-
formed, which means that its vertices do not move, rela-
tively to each other. They can be considered as a single group
transformed by the animation matrices. The same applies to
the normals of the accessory. Secondly, as detailed in Sec-
tion 3.3, it is impossible to store in a database a rigid and an
impostor animation clip for each existing skeletal animation.
It follows that creating all the rigid / impostor versions of an
animation clip for each possible accessory cannot be consid-
ered. In order to drastically diminish the information to store
for an accessory in a rigid animation, we propose a solution
in two steps: Firstly, as previously detailed, there is no need
to store all the vertices and all the normals at each keyframe
of an animation sequence, since the mesh is not deformed. It
is sufficient to keep a single animation matrix per keyframe,
valid for all vertices. Then, at runtime, the original mesh rep-
resenting the accessory is transformed by the stored anima-
tion matrices. Secondly, we can regroup all accessories de-
pending on the joint they are attached to. For instance, all
hats and all glasses are attached to the head. So, basically,
they all have the same animation. The only difference be-
tween a pair of glasses and a hat is the position where they
are rendered, relatively to the head position (the hat is above
the head, the glasses in front of it). So, we only need to keep
this specific displacement for each accessory relatively to its
joint. This corresponds to a single matrix per human tem-
plate / accessory couple, which is completely independent
from the animation clip played (see Section 4.3.1 and 4.3.4).
In summary, with this solution, we only need:
For each rigid animation:

For each keyframe:

For each joint using an accessory:

a single matrix representing

the transformation of the joint at this keyframe,

and
For each human template / accessory couple (indepen-

dent of the animation):

a matrix representing the accessory’s displacement,

relatively to the joint.

Scaling the accessory principle to impostors proves to be
complicated. Once again, a naive approach would be as fol-
lows:
For each original impostor animation (without accessories):

For all possible combinations of accessories:

create a similar impostor animation directly

containing these accessories.
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One can quickly imagine the explosion the memory would
endure, even when starting with only a few original im-
postor animations. We cannot afford to generate one im-
postor animation for each possible combination of acces-
sories. The first possible simplification is to let the unno-
ticeable accessories disappear. Indeed, impostors are usually
employed when the virtual humans are far from the camera,
and thus, small details, taking only a few pixels can be ig-
nored. Such accessories would be watches, jewelry, and oth-
ers. Of course, it is also dependent on the distance from the
camera where the impostors are used, and whether such dis-
appearances are noticeable or not. As for larger accessories,
like hats or bags, we are still working to find the best solu-
tion, but this work is in progress, and as of today, we have
no finite solution to expose.

4.4. Animation Variety

As explained in previous Sections, it is possible to vary the
appearance of individuals, even when issued from the same
human template. However, we introduced in Section 3.3 the
necessity to also provide a large variety of animation clips to
the simulation. Virtual humans can be visually as different
as possible, if they all perform the same animation, the re-
sult is not realistic at all. In this Section, we detail two tech-
niques we employ to vary the animation of characters, while
remaining in the domain of navigating crowds, i.e., working
with locomotion animations.

4.4.1. Locomotion

First of all, in order to obtain variety in animation, there is
a great need for a huge set of raw animation cycles that can
then be further varied. We recall here the locomotion engine
of Glardon et al. that we have used to generate our original
set of walk and run cycles. Glardon et al. have introduced
a PCA-based walk engine capable of animating on the fly
human-like characters of any size and proportions by gener-
ating complete locomotion cycles [GBT04b,GBT04a]. They
have captured walk and run motions from several people,
from which they have created a normalized model. There are
mainly three high-level parameters which allow to modulate
these motions:

• Personification weights: five people, different in height
and gait have been captured while walking and running.
This variable allows the user to choose how he wishes to
parametrize these different styles.

• Speed: the five subjects have been captured at many dif-
ferent speeds. This parameter allows to choose at which
velocity the walk/run cycle should be generated.

• Locomotion weights: this parameter defines whether the
cycle is a walk or a run animation.

Thus, the engine is able to generate a whole range of varied
locomotion cycles for a given character. To efficiently ani-
mate the locomotion of each individual, we generate in a pre-

process a certain number of locomotion cycles for each hu-
man template. We have used this engine to generate over 100
different locomotion cycles per human template: for each
one of them, we sample walk cycles at speeds varying from
0.5m/s up to 2m/s and similarly for the run cycles between
1.5 m/s and 3 m/s. Each human template is also assigned a
particular personification weight so that it has its own style.
With such a high number of animations, we are already able
to perceive a sense of variety in the way the crowd is mov-
ing. Virtual humans walking together with different locomo-
tion styles and speeds add to the realism of the simulation.
Once provided with a large set of animation clips, the issue
becomes to store and use them in an efficient way. In Sec-
tion 3.4, we fully detail how the whole data is managed.

4.4.2. Accessory Movements

Variety in movement is one necessary condition for achiev-
ing believable synthetic crowds as individuals are seldom
unrolling the sole locomotion cycle while moving from one
place to another. The upper limb movements being not com-
pulsory in locomotion, hands are most of the time exploited
for accessory activities such as holding an object (cell phone,
bag, umbrella, etc.) or are simply protected by remaining
in the pocket of some cloth (see Figure 29). These activ-
ities constitute alternate coordinated movements that have
to match the continuously changing constraints issued from
the primary locomotion movement. Indeed, constantly re-
using the same arm posture through the locomotion cycle
leads to a loss a believability; for example a hand "in-the-
pocket" should follow the pelvis forward-backward move-
ment when large steps are performed. For these reasons, a
specific animation cycle has to be defined also for an ac-
cessory movement that is to be exploited with locomotion.
We achieve the accessory movement design stage after the
design of the individual locomotion cycles for a set of dis-
cretized speeds. We exploit a Prioritized Inverse Kinemat-
ics solver [BB04] that allows combining various constraints
with a priority level if necessary. The required input is:

• The set of locomotion cycles,
• One "first guess" posture of the hand and arm, possibly
with the clavicle, designed with the skinned target charac-
ter,

• The set of "effector" points to be constrained on the hand
or arm, (see Figure 30, the three coloured cubes on the
hand),

• For each effector, its corresponding target goal location
expressed in other local frames of the body; for example
relative to the head for a cell-phone conversation, or to the
pelvis and thigh for a hand in a trousers’ pocket (see Fig-
ure 30, the three corresponding coloured cubes attached
to the pelvis),

• If an effector is more important than the others, the user
can associate it with a greater priority level. Our solver
ensures that the achievement of other effectors goals does
not perturb the high priority one.
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All the additional elements to the original locomotion cycles
can be specified by an animator by locating them on the tar-
get character mesh in a standard animation software. The re-
sulting set of parameters can be saved in a configuration file
for the second stage of running the Inverse Kinematics ad-
justment of the posture for all frames of the locomotion cy-
cles (Figure 31). The resulting accessorized locomotion cy-
cles are saved in files for a further storage optimization stage.
Figure 32 shows successive postures from such a movement.

Figure 29: Examples of accessory movements (hands in the

pocket, phone call, hand on hip, ...).

Figure 30: Set of controlled effectors attached to the hand

and corresponding goal positions attached to the pelvis.

5. Motion Planning

Realistic real-time motion planning for crowds has become
a fundamental research field in the Computer Graphics com-
munity. The simulation of urban scenes, epic battles, or other

Figure 31: Overview of the two-stage process for producing

accessorized locomotion cycles.

Figure 32: Example of posture from an accessorized loco-

motion cycle.

environments that show thousands of people in real time re-
quire fast and realistic crowd motion. Domains of applica-
tion are vast: video games, psychological studies, architec-
ture, and many others. We present a novel architecture offer-
ing a hybrid, scalable solution for real-time motion planning
of thousands of characters in complex environments.

Real crowds are formed by thousands of individuals that
move in a bounded environment. Each pedestrian has in-
dividual goals in space that he wants to reach, avoiding
obstacles. People perceive their environment, and use this
information to choose the shortest path in time and space
that leads to their goal. Emergent behaviors can also be ob-
served in crowds. For example, in places where the space
is small and very crowded, people form lanes to maximize
their speed. Also, when dangerous events such as fires occur,
pedestrians tend to react in very chaotic ways to escape.

Planning crowd motion in real time is a very expensive
task, which is often decoupled into two distinct parts: path
planning and obstacle avoidance. Path planning consists in
finding the best way to reach a goal. Obstacles can either be
other pedestrians or objects that compose the environment.
The path selection criteria are the avoidance of congested
zones, and minimization of distance and travel time. Path
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planning must also offer a variety of paths to spread pedes-
trians in the whole scene. Avoidance, on the other hand, must
inhibit collisions of pedestrians with obstacles. For real-time
simulations, such methods need to be efficient as well as be-
lievable.

Figure 33: Pedestrians using our hybrid motion planning

architecture to reach their goal and avoid each other.

Multiple motion planning approaches for crowds have
been introduced. As of today, several fast path planning so-
lutions exist. Avoidance however, remains a very expensive
task. Agent-based methods offer realistic pedestrian motion
planning, especially when coupled with global navigation.
This approach gives the possibility to add individual and
cognitive behaviors for each agent, but becomes too expen-
sive for a large number of pedestrians. Potential field ap-
proaches handle long and short-term avoidance. Long term
avoidance predicts possible collisions and inhibits them.
Short term avoidance intervenes when long-term avoidance
alone cannot prevent collisions. These methods offer less be-
lievable results than agent-based approaches, because they
do not provide the possibility to individualize each pedes-
trian. However, this characteristic also implies much lower
computational costs.

We present a hybrid architecture to handle realistic crowd
motion planning in real time. In order to obtain high per-
formance, our approach is scalable. As briefly introduced
in Section 3.2, we divide the scene into multiple regions
of varying interest, defined at initialization and modifiable
at runtime. According to its level of interest, each region is
ruled by a different motion planning algorithm. Zones that
attract the attention of the user exploit accurate methods,
while computation time is saved by applying less expensive
algorithms in other regions. Our architecture also ensures
that no visible disturbance is generated when switching from
an algorithm to another.

Our results shows that it is possible to simulate up to
ten thousand pedestrians in real time with a large variety
of goals. Moreover, the possibility to introduce and inter-
actively modify the regions of interest in a scene offers a

way for the user to select the desired performance and to
distribute the computation time accordingly. A simulation of
pedestrians taking advantage of our architecture to plan their
motion in a city environment is illustrated in Figure 33.

The remainder of this Section is organized as follows:
first, in Section 5.1, we introduce previous work in crowd
motion planning. Then, in Section 5.2, we describe at a high-
level our motion planning architecture, and how we exploit
it to distribute regions of three different levels of interest. In
Section 5.3, the integration of the various approaches em-
ployed and the optimizations applied to keep high frame
rates are detailed. Finally, in Section 5.4, we run several tests
in different conditions and environments to assess our archi-
tecture. Finally, limitations are discussed in Section 5.5.

5.1. Crowd Motion Planning Background

Crowd behavior and motion planning are two topics that
have long been studied in fields such as Robotics and So-
ciology. More recently however, and due to the technology
improvements, these domains have aroused the interest of
the Computer Graphics community as well.

The first studied approach, i.e., agent-based, represents a
natural way to simulate crowds as independent individuals
interacting with each other. Such algorithms usually han-
dle short distance avoidance, and navigation remains local.
Reynolds [Rey99] proposed to use simple rules to model
crowds of interacting agents. Heïgeas et al. [HLTC03] in-
troduced a model based on cellular automata and the physi-
cal properties of the environment, while Kirchner and Shad-
schneider [KS01] used static potential fields to rule a cellu-
lar automaton. Metoyer and Hodgins [MH03] proposed an
avoidance algorithm based on a bayesian decision process.
Nevertheless, the main problem with agent-based algorithms
is their low performance. With these methods, simulating
thousands of pedestrians in real time requires the use of par-
ticular machines supporting heavy parallelizations [Rey06].
Moreover, such approaches forbid the construction of au-
tonomous adaptable behaviors, and can only manage crowds
of pedestrians with local objectives.

To solve the problems inherent in local navigation, some
behavioral approaches have been extended with global nav-
igation. Bayazit et al. [BLA03] stored global information
in nodes of a probabilistic roadmap to handle navigation.
Sung et al. [SKG05] combined probabilistic roadmaps with
motion graphs to find paths and animations to steer charac-
ters to a goal, while Lau and Kuffner [LK06] used precom-
puted search trees of motion clips to accelerate the search for
the best paths and motion sequences to reach an objective.
Lamarche and Donikian [LD04] used automatic topological
model extraction of the environment for navigation. Another
method, introduced by Kamphuis and Overmars [KO04], al-
lows a group of agents to stay together while trying to reach
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a goal. Although these approaches offer appealing results,
they are not fast enough to simulate thousands of pedestrians
in real time. Loscos et al. [LMM03] presented a behavioral
model based on a 2D map of the environment. Their method
is suited for simulating wandering crowds, but does not pro-
vide high level control on pedestrian goals. As introduced
in Section 3.2 Pettré et al. [PdHCM∗06, PGT07] presented
a novel approach to automatically extract a topology from a
scene geometry and handle path planning using a navigation
graph (see Figure 34). The main advantage of this technique
is that it handles uneven and multi-layered terrains. Never-
theless, it does not treat inter-pedestrian collision avoidance.
Finally, Helbing et al. [HMS94, HFV00] used agent-based
approaches to handle motion planning, but mainly focused
on emergent crowd behaviors in particular scenarii.

Another approach for motion planning is inspired from
fluid dynamics. Such techniques use a grid to discretize
the environment into cells. Hughes [Hug02, Hug03] inter-
preted crowds as density fields to rule the motion planning
of pedestrians. The resulting potential fields are dynamic,
guiding pedestrians to their objective, while avoiding ob-
stacles. Chenney [Che04] developed a model of flow tiles
that ensures, under reasonable conditions, that agents do
not require any form of collision detection at the expense
of precluding any interaction between them. More recently,
Treuille et al. [TCP06] proposed realistic motion planning
for crowds. Their method produces a potential field that pro-
vides, for each pedestrian, the next suitable position in space
(a waypoint) to avoid all obstacles. Compared to agent-based
approaches, these techniques allow to simulate thousands of
pedestrians in real time, and are also able to show emer-
gent behaviors. However, they produce less believable re-
sults, because they require assumptions that prevent treating
each pedestrian with individual characteristics. For instance,
only a limited number of goals can be defined and assigned
to groups of pedestrians. The resulting performance depends
on the size of the grid cells and the number of groups.

The work presented in this Section introduces a new hy-
brid architecture offering a realistic and scalable solution
for real-time crowd motion planning. Based on a navigation
graph, we divide the environment into regions of varying
interest. In regions of high interest, we exploit a potential
field-based approach. Since we only use it locally, we can
plan motion for many more groups and with finer grid cells
than with an algorithm purely based on it. In other regions,
motion planning is ruled by the navigation graph and short-
term collision avoidance algorithms. Our local use of poten-
tial field-based approach allows us to plan motion for many
more groups and with finer grid cells than with a purely po-
tential field algorithm.

5.2. Motion Planning Architecture

The foundation of our motion planning architecture is

Figure 34: A navigation graph composed of a single naviga-

tion flow (in blue) connecting two distant vertices (in green).

The navigation flow is composed of three different paths that

can be followed in either direction (red arrows). Two edges

are also represented as gates (in yellow).

based on navigation graphs, automatically extracted from the
mesh of an arbitrary environment. This approach has the ad-
vantage of robustly handling path planning. Vertices repre-
sent cylindrical zones of the walkable space, while edges are
the gates where pedestrians can cross the space from one ver-
tex to another. To connect two distant vertices, it is possible
to generate a navigation flow, composed of a set of varied
paths. We show an example of such a flow in Figure 34.
Thanks to this approach, pedestrian spreading is ensured.
During simulation, pedestrians are assigned one navigation
flow, and one direction. When they reach an extremity of
the flow, they reverse their direction, and choose a new path,
minimizing their travel time, e.g., avoiding congested areas.
Vertices offer a suitable structure of the walkable space. In-
deed, they can be exploited to classify different regions of
the scene. For instance, Pettré et al. [PdHCM∗06, PGT07]
used them to define several levels of simulation, each up-
dated at different frequencies.

The goal of our architecture is to handle thousands of
pedestrians in real time. To achieve this result, we exploit the
above mentioned vertex structure to divide the environment
into regions ruled by different motion planning techniques.
We classify these regions with a level of interest. The most
interesting zones are ruled by realistic but expensive tech-
niques, while others use simpler and faster solutions. Re-
gions of interest (ROI) can be defined in any number and
anywhere in the walkable space with high-level parameters.
Moreover, it is possible to dynamically modify these param-
eters at runtime. Such flexibility is indeed desirable, because
it allows the user to first choose the desired performance, and
then distribute ROI, i.e., computation time, as wished.

We observe that by defining only three different ROI, we
obtain a simple and flexible architecture for realistic results:

• ROI 0 is composed of vertices of high interest.
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• ROI 1 regroups vertices of low interest.
• ROI 2 contains all other vertices, of no interest.

Practically, we position the ROI with respect to the camera
position and field of view. ROI 0 is directly in front of it,
and/or in zones where important visible events occur. ROI 1
covers the remaining visible space, while ROI 2 includes all
vertices outside the view frustum. Note that this choice is
arbitrary, and our architecture is versatile enough to satisfy
any other environment decomposition.

For regions of no interest (ROI 2), path planning is ruled
by the navigation graph. Pedestrians use linear steering to
follow the list of waypoints on their path edges. To use the
minimal computation resources, obstacle avoidance is not
handled.

Path planning in regions of low interest (ROI 1) is
also ruled by the navigation graph. To steer pedestrians
to their waypoints, an approach similar to Reynolds’ is
used [Rey99]. In these regions, for obstacle avoidance, an
agent-based short-term algorithm (detailed in Section 5.3.4)
is exploited. Although agent-based, this algorithm works at
a low level, and thus stays simple and efficient.

In the regions of high interest (ROI 0), path planning and
obstacle avoidance are both ruled by a potential field-based
algorithm, similarly to Treuille et al. [TCP06]. Compared
to agent-based approaches, potential fields are less expen-
sive, and still offer results more realistic than the ones of
ROI 1 and 2, because collision avoidance is planned in the
long-term. Nevertheless, in certain situations, this approach
fails to avoid collisions. To overcome this problem, the same
short-term algorithm as in ROI 1 is also activated in ROI 0.

An important concern when dealing with regions ruled by
different motion planning algorithms is to keep smooth and
unnoticeable transitions at their borders. The way we place
ROI implicitely solves this issue. Firstly, ROI 2 is always
outside the view frustum, and thus does not require any spe-
cific attention. Secondly, passing the borders between ROI 0
and ROI 1 is always smooth, because they both use the same
short-term avoidance algorithm.

5.3. Implementation

In this Section, the details of our hybrid architecture im-
plementation are presented. We mainly focus on the initial-
ization and runtime operations to construct and manage the
scalable crowd motion planning. Firstly, in Section 5.3.1, the
initialization phase is detailed, i.e., the grid construction over
the graph space, the initialization of the structure of neigh-
bor cells and of the ROI. Then, we describe each step of the
runtime pipeline, composed of five stages:

• Classification of graph vertices in correct ROI (Sec-
tion 5.3.2).

• Potential field computation (Section 5.3.3).

• Short-term avoidance algorithm computation (Sec-
tion 5.3.4).

• Pedestrian steering (Section 5.3.5).
• Continuity maintenance between grid and navigation
graph (Section 5.3.6).

5.3.1. Initialization

First of all, for the given environment, a navigation graph is
created, and navigation flows generated. We maintain a list
of all active vertices, i.e., of all vertices belonging to at least
one path. The others are simply discarded, since no pedes-
trian will ever pass on them during simulation. Then, a grid is
disposed on the scene, its size limited by the bounding rect-
angle containing all graph vertices. This grid is composed
of an array of cells, each containing the link to its neighbor
cells, and intrisic parameters used to compute the potential.

Many of the cells that compose the grid are not needed
in the simulation, because they represent zones that are not
covered by graph vertices, and thus indicate static obstacles.
Moreover, some vertices are not used by any navigation flow,
and thus are not exploited by pedestrians, as illustrated in
Figure 35. Thus, we test whether each cell center is inside
a vertex that composes a path. If not, the cell is deactivated.
The main advantage of this preprocess is the reduction of
the number of cells in which the potential field computation
is necessary. Finally, each cell is linked only to its active
neighbors.

Figure 35: The grid is placed on top of the graph, and only

cells within a vertex that is part of a path stay active (in

green).

5.3.2. Classification of Graph Vertices in ROI

To define a ROI, the user specifies three parameters: a posi-
tion, a radius, and a level of interest. All vertices whose cen-
ter is contained whithin this region are assigned the specified
level. These parameters can be modified at any moment, im-
plying a re-classification of vertices.

In our practical use of ROI, we create three lists corre-
sponding to our three levels of interest. At runtime, we first
automatically detect vertices that are outside the view frus-
tum, and insert them into the list with the lowest level of
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interest (ROI 2). We then iterate over the remaining vertices,
testing whether they are inside a ROI 0. If it is the case, the
vertex is classified as of high interest and put in the corre-
sponding list. Otherwise, it is put in the remaining list, of
low interest (ROI 1). In the next two sections, we detail how
pedestrian motions are planned in ROI 0 and 1.

5.3.3. Potential Field Computation

To accelerate the potential field computation, it is possible to
group pedestrians, as suggested by Treuille et al. [TCP06].
In our case, pedestrians in ROI 0 having the same navigation
flow and direction, i.e., having the same goal, are grouped
together. Thus, for each of these navigation flows, there are
two groups. Groups are recomputed at each time step, to cor-
rectly classify pedestrians that change ROI.

Once this is achieved, for each group, a potential field is
computed. At the goal, the potential is set to 0, and increased
while spreading over the grid. Given the potential gradient,
each pedestrian is assigned a new waypoint, corresponding
to the center of a neighbor cell. The potential field computa-
tion itself is not further discussed (for details, see [TCP06]),
but, taking advantage of our architecture, we introduce two
techniques to reduce its computation time. First of all, we
have observed no visual alteration when lowering the poten-
tial computation frequency to a reasonable value, as opposed
to every time step. We thus have empirically set it to 5 Hz.
Secondly, with our approach, the potential computation is
only required in regions of high interest (ROI 0). These re-
gions only cover part of the scene, and thus part of the grid.
By computing the potential only for the cells located in-
side ROI 0, it is possible to drastically decrease computa-
tion time. However, goals are often outside these regions,
and thus, it is impossible to initiate the potential computa-
tion. For each group, we therefore create subgoals, situated
just outside ROI 0, as illustrated in Figure 36. We use the
navigation flow structure to identify them: for every path of
every flow leaving ROI 0, the first vertex met in the direction
of the goal, is a subgoal. The potential computation is initi-
ated in the central cell of every subgoal, and spread over all
cells inside ROI 0 vertices. To obtain the same behavior as if
the potential was computed all over the grid, we do not ini-
tiate the potential of the subgoal cells to 0, but approximate
it. For each subgoal cell c inside vertex vc, the potential φc is
computed as:

φc =C · ∑
v ∈P(vc)

(v.density+1) · v.radius (5)

Where v is a vertex of path P(vc), starting at vc and leading
to the final goal. The density of v is given by the number
of pedestrians inside it per square meter. With Equation 5,
the contribution to the potential of each vertex v is defined
as its radius, weighted by its degree of occupation. To avoid
having a null contribution from an empty vertex, we always
add 1 to the computed density. Constant C is used to weight
the sum so that values for φc are in the same range as if the

potential was computed from the goal. Note that vertex vc
may be part of several paths at the same time. In this case,
we compute Equation 5 for each path, and assign the lowest
result to φc.

Figure 36: Potential is computed for vertices in ROI 0 (in

red) and vertices that have been identified as subgoals (in

yellow). The final goal is displayed in green. Potential starts

in the central cells of the subgoals with an approximated

value.

5.3.4. Short-Term Avoidance Algorithm

In this Section, we detail our short-term avoidance algo-
rithm, which is a simplified low-level agent-based approach.
It is used to efficiently avoid local inter-pedestrian collisions
in both ROI 0 and 1. Particularly, in ROI 0, it complements
the potential field approach, which may fail when the avail-
able space is too small and too crowded.

Algorithm 1 details step by step how we manage short-
term avoidance. First of all, we need to find pedestrians that
can potentially collide. To avoid an exhaustive search, we
take advantage of the grid structure covering the whole envi-
ronment: at runtime, every pedestrian in ROI 0 or 1 is regis-
tered in its current grid cell (line 3). This way, we can reduce
the search for possible collisions to a small set of neighbor
cells. Although this simplification does not cut down the or-
der of complexity in O(n2), it significantly decreases n, as
compared to a brute force approach [Rey87]. To keep the al-
gorithm fast, the two steps mentioned above are alternated
during simulation (line 1) : we first register the pedestrians
to their cell at one time step, while the search for potential
collisions and their avoidance is achieved at the next step
(line 4). Given the low distance covered by a pedestrian in
such a short time lapse, the algorithm robustness is guaran-
teed.

The avoidance itself is based on two values: a distance
of security α, fixed at 2 m, and a distance of emergency β,
at 0.5 m. For each pedestrian p in ROI 0 or 1, we start by
searching for its neighbor cells in an area of radius α (line 6).
Then, for each pedestrian pneighbor contained in a neighbor
cell, we test the angle between the heading direction of p
and its distance vector to pneighbor . If this angle is too small,
the current waypoint of p is rotated away from its neighbor
(line 11). An illustration of this situation is shown in Fig-
ure 37. To make sure the pedestrian still reaches its goal,
note that the waypoint is set back to its original position at
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the next time step. There are still some cases when this ap-
proach fails, e.g., in overcrowded places. If p and pneighbor
are at an emergency distance (line 8), p is gently slided aside
its neighbor.

Data: set of pedestrians in {ROI 0∪ROI 1}, set of grid
cells, security distance α, emergency distance β

Result: updated set of pedestrians in {ROI 0∪ROI 1}
if isEven(frameNumber) then

for each pedestrian p ∈ {ROI 0∪ ROI 1} do
register p in its current cell cp

end

end

else

for each pedestrian p in cell cp do
Setneighbors = f indNeighbors(cp,α)
for each pedestrian pneighbor in Setneighbors do

if distance(p, pneighbor) < β then
slide p away from pneighbor

end

else if angle(p, pneighbor) ∈ [− π
4 ,

π
4 ] then

rotateWaypoint(p, pneighbor)
end

end

end

end

Algorithm 1: Short-term avoidance algorithm.

Figure 37: Two pedestrians are closer than the security dis-

tance. An angle γ is computed between the first pedestrian’s

heading vector (in blue) and the two characters distance vec-

tor (in red). (left) The angle γ is in the range [− π
4 ,

π
4 ] (green

zone) and a collision avoidance is attempted by rotating the

first pedestrian’s waypoint. (right) The second character is

outside the green zone, and no avoidance procedure is yet

required.

5.3.5. Steering

Both navigation graph and potential field approaches pro-
vide waypoints toward which pedestrians have to move.
A smooth steering algorithm is necessary to obtain a
fluid movement toward these points. The seek behavior of
Reynolds [Rey99] has the advantage of producing a believ-
able steering toward a target point in space. We use this steer-
ing model for pedestrians of both ROI 0 and 1. For ROI 2, a
linear steering is employed.

5.3.6. Continuity Maintenance

In our motion planning architecture, we work with two ap-
proaches based on different spaces: a navigation graph de-
fined by its vertices and edges, and a grid composed of cells.
This duality brings up two issues when switching from one
space to the other. More precisely, when a pedestrian passes
from ROI 0 to ROI 1.

The first issue arises when a pedestrian enters the active
grid space (ROI 0). Its position is then only updated in the
grid, but no longer in the graph. It implies that this character
stays registered in the same vertex while progressing in the
grid. Thus, its next waypoint on the graph also remains the
same. When the pedestrian eventually exits ROI 0, it turns
back to meet the graph waypoint it has long since passed. To
avoid this problem, we keep updating the pedestrian position
in the graph, even in ROI 0: if a pedestrian enters this re-
gion, we keep track of its distance to its next graph waypoint.
When the distance is under a given threshold, the pedestrian
is registered in the next vertex.

The second issue occurs when two or more paths of the
same navigation flow are present in ROI 0. Since path plan-
ning in that area is ruled by the potential field, a pedes-
trian chooses the path where the potential is the lowest, as
in Figure 38 (right). However, this path does not necessarily
correspond to the one it is registered to in the graph (Fig-
ure 38 (left)). In the worst case, the pedestrian becomes com-
pletely lost when exiting ROI 0: it is within a vertex that does
not belong to the path it should follow. To solve this problem,
when any pedestrian exits ROI 0, we test whether it still is
on the same graph path. If not, we look for a new path using
this vertex and register the pedestrian to it.

Figure 38: (left) In graph space, the path followed by the

pedestrian is the right one. (right) In grid space, the poten-

tial field is lower on the left path. High potential is repre-

sented in light green and low potential in dark blue.

5.4. Performance Tests

We have run several tests in different crowded environ-
ments with an Athlon64 4000+, with 2 GB of memory and
two NVidia 6800 ultra in SLI mode. For all tests, pedestri-
ans are represented with two human templates using several
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textures, and exploiting color variety techniques. They are
rendered as impostors, and use a walk animation, sampled
at a frequency of 20 Hz. Note that in all the following tests,
we observe interesting emergent behaviors, e.g., lane forma-
tions or panic effects, that make the crowd motion planning
more realistic.

We use a first environment, representing a city pedestrian
area, to test the performance of our motion planning archi-
tecture, compared with our implementation of the purely po-
tential field-based approach of Treuille et al. [TCP06]. In
this scene, the camera position is fixed at a predefined po-
sition. For our tests, we define three regions in the environ-
ment. The one with the highest level of interest (ROI 0) has
a radius of 15 m, and is static, positioned at the center of
the scene. Note that we have voluntarily set this region in
the center of the scene, where the eye is naturally attracted,
rather than in front of the camera. The remaining space in-
side the view frustum is of low interest (ROI 1), and the other
zones are classified in ROI 2. We have tested the efficiency
of both approaches with cells of 3×3 m2, and an increasing
number of pedestrians and groups, starting from 2 groups
and 200 pedestrians up to 12 groups, totaling 1,200 charac-
ters. Figure 39 shows the results of this comparison. We can
see that the performance of our approach logically decreases
with the increasing number of groups, but much more slowly
than with the purely potential field-based approach. There
are two reasons. Firstly, our technique only computes the
potential field in a limited region of high interest (ROI 0).
Secondly, only a subset of the total number of groups passes
in this region, minimizing the number of potential fields to
compute. This test has also been performed with the ROI 0
dynamically moving on the city place. Even so, the obtained
results remain similar to those illustrated in Figure 39.

Figure 39: Comparison between our approach and our im-

plementation of the purely potential field-based approach of

Treuille et al. [TCP06] for a varying number of groups. Each

group is composed of a hundred pedestrians.

Our second test is achieved with a crowd of 10,000 pedes-
trians in a large scene with 12 navigation flows, i.e., 24
groups, spread over the whole environment, as demonstrated

in Figure 40. For this scenario, the different regions of inter-
est are placed according to the camera position. If the camera
moves, the regions are also displaced. The cell size is set to
4×4 m2, and the obtained performance is of about 20 f ps.

For our third scenario, we use the same city pedestrian
area as in the first test, but extend it with several surrounding
streets and buildings. There are 5,000 pedestrians and some
cars navigate on the roads. We illustrate this scenario in Fig-
ure 41. Each cell of the grid covers a 3×3m2 area. Since the
user attention is mainly drawn by the cars, which threaten
to hit pedestrians at every moment, a region of high inter-
est (ROI 0) is set around each of them. Moreover, to make
pedestrians flee the potential collision, a high discomfort and
speed increase are set in front of the cars, as in [TCP06]. As
a result, pedestrians close to a car are always in a region
of high interest, and thus ruled by a potential field. In front
of cars particularly, the pedestrians flee the zone of danger,
demonstrating an emergent panic behavior. The remaining
visible environment is classified as a region of low interest
(ROI 1), so that pedestrians still take care to avoid each other.
Finally, the zone outside the view frustum is set as of no in-
terest (ROI 2). The resulting f ps varies between 15 and 30,
depending on the number of visible cars (1 to 3), and the size
of their surrounding ROI 0, (10 to 15 m radius).

Figure 40: 10,000 pedestrians planning their motion in a
large landscape of fields. There are 12 navigation flows and
the cell size is set to 4×4 m2.

Finally, we have tested the evolution of the frame rate
with a fixed number of groups and an increasing number
of pedestrians. The test has been achieved in a large scene
with 24 groups, a cell size of 3×3 m2, and 1 to 5 regions of
high interest, distributed over the scene. Each of them has a
fixed radius of 15 m. For the remaining of the scene, ROI 2
is not exploited; all vertices are classified as ROI 1. Dur-
ing the test, the rendering of the scene and pedestrians was
deactivated to analyze the sole motion planning cost. The re-
sults, in Figure 42, show that even with 5 different regions of
interest, our architecture still manages the motion planning
of 10,000 pedestrians at interactive frame-rates (between 10
and 15 f ps). Note that the increasing number of pedestrians
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does not as much influence the potential computation, which
is more sensible to the number of groups, than the short-term
avoidance, which has a complexity in O(n2).

Figure 41: A city scene where pedestrians avoid a car sur-

rounded by a ROI 0.

All tests show that our motion planning architecture offers
high performance for large crowd motion planning. The pos-
sibility to select and distribute regions of interest as wished
gives the opportunity to easily tune the simulation for the de-
sired frame rate, and to define many groups, i.e., many differ-
ent goals. Additionally, compared to a purely potential-field
based technique, much smaller cells can be used for obtain-
ing better visual results in long-term avoidance cases.

Figure 42: Performance obtained for a number of groups

fixed to 24 and an increasing number of pedestrians, without
rendering. 1 to 5 ROI 0 with a radius of 15m each are placed
in the scene, while the remaining space is entirely in ROI 1.

5.5. Limitations

There are some limitations to our motion planning archi-
tecture. Firstly, in too crowded narrow environments, severe
bottlenecks may appear, making the use of our potential
field-based approach a waste of computational time. How-
ever, it is possible to force such regions to always keep a

predefined lower level of interest, e.g., ruled by a short-
term avoidance algorithm. Another limitation is the use of
a group-based approach. Indeed, we are constrained to as-
sign general goals for groups of pedestrians. Assigning one
different goal to each pedestrian would be too prohibitive
for real-time applications. Yet, we note that our architecture
is able to handle many more groups than previous potential
field-based methods. This is mainly due to our massive re-
duction of the number of cells in which the potential actually
needs to be computed, and implies the possibility to refine
the grid for more accurate results.

6. Conclusion

In this tutorial, we have detailed the numerous aspects that
need to be taken into account when simulating crowds in real
time. We have shown how to efficiently exploit the compu-
tational time with a complete description of our architecture
and pipeline. In order to obtain a large variety of charac-
ters, we have described several techniques, fast and robust,
based on the use of a limited number of human templates.
Means to obtain variety in animation have also been intro-
duced, while our hybrid scalable motion planning algorithm
has been thoroughly detailed. Tests and results have also
been presented to estimate the achieved performance for dif-
ferent parts of the complete architecture.
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Populating Virtual Environments with Crowds: Level of

Detail for Real-Time Crowds

S. Dobbyn and C. O’Sullivan

Graphics, Vision and Visualisation (GV2) Lab, Trinity College Dublin, Ireland

Abstract

Computer generated crowds have become increasingly popular in films. However, their presence in the real-time

domain, such as computer games, is still quite rare. Even though there has been extensive research conducted on

human modelling and rendering, the majority of it is concerned with realistic approximations using complex and

expensive geometric representations. When dealing with the visualisation of large-scale crowds, these approaches

are too computationally expensive, and different approaches are needed in order to achieve an interactive frame

rate.

1. Introduction

This part of the tutorial describes the main research related
to the real-time visualisation and animation of virtual crowds
in the following manner:

• We first introduce general character visualisation tech-
niques using the fixed function graphics pipeline, and
show how recent improvements in graphics hardware has
greatly improving the realism of characters in computer
games. Furthermore, we describe acceleration tech-

niques for the rendering of large crowds which can be
subdivided into three categories: visibility culling meth-
ods, geometrical level of detail (LOD) and sample-based
rendering techniques such as using image-based and
point-based representations.

• Then, we describe character animation techniques,
including how a character’s model is animated using
the layered approach, and the various techniques for
generating character animations such as kinematics,
physically-based animation and procedural animation.
We also describe how animation and simulation level of

detail provides a computationally efficient solution for the
simulation of crowds.

2. Character Visualisation

2.1. Character Model

The most common model used for representing characters
in 3-D computer graphics is the mesh model. A mesh is de-

fined as a collection of polygons, where each polygon’s sur-
face is made up of three or more connected vertices, and
is typically used to represent an object’s surface such as a
character’s skin. Since 3-D graphics hardware is optimised
to handle triangles, meshes are typically made up of this type
of polygon in 3-D applications. A simple model, consisting
of a low number of triangles (i.e., several hundred), can be
used to model a character’s general shape. However, as the
need for realism increases, more detailed models are nec-
essary and require a high number of triangles (i.e., several
thousand) to model the character’s hands, eyes and other
body-parts. This extra detail comes at a greater rendering
cost and a balance between realism and interactivity is nec-
essary, especially when rendering large crowds of charac-
ters. While current graphics cards can render over several
hundred million unlit triangles per second (e.g. ATI’s and
NVIDIA’s current cards), a static scene such as an urban en-
vironment populated with multiple characters could require
rendering several hundred thousand triangles. Therefore, de-
pending on the scene complexity, the number of triangles in
the character’s mesh or any other scene object is limited in
order to maintain a real-time frame rate.

Real-time lighting of these meshes is necessary to pro-
vide depth cues and thus enhance the scene’s realism. Oth-
erwise, the triangles are rendered with a single colour creat-
ing a flat unrealistic look. Typically, the lighting of the char-
acter’s mesh in games is implemented with basic Gouraud
shading [Gou71]. Gouraud shading is a method for linearly
interpolating a colour across a polygon’s surface and is used
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to achieve smooth lighting, giving a mesh a more realis-
tic appearance. As a result of its smooth visual quality and
its modest computational demands, since lighting calcula-
tions are performed per-vertex and not per-pixel, it is by far
the predominant shading method used in 3-D graphics hard-
ware. Additionally, texture-mapping [Cat74], which allows
the attaching of a two-dimensional image onto the poly-
gon’s surface, can greatly improve the realism of a humans’s
mesh. These textures are usually artist-drawn or scanned
photographs and are typically used to capture the detail of
areas such as human’s hair, clothes and skin (as shown in
Figure 1). The image is loaded into memory as a rectangular
array of data where each piece of data is called a texel and
each of the polygon’s vertices are assigned texture coordi-
nates to specify which texels are mapped to the surface.

Figure 1: Simple Texturing-Mapping: (a) Mesh without

texture-mapping, (b) Texture Map (c) Texture-mapped mesh.

2.2. Character Rendering

Until a few years ago, the only option for hardware-
accelerated graphics was to use the fixed function pipeline.
This is where texture addressing, texture blending and final
fragment colouring are fixed to perform in set ways. The
introduction of the mulitexture extension [Ope04], allowed
lighting effects involving several different types of texture
maps to be performed in a single rendering pass. This exten-
sion provides the capability to specify multiple sets of tex-
ture coordinates that address multiple textures, which means
that the previous and slower method of multi-pass rendering
can be avoided. More recently, hardware vendors have ex-
posed general programmable pipeline functionality, allow-
ing for more versatile ways of performing these operations
through programmable customisation of vertex and fragment
operations [Ope04]. With the introduction of multi-texturing
and programmable graphics hardware, coupled with the im-
provements in hardware capability such as the increase in
triangle fill-rates, texture memory size and memory band-
width, we are seeing an exciting era of realistic character
rendering and animation techniques which were previously
unfeasible to employ at interactive rates.

There has been extensive research on enhancing the
realism of a character’s mesh by applying various per-
pixel lighting effects (see Figure 2). Environment map-
ping [BN76] can be used to simulate an object reflecting its
environment. For characters such as soldiers wearing shiny

Figure 2: Per-pixel lighting effects such as environment

mapping in (a) Ruby Demo (( c© ATI Technologies) and (b)

Halo 2 ( c© 2004 Microsoft Corporation), and (c) Normal

mapping in Unreal Engine 2003 ( c© 2005 Epic Games Inc).

armour, environment mapping can greatly improve their re-
alism. Per-pixel bump mapping [Kil00] can be used to per-
turb the surface’s normal vector in the lighting equation to
simulate wrinkles or bumps. This is used to increase the vi-
sual detail of the character’s clothing and appearance with-
out increasing geometry. More recently, this approach has
been extended by using a normal map image, generated from
a highly detailed character’s mesh, in conjunction with a low
detailed mesh to improve its visual detail [COM98, Map].
Displacement mapping is another method which adds sur-
face detail to a model by using a height map to translate ver-
tices along their normals [Don05]. In order to speed up the
lighting calculations for a static object, the lighting can be
pre-computed and stored for each polygon in a texture called
a light map [SKvW∗92] and this method was made famous
by iD Software’s “Quake” games. In addition to the speed
increase, this method allows complex and more realistic il-
lumination models to be used in generating the map. With
dynamic objects, the light map needs to be calculated on a
per-frame basis, as otherwise shading artefacts will mani-
fest. Sander et al. [SGM04] recalculate the light map using
graphics hardware for each frame in order to correctly shade
the character’s skin as it moves within its environment. How-
ever, generating real-time light maps for a large number of
characters is unfeasible at interactive frame-rates.

More recently, more realistic character effects borrowed
from the film industry have been implemented in real-time.
Based on the technique used to light the face of digi-
tal characters in the film The Matrix Reloaded, Sander et
al. [SGM04] produced realistic looking skin in real-time.
Scheuermann et al. [Sch04] improved the rendering of real-
time hair using a polygonal model, where the hair shading
is based on the work on light scattering of human hair fibers
by Marschner et al. [MJC∗03] and on Kayiya et al.’s fur ren-
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Figure 3: Real-time hair rendering based on the light scat-

tering of human hair fibres [MJC∗03] and a fur rendering

model [KK89] using a (a) polygonal model [Sch04] (b) a

particle system [Wlo04]. (c) Real-time skin rendering based

on subsurface scattering [SGM04]. (d) Hair and skin ren-

dered with simple texturing.

dering model [KK89]. While this technique has greatly im-
proved the realism of real-time hair, in addition to using low
geometric complexity, it assumes little or no hair animation
and is not suitable for all hair styles. Wloka [Wlo04] uses a
similiar rendering approach for underwater hair which is ani-
mated by treating it as a particle system. Unfortunately, these
techniques can only be used for a limited number of charac-
ters, since they are computationally intensive, and therefore
simple texture-mapped triangles are typically used for an in-
dividual’s skin and hair detail within large crowds (Figure 3).

2.3. Acceleration Techniques for Rendering Large-Scale

Crowds

The requirement in interactive systems for real-time frame
rates means that only a limited number of polygons can be
displayed by the graphics engine in each frame of a simu-
lation. Visibility culling techniques provide the first step to
avoid rendering off-screen characters, and therefore reduc-
ing the number of triangles displayed per frame. However,
other rendering techniques are needed since a large portion
of the crowd could potentially be on-screen.

2.3.1. Visibility Culling

Culling provides a mechanism to reduce the number of tri-
angles rendered per frame by not drawing what the viewer
cannot see. The basic idea behind culling is to discard as
many triangles as possible that are not visible in the final
rendered image. The two main types are visibility and oc-
clusion culling.

Visibility culling discards any triangles that are not within
the camera’s view-frustum. In the case of a large scenes

containing several thousand characters, it would be com-
putationally expensive to view-frustum cull each charac-
ter’s triangles. However, it can be used to avoid rendering
potentially off-screen characters by testing their bounding-

volumes with respect to the view-frustum. For further details
on various optimized view-frustum culling techniques utiliz-
ing bounding-volumes see [AM00].

The aim of occlusion culling is to quickly discard any
objects that are hidden by other parts of the scene. Vari-
ous research has been conducted on effective ways of estab-
lishing occluding objects utilizing software methods or 3-D
graphics hardware. For a detailed survey of these techniques
see [COCSD03]. For crowds populating a virtual city envi-
ronment, occlusion culling is a method that can greatly im-
prove the frame rate, since a large portion of the crowd will
be occluded by buildings, especially when the viewpoint is
at ground level.

2.3.2. Geometric-Based Rendering and Level of Detail

Level of detail (LOD) is an area of research that has grown
out of the long-standing trade-off between complexity and
performance. LOD stems from the work done by James
Clark where the basic principles are defined [Cla76]. The
fundamental idea behind LOD, is that when a scene is be-
ing simulated, it uses an approximate simulation model for
small, distant, or important objects in the scene. The main
area of LOD research has focussed on geometric LOD,
which attempts to reduce the number of rendered polygons
by using several representations of decreasing complexity
of an object. For each frame, the appropriate model or res-
olution is selected, usually based on the object’s distance
to the camera. In addition to distance, other LOD selec-
tion factors that can be used are screen space size, prior-
ity, hysteresis, and perceptual factors. Since the work done
by Clark [Cla76], the literature on geometric LOD has be-
come quite extensive. Geometric LOD has been used since
the early days of flight simulators, and has more recently
been incorporated in walkthrough systems for complex en-
vironments by Funkhouser et al. [FST92, FS93], and Maciel
et al. [Mac93].

Figure 4: Five discreet mesh models containing (a) 2,170

(b) 1,258 (c) 937 (d) 612 and (e) 298 triangles.

One approach for managing the geometric LOD of virtual
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humans is using a discrete LOD framework. A discrete LOD
framework involves creating multiple versions of an object’s
mesh, each at a different LOD, during an offline process (see
Figure 4). Typically, a highly detailed (also known as a high
resolution) mesh, is simplified by hand or using automatic
tools to create multiple low resolution meshes varying in de-
tail. At run-time, depending on the LOD selection criteria,
the appropriate resolution mesh is chosen in order to main-
tain an interactive frame rate.

Another good solution for altering the geometric detail
of a character in games is through the use of subdivision
surfaces [Lee02]. In the beginning, one of the main prob-
lems with geometric LOD was the generation of the dif-
ferent levels of detail for each object, which was a time-
consuming process as it was all done by hand. Since then,
several LOD algorithms have been published in order to au-
tomatically generate the different levels of detail for an ob-
ject [EDD∗95, Hop96]. Subdivision surfaces is one method,
based on a continuous LOD framework, where a desired
level of detail is extracted at run-time by performing a se-
ries of edge collapsing/vertex splitting on the model. Start-
ing with a low-resolution mesh, a subdivision scheme can
be used to produce a more detailed version of the surface
by using masks to define a set of vertices and correspond-
ing weights, which are in turn used to create new vertices or
modify existing ones. By applying these masks to the mesh’s
vertices, a new mesh can be generated. An advantage of us-
ing masks is that different type of masks can be used in or-
der to deal with boundary vertices and crease generation.
In [OCV∗02], O’Sullivan et al. describe a framework that
uses subdivision surfaces as a means to increase or decrease
the appearance of a human’s mesh within groups and crowds
depending on their importance to the viewer.

In order to solve the problem of rendering large numbers
of humans, De Heras Ciechomski et al. [dHCUCT04] avoid
computing the deformation of a character’s mesh by storing
pre-computed deformed meshes for each key-frame of ani-
mation, and then carefully sorting these meshes to take cache
coherency into account. Ulicny et al. [UdHCT04] improve
on their performance by using 4 LOD meshes consisting of
1038, 662, 151 and 76 triangles and disabling lighting for
the lowest LOD, thereby achieving a frame rate several times
higher. To introduce crowd variety, they use several template
meshes for the humans, and clone and modify these meshes
at run-time by applying different textures, colors, and scaling
factors to create the illusion of variety. They succeed in sim-
ulating several hundred humans populating an ancient Ro-
man theatre and a virtual city at interactive frame-rates.

Gosselin et al. [GSM05] present an efficient technique for
rendering large crowds while taking variety into account.
Their approach involves reducing the number of API calls
need to draw a character’s geometry by rendering multiple
characters per draw call, each with their own unique anima-
tion. This is achieved by packing a number of instances of

Figure 5: Rendering crowds using a discrete LOD ap-

proach [dHCUCT04].

character vertex data into a single vertex buffer and imple-
menting the skinning of these instances in a vertex shader.
As vertex shading is generally the bottleneck of such scenes
containing a large number of deformable meshes, they mini-
mize the number of vertex shader operations that need to be
performed.

In their simulation, they use one directional light to sim-
ulate the sun, and three local diffuse lights. The shading of
each character’s mesh is performed by per-pixel shading and
a normal map generated from a high resolution model is
used. Specular lighting is calculated for the sun and is at-
tenuated using a gloss map to allow for parts of the character
to have differing shininess. Realism is further increased by
using an ambient occlusion map generated from the high res-
olution model. This map approximates the amount of light
that could reach the model from the external lighting en-
vironment and provides a realistic soft look to the charac-
ter’s illumination. Finally, using a ground occlusion texture
which represents the amount of light a character should re-
ceive from the sun based on their position in the world, the il-
lusion that the terrain is shading the characters as they move
within the environment is created. So that the characters are
not a carbon copy of each other, they use a colour lookup tex-
ture, which specifies 16 pairs of colours that can be used to
modulate the character, with a mask texture to specify which
portions should be modulated. In addition to this, decal tex-
tures to add other various details to the character’s model,
such as badges, are applied (see Figure 6).

Figure 6: Geometric-based representations rendered with

various per-pixel shading effects [GSM05] ( c© 2005 ATI

Technologies).

While Gosselin et al. provide techniques to improve the
rendering performance of multiple character meshes, the
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crowd is homogeneous in nature since it is made of indi-
viduals that are using the same template model and are an-
imated with the same running motion. Recently, Dudash et
al. [Dud07] has extended this work and provided an efficient
way of adding variation to the crowd’s animation and ap-
pearance. Their approach involves using instancing through
the DirectX 10 API in an attempt to reduce the number of
draw calls, state changes and buffer updates.

They achieve mesh variation by breaking a character into
a collection of mesh sub-sections. For each character, each
sub-section is initialised with an alternate mesh randomly
selected from multiple template meshes at load time. At run-
time, they make a list for each sub-mesh containing the per-
instance data of the characters that are using that particular
piece and then draw each instance. To provide for a more het-
erogeneous crowd animation, they avoid the usual technique
of using the limited number of shader constants for the ani-
mation data. Instead, they encode all the animations’ frame
data into a texture, from which the vertex shader looks up
the bone matrices for each character’s current frame of ani-
mation. In this way, their characters can perform any frame
of any animation defined in the texture. Additionally, they
implement a discrete LOD system where characters in the
distance use mesh sub-sections of lower resolution.

2.3.3. Image-Based Crowd Rendering

Image-based rendering (IBR), stems from the research by
Maciel et al. [MS95] on using texture mapped quadrilaterals,
referred to as planar impostors, to represent objects in order
to maintain an interactive frame rate for the visual naviga-
tion of large environments. Consequently, due to this planar
impostor providing a good visual approximation to complex
objects at a fraction of the rendering cost, a large amount of
research has introduced different types of impostors such as
layered impostors [DSSD99], billboard clouds [DDSD03],
and texture depth images [JW02] for rendering acceleration
of various applications. A survey of these different types,
including their application and their advantages and disad-
vantages, can be found in [JWP05]. To represent a virtual
human, Tecchia et al. [TC00] and Aubel et al. [ABT00] both
use planar impostors. However, they differ in how the im-
postor image is generated. The two main approaches to the
generation of the impostor images are: dynamic generation
and static generation (also referred to as pre-generated im-
postors).

Aubel et al. use a dynamically generated impostor ap-
proach to render a crowd of 200 humans performing a ‘Mex-
ican wave’ [ABT00]. With dynamically generated impos-
tors, the impostor image is updated at run-time by rendering
the object’s mesh model to an off-screen buffer and storing
this data in the image. This image is displayed on a quadrilat-
eral, which is dynamically orientated towards the viewpoint.
This uses less memory, since no storage space is devoted to
any impostor image that is not actively in use. Unlike dy-
namically generated impostors for static objects, where the

Figure 7: Image-based crowds: (a) Dynamically gener-

ated image-based crowds [ABT00] (b) Pre-generated image-

based crowds [TC00].

generation of a new object impostor image depends solely
on the camera motion, animated objects such as a virtual
human’s mesh also have to take self-deformation into ac-
count. Aubel et al.’s solution to this problem is based on the
sub-sampling of motion. By simply testing distance varia-
tions between some pre-selected joints in the virtual human’s
skeleton, the virtual human is re-rendered if the posture has
significantly changed.

The planar nature of the impostor can cause visibility
problems as a result of it interpenetrating other objects in
the environment. To solve this problem, Aubel et al. propose
using a multi-plane impostor which involves splitting the
virtual human’s mesh into separate body parts, where each
body part has its own impostor representation. However, this
approach can cause problems similar to those mentioned in
Section 3, resulting in gaps appearing. Unfortunately, dy-
namically generated impostors rely heavily on reusing the
current impostor image over several frames in order to be
efficient, as animating and rendering the human’s mesh off-
screen is too costly to perform regularly. Therefore, this ap-
proach does not lend itself well to scenes containing large
dynamic crowds, as this would require a coarse discretiza-
tion of time, resulting in jerky motion.

Tecchia et al. [TC00] use pre-generated impostors for ren-
dering several thousand virtual humans walking around a
virtual city at an interactive frame rate. Pre-generated im-
postors involve the pre-rendering of an impostor image of an
object for a collection of viewpoints (called reference view-
points) around the object. Unfortunately, since virtual hu-
mans are animated objects, they present a trickier problem
in comparison to static objects. As well as rendering the vir-
tual human from multiple viewpoints, multiple key-frames
of animation for each viewpoint need to be rendered, which
greatly increases the amount of texture memory used. In or-
der to reduce the amount of texture memory consumed, Tec-
chia et al. reduce the number of reference viewpoints needed
for each frame by using a symmetrical mesh representation
animated with a symmetrical walk animation, so that already
generated reference viewpoints can be mirrored to gener-
ate new viewpoints. At run-time, depending on the view-
point with respect to the human, the most appropriate refer-
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ence viewpoint is selected and displayed on a quadrilateral,
which is dynamically orientated towards the viewer. To al-
low for the dynamic lighting of the impostor representation,
Techia et al. [TLC02] pre-generate normal map images for
each viewpoint by encoding the surface normals of the hu-
man’s mesh as a RGB colour value. By using a per-pixel dot
product between the light vector and a normal map image,
they compute the final value of a pixel through multi-pass
rendering and require a minimum of five rendering passes.

The main advantage of this approach is that it is possi-
ble to deal with the geometric complexity of an object in a
pre-processing step. However, with pre-generated impostors,
since the object’s representation is fixed, ‘popping’ artefacts
are introduced as a result of being forced to approximate the
representation for the current viewpoint with the reference
viewpoint. To avoid these artefacts, the number of view-
points around the object for the pre-generation of the impos-
tor images can be increased. However this can later cause
problems with the consumption of texture memory. Image
warping is another technique of reducing the popping effect,
but this method can also introduce its own artefacts. Since a
pre-generated approach requires a large number of reference
viewpoints for several frames of animation, this makes it un-
suitable for scenes containing a variety of human models that
each needs to perform a range of different motions.

Dobbyn et al. [DHOO05] developed the Geopostor sys-
tem, which provides for a hybrid combination of pre-
generated impostor and detailed geometric rendering tech-
niques for virtual humans. By switching between the two
representations, based on a “pixel to texel” ratio, their sys-
tem allows visual quality and performance to be balanced.
They improved on existing impostor rendering techniques
and developed a programmable hardware based method for
adjusting the lighting and colouring of the virtual humans’
skin and clothes (see Figure 8).

Figure 8: Geopostor system.

Recently, Millán et al. [MR06b] described a LOD system
which takes advantage of existing programmable graphics
hardware in order to improve the simulation and rendering
performance of their crowd system. They simulate several
hundred thousand characters in real-time by storing each
character’s position and orientation in a pixel buffer which
is updated by a fragment program. Once the pixel buffer is
updated, this data is subsequently used by graphics hardware

to render the characters using a particular representation se-
lected based on a LOD map. The LOD map is a 2D grid
rendered on a per-frame basis, where each pixel represents a
position in the world and stores a specific encoded value rep-
resenting its distance from the camera. Once the LOD map is
generated, it is stored in a pixel buffer which is looked up by
the vertex processor to select a LOD representation for each
character instance. Similar to Dobbyn et al. [DHOO05], they
use a geometry/impostor based LOD system. However, they
use the vertex processor to rotate each impostor’s billboard
towards the camera view and calculate the texture coordi-
nates of the most suitable viewpoint to be mapped.

2.3.4. Point Sample Rendering

Another sampled-based approach for the visualisation of vir-
tual humans is point sample rendering, which involves re-
placing a mesh with a cloud of points, approximately pixel-
sized [LW85]. Wand et al. [WS02] use a pre-computed hier-
archy of triangles and sample points to represent a scene.
This involves converting key-frame animations of meshes
into a hierarchy of point samples and triangles at different
resolutions. They partition the scene’s triangles using an oc-
tree structure and choose sample points which are distributed
uniformly on the surface area of the triangles in each node.
Using this multi-resolution data structure, they are able to
render large crowds of animated characters.

Figure 9: Point-based crowds: (a) Stadium populated with

animated 16,000 fans and (b) Crowd of 90,000 humans

walking on the spot.

For smaller crowds, consisting of several thousands of ob-
jects, each object is represented by a separate point sample
and its behaviour is individually simulated. Larger crowds
are handled differently, with a hierarchical instantiation
scheme, which involves constructing multi-resolution hier-
archies (e.g., a crowd of objects) out of a set of multi-
resolution sub-hierarchies (e.g., different animated models
of single objects). While this allows them to render arbitrar-
ily complex scenes, such as 90,000 humans walking on the
spot and a football stadium inhabited by 16,000 fans (see
Figure 9), less flexibility is provided for the motion of the
objects, since the hierarchies are pre-computed and therefore
cannot be used in simulating a large crowd moving within its
environment. For a comparison between point-based models
and impostors see [MR06a].
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3. Character Animation

The problem with using a mesh to represent a dynamic ob-
ject, such as human character, is that a way of animating the
mesh is needed to reflect the motion of the character. In older
generation games, the character consisted of a hierarchy of
meshes, where each mesh represented a particular body part
and was animated in some way (e.g., Lara Croft in Tomb
Raider). However, the main problem with this approach is
that holes can appear where two or more meshes meet. These
gaps can be hidden either by clever modelling using cloth-
ing or armour, at the cost of requiring extra polygonal detail,
or by constraining the movement of the bones. However, de-
pending on the type of character being modelled, this is not
always possible. Nowadays, a character’s mesh is typically
animated by using a layered animation approach.

3.1. Layered Animation

The layered animation approach works by layering a char-
acter’s mesh on top of a skeleton structure and deforming
the mesh based on the animation of the underlying skeletal
layer. The skeleton consists of a hierarchy of joints inter-
connected by bones, where each joint defines where a bone
begins and is used as its pivot point. Except for the bone at
the root of the hierarchy (know as the root bone), each bone
is linked to a parent bone and has either one, multiple, or no
child bones. To easily transform a bone from one coordinate
space to another, each bone’s position and rotation is stored
in a transformation matrix. The global transformation matrix
of each bone is dependent on the matrices of all of its par-
ents, and can be calculated as a function of both its local and
parent’s global transformation matrices.

In order to deform the mesh, the mesh and the skele-
ton first need to be setup in a reference pose, typically
using DaVinci’s Vitruvian man pose, to facilitate their re-
spective alignment. Each vertex in the mesh is assigned
either one or more influencing bones with a correspond-
ing weight to specify the amount of influence each bone
has on it. Linear blend skinning (LBS) is used for deform-
ing the mesh [Lan98, Lan99], where the deformation of
each vertex’s position (V’) and normal (N’) is calculated
as a function of the vertex’s original position relative to
each deforming bone (Vi), its normal (N), each deforming
bone’s global transformation matrix (TMi) and its influenc-
ing weight (wi) (Equation 1). When calculating the deforma-
tion of the normals, only the rotational component is used
by getting the inverse transpose of the global transformation
matrix ((TMi

−1)T ).

V
′ = ∑wi ×T Mi ×Vi

N
′ = ∑wi × (T M

−1
i )T ×N (1)

Linear blend skinning can be implemented through pro-
grammable graphics hardware by using a vertex program

and this greatly improves its performance [Dom, GSM05].
This technique is fast to compute and therefore has become
widespread in recent games. While problems can arise for
large bone rotations, causing the mesh to collapse to a single
point, this can be solved by adding extra bones [Web00], or
using spherical blend skinning [KZ05].

3.2. Animation of a Character’s Skeleton

Traditionally, an articulated structure, such as a skeleton,
is animated using computer animation data stored as key-
frames. A key-frame allows the transformation of a bone
(i.e., its position and rotation) to be specified as a function
of time. This allows complicated animations to be simply
stored as a set of key-frames for each bone. While the most
simple method of generating key-frame animations for artic-
ulated structures is through kinematics, extensive research
on providing other ways of generating animation data has
been carried out, focusing on physical simulation and proce-
dural animation.

3.2.1. Kinematics

A common method for animating an articulated structure in
real-time is with kinematics, which is based on properties of
motion such as position and velocity over time. A charac-
ter’s key-frame animation is typically generated from data
that has been created manually through kinematics by an an-
imation artist using a key-frame editor.

Forward kinematics specifies joint rotations as a function
of time and is useful in pre-generating character animations
in modeling/animation packages, such as 3D Studio Max.
Once the animation has been created, it can be subsequently
exported as key-frame data to be used within an application.
Motion capture systems allow the movements of a real actor
to be captured or stored as animation data by using differ-
ent types of capture hardware and this was the predominant
method for animating characters in The Lord of the Rings

Trilogy [Sco03]. While the quality and realism of manually
created animations depends on the skill of the artist, motion
captured animations are extremely realistic as a result of us-
ing a real human actor. With regards to animating crowds,
the main limitation of forward kinematics is that a large
database of pre-generated or pre-captured motions is nec-
essary in order to achieve some type of variation amongst
the crowd. Otherwise, a crowd consisting of individuals per-
forming the same animation can significantly reduce real-
ism.

Inverse kinematics can resolve the skeleton’s joint angles
and the corresponding key-frame data so that an end-effector
(e.g., the hand bone) is animated towards a target position.
The main advantage of this is that it can be used for the
real-time generation of various character animations (e.g.,
pointing in a particular direction, looking at an object and
opening a door). Several algorithms exist to resolve the joint
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angles with varying computational accuracy of the results,
the majority of which can be used with groups of characters
in real-time. The main limitation of this technique is that,
even though it generates a correct solution, it might not be a
high-fidelity human motion.

3.2.2. Physically-Based Animation

Physically-based animation provides a good approach to
generating unique and context-sensitive motion and in the-
ory can produce an unlimited number of motion types. How-
ever, the problem with using the approach is that it is can
involve computationally intensive algorithms and the gen-
erated animation is somewhat dependent on various charac-
ter properties. Therefore, this type of animation is not eas-
ily reusable and thus not well-suited for the real-time an-
imation of a large number of characters of various shapes
and sizes. Dynamic simulations use Newtonian force-based
methods to generate animations utilizing forces that occur in
articulated structures (e.g., velocities, mass, collision), in ad-
dition to kinematic properties. Physically-based animations
have been used for animating virtual athletes in realistic
sport simulations [HWBO95], generating physically correct
swimming motion for fish [TT94], and characters walking
on an uneven terrain [SM01].

3.2.3. Procedural Animation

Procedural algorithms reuse animation data from a library
of motions to generate new animations. The two main ap-
proaches are combining, and altering animation data. Com-
bining animations involves reusing animations with vari-
ous techniques such as fading functions, overlapping and
blending techniques. Various research has been conducted
on providing smooth transitions between motions, such as
the simple use of fade-in and fade-out functions [PG96,
RCB98] and the more complex weighting and summing
techniques [SBMTT99]. Perlin et al. [PG96] reuse and over-
lap animations by considering human motions as a “com-
bination of temporarily overlapping gestures and stances”.
In general, combining animation data provides a good and
fast approach for animating characters in real-time applica-
tions. However, to allow for some variation, it is important
that there is a large library of pre-generated motions that can
produce plausible combinations. Motion graphs can be com-
piled, which are directed graphs that describe how motion
may be recombined, to automatically generate transitions to
connect motions. The motion graph is generated from the
library by identifying similar frames between each pair of
motions and using these to form the nodes of the graph.
These nodes provide plausible transitions between motions
and allow the character to perform more complicated perfor-
mances [KGP02].

The second approach to procedural animation involves
altering the style of animation data based on various tech-
niques such as noise functions [PG96], and emotional trans-
forms based on character-based properties [ABC96]. Even

though more realistic and less repetitious animations are pro-
duced by altering the data, these techniques can be compu-
tationally intensive and should only be considered for the
real-time animation of a limited number of characters.

3.3. Animation Level of Detail

LOD research has recently extended from the area of geom-
etry into areas such as motion and simulation, thus provid-
ing a computationally efficient solution for the simulation of
crowds. In [GMPO00], Giang et al. propose a LOD frame-
work for animating and rendering virtual humans in real-
time. In order to achieve a scalable system, they use a LOD
resolver that controls the switching between levels of detail
and specifies parameters for controlling the geometric and
motion controller. Through these parameters, the LOD re-
solver has the ability to request different animation levels of
detail. The different levels of detail used relate to how the
motion is simulated (e.g., pre-defined forward kinematics,
inverse kinematics, or dynamics), and its update frequency.
This results in smooth realistic animations being applied to
virtual humans rated with high importance, while lower level
animation techniques are applied to virtual humans in the
background, taking minimal perceptual degradation into ac-
count.

In [dHCUCT04], the deformation of a character’s mesh
was pre-computed and stored to avoid these computations
at run-time. However, these characters were limited to the
number of animations they could perform due to the size
limit of memory. To improve on their previous system,
in [dHCSMT05] they propose rendering crowds animated
using the layered animation approach (see Section 2.3.2) to
reduce the consumption of memory and accelerate the an-
imation of the skeleton and the subsequent mesh deforma-
tion using a level of detail caching scheme for animations
and geometry. They update a character’s animation at a spe-
cific frequency dependent on its level of detail instead of on
a per-frame basis. For example, characters are updated at a
minimum of 4Hz at the lowest LOD and at a maximum of
50Hz at the highest LOD, where the LOD selection criteria
is based on the character’s distance from the camera. The
animation of the skeleton and the subsequent mesh defor-
mation are done in software so that they can be reused in a
caching scheme.

Ahn et al. [AOW06] detail a motion simplification frame-
work for articulated characters which attempts to speed
up animation performance through posture simplification
whilst conserving the features of the original motion. The
framework involves extracting key postures from a motion
and then automatically generating the priority of joint re-
ductions in order to guide the posture simplification process.
The experimental results shows that the proposed motion
simplification can be successfully applied to a crowd of a
thousand articulated characters in real-time.
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3.4. Simulation Level of Detail

In [CH97], Carlson and Hodgins use less accurate anima-
tion models for selected one-legged creatures in order to re-
duce the computational cost of simulating groups of these
creatures. Three simulation LODs are used for the motion
of these creatures: rigid-body dynamics, point mass simula-
tion with kinematic joints and point mass simulation with no
kinematic motion of the leg. Their selection of an individ-
ual’s simulation LOD is based on a individual’s importance
to the viewer or action in the virtual world.

Ulicny et al. [UT02] discuss the challenges of real-time
crowd simulations, focussing on the need to efficiently man-
age variety, and propose the idea of levels of variety. They
define a system’s variety based on the following levels: level
of variety zero (LV0) if a task uses a single solution, level of
variety one (LV1) if it has a choice from a finite number of
solutions, and level of variety two (LV2) if it is able to use an
infinite number of possible solutions. For example, a crowd
composed of a single human model would be LV0, several
pre-defined model types would be LV1, and finally an infi-
nite number of automatically generated model types would
be LV2. Using this concept, they define a modular behav-
ioural architecture based on rules and finite state machines,
to provide simple yet sufficiently variable behaviours for in-
dividuals in a crowd.
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Abstract

Usually developers of real-time crowd systems decide on the virtual human representation they will use based

on three factors: the size of the crowd being rendered, each representation’s rendering cost and its visual appeal.

While there has been extensive research on the numerous ways of graphically representing virtual humans (includ-

ing their associated rendering cost), only recently have researchers become interested in perceptually evaluating

them. Evaluating these representations based on the plausibility of visual appearance and motion would provide

a useful metric to help developers of LOD-based crowd systems to improve visual realism while maintaining real-

time frame rates. With regards to improving our crowd system, we carried out perceptual evaluation experiments

on various virtual human representations using experimental procedures from the area of psychophysics.

Introduction

While there has been little previous work related to the
perception of virtual human representations [HMDO05,
MDO05], research has been conducted on perception of
human motion in the context of computer graphics and
has mainly been focused on the effect of animation qual-
ity on user perception. Wang et al. [WB03] conducted a
set of experiments to evaluate a cost function proposed by
Lee et al. [LCR02] for determining the transition quality
between motion clips. Other recent work by Harrison et
al. [HRvdP04] examined the perceptual impact of dynamic
anomalies in human animation. Reitsma and Pollard [RP03]
conducted a study, developing a metric to evaluate the per-
ceived error introduced during motion editing. Harrison et
al. [HBF02] focused on higher-level techniques for specify-
ing and modifying human motions. Oesker et al. [OHJ00] in-
vestigated the extent to which observers perceptually process
the LOD in naturalistic character animation. The study most
related to our work is by Hodgins et al. [HOT98]. They
performed a series of perceptual experiments, the results of
which indicated that a viewer’s perception of motion char-
acteristics is affected by the geometric model used for ren-
dering. Participants were shown a series of paired motion
sequences and asked if the two motions in each pair were
the “same” or “different”. The motion sequences in each pair
were rendered using the same geometric model. For the three
types of motion variation tested, sensitivity scores indicated

that subjects were better able to observe changes when view-
ing the polygonal model than they were with a stick figure
model.
With the goal of improving the realism of our crowd system,
we carried out the following four sets of perceptual experi-
ments:
1. Perception of Human Appearance

Experiment 1: Impostor Vs. Mesh Detection

At what distance can experiment participants detect
that a virtual human is using an impostor or mesh
representation?
Experiment 2: Low Vs. High-Resolution Mesh Discrimi-

nation

At what distance and at what resolution can experiment
participants discriminate between a high resolution and
low resolution mesh representation?
Experiment 3: Impostor/Mesh Switching Discrimination

At what distance can experiment participants detect an
impostor switching to a mesh?

2. Perception of Motion

Experiment 4: Perception of Human Motion

How well do different virtual human representations
replicate motion?
Experiment 5: Perception of Cloth Motion

How well do different representations replicate de-
formable clothing?
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Experiment 6: Applying Motion Capture

Is the sex of a motion captured actor important when
applying his/her motion to virtual characters?

3. Perceptual Metrics for Smooth Animation

Experiment 7: Impostor Update Frequency

What is the optimal sampling rate (i.e, the number of
viewpoints) for impostors?
Experiment 8: Animation Update Frequency

How many pose changes per second are needed for
smooth animation?
Experiment 9: Simulation Level of Detail

Can we save memory by displaying foreground charac-
ters at higher update rates than background characters,
with no loss of visual fidelity?

4. Evaluation of Metrics

Experiment 10: Impostor Update and Mesh Detection

Metric Evaluation

To evaluate the effectiveness of the metrics discovered
in Experiment 1, 3 and 7 by placing the characters in
crowds of different sizes.

Psychophysics

We will begin with a broad overview of some psychophysi-
cal techniques that were used for gathering information for
the experiments that we performed.
Psychophysics is the science of human sensory perception
and is used to explore two general perceptual problems in-
volving the measurement of sensory thresholds: discrimina-
tion and detection [LHEJ01]. Discrimination is the ability to
tell two stimuli apart, where each differ by a small amount,
usually along a single dimension. Detection is a special case
of the discrimination problem, where the reference stimu-
lus is a null stimulus. Typically, both perceptual problems
can be investigated using either a classical yes-no or a forced

choice experiment design [Tre95]. A yes-no design involves
experiment participants deciding on whether the stimuli are
the “same” (no response) or “different” (yes response) while
forced choice designs consist of the participant identifying
a specific target stimulus given a number of choices. Us-
ing these designs, the participants responses for each stimu-
lus level can be collected and analysed to estimate discrim-
ination or detection thresholds. In order to measure these
thresholds, the participant’s cumulative responses are plotted
as a graph of percentage yes responses (using a yes-no de-
sign) or percentage correct responses (using a forced choice
design) for each stimulus level. An S-shaped curve termed a
Psychometric Function is fitted to the cumulative responses,
where the percentage yes or percentage correct is plotted as
a function of stimulus.
For a yes-no design, the sensitivity threshold is specified by
the stimulus intensity required for a person to reach a 50%
yes point i.e., the point where same and different responses
are equally likely. This threshold is known as the Point of

Figure 1: An Ogive function fitted to a participant’s data for

a yes-no design.

Subjective Equality (PSE). For this design, a simple Ogive
inverse normal distribution function (see Equation 1) can be
use to plot a curve that fits the participant’s data (shown in
Figure 1) and, from this curve, the PSE can be estimated as
the 50% point and calculated using Equation 2. The inverse
normal distribution function computes the stimulus intensity
(x) for a given probability (P).

P Ogive(x) =
1

σ
√

2Π
exp

−(x−µ)2

2σ2
(1)

where : σ is the mean,
µ is the standard deviation, and
µ2 is the variance.

PSE Ogive = P Ogive(0.5) (2)

For forced choice designs, the threshold is often chosen as
a halfway point between chance and 100% correct [Tre95].
For example, for a two alternative forced choice (2AFC) par-
adigm, the target stimulus is one of two choices. Therefore,
the sensitivity threshold is the midpoint between chance
(50% point in the case of 2 choices) and 100% correct, which
is the 75% point. For experimental data using a 2AFC para-
digm, a logistical function is normally used to fit a suitable
curve to the participant’s data and estimate the PSE using
the 75% point. In our experiments we use a slightly modi-
fied version of the logistical function (given in Equation 3).
The PSE for an experiment using a 2AFC design can be cal-
culated using Equation 4.

P Logistic(x) = 1− γ(
1

1+( x
α )−β

) (3)

where : α is the stimulus at the halfway point,
β is the steepness of the curve, and
γ is the probability of being correct by chance.

PSE Logistic = PLogistic(0.75) (4)
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Another interesting threshold that can be estimated from
these curves is the difference threshold or the just notice-

able difference (JND). The JND is the smallest difference in
intensity required for a person to distinguish two stimuli and
this can be estimated as the amount of additional stimulus
needed to increase a participant’s detection rate from 50%
to 75% (for a yes-no design) or from 75% to 87.5% (for
a 2AFC design) on the fitted psychometric function. Equa-
tion 5 and Equation 6 are used to calculate the JND for an ex-
periment using a yes-no and 2AFC experiment, respectively.
Finally, ANalysis of Variance (ANOVA) is used to test the
null hypothesis that two means are equal. The null hypothe-
sis is rejected if there are significant differences between the
means.

JNDOgive = POgive(0.75)−POgive(0.5) (5)

JNDLogistic = PLogistic(0.875)−PLogistic(0.75) (6)

The main problem with measuring thresholds of perception
is that participants do not always respond in the same way
when presented with identical stimuli in an ideal, noise-free
experimental setup. This is mainly due to the fact that the
neurosensory system is somewhat noisy, but other reasons
such as attentional differences, learning, and adaptation to
the experimental setup can also have an effect. To reduce
some of these problems, many psychophysical techniques
for collecting data have been developed [Tre95]. With re-
gards to our experiments, we use a staircase experimental
procedure.
A simple up-down staircase procedure involves setting the
stimulus level to a pre-defined intensity and presenting the
stimulus to the participant [Cor62,Lev71]. Depending on the
participant’s response, the stimulus level is decreased (for a
positive response) or increased (for a negative response) by
a fixed amount or step-size and the altered stimulus is pre-
sented to the participant again. The experiment is terminated
once the participant’s response changes from positive to neg-
ative and vice versa (called a reversal) a certain number of
times. Figure 2 illustrates the stepping procedure for an up-
down staircase terminated after four reversals. It should be
noted that care is needed when selecting the step-size. Too
large a step-size results in inaccurate threshold estimates and
the possibility of outliers in the data. Alternatively, too small
a step-size may result in an accurate threshold estimate but
the risk of participants becoming bored, tired or losing their
attention is high. Normally, the appropriate step-size is se-
lected based on the results from preliminary experiments
testing several different step-sizes.
To eliminate response bias caused by participants learning
how the experimental procedure works, a pair of randomly
interleaved staircases can be used [ODGK03]. This involves
setting up ascending and descending staircases, where their
respective stimulus level is initialised to a maximum and
minimum intensity. These two staircases are then presented

Figure 2: Example of the stepping procedure for an up-down

staircase terminated after four reversals.

to the participant in a randomly interleaved manner to elim-
inate the participant guessing the direction of change of the
stimulus intensity. To avoid data being sampled at too high
or too low stimulus levels, adaptive procedures can be used
to specify how to adapt the stimulus level depending on the
participant’s response. As a result of this, data sampling is
concentrated around the participant’s threshold on the psy-
chometric function. Levitt provides an overview of adaptive
staircase procedures [Lev71] such as the transformed up-

down method and the weighted up-down method. With trans-
formed up-down methods (used in [MAEH04]), the stimulus
is altered depending on the outcome of two or more preced-
ing trials. For example, a three-up one-down (3U-1D) step-
ping procedure involving the stimulus level is increased only
after three successive incorrect responses and decreased with
each correct response. With weighted up-down methods, dif-
ferent step-sizes for upward and downward steps are used.

1. Perception of Human Appearance

The main aim of this experiment is to establish if and
when various virtual human representations are perceptu-
ally equivalent. This is especially important in LOD crowd
systems displaying different representations simultaneously.
Using a psychophysical approach, we attempt to derive a
perceptual metric to aid in deciding when to use a particu-
lar representation based on the virtual human’s appearance.
Hamill et al. [HMDO05] and McDonnell et al. [MDO05]
detail these experiments in full.

1.1. Experiment 1: Impostor Vs. Mesh Detection

This experiment aimed to establish the distance at which
participants were able to discriminate between a virtual hu-
man’s high resolution mesh and an impostor. In [DHOO05],
it was hypothesised that humans should be able to detect the
impostor once the size of a texel is bigger than the size of
the impostor image’s pixel, as aliasing artifacts then start to
occur as a result of stretching the impostor’s image onto the
quadrilateral. Based on this hypothesis, the system switched
between a virtual human’s impostor and mesh representa-
tion when the impostor image pixel size to impostor texel
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size was a ratio of 1:1. In this experiment, we try to find the
exact pixel to texel ratio at which the participants are able to
discriminate between these representations.

1.1.1. Visual Content and Procedure

Participants were shown the virtual human’s geometric and
impostor representations at different distances for 5 sec-
onds (Figure 3). Each representation was animated with a 1-
second cyclical walk animation. The participants were asked
to indicate on which side the virtual human “looked bet-
ter” by pressing the corresponding trigger button on a USB
gamepad. Because applications containing virtual humans
would typically involve displaying them from multiple view-
points, both representations were rotated at 5.625 degrees
every 100 milliseconds in a randomised direction around the
y-axis, so that the participant was not comparing the repre-
sentations based on a single viewpoint.

Figure 3: Test application environment with mesh on left and

impostor on right.

1.1.2. Results

We recorded the participant’s response at each distance and
calculated the percentage of correct responses for each ratio
at which the representations were displayed. We then plotted
this as a function of the ratio and fitted a psychometric curve
to the data.
Subsequently the PSE was calculated for each participant.
The mean PSE value for all participants was 1.164 ± 0.064.
At this PSE level, the participant will judge the representa-
tions with equal likelihood as “looking better”. The mean
PSE is close to the hypothesised value of 1. This means that
when an impostor is directly beside its mesh counterpart,
users should not notice the difference between them when
the impostor is displayed at a pixel to texel ratio of 1 to 1.

Pixel : TexelRatio(distance) =
distance×PixelSize

TexelSize
(7)

1.2. Experiment 2: Low Vs. High-Resolution Mesh

Discrimination

A common LOD approach for reducing the computational
cost associated with rendering a high detailed mesh is to

Figure 4: (left) high resolution model, (right) blocky shaped

low resolution version.

replace it with a simpler, lower resolution mesh containing
fewer triangles, where the loss of detail should be impercep-
tible to the viewer of the system (see [dHCUCT04]). How-
ever, care has to be taken when generating these low res-
olution meshes, as removing too much detail can produce
blocky shaped results, along with animation artifacts due to
the loss of joint vertices, and the overall visual realism of the
virtual human is reduced (Figure 4). The second experiment
was aimed at establishing the resolution, in terms of percent-
age of vertices, at which participants were able to discrimi-
nate between a virtual human’s high resolution mesh and a
selection of simplified low resolution meshes for three dif-
ferent distances.

Figure 5: Illustration of some of the simplified models used

for Experiment 2.

1.2.1. Visual Content and Procedure

In these experiments, a female model of 2170 polygons was
used. Using the 3D Studio Max Multires modifier, a selec-
tion of low resolution meshes were generated in this manner,
ranging from a reduced vertex percentage of 60% to 15%
(2170 polygons to 262 polygons) at intervals of 2.5% (see
Figure 5).
A high resolution mesh and a low resolution mesh were
displayed alongside each other for comparison. The partic-
ipants were asked to indicate whether the representations
looked the “same” or “different” by pressing the respective
left or right trigger button on a USB gamepad (Figure 6).
Each time the participant indicated a “same” response, the
resolution of the low LOD mesh was decreased, otherwise a
“different” response increased the resolution.
As mentioned previously, three distances at which to dis-
play the representations from the viewer were chosen. The
first distance was 5 metres, the second distance was 8 metres
and the third distance was 16 metres, which corresponded to

c© The Eurographics Association 2007.

96



R. McDonnell, S. Dobbyn, & C. O’Sullivan / Perceptual Experiments and Metrics

Figure 6: Participant taking part in Experiment 2.

66.6% and 33.3% of the representation’s initial screen space
size.

1.2.2. Results

We recorded the participant’s response for each mesh res-
olution displayed and calculated the percentage of correct
responses for each resolution at which the representations
were displayed, and plotted this as a function of the resolu-
tion.
It was found that distance affected perception of the low
resolution mesh’s visual appearance, with participants be-
ing able to discriminate better between different resolution
meshes at closer distances.
The mean PSE values give us a good indication as to the
percentage of vertices necessary for a low resolution mesh
to be considered the same as its higher counterpart 50% of
the time. However, this value is not very practical for de-
velopers, so we also included a further analysis. After much
consideration, we chose the 80% probability of acceptance
as the level to explore further as a practical level for develop-
ers. The 80% probability of acceptance is the percentage of
vertices necessary for an observer to say that they found the
low resolution mesh equivalent to the high resolution 80%
of the time. We felt that this level was high enough to en-
sure that the difference between the low and high resolution
meshes would not be noticed in most situations, such as in
a game. Also, this level was considered low enough to be of
practical use in real-time, as a 90% probability would result
in a mesh almost as detailed as the high resolution mesh, and
would not represent a significant saving.
The mean 80% probability of acceptance values are pre-
sented in Figure 7, along with the mean PSE values. The
corresponding number of vertices and polygons for the 80%
probability of acceptance are shown in Table 1.
From these results, a low resolution mesh generated at
42.2% is acceptable to use as a replacement for the high res-
olution, at the closest distance, as observers will consider
them to be same 80% of the time. This suggests that we are
using a mesh that is too detailed for the highest LOD in our
crowd system, and a less detailed model could be used with-
out the user noticing, while improving the system’s perfor-
mance.

Figure 7: (left) Mean PSE values, (right) Mean 80% proba-

bility of acceptance.

Distance 5.0 8.0 16.0
Vertex % 42.2±1.0 37.6±1.0 26.2±1.0
Vertices 487 434 302

Triangles 871 770 524

Table 1: Developer guidelines from 80% probability of ac-

ceptance results.

LODGeometry Distance CostLOD Crowd Size
(metres) (ms) @ 30FPS

High Res 100% < 5.0 0.0645 517
Low Res 42.2% > 5.0 0.0241 1,385
Low Res 37.6% > 8.0 0.0221 1,507
Low Res 31.9% > 12.416 0.0198 1,686
Low Res 26.2% > 16.0 0.0135 1,961
Impostor 12.416 0.00697 4,777

Table 2: The distance at which LODGeometry models are per-

ceptually equivalent (using 80% probability of acceptance

values) and their associated rendering cost.

Figure 8: Summary of distances at which to display repre-

sentations. In this example 12 metres is equivalent to the dis-

tance at which an impostor achieves the acceptable pixel to

texel ratio.

1.2.3. Developer Guidelines for Experiment 1 and 2

The results from Experiment 1 showed that participants
could not discriminate between impostors and their high res-
olution model at a pixel to texel ratio of approximately 1.16,
which corresponds to a distance of 12.416 metres. However,
low resolution meshes can be perceptually equivalent to their
high resolution mesh at a closer distance. By using the re-
sults from Experiment 1, we can estimate the percentage of
vertices at which to generate a low resolution mesh that is in-
distinguishable from the high resolution model at the same

c© The Eurographics Association 2007.

97



R. McDonnell, S. Dobbyn, & C. O’Sullivan / Perceptual Experiments and Metrics

Figure 9: Summary of distances at which to display repre-

sentations, where representations are shown at the actual

distance used.

distance as the impostor. This corresponds to a low resolu-
tion mesh of approximately 31.9%, or 621 triangles. Due to
the rendering cost of each model (Table 2), we suggest that it
would be advantageous to use the impostor instead of a low
resolution mesh for virtual humans being displayed at a ratio
greater than 1.16. To summarise, Figures 8 and 9 illustrate
the distances at which low resolution meshes and impostors
are perceptually equivalent to a high resolution mesh.

1.3. Experiment 3: Impostor/Mesh Switching

Discrimination

Typically, developers use the LOD approach of switching
between a detailed mesh representation and a lower detailed
model based on some selection criteria, to help maintain the
interactivity of their system. It is important that the switch-
ing between models is imperceptible to the viewer, other-
wise the overall believability of the system is reduced. While
the selection of the model’s resolution can be based on sev-
eral switching criteria, usually this is based on some distance
threshold from the viewer of the system. With respect to our
system, we achieve interactive frame rates by using a high
resolution mesh only for humans in the front, and impostor
representation that can be displayed at a fraction of the ren-
dering cost of the mesh. We switch between these represen-
tations in order to maintain the realism of the crowd. While
having thresholds for the believability of an impostor is use-
ful when it is displayed beside its equivalent mesh represen-
tation, popping artifacts often manifest during the transition
from impostor to geometry. These sudden popping artefacts
during this transition may be caused either by differences in
aliasing, depth information, or using a fixed number of pre-
generated viewpoint images which can also cause shading
differences.
In Experiment 3, we aimed to establish the distance at which
the transition from a pre-generated impostor to a mesh is no-
ticeable. The goal in establishing such a threshold was to
provide us with a guide to the distance at which the switch-
ing between our impostor and mesh representation should
occur in order to reduce any noticeable popping artefacts
and therefore maintain the realism of our crowd. This dis-
tance can be calculated in terms of a pixel to texel ratio (see
Experiment 2), and it was hypothesised that beyond the point
of one-to-one pixel to texel ratio, the participants would be
unable to detect the transition.

1.3.1. Visual Content and Procedure

For each trial, the same model used in the first experiment
was displayed, starting at a specific distance from the viewer,
then moving at a constant speed towards the camera, and fi-
nally stopping at a specific distance. At some point during
the interval the model switched from an initial impostor rep-
resentation to a mesh representation.
The participants were asked to indicate whether they noticed
a “definite change” in the model, by pressing the left or right
trigger buttons of the gamepad to indicate their respective
yes/no response. Each time the participant indicated a “yes”
response, the distance at which the switch occurred was in-
creased, otherwise a “no” response decreased the distance.
Two separate experiments were carried out, with the model
either facing the user or spinning on the spot. The virtual
human switched from its impostor to its geometric represen-
tation at a switching distance ranging from 6 to 31 units.
It was found that, when the virtual human approached the
camera too quickly, the resulting rate of change in the texture
detail of the geometric representation (since mipmapping
was not employed for its texture), caused the participants
to perceive a switch where there was none. While the effect
of popping artifacts may be reduced by blending, such as in
Ebbesmeyer [Ebb98], we aimed to establish baseline thresh-
olds were this would not be necessary. For urban simulations
(which generally are constrained to the ground plane), tran-
sitions typically occur at the distance where the change in
depth information is small due to perspective, and for virtual
humans the overall change of depth information is similarly
small. A further investigation of the effect of blending on
transition detection is desirable.

Figure 10: Results of the popping detection experiments

(showing the PSE in terms of pixel to texel ratio) for humans

facing viewer (1) and spinning (2).

1.3.2. Results

We recorded the participants’ responses for each trial’s
switching distance. A psychometric curve was fitted to each
participant’s experimental data. The mean PSE calculated
(shown as PSE1 in Figure 10), was approximately the pre-
dicted one-to-one value. The mean PSE calculated for the
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second experiment (shown as PSE2), was less than for PSE1,
suggesting that the spinning was a distracting factor.
It should be noted that the results from this experiment are
predicated on the texel size the impostor was pre-generated
at. The texel size of the impostor used in this experiment
was selected to ensure that all 17 × 8 pre-generated view-
points fitted into a 1024 × 1024 image which is an image
size commonly used in these types of applications. While
the switching was not detected at a ratio of one-to-one for
this texel size, it is hypothesised that this ratio will no longer
be valid for impostors generated at a larger texel size due to
aliasing artefacts being more noticeable. In order to establish
at what texel size the switching is detectable at a one-to-one
ratio, this would involve pre-generating impostors at various
texel sizes, presenting a virtual human switching from each
impostor to the mesh at the one-to-one distance, and evalu-
ating at what texel size the participant is capable of detecting
any popping artefacts.

2. Perception of Motion

In a LOD crowd system that simultaneously displays differ-
ent model representations, as described in [DHOO05], it is
important that the quality of the motion of the lower LODs
is not significantly different from that of the high resolu-
tion. Hodgins et al. [HOT98] showed that model type af-
fected user perception of human motion, when a stick figure
model’s motion was compared to a polygonal model. Here,
we test whether or not the lower detail representations repli-
cate the motion of the high resolution mesh, and we also test
their ability to replicate deformable cloth motion. Finally, we
look at how motion capture data is perceived when applied
to different models. More detailed descriptions of these ex-
periments can be found in [MDO05, MDCO06, MJH∗07].

2.1. Experiment 4: Perception of Human Motion

The first experiment in this section aims to analyse the ability
of low resolution geometry and impostors to replicate the
motion of the higher resolution human mesh that they were
generated from.

2.1.1. Visual Content and Procedure

Three different representations of a male model were used.
Two of the models were polygonal models with deformable
meshes which were manipulated by an underlying skeleton;
the high resolution polygon model had a deformable mesh of
2022 polygons, while the low resolution polygon model had
only 808 polygons for a deformable mesh. We automatically
simplified the mesh as much as possible, without making the
simplified version look different from the original. Impostors
were the third type evaluated and the same pre-generated ap-
proach was used as in the other experiments.
A reference motion R was created which consisted of 10
frames of a key-framed walk motion. The 10 frames of R

were modified a number of times to create the arm, leg, and
torso motion variation sequences.
Firstly, the performance of the participants in distinguishing

smaller and larger dynamic arm motions was examined. As-
sessing the arm motion variation involved comparing R to
a set of motions which altered the distance of the arm from
the body at certain keyframes. The modifications were made
by rotating the upper left arm joint in kAl at the shoulder
along the positive horizontal axis by a fixed number of de-
grees (Figure 12 (left)). The right arm was altered by the
same amount in the reverse direction.
A similar test was conducted to test the ability of the par-
ticipants in distinguishing larger and smaller leg motions for
all representations. The leg was altered by iterative trans-
lations along the longitudinal and vertical axes (Figure 12
(middle)). Finally, the ability of the participants to distin-
guish modifications to the torso was tested. In this instance,
the alterations were made by iteratively rotating the lower
spine of the skeleton by a fixed number of degrees around
the longitudinal axis (Figure 12 (right)).

Figure 12: (left) Top view of min and max arm variation,

(middle) Perspective view of min and max leg variation,

(right) Top view of min and max torso variation.

2.1.2. Experiment Procedure

Participants viewed pairs of movies, and were asked to spec-
ify whether they thought that the motion of the character in
the movies was the “same” or “different” (Figure 13). After
the first 4-second movie was viewed, the participant pressed
a “view next” button on the screen using the mouse. The next
movie was then presented for 4 seconds and the participant
had to decide whether they thought that the motions were
the same or different and press the corresponding on-screen
button.

Figure 13: Participant taking part in the Experiment 4.
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Figure 11: Eight different materials used in order of increasing stiffness

Figure 14: Mean JND values for all motion variations col-

lapsed over model type.

2.1.3. Results

For each participant, the number of times that they viewed
a pair of motions at each stimulus level was recorded, along
with the number of correct responses that they gave at that
level. The percentages of correct responses were then plot-
ted against the stimulus level values. As we are interested in
sensitivities to differences in motion for the different model
representations, and not actual threshold values we exam-
ined the JND values rather than the PSE values in this exper-
iment. Psychometric curves were then fitted to the datasets
and, for each participant, the JND were calculated from these
curves. The JND was then found by calculating the differ-
ence between the PSE and the stimulus level value that cor-
responded to 75% correct responses on the psychometric
curve.

An ANOVA was used to compare mean JND values across
all of the participants and showed that there was a significant
difference in their sensitivities with respect to the changes
viewed. The significances for the differences between model
types indicate that the motion of the impostor was closer to
that of the high resolution polygon model than that of the
low resolution model (Figure 14).

We suggest that this is due to the fact that, even though the
impostor appears perceptually different to the high resolu-
tion model at the distance shown in the experiments, it repli-
cated the motion of the high resolution model accurately.
The low resolution model may not replicate this motion as
effectively because there are fewer vertices on the mesh, and
even though it is the same skeleton used to deform this mesh,
the deformation loses subtle motion information.

2.2. Experiment 5: Perception of Cloth Motion

Displaying large crowds of high quality virtual characters
with deformable clothing is not possible in real-time at
present because of the cost of rendering the thousands of
polygons necessary to depict the subtle motion of the cloth.
Current real-time crowd systems are capable of displaying
thousands of skinned characters by using lower quality rep-
resentations instead of high quality to achieve their goal.
Hybrid systems that switch between high and lower qual-
ity models depending on the distance from the camera, are
also a solution to this problem.

Our aim was to extend the hybrid crowd system described
in [DHOO05] to include clothed characters. However, we
were not certain at the outset which representation (i.e., low
detail geometry or impostor) would be most suited to dis-
playing the deformations of simulated cloth, although we
hypothesised that low geometry would not be sufficient to
reproduce the required deformations. We address the ques-
tions: Can impostors and low resolution geometry display a
range of different cloth materials? How well can they repro-
duce individual material types? If compared directly, which
representation would resemble a higher quality representa-
tion more closely?

2.2.1. Stiffness Sorting Condition

This condition aimed to establish whether the real-time
lower detail cloth representations could produce distinguish-
able levels of cloth stiffness. After some experimentation,
we found eight cloth motions which ranged from very soft
to very stiff (Figure 11). Eight movies, each showing one
of the representations, were placed randomly on a 21-inch
widescreen monitor, each playing in a loop. Participants
were asked to place the 8 movies in order of stiffness, with
the least stiff on the left and the most stiff on the right.
The order in which the participants placed the movies was
recorded and compared to the actual sequence.

Figure 15 shows us that overall the participants found the
low detail geometry cloth more difficult to sort than the high
detail, and the impostor representation. There was no statis-
tical significance between sorting the impostor and sorting
the high resolution movies. These results indicate that the
perception of subtle differences in cloth motions using the
impostor is closer to that of the high detail geometry cloth
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Figure 15: Results of Stiffness Sorting Condition.

simulation than the low geometry simulation. This also sup-
ports the findings in Experiment 4 that impostors are better
at depicting small differences in human motion.

2.2.2. Stiffness Forced Choice Condition

The next condition we tested was to determine how well
the high and low detail geometry and impostor reproduced
the stiffness levels of a gold standard cloth (rendered offline
with non-realtime rendering and lighting). Participants were
shown 2 gold standard movies (that of the stiff and that of the
soft skirts) beside each other. They were asked after every
trial to indicate which of the two gold standard animations
(stiff or soft) was more similar to the current target anima-
tion, playing on an adjacent monitor.

Figure 16: Perceived stiffness for different LOD cloths.

Standard error bars are shown.

The interpretation of these results is evident from Figure 16.
Participants found that the perceived stiffness of the cloth
motion for the impostor was closer to that of the high resolu-
tion than the low resolution for low stiffness levels (i.e., soft
materials). This suggests that the impostor better matches the
high detail geometry motion at low stiffness levels. There is
a divergence at the middle stiffness levels, where most par-
ticipants rated the impostors to be soft, and few found the

Figure 17: Results for LOD Comparison Condition.

low detail to be soft. At the high stiffness levels, more par-
ticipants’ perception of the low resolution cloth motion was
closer to the high detail geometry than the impostor. Overall,
there seems to be a tendency for the participants to perceive
the low detail geometry cloth motion to be stiffer than the
high geometry, and the impostor to be less stiff than the high
geometry.

2.2.3. LOD Comparison Condition

A third condition was tested in order to see how well each
representation matched the gold standard. Participants were
first shown pairs of the most rigid cloth and were asked
which cloth animation was most similar to the gold stan-
dard rigid cloth. Participants pressed left or right buttons on
the gamepad to choose the most similar simulation. They
were then shown pairs of the cloth with stiffness approx-
imately halfway on our estimated scale (i.e., the fifth im-
age in Figure 11), and were asked to compare them with
the corresponding gold standard cloth. Finally, the partici-
pants viewed pairs of the most soft cloth and were asked to
compare them to the gold standard as before. The number of
times that a participant preferred each LOD representation
over each of the others was recorded.
Our results (Figure 17) suggested that, when viewing these
representations in a hybrid system that simultaneously dis-
plays virtual humans using two types of representation,
switching intermittently between them, the low resolution
will not resemble the high resolution as closely as the im-
postor does, thus resulting in significant artifacts.

2.3. Experiment 6: Applying Motion Capture

Crowds simulated with synthetic walking motions can lack
personality, so motion captured data can be used to add real-
ism. In this experiment, we investigate some factors that af-
fect the perceived sex of walking virtual humans, with a view
to increasing the realism of pedestrians in real-time crowd
simulations. We cannot simulate everyone in a crowd with
their own personal motion captured walk, as the more mo-
tions we use, the greater the demands on potentially limited
computational and memory resources (e.g., a games console
or hand-held device). Therefore, the challenge is to optimise
quality and variety with the resources available. Specifically,
we ask the question whether, if there is a clear visual indi-
cator of sex (i.e., a highly realistic, unambiguously female
or male model, as shown in Figure 18), will motion or form
information dominate our perception of the sex of the char-
acter? If motion information alone always determines per-
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ceived sex, then we would always need to create templates
of every different motion for both males and females. How-
ever, if we find that form dominates, or that simulated neu-
tral motions are as good as captured natural motions under
some circumstances, then such duplication may not always
be necessary. Perhaps some actors’ walks can be equally ef-
fectively applied to both male and female models. Any of
these results would allow us to create “canonical” motions
to which variety could later be added, irrespective of sex.

2.3.1. Visual Content and Procedure

Six undergraduate students (3M, 3F) volunteered to be mo-
tion captured, each in a separate session per actor. We cap-
tured some of the walks without their knowledge to ensure
they were walking naturally, then applied the motion cap-
ture data to characters in 3D Studio Max and kept one nat-
ural walk per actor. We also generated three different neutral
walk motions, with neither male nor female characteristics
(such as hip sway or shoulder movement).

Four different models were used to display the different mo-
tions (Figure 18): highly detailed woman and man models of
approximately 35000 polygons each, an androgynous char-
acter, and a point light walker. The woman and man were
chosen as typical characters that would be used in a com-
puter simulation of natural crowds. The androgynous figure
was chosen as it did not appear particularly male or female
and so could serve as a control. The point light walker was
generated from a generic neutral skeleton and so contained
minimal shape information.

Figure 18: Four model representations were animated with

real female, real male or synthetic neutral motions. From left

to right: Woman model, Man model, Androgynous figure and

Point light walker.

Each of the different motion types (3) from each of the ac-
tors (3) were applied to each of the model types (4), with
two repetitions for each condition, resulting in a total of 72
movies. Participants viewed the movies and were were told
to take both motion and form/shape into account and they
marked their selections on an answer sheet. Participants cat-
egorised the character they just saw on a five-point scale of
1: very male, 2: male, 3: ambiguous, 4: female or 5: very

female.

Figure 19: The interacting effects of model and walk type.

2.3.2. Results

Results show that male walks on the woman are rated as am-
biguous, as are female walks on the man (Figure 19). This
implies that applying motion captured from actors of the op-
posite sex to the character will produce confusing or unsat-
isfactory results in general. Interestingly, neutral walks were
considered male when viewed on the man and female when
viewed on the woman. This implies that for neutral walks,
the appearance of the character takes precedence over the
motion in determining the sex of the character. This result
has implications for computer graphics applications where
resources are limited, as re-using the same neutral walks on
male and female characters would appear to produce the de-
sired effect.
Also, for a character with androgynous appearance, the mo-
tion information is most important when determining the sex
(as without motion, the androgynous figure was consistently
rated to be ambiguous).

3. Perceptual metrics for smooth animation

In this section, we describe a series of experiments designed
to provide metrics to developers for smooth animations. The
first experiment in this section finds the optimal number
of viewpoint images necessary for smooth impostor anima-
tions. The next experiment aims to find the optimal pose
update rate for characters performing different animations.
Finally, we look at simulation LOD and establish whether
different pose updates would be acceptable if displayed to-
gether in one scene. These experiments are described in full
in [MDCO06, MNO07].

3.1. Experiment 7: Impostor Update Frequency

From the results recorded in previous experiments, we can
see that impostors are good at representing the deforming
folds of cloth and are a good substitute for high resolution
geometry clothed models at a 1:1 pixel to texel ratio dis-
tance from the camera. As mentioned above, impostors are
generated by rendering multiple images of the human from
different viewpoints for every frame of animation. The ap-
propriate viewpoint is selected with respect to the camera
in the real-time system. Typically, these viewpoints are gen-
erated at regular intervals around a sphere, so the sampling
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Figure 20: Generating impostor images from a camera po-

sitioned on the circumference of a circle every 45◦.

density can be described by the number of degrees difference
between each segment of the sampled sphere (e.g., Figure 20
shows impostor images generated every 45◦).
Ideally, impostors would be generated at very small intervals
around a sphere, the same number of times that a polygonal
model would be updated, which would allow seamless tran-
sitions between the images. However, as we are using pre-
generated textures, texture memory consumption prevents
choosing such a dense sampling, so there is a need to pick
an optimal number of viewpoint images to generate. Dobbyn
et al. [DHOO05] and Tecchia et al. [TLC02] report render-
ing 17 and 16 viewpoints of their impostors from one side of
the human and mirroring the impostors for the reverse angle.
This corresponds to an update rate of 10.58◦ (180◦ divided
by 17) and 11.25◦ respectively. However, they do not spec-
ify their reasons for choosing these numbers of viewpoints.
With the addition of cloth to the impostors, mirroring is no
longer possible due to the non-symmetric nature of cloth (the
cloth on one side is usually not identical to the other side,
due to the folds occurring in different places). Also, it was
not clear that this directional sampling density would be ap-
propriate when clothing was added to the impostors. As in
Tecchia et al. and Dobbyn et al., interpolation was not used
between different views, as it would be computationally in-
tensive and could introduce visual artifacts.

Figure 21: Six different characters used in impostor update

frequency test

3.1.1. Visual Content and Procedure

We chose 6 characters as stimuli for this experiment (Fig-
ure 21). We pre-generated 256 impostors for every frame of
the 10-frame animation, which corresponded to an optimal

sampling density of 1.4◦ (i.e., 360◦ divided by 256). The

Figure 22: (a) Mean PSE values for all models, (b) Mean

values for 80% probability of acceptance

characters moved on a circular path at a normal walk pace,
with the closest point to the viewer on the circle being the
pixel to texel ratio distance reported in Experiment 1, as im-
postors would not be viewed any closer than this in a crowd
system. The character was placed at a random point on this
path, and walked for 3 seconds, in either a clockwise or an
anticlockwise direction. Participants were asked to specify,
using the gamepad, whether they perceived the change in
orientation of the character as jerky or smooth. The next trial
they saw depended on their previous response.
For each participant, a psychometric curve was fitted to their
dataset as described previously. This allowed us to find the
Point of Subjective Equality (PSE). The PSE is the point
at which participants were equally likely to find an anima-
tion smooth or jerky, i.e., where they have a 50% chance of
considering that motion smooth (Figure 22). A psychomet-
ric probability curve for each of the characters, derived from
all of the data, was then created, using the average of all par-
ticipants’ PSE and standard deviations (Figure 23).

Figure 23: Probability of acceptance curve derived from

psychometric data. This shows the number of degrees nec-

essary for each of the characters to be considered smooth

for a range of different probability of acceptance values. For

example, at 10 degrees, 80% of the time participants found

Edith, a typical pedestrian, to be smooth.

3.1.2. Developer Guidelines

For normal walking characters, with either stiff or soft cloth-
ing, a viewpoint update rate of 17◦ is necessary to guaran-
tee with 80% likelihood that users will not notice viewpoint
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Figure 24: Character 1, character 2 and character 2 with

deformable clothing.

changes of the impostors. This corresponds to 21 images that
need to be generated at equal spacing around the character.
We suggest rounding to the nearest even number of images
(22) in order to include the direct front and the direct back
view images, particularly in applications where a front-on
view would be most noticeable. For other characters whose
width to depth ratios are large, a viewpoint update rate of
9◦ is advised. This corresponds to 40 images around the
character. In [DHOO05] and [TLC02], updates of 10.58◦

and 11.25◦ were used. We can now see that these rates were
underestimates for complex characters but overestimates for
normal walking characters.

3.2. Experiment 8: Animation Update Frequency

Pose update rate can be defined as the frequency of individ-
ual simulation steps displayed when animating a character.
For most real-time crowd simulation, the pose update rate
is largely constrained by the available hardware and over-
all scene complexity. Individual mesh or image-based (im-
postor) keyframes can be “pre-baked” for background char-
acters, which reduces rendering and simulation costs but
increases memory consumption (thus the pps must remain
low).
In this experiment, we identify some factors and thresholds
for the perceived smoothness of animated virtual characters.
In a Baseline Condition, we first determined whether differ-
ent pose update rates are in fact needed for human motions
with different character and motion properties. Our detailed
Movement Condition examined the impact and interactions
of various motion properties.

3.2.1. Baseline Condition

We first tried to identify baseline factors that affected the
perceived smoothness of animated human motion. The goal
was to find the threshold among 15 update rates (ranging
from 4pps to 63pps) at which the participants found the dif-
ferent animations smooth, for each of the conditions tested.
The conditions were character type (a male ‘character 1’ and
a female ‘character 2’ shown in Figure 24) and motion type

(motion captured kungfu kick, jumping jack, walking and
jogging), and character cloth type (i.e., character 2 as de-
picted in Block 1 with simple skinned clothing, and charac-
ter 2 with physically simulated deformable clothing). Each
condition was shown at each update rate a number of times

Figure 25: Mean 50% threshold values for different anima-

tion types. Error bars show the standard error of the mean.

and the participant pressed the left or right mouse button on
the laptop to indicate “smooth” or “jerky” for each movie.

3.2.2. Analysis

We found that character type did not affect update rate in our
experiments. Surprisingly, deformable clothing did not have
an effect. However, motion type did have a significant effect,
with motions moving further across the screen needing more
updates than other motions (Figure 25).
We felt that the distance that the character moved across the
screen must have been a factor, as the walk and jog motion
moved much more across the screen than the other two mo-
tions. Furthermore, the amount of activity in the motion clip
seemed to have an effect. Therefore we designed our next
experiment condition to focus on these two factors in partic-
ular.

3.2.3. Movement Condition

The second condition examined more formally the effect of
different motion types and their interactions.

3.2.4. Visual Content and Procedure

Two motion complexities were chosen: Normal walk with
arms by the side, and Complex walk, the same walk motion
with added activity in the arms, torso and head, each mov-
ing in time with the legs of the walk cycle. Three different
cycle rates were chosen: Lo (1.5 cycles/sec), Med (2.72 cy-
cles/sec) and Hi (3.75 cycles/sec). Four different linear ve-
locities were chosen: V0 (walking on the spot), V1 (walking
1/3rd of the distance across the screen, i.e., 7.75screen cen-
timetres/sec), V2 (walking 4/6ths of the distance across the
screen, 15.5cm/sec) and V3 (walking the full distance across
the screen, 23cm/sec).
We split the 4 linear velocities into four separate experi-
ment blocks. Participants viewed all four blocks, with a one
minute break in between each block. As before, they were
asked to indicate whether the animation looked “smooth” or
“jerky” at each trial.

3.2.5. Analysis

As in the baseline experiment, we fitted psychometric curves
to participants’ data for each of the conditions, and were thus
able to calculate their 50% threshold values.
To summarize our findings for the Movement experiment, in
Figure 27 we show a chart of the 80% acceptance thresholds
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Figure 26: System Setup for Movement Condition.

(i.e., the level at which observers will say ‘smooth’ 80% of
the time). We felt that these values could be of practical use
to developers since the thresholds at this level were reason-
able for real-time performance. Figure 28 depicts these val-
ues in a more useful way for developers to choose the correct
update rates for their particular animations.

Figure 27: (l) Thresholds for 80% probability of acceptance

for normal walk. (r) Thresholds for 80% probability of ac-

ceptance for complex walk. Error bars show the standard

error of the mean. CR=Cycle Rate.

Figure 28: Summary of Movement Experiment results. For

the familiar motion, the legs were the fastest moving body

parts. We calculated that the fastest pixel was moving at 7

screen cm/sec (Lo CR), 12cm/sec (Med CR), and 15cm/sec

(Hi CR). For the unfamiliar motion, the arms were the fastest

and we calculated that the fastest moving pixel was moving

at 13cm/sec, 23cm/sec and 32cm/sec for Lo, Med and Hi CR.

These results will perhaps be of most use (and immedi-
ately applicable) for real-time character simulation, partic-
ularly when the characters have cyclical motions. In a pre-

processing step, each motion could be labeled with an opti-
mal update rate, based on the cyclical update rate and com-
plexity of the motion. At run-time, this rate for all characters
could change priority when the camera is moving fast, to ac-
count for the added jerkiness which occurs with fast camera
motion.

3.3. Experiment 9: Simulation Level of Detail

For memory critical systems such as real-time crowds using
impostors, the fewer poses required to make an animation
appear smooth the better. In Experiment 8, we have provided
thresholds of acceptability for different characters, depend-
ing on their cycle rate, complexity and the amount of camera
motion in the scene. However, we have not yet established
whether different pose updates would be acceptable if dis-
played together in one scene, as our previous experiments
showed one image at a time. Therefore, in this experiment,
we consider simulation level of detail by examining the ef-
fect of its implementation on perceived motion smoothness.
We give participants a discrimination task, in which they can
view two pose update rates simultaneously and make their
decisions based on a comparison of the two.

3.3.1. Visual Content and Procedure

We used the same character as in the previous experiments
(character 2). Each movie displayed one character in the
front and a group of characters in the back (Figure 29). The
characters in the background were updated at 5 different
rates, ranging from 5 to 30pps, and this was the stimulus
level - again, we wished to determine the thresholds among
the 5 update rates at which all characters appeared smooth,
for each set of conditions.

Figure 29: Crowd in experiment setup.

Figure 30: Crowd in game setting used in SLOD experiment

2. Characters have different form and colour from one an-

other and background is not white.
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This experiment had a 3-way design. The first condition was
walk type: in step (i.e., all characters started at the same
pose, and moved like an army) or out of step (i.e., all char-
acters started at different poses which represented a more
natural setting for a crowd of pedestrians.); the second condi-
tion was background group size: small (1 character), medium

(6 characters) or large (12 characters); and the third condi-
tion was foreground character update rate: update1 (30pps,
which from our previous experiment we know to be the
threshold at which 99% of participants perceived the mo-
tion presented in this experiment to be smooth) or update2

(20pps, the threshold with a 75% probability of being per-
ceived smooth).

We also wished to examine how a more natural scenario,
such as that found in games, would affect our results. There-
fore, we compared the ‘out of step’ large group to a new ‘out
of step’ large crowd where all characters were different and
appeared in a more complex background scene (Figure 30).

3.3.2. Analysis

In order for our SLOD experiment results to be of use to
developers, we analysed the 80% probability of acceptance
values, estimated from participants’ psychometric curves.
We found that 16pps was considered sufficient for all back-
ground characters that we tested (at 80% probability of ac-
ceptance there was no significant main effect of crowd size,
walk type, or foreground character update rate). This re-
sult could be of great benefit to LOD crowd systems in
particular. At present, in hybrid geometry/impostor crowds
(e.g., [DHOO05]), 10pps are used for both foreground and
background characters due to the memory consumption of
impostors. However, this rate results in jerky looking anima-
tion. Using 30pps for the geometry and 10pps for the im-
postors resulted in noticeable differences, and using 30pps
for the impostors is too costly in terms of memory. If, as our
results suggest, it is possible to display geometry at 30pps
and impostors at 16pps without observers noticing the differ-
ence, this will result in the ability to store double the num-
ber of characters in memory than would be possible if the
impostors were being displayed at 30pps.

In order to evaluate our SLOD metrics, we plugged the value
of 16pps for background characters into a simple geome-
try/impostor crowd scenario and found the differences in
SLOD to be imperceptible. Although the differences were
imperceptible in the example we tested, all of the characters
were walking on the spot, so switching between update rates
as the characters moved from foreground to background was
not present.

4. Evaluation of Metrics

In this section, we evaluate the effectiveness of the previ-
ous perceptual metrics. This experiment is described in de-
tail in [MDCO06].

4.1. Experiment 10: Impostor Update and Mesh

Detection Metric Evaluation

This experiment aimed to test the validity of the results of the
previous experiments in a real crowd scenario. The crowd
scene was populated with the female jumping model used in
the previous cloth experiments. The characters in the scene
were either all wearing the most stiff skirt from the experi-
ments, or the most soft skirt.
The experiment included three typical crowd systems: full
geometry, hybrid high polygon/impostor and hybrid high
polygon/low polygon. In the full geometry crowd system, all
characters were high resolution polygonal models of 8983
polygons each (6172 for the human model and 2811 for the
skirt). The hybrid high polygon/impostor system contained
the high resolution polygon models nearest to the camera,
and the impostor representations at the back (Figure 31 bot-
tom). The latter were displayed at the pixel-to-texel ratio
at which they are perceptually equivalent to high resolution
meshes. This pixel-to-texel ratio was found for individual
characters, but was never tested on a large crowd. We used
the results of the previous experiment to choose the number
of viewpoint images necessary for the two models.
The hybrid high/low resolution polygon system contained
high resolution characters at the front, and low resolution at
the back (Figure 31 middle). Five hundred and thirty poly-
gons were chosen for the low resolution skirt.
In a typical hybrid crowd system, the LOD choice depends
on the distance of a character from the camera. As the cam-
era moves through the scene, switching between represen-
tations will occur, due to the camera distance changing. To
examine this effect in our experiments, the camera zoomed
up and down through a corridor between the characters at
a speed of 4m/s, in order to ensure that LOD switching
occurred. Switching between impostor viewpoints also oc-
curred in this case.
The effect of switching between impostor viewpoints was
then examined independently by allowing the camera to only
pan from left to right at a speed of 2m/s, where the impos-
tor distance was fixed. In this case, the impostor viewpoints
were changing but no switching back and forth to high reso-
lution geometry occurred.
One hundred and eight 4-second movies were created in to-
tal: Three types of system: All Hi, Hi/Lo, Hi/Imp × 2 skirt
types: most stiff and least stiff × 3 crowd sizes: small (50
humans), medium (100 humans) and large (1000 humans)
× 2 conditions: camera panning from left to right, camera
moving up and down a fixed corridor × 3 random placings:
3 different random placings of characters in the scene.
Each participant viewed the sequence, and was asked for
every trial, whether all of the characters in the scene were
the same or if they noticed that some of the characters looked
different in any way.
We first analysed the effect of camera panning or zooming
to determine how effective or metrics for impostor viewpoint
switching (Experiment 7) and LOD switching (Experiment
3) were in a crowd scenario. An ANOVA was performed
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Figure 31: (top) Small crowd of All Hi with stiff cloth. (mid-

dle) Medium crowd of Hi/Lo with stiff cloth. (bottom) Large

crowd of Hi/Imp with soft cloth.

on the dataset and it was found that there was no signifi-
cant main effect of camera motion on the ability of partici-
pants to tell the differences between the representations. This
implied that participants were unaware of the switching be-
tween representations or switching between impostor view-
points, which is very good news for hybrid systems.
We then analysed the effect of stiffness (Figure 32). For the
stiff cloth, participants noticed the difference between the
hybrid Hi/Lo and All Hi movies significantly more times.
Also, they noticed the difference between Hi/Lo more times
than the Hi/Imp. There was no statistical significance be-
tween the number of times that they noticed a difference in
All Hi compared to Hi/Imp.
For the soft cloth, there was a difference between All Hi

and Hi/Lo, and between Hi/Lo and Hi/Imp. Again, there was
no difference between All Hi and Hi/Imp. This implied that
having a hybrid crowd using impostors and high resolution
geometry will introduce less artifacts than a hybrid crowd
with low resolution geometry.
As expected, there was a statistically significant difference

between Hi/Lo stiff and soft, with the soft cloth low geome-
try being noticed more times than the stiff cloth. There was
also a difference between impostor stiff and soft - with dif-
ferences in the soft being noticed fewer times than differ-
ences in the stiff cloth. Similar differences in stiffness were
present for All Hi.

Figure 32: Experiment 10: LOD vs Stiffness

The previous experiments all depicted scenes with only 1
or 2 characters. This represents the worst-case scenario, as
the character was being analysed directly, with no surround-
ing distractions. Surprisingly, it was found that there was no
overall effect of crowd size, implying that differences could
be noticed just as easily in small crowds as large crowds.

5. Conclusions and Future Work

We have gained new insights into the effects of different
level of detail representations with respect to human motion,
appearance and secondary motion. Although these results
are useful in terms of helping to improve real-time crowd
systems, this is still an area of research that would benefit
from more perceptual studies. The ultimate goal is to create
a framework for highly detailed crowds, driven by percep-
tual metrics.
In Experiment 10 we found that the size of the crowd did
not affect perception of background character LOD. While
this was a surprising result, the participants only had the
task of trying to perceive differences between the foreground
and background characters. We feel that if the viewer was
asked to perform a different task, these background differ-
ences might not be perceived as often, and the crowd size
may have an effect in this case. We base this assumption on
the fact that previous research by Cater et al. [CCW03] has
shown that humans fail to notice degradations in image qual-
ity in parts of the scene unrelated to their assigned task. Also,
Harrison et al. [HRvdP04] noticed that expectation about the
task affected perception of motion. Varying the task is cer-
tainly something we would like to examine in the future, as
it is likely that viewers of crowd scenes will be involved
in game-play in the foreground of the scene, or navigating
through a city.
We presented guidelines for developers on the number of im-
postor viewpoints needed in order to produce imperceptible
switching, for one elevation of impostors (i.e., those on the
ground plane). Using the same number for higher elevations
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might be wasteful, so it would be interesting to determine
the number of updates needed for all elevations, using simi-
lar psychophysical methods.
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Abstract

Although many new games are released each year, it is very unusual to find large-scale crowds populating the

environments depicted. Such applications need to deal with having limited resources available at each frame. With

many hundreds or thousands of potential virtual humans in a crowd, traditional techniques rapidly become over-

whelmed and are not able to sustain an interactive frame-rate. Therefore, simpler approaches to the rendering of

the crowds are needed. Additionally, these new approaches must provide for variety, as environments inhabited by

carbon-copy clones can be disconcerting and unrealistic. This part of the tutorial describes the impostor repre-

sentation used in our crowd rendering system, detailing our programmable hardware based method for lighting

and adding variation.

1. Introduction

This part of the tutorial describes the impostor represen-
tation used in our Geopostor system, a real-time geome-
try/impostor crowd rendering system (Figure 1). The Geo-
postor system has been developed to solve the challenging
problem of large-scale crowds by simulating virtual humans
as scene extras, equivalent to those found in films. Since
these agents are in the background, they are not the focus
of the user’s attention and therefore simpler animation, ren-
dering and behavioural techniques can be applied to them in
order to reduce the computational load of crowded scenes.

Our main contribution is that our system provides for a hy-
brid combination of image-based (i.e., impostor) and de-
tailed geometric rendering techniques for virtual humans. By
switching between the two representations, based on a pixel
to texel ratio [DHOO05], our system allows visual quality
and performance to be balanced. We improve on existing
impostor rendering techniques and present a programmable
hardware based method for the lighting of impostors. Fur-
thermore, we improve the realism of the crowd by adding
variation to an individual’s motion and appearance.

2. Real-Time Crowd Rendering with Pre-Generated

Impostors

While a deformable mesh was the obvious choice for the
virtual human’s highest LOD in our crowd system, there are

a number of reasons why we chose an impostor approach
for the lowest LOD over a continuous and a discrete LOD
framework. Firstly, impostors involve replacing a 3D object
with an image of the object mapped onto a quadrilateral.
This is advantageous mainly because it avoids the cost asso-
ciated with rendering the object’s full geometry. Secondly,
automatic tools used to pre-generate low-resolution meshes
required for a discrete LOD framework sometimes do not
give the required results, thus necessitating a lot of time-
consuming editing by hand. Finally, switching between two
meshes of different resolutions can be quite noticeable as a
result of the silhouettes not matching. A continuous LOD
framework utilizing subdivision surfaces offers a good solu-
tion to this problem, since the detail of a character can be in-
creased and reduced at run-time, as demonstrated recently by
Leeson [Lee02]. While subdivision surfaces provide a means
of improving the appearance of virtual humans [OCV∗02],
they are not suitable for a crowd’s lowest geometric LOD
representation, since the surface’s original polygonal model,
used as its starting point, consists of several hundred poly-
gons.

With regards to our impostor model, we decided on a pre-
generated approach, since dynamically generating impostors
would involve reusing the current dynamically generated im-
age over several frames in order to be efficient. For dynami-
cally generated impostors, the generation of a new impostor
image for a virtual human depends on both camera motion
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Figure 1: Screenshots of the Geopostor system.

and the amount the virtual human’s posture has changed.
This methods works well with small groups of humans but as
the number of virtual humans dramatically increases, numer-
ous new impostor images need to be generated and this pro-
duces a bottleneck. Therefore, this method is not well suited
for rendering large crowds of dynamic humans.

3. Generation of the Impostor Images

For our virtual human’s lowest LOD representation, we use
pre-generated impostors based on the work of Tecchia et
al. [TC00]. A set of template mesh models were used in the
pre-generation of the necessary impostor images in 3D Stu-
dio MAX. To facilitate the introduction of colour and anima-
tion variation and to ensure that the pre-generated impostor
matches its mesh counterpart, these models required addi-
tional setup steps to be implemented in 3D Studio MAX.
The mesh’s triangles were organised into groups where each
group represented a particular body part (as shown in Fig-
ure 2(b) and (c)) and was assigned a specific pre-defined ma-
terial. It should be noted that the diffuse colour of each mate-
rial is set to white (as shown in Figure 2(a)) to allow colour
modulation of the pre-generated impostors, which will be
discussed later. The meshes in our system use a single im-
age for the detail of the character and this was grey-scaled in
3D Studio MAX to allow colour modulation without losing
detail.

Figure 2: (a) High LOD mesh representation in 3D Studio

MAX. (b) The grouping of triangles based on material used

(shown by the different colours). (c) The grouping of trian-

gles based on the body part it represents (shown by the dif-

ferent colours).

Once these additional steps were carried out, the mesh was
skinned and a walk animation was created for the underly-
ing skeleton. This key-framed animation was created using
Character Studio’s footstep creation tool and consisted of a
one second, cyclical animation with a key-frame occurring
every 100 milliseconds (10Hz). While animations are typical
sampled at a minimum of 30Hz, 10Hz was used in the sys-
tem to reduce the virtual human’s memory footprint. With
regards to the default walk animation, it is important that
both the mesh model and the motion are symmetrical in or-
der to minimize the amount of texture memory the impostor
images consume. This halves the number of viewpoints from
which the model needs to be rendered, since a viewpoint im-
age for a particular key-frame can be mirrored to obtain the
opposite viewpoint for the corresponding symmetrical key-
frame. Figure 3 illustrates a walk animation, where there is a
difference of five key-frames between each pair of symmet-
rical key-frames. In the case of asymmetric animation, such
as a side-step left or right motion, impostor images need to
be generated around both sides of the model, doubling the
amount of memory consumed. However, the impostor im-
ages only need to be generated for a side-step left motion
since it can be mirrored to obtain a side-step right motion.
Additionally, a side-step motion is typically short in duration
(e.g., 0.5 seconds) and therefore less key-frames are needed.

Figure 3: Precalculating and storing the deformation of a

mesh performing a walk animation for 10 key-frames.

A MaxScript plug-in was written to render the images
needed by the impostor representation in 3D Studio Max.
The process used is illustrated in Figure 4. The plug-in posi-
tions the virtual human mesh model at the center of a sphere
consisting of 32 segments and a radius equal to the distance
from which we wish to render the impostor images. For 10
frames of animation, a detail map image and a normal map
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image are rendered from 17 viewpoints around one side of
the model and from 8 elevations:

• Impostor detail map

This image is used to store the detail of the mesh’s decal
texture for each viewpoint. It is generated by rendering the
mesh, with shading and anti-aliasing disabled, into an im-
age of 256×256 pixels. To allow for variation, each pixel
in the image’s alpha channel needs to be encoded with a
specific alpha value associated with the material at that
particular pixel. In order to do this, the plug-in utilizes 3D
Studio Max’s Graphics buffer or G-buffer which allows
data such as object ID, material ID, and UV coordinates
to be stored in a number of separate channels. The plug-
in stores the material ID at each pixel in the G-buffer and
these values are used to lookup and store the associated
alpha value in the alpha-channel. Background pixels are
assigned an alpha value of 255 to distinguish which pix-
els need to be transparent when displaying the impostor at
run-time.

• Impostor normal map

This image is used to store the mesh’s surface normals
in eye-space for each pixel in the detail map. The normal
maps in [DHOO05] took a considerable time to generate,
as per-pixel look ups and operations were needed, so we
improved the algorithm by using a less computationally
intensive technique. A copy of the character’s mesh at the
current frame was first needed. Each vertex normal was
first converted into eye-space coordinates, to find the nor-
mal with respect to the camera, and then converted into an
RGB colour (using Equation 1). Per-vertex colouring was
then used to paint the RGB colours onto the vertices of
the copied meshes (3D Studio Max’s VertexPaint modifier
was used to do this). These vertex colours were interpo-
lated over the polygons, creating a character mesh with
normal map colours. The normal map image was then
generated by rendering an image of this mesh, from the
current viewpoint. Per-vertex colouring and interpolation
are operations that are performed very quickly, as they are
supported by graphics hardware. This meant that the im-
age could be produced almost immediately, without the
need for slow per-pixel operations.

PixelR = ((0.5∗Nx)+0.5)∗255

PixelG = ((0.5∗Ny)+0.5)∗255

PixelB = ((0.5∗Nz)+0.5)∗255

(1)

Once these images have been generated, the plug-in removes
any unused space and combines them into a single detail
and normal map image of 1024*1024 pixels for a particu-
lar frame of animation. For each frame of animation impos-
tor image, the data needed to render each viewpoint at run-
time is stored in a text-based Impostor Data File (IDF). This
file includes each viewpoint’s row and column ID, position,

width, height, and position of the parent bone of the model’s
skeleton within the image.

4. Rendering of the Impostor Model

The main problem with using a pre-generated impostor ap-
proach is the consumption of texture memory. In order to
render a dynamically lit impostor, an impostor detail im-
age and a normal map image are required for each frame
of animation. The RGBA impostor detail image contains
four channels (1024*1024*4 bytes) and the RGB normal
map image contains three channels (1024*1024*3 bytes),
resulting in 7MB of texture memory being required for a
single frame of animation. By using DXT3 texture com-
pression, the memory requirements are reduced by a fac-
tor of four for RGBA images and by a factor of six for
RGB images, resulting in only 1.5MB (1024*1024*4*1/4 +
1024*1024*3*1/6 bytes) of texture memory for each frame.
Unfortunately, DXT3 texture compression is not particularly
effective at compressing normal maps, as it results in notice-
able block artefacts. These artefacts can be avoided by us-
ing 3Dc, which is ATI’s new compression technology, and
provides 4:1 compression of normal maps with image qual-
ity that is virtually indistinguishable from the uncompressed
version [3Dc]. Another way of reducing these artefacts is to
store one of the components in the alpha channel and then
use DXT5 compression, which compresses the alpha values
independently at a higher accuracy [ATI].

Our impostor representation is capable of using mipmap-

ping techniques [Wil83]. Mipmapping avoids visual arte-
facts that occur when textures are mapped onto smaller dy-
namic objects, causing them to shimmer. OpenGL allows
the generation of a series of pre-filtered texture maps of
decreasing resolutions, called mipmaps, which are selected
based on the size (in pixels) of the object being mapped.
Although mipmapping requires some extra computation and
texture storage (which is increased by a third), this is nec-
essary to maintain the impostor’s realism when displayed at
a distance. However, care has to be taken not to generate
mipmaps at too low a resolution, as this causes other arte-
facts due to the averaging of several viewpoint images within
the mipmap.

Given the amount of texture memory required by the sys-
tem, we need a method of improving the variety and visual
interest of large crowds of impostors, while keeping mem-
ory usage to a minimum and ensuring that rendering speed
is uncompromised. Our contribution in this area is that we
improve upon existing impostor techniques for adding vari-
ety by taking advantage of recent improvements in program-
mable graphics hardware in order to perform an arbitrary
number of colour changes in one pass. Since the colouring
regions are encoded in the alpha channel (as described in
Section 3), this number is limited only by that channel’s pre-
cision. Our further contribution is the real-time shading of
the impostors implemented in programmable hardware.
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Figure 4: A MaxScript plug-in removes unused space from each viewpoint image and combines 17*8 viewpoint images into a

single 1024x1024 image for a particular frame.

To render the impostors, we need to calculate which view-
point image needs to be displayed and rotate its quadrilateral
so that it always faces the viewer. Using the position of the
virtual human’s root bone −→

H and the camera’s position
−→
C ,

the quadrilateral’s normal vector −→N can be calculated using
Equation 2.

−→
N =

−→
H −

−→
C

|
−→
H −

−→
C |

(2)

The vector from the camera to the human projected onto the
ground plane

−→
CH can be calculated (Equation 3) using −→

N .
It should be noted that in Equation 2, it is assumed that the
ground is the XZ plane and that the camera’s position cannot
be lower than the ground. Therefore, it is not necessary to
pre-generate any viewpoint images from these elevations.

−→
CH =

(Nx,0,Nz)

|(Nx,0,Nz)|

(3)

The amount by which to rotate the quadrilateral around the
x-axis θx and y-axis θy is calculated using Equation 4. The
viewpoint’s row and column ID (VRow and VColumn) can be
used to lookup which viewpoint to render using Equation 5,
where Nx and Ny are the number of viewpoint images pre-
generated around the x- and y-axis.

θx = cos�1(Ny)

θy = cos�1(CHz)

(4)
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VRow = θx ×
Nx

90

VColumn = θy ×
Ny

180
(5)

For improving realism, interactive lighting of impostors is
highly desirable. Additionally, since we are presenting a hy-
brid system that switches between two representations, it is
crucial that there is no difference in the shading of each rep-
resentation for the interchange to be imperceptible to the
viewer. By using a per-pixel dot product between the light
vector and a normal map image, Tecchia et al. [TLC02]
computed the final shaded value of a pixel through multi-
pass rendering, which required a minimum of five rendering
passes. However, multi-pass rendering can have a detrimen-
tal effect on rendering time, which limits the number of im-
postors that can be shaded in real-time.

We improve upon this technique by taking advantage of pro-
grammable graphics hardware and shade the impostors in a
single pass. The impostors are rendered with the same light-
ing and material properties as the mesh representation, and
thus the shading of the impostor is based on Equation 6.

PixelColour = DetailTextureRGB ∗

(AmbientLightModel ∗AmbientMaterial +

(MAX(VectorLight ·NormalVertex),0)∗

(Di f f useLight ∗Di f f useMaterial))

(6)

Similar to the mesh representation, the lighting of the impos-
tor representation has been implemented in hardware using
both texture shaders and register combiners [NVR99], and
vertex and fragment programs [Ver02, Fra02]. This involves
implementing Equation 7 in hardware, whereby the per-pixel
dot products of the light vector and the pre-generated normal
map is multiplied with each pixel in the coloured region map
(which will be discussed in the next section) to produce a
shaded coloured region map. This result is added to an am-
bient term, and multiplied with the detail map to yield the
final lit, coloured pixels. The overall shading and colouring
sequence is illustrated in Figure 5.

PixelColour = DetailMapRGB ∗

(AmbientLightModel ∗AmbientMaterial +

(MAX((VectorLight ·NormalMapRGB,0)∗

(ColourMap [DetailMap α])∗Di f f useLight))

(7)

Similar to the mesh model, we optimise the rendering of
the impostors by precalculating and storing each of the key-
frame’s viewpoint data in a single VBO object. Since dy-
namically orientating the quad involves the computationally

expensive cos�1 function (see Equation 2), we use a lookup-
table (LUT) of cos�1 values instead. A LUT is typically an
array used to replace a run-time computation with a simpler
lookup operation and can provide a significant speed gain.

5. Variation LOD: Adding Variety to the Impostor

Model’s Appearance

At the lowest level of variety (VariationLOD), individuals in
a crowd use the same model and are a carbon copy of each
other. While this level (or lack) of variety reduces the load on
the limited computational resources per frame, this is only
suitable for a specific type of crowd without having a dis-
concerting effect on the viewer e.g., the army of droids in
Star Wars: Attack of the Clones. To increase a model’s level
of variety regarding its appearance, changing the colours of
a virtual human’s clothing and skin is a method that is simple
and yet has high visual impact when viewed in a crowd.

In order to do this, we use a set of different template hu-
man meshes and change their appearance by using different
“outfits”. Outfits define a set of colours for the virtual hu-
man’s skin and clothes, where each colour is associated with
a specific body part material. The production of these out-
fits is controlled entirely by artist-drawn textures produced
in an ‘Outfit Editor’ application, allowing a quick and easy
method of producing many different colour maps that are re-
alistic and suitable to the model being rendered. The outfit
editor is a 3D Studio MAX plug-in that allows the artist to
select particular colors for each body material from a colour
palette (see Figure 6). The impostor can be rendered in 3D
Studio MAX’s viewport in real-time using a shader written
in HLSL to give the artist immediate feedback.

A multi-pass method, as described in [TLC02], achieves
this goal by performing a rendering pass for every differ-
ent region of colour that needs to be changed. We exploit
the programmability of graphics hardware to efficiently in-
crease the variety and interest of each impostor. In order to
match the virtual human’s geometric representation, the im-
postors must also be able to change colour, depending on the
human model and outfit materials. We achieve this by stor-
ing distinct material IDs in the alpha channel of the impostor
detail image upon generation, and use these IDs to address
a changeable colour map at run-time. We perform a lookup
on the detail map, using the alpha-encoded material IDs to
address a colour map texture that can be altered to match the
outfit of the virtual human currently being rendered (Fig-
ure 7). It should be noted that, since the alpha channel of
the impostor’s detail map contains alpha encoded regions,
nearest filtering needs to be used. Otherwise, linear filter-
ing results in the linear interpolation of these values when
the impostor representation is at a distance, causing shading
artefacts due to the wrong outfit colour being looked up. This
problem can be solved by using a high-level shader written
in the OpenGL shading language to linear filter the looked
up color values [Gui05].
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Figure 5: Impostor shading and colouring sequence.

Figure 6: (a)Example of an artist in progress of generating an outfit for a model using the ‘Outfit Editor’ plug-in. (b) Nine

outfits for three template meshes.
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Figure 7: Using programmable texture addressing to add

variety to the impostor representation.

6. Real-time Clothed Crowds with Pattern Variation

In the past, skinned meshes for the clothing of individuals in
a simulated crowd were used, often resulting in rigid and un-

natural motion. While there have been advances in the area
of cloth simulation, both offline and in real-time, interac-
tive cloth simulation for hundreds or thousands of clothed
characters would not be possible with current methods. In
[DMK∗06], we addressed this problem and devised a sys-
tem for animating large numbers of clothed characters.

The majority of games that implement cloth dynamics on
current generation hardware do so in a highly constrained
manner, often ignoring the issues of collision detection by al-
lowing the cloth surface to penetrate nearby surfaces. Game
developers favour cloth that is highly controllable and tend
to use more traditional methods of bone based skinning and
pre-simulated vertex mesh animations if the performance of
the cloth is critical to the game. In simulated crowd scenes
for games, cloth is rarely if ever used due to the large num-
bers of polygons required to accurately capture the deforma-
tion of the cloth. However, deformable clothing adds greatly
to the realism of the characters.
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We have added realism to our crowd simulations by dressing
the individuals in realistically simulated clothing, using an
offline commercial cloth simulator, and integrating this into
our real-time hybrid geometry/impostor rendering system.
Additionally, we developed a technique for generating cycli-
cal motion for pre-simulated cloth, which therefore moves in
a fluid, realistic manner. Furthermore, we have added variety
to our impostor representation by developing a new hard-
ware rendering technique for adding pattern variety to the
same cloth for different humans in a crowd. Our results show
a system capable of rendering large realistic clothed crowds
at interactive frame rates.

6.1. Brief overview of Cloth Simulation

Implementing realistic cloth dynamics in real-time game ap-
plications still represents a significant challenge for game
developers. Simulating cloth deformation is a complex
process both in terms of dynamics simulation and collision
detection for the changing cloth shape. Many game develop-
ers have relied on more tractable but approximate solutions
including the Verlet method [Jak01], and have restricted the
simulation’s complexity by only using a subset of the mesh
to represent the cloth. Another method to introduce complex
clothing is to generate the folds using cloth simulation and
then use skinning to attach the clothing to the character. This
method works well in some cases, but often results in the
unrealistic bending of folds in the cloth, as the folds have
to deform according to the skeleton of the character. This
can make a long flowing skirt look like trousers with folds.
Also, the important secondary motion of the cloth is lost in
this case. In the animation research community, Cordier and
Magnenat-Thalmann [CMT05] use a data-driven approach
for real-time processing of clothes. Vassilev et al. [VSC01]
developed an efficient technique for dynamic cloth simula-
tion using a mass-spring model.

6.2. Cyclical Cloth

In a real-time crowd system, the characters’ animations are
often cyclical in nature, so that they can be smoothly linked
to allow them to move in a fluid manner. Cyclical animations
are commonly obtained by manually altering the underly-
ing skeletal motion so that they loop in a realistic looking
manner. However, making looping animations using char-
acters with pre-simulated clothing is a more difficult task,
as manual cleanup of the cloth to make it cyclical is very
time-consuming, particularly for very deformable items of
clothing like skirts, and can result in unrealistic effects.

We wanted a more automatic way of generating cyclical
cloth and began by creating a very long animated sequence,
repeating the animation of the human many times and simu-
lating the cloth in response to the repeating animation, in the
expectation that it would at some point become periodic. On
viewing these long sequences, it was found that the cloth did
not always settle to a periodic state, particularly for highly

deformable clothing such as long flowing skirts. A more ro-
bust method was needed in order to obtain a good cycle in
the cloth. In a good cloth cycle, the cloth at the start frame
Fs and at the end frame Fe of the animation cycle of length
l should be the same, and be travelling at the same velocity.
The long cloth sequence needed to be searched using a dis-
tance metric that took into account all of the vertices on the
cloth mesh between the two frames of animation, in order to
find one correctly cyclical loop.

Figure 8: Edge Images taken from 5 different viewpoints.

We used a distance metric similar to Kovar et al. [KGP02]
to compute the differences between all frames that were of
length l apart in the sequence, and chose a set of candidate
cycles whose distances were below a user set threshold. Usu-
ally, we chose the 5 cycles with the lowest distance metric
as candidate cycles. In the case of stiff clothing, where the
motion is very restricted, picking the cycle with the smallest
distance metric was often enough to produce a good cyclical
motion. For other more deformable, flowing clothing, this
metric was often insufficient, as it did not weight the impor-
tance of the folds in the cloth, but rather, weighted all points
equally.

Bhat et al. [BTH∗03] showed that the human perceptual sys-
tem is sensitive to moving edges, and used this to compare
the folds and silhouettes of simulated cloth to that of video
cloth sequences to find the difference between them. We
based the second pass of our algorithm on this idea of match-
ing folds and silhouettes, and devised a metric for compar-
ing the candidate cloth cycles at Fs and at Fe. For each of
the candidate cycles, we generated images of the cloth at Fs

and Fe from 5 different viewpoints around the skirt. The im-
ages at Fs and at Fe for each of the viewpoints were then
converted into edge images (Figure 8), using the standard
Canny edge detection algorithm [Can86]. The mean distance
between edges in the corresponding images of Fs and Fe

were then found using an edge distance estimator, and the
resulting differences in the 5 images were summed together,
to give a final difference metric for the candidate cycle. The
cloth cycle with the smallest edge difference was chosen as
the final cycle. In most cases, this final cloth cycle was good
enough for use, but in certain cases, an extra linear blend step
between Fe and Fs was needed to produce the final cycle.
We tried to avoid linear blending where possible, as it often
resulted in the cloth intersecting with the human model, and
we also felt that the results were more natural when blending
was not used.

This method produced cloth that appeared cyclical from all
viewpoints for all of the clothing that we tested. Cyclical ap-
pearance was judged by whether or not it was possible to no-
tice a discontinuity in the cloth motion at the start and end of
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Figure 9: (a) UV mapped impostor rendering sequence and (b) an example of adding variation to one character using 8 different

diffuse textures.

the cycle from all viewpoints (i.e., the looped animation did
not exhibit a flicker in the cloth). We found that tighter cloth-
ing needed few animation cycles to produce cyclical cloth
(sometimes as few as 4 cycles), as the cloth settled to a near
periodic state quickly. Whereas looser cloth needed up to 40
animation cycles to produce a nice cyclical animation. The
cyclical cloth and human animations could then be exported
into a real-time system and replayed, and impostors were
also generated as described next.

6.3. Cloth Geopostors

Our clothed crowd system builds on our Geopostor sys-
tem [DHOO05], described earlier. Furthermore, our sys-
tem includes clothed characters by using commercial soft-
ware [CloFX] to obtain our cloth simulations, but any high
quality offline simulator could be used to produce the cloth
animation. We pre-simulate the deformation of both the vir-
tual human’s skin mesh using linear blend skinning and its
cloth mesh using the physical simulator, based on the motion
of its underlying skeleton. However, while the secondary
motion of the character’s cloth greatly adds to our crowd’s
visual realism, cyclical cloth motion is necessary to avoid
any jerky motion artefacts and we present a technique to
solve this in Section 6.2.

Once the character’s meshes are pre-simulated, they are
then exported and stored in separate keyframed meshes or
“poses”. By pre-calculating and storing the deformation of
the skin and cloth mesh in poses, this avoids the cost of
deforming the character’s body and simulating its clothes
at run-time. Generating the impostor representation of our
clothed character involves capturing two types of images
from a number of viewpoints around the model: a detail map
image to capture the detail of the model’s diffuse texture and
a normal map image whereby the model’s surface normals
are encoded as an RGB value. At run-time, the clothed vir-
tual humans switch between the two level of detail (LOD)
representations depending on their position with respect to
the viewer.

Adding colour variation to an impostor representation has
already been achieved through the encoding of colouring re-
gions in the alpha channel of the detail image, as described
above. This is used at run-time to address a colour or “outfit”

map through programmable texture addressing. In the case
of a mesh, another method to add texture variation is to pro-
vide it with a set of different diffuse textures with which it
can be texture mapped. However, applying this type of vari-
ation to the impostor would require exporting a set of detail
maps for each different diffuse texture used, resulting in the
rapid consumption of texture memory. To solve this prob-
lem, we propose replacing the detail map with a UV map.

6.4. UV Mapping Technique

We improve upon existing impostor techniques for adding
variety by replacing the detail map images (described in
Section 6.3) with a texture coordinate map or UV map.
This is similar to a normal map whereby it is generated for
each viewpoint and contains the texture coordinates of the
model’s surface encoded as a RGB value. At run-time, these
values are used to lookup the same set of diffuse textures
used by the mesh, allowing texture variation for both the
human’s skin and cloth. To also allow for colour variation,
the alpha channel of the mesh’s diffuse textures is encoded
with alpha encoded regions which are used to lookup the
colour map. The overall sequence for shading and adding
both colour and texture variation to the impostor representa-
tion is shown in Figure 9. Before the impostor’s UV mapped
images are pre-generated, texture seams should be kept to a
minimum when texture mapping the associated mesh. Other-
wise, these seams result in incorrect texture coordinates be-
ing stored in the UV map, which causes rendering artefacts
to arise at run-time due to the wrong pixels in the diffuse tex-
ture being addressed. A similar type of artefact also occurs
when linear filtering is used, causing the background pix-
els and the impostor’s silhouette to be linearly interpolated
and generating incorrect texture coordinates. However, this
is only noticeable when the impostor is close to the viewer.

This new type of image allows the texture variety and in-
terest of each clothed impostor to be greatly increased. Re-
placing the detail map with the UV map image ameliorates
the problem of trying to add the same type of variation us-
ing detail maps, which results in the consumption of large
amounts of texture memory (see Section 6.5). Additionally,
these UV maps could be further utilised to enhance the im-
postor’s realism by applying various per-pixel lighting tex-
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tures as specular maps, which are commonly used by high
resolution game characters.
6.5. Results

Frame rate tests were carried out on the clothed crowd
system to investigate how many clothed humans could be
displayed using different LOD representations at 30 fps
(see Figure 10). All of our tests were performed using a
PentiumIV 3.6Ghz processor, with 2.0GB RAM and an
ATI Radeon X850 XT Platinum Edition graphics card with
256MB of video memory. In each test, all of the humans
were on the screen walking on the spot, and were dynami-
cally lit.

Figure 10: Number of humans displayed at 30 fps using dif-

ferent LOD representations.

It was found that 90 high resolution geometric models of
clothed characters (13,056 triangles each) could be dis-
played onscreen at one time. With loss of visual quality,
this number could be increased to 655 when low resolution
geometry clothed characters were displayed (1,899 triangles
each). Approximately 6,600 UV mapped impostors could be
displayed at the same frame rate, but the closer humans ap-
peared very pixellated. As expected, the number of detail
mapped impostors displayed is higher due to the new UV
map approach requiring extra texture lookups and per-pixel
operations. When we used a hybrid geometry/impostor ap-
proach as in [DHOO05], up to 6,000 humans could be dis-
played (15 high resolution, 5,985 UV mapped impostors)
which allowed visual quality and real-time performance to
be maintained. Visual fidelity was maintained as impostors
were displayed at the 1:1 pixel-to-texel ratio, where they are
perceptually equivalent to high resolution meshes [Ham05].

Furthermore, in the case of switching between a clothed
character’s mesh and impostor representation, adding vari-
ation to the cloth using the detail mapped approach requires
a substantially larger amount of texture memory in com-
parison to the UV mapped impostor (see Figure 11). These
calculations use a single clothed character and assume that
the detail mapped and UV mapped impostor consist of 10
frames of animation, each normal map being a 1024x1024
sized RBG image and both the detail map and UV map are
1024x1024 sized RGBA images. Additionally, each diffuse
texture used by the clothed character’s mesh representation

is a 1024x1024 RGBA sized image. DXT3 texture compres-
sion is used in these calculations to reduce the memory re-
quirements by 4 for all RGBA images and by 6 for all RGB
images.

Figure 11: Texture memory consumed by adding pattern

variation to the Geopostor system using UV mapped and de-

tail mapped impostors for a single clothed character.

7. Animation LOD: Adding Variety to the Impostor

Model’s Animation

Similar to the mesh model, we add variety to the anima-
tion at a lower level of detail by pre-generating the template
model’s impostor images using the same default animations,
that can reflect the age and gender of the model. To avoid
the impostors moving in step, each virtual human’s anima-
tion is offset by a particular number of frames to achieve a
more varied crowd motion. However, since each animation
key-frame is stored in a separate texture, this type of varia-
tion is limited depending on the number of textures needed
in a single frame.

Increasing an impostor representation’s sense of individual-
ism is a tricky problem, since it is limited to the animation
used in the pre-generation of its images. We solve this prob-
lem by layering head and arm gestures on top of the default
impostor animation, whereby a particular body-part in the
impostor image is replaced with a gesturing mesh represent-
ing the body-part. Since each body-part of the impostor is
represented by a particular alpha value in the detail image’s
alpha channel, the impostor can be rendered without these
body-parts by changing the alpha function accordingly. Us-
ing the corresponding mesh’s skeleton, the gesturing bones
are updated and the affected part of the mesh is deformed
and rendered (Figure 12). The main advantage of this ap-
proach is that it avoids the cost of deforming and rendering
the entire mesh by replacing it with the impostor representa-
tion. Thus, only the triangles affected by the gesturing bones
need to be rendered. While minor rendering artefacts can ap-
pear caused by the layering of the mesh on top of the impos-
tor, these can be removed through blending.

The problem with this method is that, depending on the
viewpoint being displayed, holes appear when a body part
is not rendered since the body part may sometimes be oc-
cluding other areas of the impostor. When the virtual human
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Figure 12: Adding variety to the virtual human model’s an-

imation by layering head and arm gestures on top of the de-

fault walk animation.

performs a head gesture this artefact is not as much of a prob-
lem as when they are performing an arm gesture. Currently,
virtual humans that are rendered with an impostor represen-
tation switch to a low resolution mesh representation when
they request an arm animation. As a possible solution, dy-
namically generated impostors could be used to render the
virtual human’s body without its arms and this will be inves-
tigated in future work.

8. Virtual Human LOD Shadows

Our run-time system enhances the realism of the virtual hu-
mans and the environment they inhabit by creating shadows
on the ground wherever the light is blocked. Our shadow
technique is based on the planar projected shadow algorithm
and is implemented in hardware using per-pixel stencil test-
ing. This section will describe how this technique is used to
render the virtual humans’ shadows.

The planar projected shadow algorithm is used to cast a geo-
metric model’s shadow onto a ground plane based on the
light’s position. In order to achieve this, a planar projected
shadow matrix can be constructed. Given the equation for a
ground plane G: −→N + d = 0 and the homogenous position of
the light −→L , a 4×4 planar projected shadow matrix S can be
constructed using Equation 8 (see [Bli88] [HMAM02] for
the derivation of the matrix).

S =







D−Lx ∗Nx −Lx ∗Ny Lx ∗Nz −Lx ∗d

−Ly ∗Nx D−Ly ∗Ny −Ly ∗Nz −Ly ∗d

−Lz ∗Nx −Lz ∗Ny D−Lz ∗Nz −Lz ∗d

−Lw ∗Nx −Lw ∗Ny −Lw ∗Nz D−Lw ∗d






(8)

where D = Nx ∗Lx +Ny ∗Ly +Nz ∗Lz +d ∗Lw

Stenciling works by tagging pixels in one rendering pass to
control their update in subsequent rendering passes. It is an

extra per-pixel test that uses the stencil buffer to track the
stencil value of each pixel. When the stencil test is enabled,
the frame buffer’s stencil values are used to accept or reject
rasterized fragments. When rendering the scene, the stencil
buffer is cleared at the beginning and a unique non-zero sten-
cil value is assigned to pixels belonging to the ground plane.
In the first rendering pass, the shadow cast by each virtual
human’s geometric representation is rendered. Using the ma-
trix S, the geometry is projected onto the ground plane and
rendered into the stencil buffer, where each pixel is tagged
with the ground plane’s unique stencil value. In the subse-
quent rendering pass, each virtual human’s representation is
rendered and the appropriate areas of the stencil buffer are
simultaneously cleared. This prevents an artefact whereby
shadows might overwrite real objects, damaging the realism
of the scene. Finally, a single semi-transparent quad is ren-
dered over the whole scene (where the stencil buffer pixels
have been set to the unique stencil value) resulting in realis-
tically blended shadows.

Our shadow technique uses a LOD approach, where either
the impostor or mesh representation is projected onto the
ground plane depending on which LOD representation the
virtual human is currently using (see Figure 13 (a) and (b)).
To render the virtual human’s shadow using the impostor
representation, we need to calculate which viewpoint image
needs to be displayed with respect to the light’s position and
rotate its quadrilateral so that it always faces the light. Us-
ing the virtual human’s position −→

H and the light’s position
−→
L , the quadrilateral’s normal vector −→

N can be calculated
using Equation 9. The projection of the impostor onto the
ground plane with respect to the light position can be calcu-
lated using −→

N and Equations 3 and 5 (previously described
in Section 4). The impostor’s shadow requires no more than
a single textured quad, and therefore is extremely fast to ren-
der.

−→
N =

−→
H −

−→
L

|
−→
H −

−→
L |

(9)

While this method is similar to that employed by Loscos et
al. [LTC01], our use of the stencil buffer instead of darkened
textures results in shadows that blend realistically with both
the underlying world and each other (see Figure 13 (d)). The
main advantage of implementing this shadow algorithm with
the stencil buffer is that it can avoid artefacts caused by dou-
ble blending and can limit the shadow to an arbitrary ground
plane surface. Unfortunately, unlike full geometric stencil
shadows, our projection shadows are restricted to the ground
plane and do not project onto nearby static objects, or other
dynamic objects. While shadow mapping could be used to
solve this problem, a LOD approach would be needed to deal
with the many hundreds or thousands of shadows. It should
be noted that shadow volumes were not considered in the
system as this technique can decrease the pixel fill rate and
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Figure 13: (a) Projected impostor shadow. (b) Projected mesh shadow. (c) Crowd and city without shadows. (d) Crowd and

city with projected LOD shadows.

the constructed shadow volume for an impostor is incorrect
as a result of being a semi-transparent quadrilateral.

9. Performance Optimisations

9.1. Virtual Human Occlusion Culling

As a first step towards improving performance, view frus-
tum culling can be used to eliminate those humans that
are not potentially on screen. However, due to the densely
occluded nature of an urban environment, large groups of
humans may be in the frustum but occluded by buildings
and therefore rendered unnecessarily. By avoiding the ren-
dering of these humans using occlusion culling techniques,
this should greatly improve the performance of the sys-
tem [CT97, BHS98, SVNB99, WS99, Zha98].

We make use of hardware accelerated occlusion culling
similar to the technique used by Saulters et al. [SF02]

to cull large sections of the crowd. We utilise the
ARB_occlusion_query extension to determine the visibility
of an object. This extension defines a mechanism whereby an
application can query the number of pixels drawn by a prim-
itive or group of primitives. Typically, the major occluders
are rendered and an occlusion query for the bounding box of
an object in the scene is performed. If a pixel is drawn for
that object’s bounding box, then the object is not occluded
and therefore should be displayed. The main performance
advantage of this extension is that it allows for parallelism
between the CPU and GPU, since many queries can be is-
sued before asking for the result of any one. This means that
more useful work, such as the rendering of other objects or
other computations on the CPU, can be carried out while
waiting for the occlusion query results to be returned.

Since the city is populated by several thousand humans,
there could potentially be a large number of humans in the
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Figure 14: Occlusion Culling: (a) Environment is divided into nodes to facilitate occlusion culling. (b) Characters that are in

unoccluded nodes (shown in yellow) are drawn while those that are in occluded nodes (shown in red) are discarded.

view frustum and therefore it would be computationally in-
efficient to perform a separate occlusion query for each hu-
man. To facilitate the occlusion culling of buildings, the vir-
tual city is divided into a grid of regular-sized nodes (see
Figure 14(a)). By re-using these nodes so that they record
which virtual humans inhabit them, this can help to avoid
performing separate occlusion culling queries for each hu-
man. Having initially rendered the static environment, we
perform occlusion queries on the bounding volume of any
nodes in the view-frustum, thus allowing us to rapidly dis-
card those nodes hidden by the environment and the humans
within them (as shown in Figure 14(b)). With regards to
the unoccluded nodes, we perform view-frustum culling on
the virtual humans within these nodes, since parts of these
nodes may not be within the view frustum. It should be noted
that the height of each node’s bounding volume is set to the
height of the tallest virtual human used in the system to allow
humans to still be displayed when they are behind an occlud-
ing object whose height is less (e.g., walls). This occlusion
culling method could be extended so that the number of pix-
els drawn for a node could be used as a metric to decide on
what level of detail the humans in the node should use, with
regards to representation, behaviour, and animation.

9.2. Virtual Human Simulation LOD

While frustum and occlusion culling decrease the rendering
workload, there are still overheads associated with updating
the positions of thousands of humans in motion. To lighten
the workload we pause humans within nodes that have not
been visible for more than a certain number of seconds. This
technique takes advantage of the fact that a large number
of humans are occluded per frame and therefore their posi-
tion in the world can remain unchanged without the viewer

noticing. By storing the time each node was last unoccluded,
the position of a human is only updated if the node it in-
habits has been unoccluded for the last five seconds. This
time delay prevents temporal artefacts becoming noticeable
amongst the nearby humans when performing rapid camera
rotation. In addition to this, checking whether a node is oc-
clusion culled is only performed every 100 milliseconds if
the camera has moved or rotated, since the same nodes will
be occluded if the camera remains stationary. Since the hu-
mans only move every 100 milliseconds, we reduce the num-
ber of times we check whether a human is within the view-
frustum by performing this test every time the humans move
instead of every frame.

However, simulation artefacts can arise when the camera’s
position remains static for a period of time and the humans
move from an unoccluded node to an occluded node. This re-
sults in the congregating of humans on the boundary of these
occluded nodes since their steering behaviour is not being
updated. A potential solution to this problem would involve
a LOD simulation approach whereby humans are updated at
a frequency dependent on the last time the node was unoc-
cluded.

9.3. Minimising OpenGL State Changes

OpenGL is a simple state machine with two operations: set-
ting a state, and rendering utilizing that state. By minimizing
the number of times a state needs to be set, this can max-
imize performance since it minimizes the amount of work
the driver and the graphics card have to do. This technique
is generally referred to as state sorting and attempts to orga-
nize rendering requests based around the types of state that
will need to be updated. Generally, the goal is to attempt to
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sort the render requests and state settings based upon the cost
of setting that particular part of the OpenGL state.

With regards to our crowd, rendering is optimized by sorting
the virtual humans in the following order based on the most
to least expensive state changes: binding a shader, binding
a texture, and setting VBO data pointers. By organising the
rendering of our crowd in this manner, our approach sorts
each virtual human by LOD representation, then by tem-
plate model, and finally by the current key-frame of ani-
mation. Sorting the virtual humans by LOD representation
minimizes the number of times that the following states have
to be changed: the setting of lighting parameters, alpha test
enabling and disabling, and vertex and fragment programs.
Next, sorting the LOD representations based on template
model minimizes texture loads and binds. Finally, sorting
virtual humans using the same template model by animation
key-frame reduces the setting of VBO data pointers, since
each VBO stores the data for a particular key-frame. In the
case of rendering virtual humans using the same model and
animated with the same key-frame, an extra step needs to be
implemented to sort them based on the viewpoint required
with respect to the camera. This is necessary, since certain
viewpoints for the current key-frame are obtained by mir-
roring the same viewpoint for the symmetrical key-frame.
By sorting impostors based on whether the viewpoint is mir-
rored, this minimizes texture loads and binds.

9.4. Minimising Texture Thrashing

Texture thrashing can become a serious problem when popu-
lating a virtual city with crowds using a number of different
pre-generated impostor models. In addition to each impos-
tor model requiring 1.5MB of texture memory every frame,
the city model will also require a certain amount of tex-
ture memory. Therefore, as the number of template models
within the virtual city increases, texture thrashing will occur
much sooner as a result of the extra texture memory being
consumed by the city model. It should be noted that, in the
case of real-time applications where the camera is fixed, say
at eye-level, only 17 viewpoint images are needed for each
frame of animation and therefore the consumption of texture
memory is less of a problem. Since we wanted to implement
a more generic system, where the camera can view the city
from any height, 17 by 8 viewpoints are needed for the im-
postor representation.

However, as only a subset of the viewpoints in the impostor
textures is being used every frame, we propose splitting the
impostor detail and the normal map images into eight sep-
arate smaller elevation images containing the set of view-
points pre-generated at each camera height. To facilitate the
creation of these elevation images, an application was writ-
ten in C to allow the positioning of viewpoint images within
a larger image. The application reads in the 17 viewpoint im-
ages for a particular camera height and, based on the sum of
these images’ area, the minimum dimensions of the eleva-
tion image are calculated. Once the viewpoints have been

loaded in, the application allows the user to organise the
viewpoints within the new elevation image. Unfortunately,
since the area of each viewpoint image varies, it is not guar-
anteed that they will all fit within the minimum dimensions
and therefore have to be increased by a factor of two along
a single dimension. Once the user has got all the 17 images
to fit, the new elevation image is exported (shown in Figure
15).

Figure 15: Normal map split into smaller elevation images.

The number of elevation images needed to render impos-
tors using a particular human model type depends on the
height of the camera and the distance of the camera from
each impostor. Since buildings in a city environment gen-
erally occlude humans in the distance, all elevation images
should never be needed simultaneously. The angle (θE ) be-
tween the impostor and the camera around the horizontal
axis, can be calculated using Equation 10, where hcam is the
camera height and dxz is the distance on the x-z plane from
the camera to the impostor. Using θE , the elevation image
needed for that impostor can be calculated. As the camera’s
height decreases, the number of elevation images needed is
reduced dramatically (see Equation 10). Taking advantage
of the occluding nature of city environments, this method of
separating impostor and normal map images for each ele-
vation permits greater variety, without texture thrashing, as
a result of each human model type consuming less texture
memory. It should be noted that in order for the transitions
between viewpoints to appear smooth, the perceptual metrics
detailed in [MDCO06] should be employed. These metrics
are dependent on character dimensions, with characters of
large width to depth ratios requiring more viewpoint images
than those with small width to depth ratios.

θE = tan
�1(

hcam

dxz
) (10)

9.5. Optimisations For Spectator Crowds

In the case of crowds that do not move within the virtual en-
vironment, such as those found in sports games, viewpoint
selection and the orienting of the billboard for each charac-
ter can be done on the vertex processor. For each individ-

c© The Eurographics Association 2007.

121



S. Dobbyn, R. McDonnell & C. O’Sullivan / Real-Time Crowd Rendering with Pre-Generated Impostors

Figure 16: (a) Rendering thousands of characters in a single draw call. (b) Frame rate results.

ual, the billboard’s vertices are set to the individual’s posi-
tion and the corresponding texture coordinates are set to the
character’s directional vector. These values are subsequently
used by the vertex processor to dynamically rotate the ver-
tices towards the camera view and lookup the texture coor-
dinates for the most suitable viewpoint image. This means
that the billboards of individuals can be batched together in
a single vertex buffer object and rendered in a single draw
call. For more details see [MR06]. It should be noted that
smaller numbers of animation frames will result in bigger
batch sizes, since only individuals using the same impostor
texture can be batched together. Additionally, since the cam-
era is typically limited to the playing field in sports games,
pre-generating viewpoints from behind the character is not
necessary, thus reducing the amount of texture memory con-
sumed by the impostors.

As shown in Figure 16, rendering multiple instances in a
single draw call greatly improves performance resulting in
tens of thousands of characters drawn in real-time (see Fig-
ure 16). Two scenarios were tested to show the effect of
batch size. The first test scenario involved one template
model performing a single animation. The second scenario
involved smaller batches as a result of using 2 template mod-
els performing one of 3 different animations. In both cases
each animation was one second long and consisted of 30
key-frames. All of our tests were performed using a Pen-
tiumIV 3.6Ghz processor, with 2.0GB RAM and an NVidia
Quadro FX 4400 graphics card with 512MB of video mem-
ory.

10. Short-Comings of the Pre-Generated Impostor

Representation

While the impostor used in the Geopostor system is com-
putationally efficient to render, the following short-comings
are associated with this representation:

• Anti-Aliasing: Since the impostors are not rendered with-
out anti-aliasing, this results in the silhouette being pixel-
lated in appearance and is especially noticeable when the
impostor is close to the viewer. Future work will investi-
gate how anti-aliasing techniques would improve the im-
postor’s visual appeal.

• Models and animations need to be symmetric: To reduce
the number of viewpoint images needed, both the model
and animation have to be symmetric in the XZ plane. If
this is not possible then the impostor’s texture will con-
sume twice as much memory in order to fit the additional
viewpoint images that are needed.

• No viewpoint images generated from directly above or
below the ground-plane: No viewpoint images were gen-
erated from directly above the virtual human model or
from below the ground-plane, resulting in parallax arte-
facts when the impostor is viewed from these camera an-
gles. However, these viewpoints were not needed since the
camera is not allowed to move below the ground plane in
the city simulation system. The number of viewpoint im-
ages needed depends on what camera angles the impostors
will be viewed from and this should be considered when
generating the impostor’s textures to minimize memory
consumption.

• Pixellated shadows when the sun is low in the sky: Since
the impostor texture are used in projecting ground-plane
shadows (see Section 8), this results in the shadows being
pixellated when the sun is low in the sky and is especially
noticeable when the shadows are close to the viewer. In
this case, the virtual human’s mesh representation should
be used in the projection of the shadow.
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