
EUROGRAPHICS ’2000 STAR – State of The Art Report

Shadow Computation:
A Unified Perspective

S. Ghaliy, E. Fiumez, and H.-P. Seidely

Abstract
Methods for solving shadow problems by solving instances of visibility problems have long been known and
exploited. There are, however, other potent uses of such a reduction of shadow problems, several of which we
explore in this paper. Specifically, we describe algorithms that use a resolution–independent, or object–space,
visibility structure for the computation of object–space shadows under point, linear, and area light sources.
The connection between object–space visibility and shadow computation is well–known in computer graphics. We
show how that fundamental observation can be recast and generalized within an object–space visibility structure.
The edges in such a structure contain exactly the information needed to determine shadow edges under a point
light source. Also, the locations along a linear or an area light source at which visibility changes (termed critical
points and critical lines) provide the necessary information for computing shadow edges resulting from linear and
area light sources. Not only are instances of all shadow problems thus reduced to visibility problems, but instances
of shadow problems under linear and area light sources are also reduced to instances of shadow generation under
point and linear light sources, respectively.

Keywords: Shadows, Shadow Algorithms, Object-Space
Visibility, Point, Linear, Area Light Sources, Critical Point,
Critical Line, Radiosity.

1. Introduction

The connection between visibility algorithms and shadow
algorithms has long been known, but has not been fully ex-
plored. The interest of the graphics community in algorithms
geared to raster graphics devices has swelled as such devices
became abundant. But even though non–raster based visi-
bility algorithms can be avoided in most areas of computer
graphics, one problem tenaciously resists solutions based on
image–space visibility computation. In this paper, we con-
sider the use of an object–space visibility data structure for
shadow generation.

The inadequacy of image–space visibility for shadow gen-
eration has been made as early as 1977 by Crow11 who
writes: “Thus image–space algorithms which depend on the
limited resolution of the display medium to ease the determi-
nation of hidden surfaces are inappropriate for [the shadow

y Max Planck Institute for Computer Science, Saarbrücken
z Department of Computer Science, University of Toronto, Toronto

generation] application.” The approach we take falls in the
second category of Crow’s classical taxonomy. Namely, the
computation is performed in two passes, the first of which
determines the shadow edges on the polygons in the scene.
Under illumination by point, linear, and area light sources,
we describe algorithms to determine the shadow edges and
provide for each shadow edge the set of scene edges that de-
fine it.

In another classical paper,1 Atherton, Weiler, and Green-
berg describe an object–space shadow generation algorithm.
The first pass in their algorithm uses polygon clipping60 to
determine the polygons visible from the light source.67 In
this paper, we revisit their algorithm and describe how an im-
plementation that does not rely on polygon clipping can be
achieved. Avoiding polygon clipping, such as the one origi-
nally used60 or a more recent one,66 is desirable for at least
two reasons. First, as Devai13 observes, visibility computa-
tion based on polygon clipping may take time cubic in the
number of input edges. Such a case may arise if the size
of the mask used for clipping from front to back reaches
quadratic size after only half the polygons have been pro-
cessed. A second reason to avoid polygon clipping is a sys-
tems one. Advanced geometric structures, such as the ones
developed in the context of the CGAL library,6 are likely
to become standard tools in the years to come. An algo-

c The Eurographics Association 2000.



Ghali, Fiume, and Seidel / Shadow Computation: A Unified Perspective

rithm that encapsulates the visibility step makes it easier to
develop systems for object–space shadow computation by
decoupling visibility and shadow generation. In particular,
it would be possible to take advantage of future research
in object–space visibility computation by reconnecting soft-
ware modules. We see these two directions as synergistic:
by showing uses of an object–space visibility structure, it is
possible that the graphics community will have a practical
reason for developing more robust and more efficient visi-
bility map algorithms.

1.1. Previous Work

Since the output device in graphics applications is nearly al-
ways a raster device, a large proportion of visibility algo-
rithms are developed to take advantage of the finite and dis-
crete size of the output device. Algorithms such as Watkins,
or scanline, and Z–buffer fall under the point sampling cate-
gory of image–space algorithms in an early and highly influ-
ential taxonomy paper.61 The abundant use of these and other
image–space visibility algorithms and their implementation
in hardware led to their use for the computation of visibil-
ity from a point light source. But even if the output device
of the final image is discrete and finite, handling shadows is
one problem in computer graphics that is hard to tackle using
image–space techniques. Using a shadow buffer,69; 28; 53; 70

which is a discrete image from the point of view of the light
source, makes it possible to determine whether a point sam-
ple in the scene is in light or in shadow. The resulting im-
age is prone to light buffer (or shadow buffer) aliasing, how-
ever, if the object casting the shadow is too close to the light
source. Another persistent problem is that of coupling the
sampling rate of the image to that of the light buffers used in
rendering. This is a particularly acute problem in animated
environments in which very high sampling rates must often
be used for many frames so as to prevent artifacts that arise
when varying buffer resolutions are employed.

Increasing the resolution of the light buffer will reduce
artifacts, but computing visibility in object–space67; 14 effec-
tively increases the resolution of the light buffer to machine
precision. Unfortunately, this approach has not been widely
adopted, perhaps because of the difficulty of implementing,
for example, a robust polygon clipping algorithm. In prac-
tice, it appears that the most popular technique is one that
concentrates on the shadows as a visual cue giving the height
above a single ground plane.4 This technique, which is par-
ticularly popular in interactive graphics, does not suffer from
aliasing, but is of course only an approximation which is
why such shadows are dubbed “fake” shadows4: objects can-
not cast shadows on each other but only on one or more pre-
specified “ground” planes. The additional geometry added to
provide the visual cue of shadows may also be expensive to
render. The resulting shadows are less prone to aliasing than
shadow buffers since the projection on the ground plane oc-
curs before the scanline conversion.

Methods for computing object–space visibility other than
the one used by Weiler and Atherton,67 which is based on
polygon clipping,60; 66 exist. For a scene consisting of n
edges, a trivial lower bound for the time to compute object
space visibility is Ω(n logn). This holds for any of the three
versions of the problem that may be addressed:

Visible Line Determination Compute the set of line seg-
ments visible. Algorithms for this problem were particu-
larly suitable for vector–based displays, plotters, or other
graphical output device that make it difficult or impossible
to perform shading.

Visible Surface Determination Compute the set of poly-
gons visible. The output is suitable for display on a device
capable of shading such as a raster frame buffer.

Visibility Map Compute the set of cross–linked visible
polygons, i.e. each pair of edges that appear on the im-
age plane on the boundary of two polygons are cross–
referenced. We are content with this definition for the vis-
ibility map at this point until we define it more carefully
in Section 2.

The first problem, Visible Line Determination, is equivalent
to the ones that Sutherland et al.61 classify as object–space
algorithms. VLD algorithms are not useful for shadow com-
putation, however, as their output contains too little informa-
tion. See Figure 1.

VSD

VLD

VM

Figure 1: An view of two triangles; the visible lines; the vis-
ible surfaces; the visibility map (only one edge adjacency is
illustrated on the right).

Weiler and Atherton’s visible surface determination67

is an example of an algorithm in the second cate-
gory, that of Visible Surface Determination. Binary Space
Partitioning18; 51 also produces visible surfaces in object
space. The output from a BSP algorithm is only a depth–
sorted listed of polygon fragments, however, and so it does
not fit in the classes of visibility problems above. Chin and
Feiner use a algorithm based on binary space partitioning
to determine object–space shadows under a point7 and an

c The Eurographics Association 2000.



Ghali, Fiume, and Seidel / Shadow Computation: A Unified Perspective

area36 light source. The use of BSP precludes the generation
of the conic shadows that arise in illumination under a linear
or an area light source.

We point in this paper to applications of the visibility
map for the computation of shadows. The visibility map is a
rich data structure that contains sufficient information for the
computation of shadows under point, linear, and area light
sources using seamless approaches in the three cases.

Another problem that turns out to be central in this work
is the off–line determination of the set of critical points en-
countered by a viewer when moving along a straight–line
segment. The off–line version of this problem is one in which
the viewpoint path is known as part of the input. This prob-
lem has been surprisingly under–studied, with only two al-
gorithms known to date (to the knowledge of the authors):
one by Mulmuley47 and the other by Bern et al.3

The problem of computing critical points off–line is inti-
mately related to the computation of aspect graphs. We only
briefly discuss aspect graphs here as we return to them in
Section 4.1.1. Three versions of the aspect graph problem
can be stated:

Orthographic Projection from an Infinite Sphere In this
problem, a viewpoint moves on a sphere at infinity and it
is desired to partition the surface of the sphere into maxi-
mally contiguous regions such that the view of the scene
is the same when the viewpoint remains inside that region.

Perspective Projection The problem is to partition the
space into regions such that the view seen by an observer
does not change as the observer moves inside a single re-
gion.

Perspective Projection from Polygons in the Scene This
problem shares part of the two previous problems; the
viewpoint space is (one side of) a polygon in the scene (so
the observer can move with only two degrees of freedom)
but the view seen by the observer is a perspective one.

The first two categories parallel the main branches in
Bowyer and Dyer’s taxonomy.5 The third class of problems
is the more interesting for shadow generation. Durand et al.16

describe a data structure that partitions the polygons in a
scene by constructing the adjacency relationships between
four–edge stabbers (other work addresses the problem in the
plane52). These stabbers have been introduced to the com-
munity by Teller65 who called them extremal lines (see also
Teller and Hohmeyer63; 64 for an algorithm to compute the
common stabber of four lines in space). To define a line
in space, it is necessary and sufficient to specify either two
points in space, a point and two lines, or four lines. Since
a graphics system will often not define a point by itself in
space but as a vertex of a polyhedron (or at least a polygon),
it is convenient to assume that the first two cases above are
only special cases of the four–edge stabber; in the first, two
pairs of edges intersect at a vertex and in the second, one
such pair arises. These four–edge stabbers are crucial for the

algorithms we describe below as each endpoint of a shadow
edge (under point, linear, or an area light source) is defined
by a four–edge stabber. Here again, the visibility map pro-
vides the necessary information to define shadow edge end-
points symbolically. By that we mean that not only do we
know the location of these endpoints in space, but we also
know which scene edges gave rise to them. This informa-
tion is crucial since the computation of the arrangement of
shadow edges would not rely on the coordinates in space to
match shadow edge endpoints, but would rely instead on the
symbolic description of these endpoints.

We start the next section by describing the winged–edge
data structure.2 This data structure makes it possible to rep-
resent both the topology of the scene as well as the topology
of the visibility map. By storing the connectivity informa-
tion between the edges and the faces of the scene, the input
consists of a collection of solids rather than a collection of
polygons. This makes it possible, e.g., to traverse the surface
of each solid and to easily determine whether two polygons
on a solid are adjacent. Such an input consisting of solids
does not forbid the representation of a polygon in space. A
polygon can be represented as a lamina41 with two faces.
Such a scene representation is particularly crucial for visi-
bility and shadow computation as it preserves the integrity
of common heuristics such as backface culling. We discuss
this point further in Section 5.

2. Generating Shadow Edges from a Point Light Source

2.1. Computation of the Visibility Map

We start this section by briefly surveying results from the
literature to compute the visibility map before describing
how the visibility map can be used to determine the set of
shadow edges. The first phase of the research described here
involved identifying which algorithms in the literature are
amenable to an implementation. To be specific, we start by
giving details of the data structure holding the topology of
the visibility map and then briefly describe the algorithms of
Schmitt,55 of McKenna,43 and of Goodrich25 in the context
of that data structure.

The data structure PlanarMap consists of a set of nodes,
a set of directed arcs, and a set of faces. Each node holds a
pointer to an arc outgoing from it (i.e., the node is the source
of the arc). Each face also holds a pointer to an arc on its
boundary. The PlanarMap data structure is centered on its
arcs; each arc holds a reference to its source node, its target
node, the face on its side, the edge succeeding it and the edge
preceding it on the same face, and its dual edge, or the edge
that is adjacent to both nodes but directed in the opposite
direction. See Figure 2 for an illustration. Strictly speaking,
this description contains two redundant pointers but it is con-
venient and more (time) efficient to include them. This data
structure is essentially the same as the well–known winged–
edge data structure pioneered by Baumgart2 who used it to

c The Eurographics Association 2000.



Ghali, Fiume, and Seidel / Shadow Computation: A Unified Perspective

represent polyhedra. We minimized the code development
by using this data structure to represent both the scene and
the visibility map. By using the C++ declaration

templatehclass V, class E, class Pi
class PlanarMap f� � �g;

for the PlanarMap data structure, it is possible to use the
parameterization to both represent the scene topology and
the visibility map topology. In this paper, we use the terms
node, arc, and face to signify the topological relationships
represented in PlanarMap and use the terms vertex, edge,
and polygon to signify the geometric relationships in a par-
ticular instantiation of the generic PlanarMap structure ei-
ther in the projection of the scene on the image plane or in
the scene itself.

A variation of the winged–edge data structure has been
reinvented by Muller and Preparata46 who use it to determine
efficiently the intersection of two polyhedra. Another varia-
tion on that structure was described by Guibas and Stolfi27

who capitalize on the duality between nodes and faces; for
example, just as the list of arcs outgoing from a node can be
listed in order so the list of arcs adjacent to a face can also
be determined in order. Kettner37 dicusses the compromises
between these representations.

n1

n2
n3

n4

e1 e2
e3

e4

e5

e6
e7

e8

e9

f1

f3f2

n5

f4
e10

e11

e12

Figure 2: The data structure PlanarMap is used to repre-
sent a planar map. The arcs are oriented counter–clockwise
around a face. Each pair of arcs adjacent to the same pair
of nodes but oriented in opposite directions are called duals
(e.g. e2 and e4). For a node such as n3, it is possible to re-
port one outgoing arc at it such as e9. For an arc such as e2,
it is possible to report its successor e3, its predecessor e1, its
source n2, its target n1, its dual e4, and its adjacent face f 1.
For a face such as f 1, it is possible to report an edge defin-
ing it such as e1 (or e2 or e3). Since the sequence of edges
he1;e2;e3i defines the face f 1, the successor/predecessor
relationships are uniquely defined for these edges.

The algorithm of Schmitt55 and that of Goodrich25 start
by computing the graph of line segment intersections on the

image plane. That of McKenna,43 on the other hand, com-
putes the graph of intersections of the lines supporting the
line segments on the image plane, thus taking guaranteed
quadratic time for even simple scenes. As Dorward points
out in a thorough survey,14 starting the visibility map com-
putation by either of these steps may be highly inefficient;
a single polygon may hide a view of size quadratic in the
size of the input. It is thus desirable to find an algorithm that
computes the visibility map in time proportional to the size
of the output without determining the intersection of invis-
ible features. The best known algorithm for computing the
visibility map is due to de Berg.12 His algorithm runs in time
proportional to the size of the output (up to a logarithmic fac-
tor). Unfortunately, his algorithm only proves the theoretical
upper bound as it does not seem amenable to an implemen-
tation.

The algorithm by Goodrich,24; 25 which builds on the work
of Schmitt,55; 56 proceeds in three passes. After the first pass
that computes the graph of line segment intersections on
the image plane, the second pass computes a depth order
of the polygons in the scene. This is done by a step deter-
mining the “hide” relationship between pairs of polygons in
the scene and is followed by a topological sort39 to estab-
lish the depth order. The third pass performs a simulation of
a painter–style algorithm48 in object–space: as each polygon
is “drawn,” each edge inside it is marked invisible. If a cyclic
depth ordering is discovered during the second pass, the user
is notified to break the polygons and restart. By comparison,
McKenna’s algorithm is capable of handling cyclic over-
lap at the expense of taking guaranteed quadratic time even
when the wire frame projection of the scene edges do not
result in a quadratic number of intersections. Goodrich re-
ports that, up to a logarithmic factor, his algorithm is pro-
portional to the number of edges in the input, the number of
wireframe intersections on the image plane prior to marking
hidden edges, and to the number of polygon–polygon inter-
sections on the image plane.

fIn a scene consisting of non–intersecting polyhedra, real
vertices arise in the visibility map as a result of the projec-
tion of polyhedral vertices; apparent vertices also arise in
the visibility map as a result of the apparent intersection of
edges on the image plane. Defining these data structures in
an object–oriented language such as C++ is easily achieved;
define classes for real and apparent vertices as derived from
a base vertex class and use the base class to replace class
V at the time of instantiating the template PlanarMap class
described above. Figure 3 illustrates the two types of vertices
that arise in the visibility map from a point. A third type of
vertex, which does not arise in the view but is inserted for
convenience, is described below.

In the context of reusing the winged–edge data structure
for both the scene and the visibility map, one detail is cru-
cial. As discussed by Mäntylä,41 nodes, arcs, and faces are
not the only possible constituents to represent the topology

c The Eurographics Association 2000.



Ghali, Fiume, and Seidel / Shadow Computation: A Unified Perspective

v v

e

f

e

f

Figure 3: The vertices in the visibility map seen by a viewer
at v may be either real vertices as shown on the left or ap-
parent vertices as shown on the right.

in a solid modeler. A ring may be used to represent polygons
with holes; a shell may be used to represent solids with voids
not connected to the outside shell; and solids may be used to
represent the collection of shells needed to define one solid.
The reason that we have to consider these issues is that the
topology of the visibility map can easily consist of a face
with more than one sequence of edges. Such an example is
shown on the left of Figure 4. The two polygons that appear
in the visibility map result in three faces in that map: two
to represent the polygons themselves and one to represent
the outer or background face. This face is clearly defined by
two cycles of four edges (the four edges dual to the ones
defining the interior faces). The PlanarMap data structure
described above is unable to represent the outer face. This
is only a problem for the use of PlanarMap for visibility
maps and not for solids. Indeed, as is well known,41; 35 it is
possible to represent a polygon with holes using a winged–
edge data structure by simply adding extra edges connecting
the outer–most face with the hole or holes. This idea has
been used by Schmitt55; 56 to represent visibility maps using
a winged–edge structure. He introduces the notion of a drain
vertex and a drain edge. In a visibility map, a drain edge is
an extrinsic edge added between two sequences of edges de-
scribing the boundary of a single polygon. A drain vertex is
an extrinsic vertex added for the necessary adjacency to a
drain edge. One particular type of a drain vertex is the ver-
tex at infinity.55; 25 This vertex is conceptually at the point
(0;�1) and, as is shown on the right of Figure 4, is in-
serted to make it possible to use the PlanarMap structure
to represent this configuration of a visibility map.

Figure 5 shows an example of a visibility map. Real ver-
tices, which appear as solid dots in the figure, are the pro-
jection of polyhedral vertices on the image plane. The real
vertex object contains a pointer referencing the polyhedral
vertex object. Apparent vertices result from the apparent in-
tersection of two polyhedral edges in the image plane. Each
apparent vertex object stores a pointer to the pair of polyhe-
dral edges that give rise to it.

Figure 4: To represent the outer face in the figure on the
left, our data structure needs to handle polygons with holes.
As shown on the right, this is remedied by using additional
vertices and edges.

Figure 5: The visibility map from a point light source. Real
vertices are represented by solid circles.

2.2. A Shadow Edge under a Point Light Source

A shadow edge is the locus of the points on a scene poly-
gon such that the points on one side of the edge can see the
point light source whereas those on the other side cannot. We
show in the next section how the shadow edges can be deter-
mined following the computation of the visibility map. We
start by arguing in this section that five scene edges (in ad-
dition to a polygon) are necessary and sufficient to describe
a shadow edge. If we call the two points bounding a shadow
edge on either side its endpoints, it is easy to see that two
types of endpoint may arise. These two types directly paral-
lel the two cases of vertices appearing in the visibility map
shown in Figure 3. The key point is that each endpoint is de-
fined by four scene edges and that for any one shadow edge,
the two pair of quadruples will have three edges in common:
two edges define the point light source and one edge define
the edge casting the shadow. Figure 6 illustrates a shadow
edge, its definition by three edges, and the definition of its
endpoints by two four–edge stabbers.

If the two endpoints are defined by the quadruples
e1;e2;e3;λ1 and e1;e2;e3;λ2, then the point at which the
point light source is inserted is defined by two of the edges

c The Eurographics Association 2000.



Ghali, Fiume, and Seidel / Shadow Computation: A Unified Perspective

v

λ1

λ2

e1e2e3

e1

e2

e3

e1e2e3λ1 e1e2e3λ2

Figure 6: The shadow edge shown is cast by edge f . We say
that this edge is defined by a;b; f and that its endpoints are
defined by the four–edge stabbers a;b; f ;e and a;b; f ;g.

e1;e2;e3 and the third in that list is the polyhedral edge cast-
ing the shadow. There are two advantages in preventing the
user from inserting point light sources other than at scene
vertices: On one hand, this makes it possible to define all
shadow edges under a point light source (as well as under a
linear and an area light source as shall be described in Sec-
tions 3 and 4) by five scene edges. On the other hand, and
as will be shown in Section 3, this makes determining the
shadow edges under a linear light source simple by reduc-
ing the problem to a collection of problems of lower dimen-
sionality. We now describe an algorithm to deduce the set
of shadow edges resulting from illumination by a point light
source after the computation of the visibility map.

2.3. Determining Shadow Edges under Illumination
from a Point

To determine the shadow edges under illumination from
a point light source, we start by computing the visibility
map from a viewer located at the position of the point light
source. The shadow edges can then be determined by the fol-
lowing algorithm. For each pair of edge duals in the visibility
map, we consider the two faces adjacent to them in the visi-
bility map. As shown in the projection of the two tetrahedra
in Figure 7, three cases may arise:

1. If one of the two faces is the background plane, no
shadow edge is generated.

2. If the two faces adjacent to the edge duals are also adja-
cent in the scene, no shadow edge is generated.

3. If neither of the two faces adjacent to the edge duals is
the background face and the two faces are not adjacent in
the scene, a shadow edge is generated.

The shadow edge is “deposited” on the polygon farther
from the viewpoint by inserting it into a list of shadow edges.
Even though the three edges e1, e2, and e3 that define such a
shadow edge can be defined by the edge casting the shadow
and two of the edges adjacent to the point light source, it is
useful in practice to cache the actual point in space at which
the light source is inserted by explicitly storing it. To deter-
mine the two edges λ1 and λ2 delimiting the shadow edge,

1

2

3

Figure 7: The visibility map makes it possible to generate
shadow edges and define them symbolically.

we define a method called getOtherEdge for the vertices
in the visibility map. When called for a vertex v, this method
takes as parameter a single edge e adjacent to v and returns
another edge adjacent to v in the visibility map that is not
the projection on the image plane of the same edge in the
scene. If more than one edge is adjacent, any one may be
chosen, though the calculation to follow of the coordinates
of the two endpoints of a shadow edge will be more reliable
if we choose the edge closest to perpendicular to the edge
passed as parameter. This method is illustrated in Figure 8.

e3

λ1

λ2

a b

Figure 8: The visibility map contains enough information
to determine shadow edges symbolically by using a method
getOtherEdge. For the case shown above, a.get-
OtherEdge(e3) returns λ1 and b.getOtherEdge(e3)
returns λ2.

Since the main loop in the procedure described above it-
erates over the edges of the visibility map and since it takes
time proportional to each edge’s adjacencies to determine
whether each such pair defines a shadow edge, the shadow
generation procedure takes time proportional to the size of
the visibility map. The bottleneck remains the computation
of the graph of line segment intersections and the “hide” re-
lationships between polygon pairs. Figure 9 shows an exam-
ple of the shadow edges generated following the computa-
tion of the visibility map shown in Figure 5.

c The Eurographics Association 2000.



Ghali, Fiume, and Seidel / Shadow Computation: A Unified Perspective

Figure 9: Shadow edges are determined following the com-
putation of the visibility map.

3. Generating Shadow Edges from a Linear Light
Source

We motivate the following discussion by showing an exten-
sion to illumination from a point light source. If a viewpoint
moving on the linear light source sees the same visibility
map, then the computation of the shadow edges is simple
and, as we describe below, would consist of the projection
of the edges in the visibility map from the endpoints and the
projection of the vertices in the visibility map from the line
segment defining the linear light source. Such an example is
shown in Figure 10.

Figure 10: The set of shadow edges resulting from illumina-
tion under a short, or critical point–free, linear light source
consists of edges projected from endpoints and vertices pro-
jected from the edge defining the source.

The problem becomes more difficult in the presence of

critical points. Consider the simple scene shown in Fig-
ure 11. We would like to determine the shadow edges when
this scene is illuminated by a linear light source inserted
along the line segment shown at the top of the figure.
Whereas a shadow edge in a scene illuminated by a point
light source separates a region in light from a region in
shadow, a shadow edge in a scene illuminated by a linear (or
an area) light source separates two regions that see qualita-
tively different views of the light source. By “qualitatively,”
we mean to say that as our final objective is to compute the
correct value of the illumination at any point on the surfaces
of the scene, we would like to determine the regions from
which a single evaluator is possible. In this context, an eval-
uator is a function well–known in illumination engineering
(see, e.g., Higbie’s text34) that makes it possible to determine
the light energy falling on an arbitrary point by knowing the
extent of the linear light source(s) that illuminate(s) it. The
notion of shadow edges is further discussed elsewhere.20

Figure 11: Simple Scene illuminated by a Linear Light
Source.

With reference to the scene shown in Figure 11, we say
that two points in the scene have different qualitative illumi-
nation if one of them sees the left endpoint of the linear light
source and the other does not (of course this condition is
sufficient but not necessary). This suggests that we compute
the view of the scene from the left endpoint which results in
the visibility map shown in Figure 12. The same algorithm
described for illumination under a point light source now ap-
plies; a shadow edge is deposited on the farther of two poly-
gons adjacent in the visibility map but not adjacent in the
scene. Nishita and Nakamae49 are generally credited by the
community for making this important observation (see also
Nishita et al.50). We simply add here a twist to show that
the same idea used by Atherton et al. in other fundamental
work1 can be used to determine this subset of the shadow
edges.

To introduce our next observation, we consider the visi-
bility map seen by an observer located at the right endpoint
of the linear light source shown in Figure 11. In that visibil-
ity map, which is shown in Figure 13, a portion of two scene
edges are hidden (shown in thin lines). This also suggests

c The Eurographics Association 2000.



Ghali, Fiume, and Seidel / Shadow Computation: A Unified Perspective

Figure 12: Visibility map from a viewer located at the left
endpoint of the linear light source shown in Figure 11.

that the shadow edges arising from the right endpoint of the
linear light source may be computed by reducing the prob-
lem by one dimension to an illumination from a point light
source.

Figure 13: Visibility map from a viewer located at the right
endpoint of the linear light source shown in Figure 11. The
edges shown in thin lines are hidden.

As the viewer at the left endpoint moves gradually to-
wards the right endpoint, the visibility map seen by the
viewer eventually changes. Recall that the visibility map is
a labeled planar graph where each vertex, edge, and poly-
gon store pointers to the vertices, edges, and polygons in the
scene. In other words, the visibility map does not contain
information about the location of the viewer (or more pre-
cisely, this information is irrelevant). The point at which the
visibility map changes has been called a critical point by the
computer vision community in the context of the computa-
tion of the aspect graph (see Bowyer and Dyer for a survey
on aspect graphs5).

We now state our next observation then argue for its
correctness. Just as the edges in the visibility map define
shadow edges under illumination from a point light source,
the vertices in the visibility map define shadow edges under
illumination by a linear light source. To see that this is true,

consider two points a and b in close proximity on a poly-
gon in the scene. Suppose that the portion of the linear light
source that illuminates each of these two points is different
because a vertex in the visibility map is crossed when we
move from a to b. Indeed, the combination of an edge in
the visibility map for the case of illumination under a point
light source with the point light source itself as well as the
combination of a vertex in the visibility map for the case of
illumination under a linear light source each define a critical
surface. As with critical points, critical surfaces are heav-
ily studied by the vision community. Critical surfaces have
been introduced to the graphics community by Heckbert32; 30

and have been used in many other algorithms40; 62; 58; 15; 59; 21

where they were called discontinuity surfaces. They were so
called because they induce a discontinuity in the illumina-
tion function.30 As we concentrate here on visibility and ge-
ometry rather than on illumination itself, we choose to adopt
the older terms critical points and surfaces. This also re-
duces the gap between the graphics and vision communities
who indeed seek similar understandings but with opposing
objectives. We deviate in this and related work20 from the
previous approaches outlined above, however, in that we do
not determine critical surfaces (enumeration of discontinu-
ity surfaces) and therefore do not intersect critical surfaces
with the scene geometry, the bottleneck step in the previous
approaches.

3.1. Shadow Edges from an Endpoint of a Linear Light
Source

As the definition of shadow edges resulting from the two
endpoints of the linear light source are identical to the def-
inition of shadow edges under a point light source, we only
briefly mention here that computation. Each edge in the vis-
ibility map may induce a shadow edge in the scene. Such a
shadow edge is defined by five scene edges: the edge hold-
ing the linear light source itself, another edge adjacent to
the linear light source and to its endpoint, the edge generat-
ing the shadow, in addition to two delimiting edges result-
ing from a call to the method getOtherEdge described in
Section 2.3. The set of shadow edges resulting from the two
endpoints are shown in Figure 14.

3.2. Shadow Edges from a Portion between Critical
Points of a Linear Light Source

As can be seen in Figure 15, when the viewer reaches the
critical point on the linear light source, the view will change.
This critical point is defined by a four–edge stabber, or an
edge that simultaneously touches four edges in the scene.
The shadow edges are generated independently for the two
portions of the linear light source on either side of the criti-
cal point. For each of these two portions, imagine a line seg-
ment connecting a point moving on the linear light source
while simultaneously touching the two edges adjacent to a
vertex in the visibility map. This line leaves a trace on some

c The Eurographics Association 2000.



Ghali, Fiume, and Seidel / Shadow Computation: A Unified Perspective

Figure 14: The shadow edges resulting from illumination by
two point light sources inserted at the endpoints of the linear
light source are among those shadow edges that result when
illumination is under the linear light source.

polygon where the polygon can be determined from the la-
beled visibility map. For a real vertex in the visibility map,
the shadow edge is a straight–line segment. For an apparent
vertex in the visibility map, the shadow edge is defined by
the intersection of a swath,65 the locus of the points that are
aligned with three skew edges, with the polygon on which
the shadow edge falls. That polygon can also be easily deter-
mined from the labeled visibility map. Such a swath defines
a ruled quadric surface in space and its intersection with a
polygon is a conic. Such a conic shadow edge can degener-
ate into a straight–line segment even if the three edges defin-
ing it are truly skew. For that to occur, it suffices that the
polygon and the swath intersect in a directrix, or a straight–
line embedded in the surface of the ruled quadric. More de-
tails about the properties of these fascinating surfaces can be
found in a standard treatise on classical geometry such as the
one by Salmon.54 Figure 15 shows the set of shadow edges
that result in this example.

Figure 15: The shadow edges shown are those that result
from tracing the vertices in the visibility map as seen by a
viewer moving along the linear light source.

Just as not all edges that appear in the visibility map may
generate shadow edges (such an edge must be a contour

edge11), not all vertices that appear in the visibility map gen-
erate shadow edges. If the vertex is a real vertex, at least
one of the faces adjacent to it in the visibility map must
be not adjacent to it in the scene. In fact, a real vertex can
have at most one such adjacent face (if we assume that the
manifolds defining our polyhedra are homeomorphic to a
disk everywhere35 — which, intuitively, is satisfied if no two
solids touch at a vertex). If the vertex is an apparent vertex,
on the other hand, then both edges that define the vertex must
be contour edges. In that case, the polygon that is not adja-
cent to either of the two edges is the polygon on which the
shadow edge is cast. See Figure 16.

a
b

c

Figure 16: Vertex a casts a shadow edge on the polygon
adjacent to it in the map that is not adjacent to it in the scene.
Vertex b, which is defined by the intersection of two scene
edges, casts a shadow on the polygon adjacent to it in the
map other than the two polygons adjacent to its two defining
edges in the scene. Vertex c does not define a shadow edge
and is the linear light source replication of edge 2 shown in
Figure 7.

These four sets of shadow edges together constitute the
shadow edges in this scene when illuminated by an linear
light source. Each shadow edge is defined by five scene
edges e1;e2;e3;λ1;λ2. The three edges e1;e2;e3 define the
critical surface giving rise to the shadow edge and the two
delimiting edges λ1;λ2 define the endpoints. For a shadow
edge thus defined, each of its two endpoints is described by a
four–edge stabber65: e1;e2;e3;λ1 and e1;e2;e3;λ2. This in-
formation is essential for constructing the arrangement of
the shadow edges: the vertices in the arrangement are not
matched by their coordinates in space. They are matched in-
stead by the symbolic definition of the four edges giving rise
to their endpoints.

3.3. Shadow Edges from Face Critical Points

The reader would have noticed that we do not address de-
generate inputs in this paper. For example, we do not treat
the case of an input in which a critical point coincides with
the extremities of a linear light source. In such a case, we
simply assume, as is so often done in geometric computer
graphics,17 that a jittering argument suffices. In the case just

c The Eurographics Association 2000.



Ghali, Fiume, and Seidel / Shadow Computation: A Unified Perspective

Figure 17: The set of shadow edges resulting from illumina-
tion by the linear light source shown.

described, for instance, we assume that shrinking the linear
light source by an epsilon amount will break the degeneracy.
In any case, and as Weiler points out in a recent Siggraph
panel68: “Literally thousands of years of geometric theory
and culture will not die easily, and in the meantime we have
much work to do to put out current house, built from geom-
etry and digital computer number representations, in better
order.”

There is one input, however, that cannot be swept under
the rug by appealing to a standard perturbation argument.
This input occurs when the plane carrying a polygon in the
input intersects the linear light source. In this case, a viewer
located on the linear light source but slightly on the positive
side of that polygon will see some or all the edges defining
that polygon. If the viewer is located slightly to the negative
side, however, the face will be completely invisible. In Fig-
ure 18, a face critical point arises on the linear light source
shown. In this case, in addition to the sets of shadow edges
resulting from the two endpoints and from a viewer mov-
ing along the linear light source, shadow edges arise in the
plane carrying the face. These shadow edges can be gener-
ated by computing the visibility map for a point on the linear
light source and slightly to the positive side of the plane. The
edges in this visibility map that cast shadow edges are only
those edges that lie on the boundary of the polygon defin-
ing the face critical surface. These edges are generated by
inserting a point light source at the location of the face crit-
ical point and restricting our attention to the edges adjacent
to the face defining the critical point. It is interesting to note
that even though the shadow edges previously described do
not overlap (for a non–degenerate input), the shadow edges
arising from face critical points always overlap. Indeed, this
overlap is necessary to complete the labeling of the collec-
tion of shadow edges arising from a face critical point.21

This shadow edge overlap makes it harder to compute the ar-
rangement of shadow edges. Fortunately, help is on the way:
as Mehlhorn and Näher show,44 it is possible to construct ro-
bustly the arrangement of a set of line segments in the plane
in the case of multiple edge overlap and in the case of line

segments degenerating to a point (a case we are not aware
may arise as a shadow edge from a non–degenerate input).

Figure 18: One face critical point is found on the linear light
source shown. The shadow edges arising from such a critical
point arise in the plane carrying the face.

3.4. Determining Critical Points

Determining the critical points along a viewpoint trajectory
is an important problem in computer graphics. Given a tra-
jectory, identifying the critical points would make it possible
to compute the visibility map only once and then render it
from multiple viewpoints between a pair of critical points.
The rendering required would only be a two–dimensional
painting of the visibility map on the output device. The case
when the viewpoint trajectory is known interactively is a
hard problem and only recently has there been some discus-
sion of it in the literature.10 Unfortunately, even if the view-
point trajectory is known in advance, the problem is under–
studied. Bern et al.3 describe an algorithm to determine the
critical points along a prespecified straight–line viewpoint
trajectory. Their algorithm runs in time at least quadratic and
at most cubic in the number of edges in the input scene (up
to logarithmic factors).

The number of resulting shadow edges is the sum of the
sizes of the three sets of shadow edges described above. The
first is equal to the number of edges appearing in the two vis-
ibility maps at the two endpoints of the light source. The sec-
ond is equal to the total number of vertices appearing in suc-
cessive visibility maps on segments of the linear light source
bounded by critical points. The third is equal to the number
of fragments of the edges bounding faces that induce face
critical points. The total number of shadow edges is thus di-
rectly related to the size of the different visibility maps that
we compute.

4. Generating Shadow Edges from an Area Light
Source

The last shadow generation problem we consider is illumina-
tion from an area light source. Standard techniques have long
been known to tackle point light sources,69; 1 but techniques
that handle area light sources have emerged30 only after the
problem was separated from its closely related problem, ra-
diosity computation.26; 9 Despite these advances, a unifying

c The Eurographics Association 2000.



Ghali, Fiume, and Seidel / Shadow Computation: A Unified Perspective

theory of shadow generation has been lagging. Understand-
ing area light sources is important for understanding mesh-
ing for radiosity computation and, as in the previous sec-
tions, our objective in this section is to show that shadow
computation from an area light source can be reduced to visi-
bility problems from a polygon. Another objective is to show
that just as shadow computation under linear light sources
can be reduced to a collection of visibility and shadow com-
putations under point light sources, shadow computation un-
der an area light source can be reduced to a collection of
visibility and shadow computations under point and linear
light sources. Even though only the versions of shadow prob-
lems in three dimensions are interesting in computer graph-
ics, in two dimensions as well shadow problems31; 19 (as well
as visibility problems33) are non–trivial and often elucidate
the study of the problems in space.

We show that the illumination from a polygonal light
source can be solved using the same tools and techniques for
illumination by a point or a linear light source. As in the two
previous sections, the computation of shadow boundaries is
reduced to computing the set of different views from the area
light source. We then show how a solution to this pure vis-
ibility problem is used to determine the shadow edges ana-
lytically.

An important advantage of handling shadow generation
from point, linear, and area light sources seamlessly is that it
is possible to insert multiple light sources of different types.
We say that an API supporting such insertions is “aware” of
the light sources in that the model can be updated to reflect
the shadow boundaries that result from the cumulative effect
of inserting a collection of light sources of different types.

4.1. Visibility from a Polygon

4.1.1. Background: Aspect Graphs

The problem of partitioning a polygon into cells such that
the view of the scene from each cell is the same is related to
the computation of aspect graphs. Aspect graphs are an im-
portant tool in computer vision. It is a method to categorize
the different views of an object so that matching a view of
that object to a category makes it possible to determine both
the object seen and its orientation.

Given a three–dimensional object, computing the aspect
graph asks to partition the view space into regions such that
the view of the object seen from each region is the same.
If the view space is not constrained and is all of three–
dimensional space (second version of the problem discussed
in Section 1.1, then the number of cells is in O(n9) for an
object with n edges; although this bound is not tight for
many objects. If the viewing direction is constrained to or-
thographic projection (first version described in Section 1.1),
which is equivalent to having a viewer at infinity, then the
cells partitioning the view space can be described on the sur-
face of a sphere co–centered with the object. The number of

cells in that case is in O(n6) but this bound is also not tight
for many objects.

Given a polygon in the scene, our objective is to parti-
tion the polygon into cells such that the view of the scene
from each cell is unique. Notice that this definition of the
visibility from a polygon is distinct from both problems al-
luded to above. In the first, the viewer (seeing a projective
view) moves in 3D whereas in the latter, the viewer (seeing
an orthographic view) moves on a sphere at infinity. In the
problem we discuss here, the viewer is moving on a polygon
in 3D. This means that the view we are concerned with is a
projective view but that the viewer has only two degrees of
freedom. Thus this problem shares part of each of the two
variants of aspect graphs. An example of the portion of the
aspect graph as defined above is shown in Figure 19.

Top view

!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!

!!!!!!
!!!!!!
!!!!!!
!!!!!!
!!!!!!

!!!!!!
!!!!!!
!!!!!!
!!!!!!
!!!!!!
!!!!!!

!!!!!!
!!!!!!
!!!!!!
!!!!!!
!!!!!!

Scene

CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC

CCCCCCC
CCCCCCC

a

b

c

d

a

b

c

d

a

b
c

d

a

b

c

d

a

b

c

d

a

b

c

d

abcd
bcd

abc

acdabd

Figure 19: The aspect graph.

4.1.2. Incremental Computation

A viewer moving on the line segments defining the bound-
ary of the polygon casting shadows will encounter critical
points. These critical points are defined as in the case of
a viewer moving along a line segment in space. In a non–
degenerate input with no five edges stabbed by one line,
the critical points on the boundary of the polygon are de-
fined by the intersection of a critical edge with that bound-
ary. This leads us to a simple heuristic: compute the location
of the critical points and use the location of the critical edges
thus defined to incrementally build the portion of the aspect
graph inside the polygon. The approach described below is a
heuristic because there are inputs on which it fails, namely,
if the aspect graph consists of more than one connected com-
ponent. In such cases, the approach we use of incrementally
inserting critical edges will miss some visibility events.

c The Eurographics Association 2000.



Ghali, Fiume, and Seidel / Shadow Computation: A Unified Perspective

We start by solving the following problem: Determine the
location of the critical points as a viewer moves along the
boundary of a polygon in space, which consists of several
instances of the problem discussed in Section 3.4. Each of
the resulting critical points along the boundary is defined by
three edges e1;e2;e3 in the scene — two of which may be
adjacent. Define a critical edge as the intersection of the crit-
ical surface defined by e1;e2;e3 with the plane of the poly-
gon. Each critical point on the boundary of the polygon lies
on a critical edge.

The problem is now reduced to a collection of problems
of visibility on a line. If the critical edge is a line segment
(i.e. two of the three edges are adjacent), then the critical
edge is used as the viewpoint trajectory and the procedure
used for the solution in Section 3.4 can be used directly.
A slightly more interesting case arises for the conic critical
edges (when the three edges are skew). Notice that the conic
in that case is a section of a ruled quadric that is defined by
a set of generators and a set of directrices.54 In the context
of visibility, we abuse the terminology and say that the three
edges defining the critical surface are the three generators.
There is, however, an infinite number of generators for the
same quadric. Similarly, there is an infinite number of direc-
trices. Given three generators, a directrix can be determined
by choosing a point on one of the generators and computing
the stabber to that point and the two other generators.

The discussion above points out to a simple solution to
handling conics by reduction to visibility from a straight–
line segment. The observation is that given a triple of edges,
it is possible to determine a generator above the polygon
(where the term “above” is used to signify “on the inside
of the solid of which the area light source lies” or simply,
on the negative side of the polygon defining the area light
source). This generator is a straight line segment that we can
use as the straight line trajectory along which to compute
critical points. The generator is chosen such that it lies above
the polygon. Since the visibility events in which the polygon
is involved are only with the polygons on the positive side
of its plane, the polygons on the negative side can safely be
excluded during processing.

Given a line segment in space which is either a critical
edge inside the polygon or a generator for the quadric, we
determine the first critical points on the viewpoint trajectory.
Two cases may arise:

1. The critical point is defined by a four–line stabber (de-
fined by the three edges defining the critical surface and
another edge in the scene). Suppose that this vertex is de-
fined by the four edges e1;e2;e3;e4. If the critical edge is
defined by e1;e2;e3, we determine the edge e4 and iden-
tify three instances of visibility from a line segment that
need to be subsequently handled. These line segments are
defined by the critical surfaces (e1;e2;e4), (e1;e3;e4), and
(e2;e3;e4) — or the other three permutations of the four
edges. Four edges are thus adjacent to a four–edge stab-

ber (this is discussed further in Section 5). Since we know
that a vertex defined by a four–edge stabber must be ad-
jacent to exactly four edges which correspond to the four
permutations of edge–triples among the four edges defin-
ing the stabber, we know that there are exactly three crit-
ical edges that need to be followed.

2. The critical point is defined by three edges f1; f2; f3
where fi 6= e j for i; j 2 1;2;3. Intuitively, while an imag-
inary viewer is sliding on the critical line inside the area
light source, a change of the visibility may arise from
a visual event (disappearance of a vertex, for example)
that is not related to the critical line currently being tra-
versed. Such a critical point may be crossed twice dur-
ing the traversal — once for each of the two intersecting
critical lines. In this case the same critical line is consid-
ered again until a four–line stabber is found (possibly by
reaching the boundary of the area light source).

Notice that one of the advantages of using dual edges2 to
represent a PlanarMap instance is that we can incremen-
tally insert critical edges into the map. The structure is a legal
planar map after inserting any one edge.45

As hinted above, the heuristic discussed above has a flaw;
we assume that by proceeding in the direction of critical
edges spawned from critical points we will eventually com-
plete the structure of the portion of the aspect graph inside
the polygon casting shadows. This is only true if the por-
tion of the aspect graph is a connected component with the
boundary of the polygon. This heuristic is intuitively more
likely to fail when handling large area light sources. Since
our main purpose from computing the portion of the as-
pect graph inside a polygon is to use the result to compute
the shadow boundaries resulting from the illumination of
the scene by an area light source, this restriction effectively
prevents us from using polygonal light sources that are too
large. The term “large” here is hard to qualify. It is related to
the smallest features in the scene. In any case, the shadow
edges resulting from the vertices and edges on the poly-
gon’s boundary are arguably more important visually than
the boundaries resulting from edges inside the polygon. So
if we are only interested in a scene partitioning as input to a
radiosity system, then missing some of the shadow edges re-
sulting from critical edges interior to the polygon is unlikely
to be important. Anyhow, it is possible to confirm that we
have not missed any visibility events by sampling on a reg-
ular grid, for example, inside the polygon. We compute the
visibility at each point on the grid and confirm that all points
inside the same cell share the same qualitative view. If two
points inside the same cell have different views, we stop and
report to the user that one of the polygons on which an area
light source is too large and needs to be subdivided into two
or more portions by the modeler before proceeding.

The heuristic we describe above for computing aspect
graphs is reminiscent of the simplex method.8 In our case,
the feasible solution with which we start is the set of critical

c The Eurographics Association 2000.



Ghali, Fiume, and Seidel / Shadow Computation: A Unified Perspective

points on the boundary of the area light source. Refining this
partial solution is possible as long as the critical edges are
reachable from a critical point on the boundary.

4.2. Determing Shadows Edges from an area Light
Source

4.2.1. Determining Shadow Edges under a Single
Occluder

Before discussing the general problem, we discuss the sim-
pler problem of illuminating a scene with a single occluder
from an area light source. The observations in this sec-
tion have been made by Nishita and Nakamae.49 The scene
shown in Figure 20 consists of a triangular light source (top),
a rectangular occluder (center), and a receiver (bottom). The
shadow boundaries on the receiver can be determined ana-
lytically.

P

Figure 20: The shadow edges generated by a triangular
light source and a rectangular blocker. Notice that each ver-
tex in the arrangement of the shadow edges is adjacent to
exactly four edges. This holds for arbitrary occlusion under
illumination by a polygonal light source.

Each vertex on the source casts a set of shadow edges
from the edges (in general, the silhouette) of the occluder. To
determine these shadow edges, compute the visibility map at
each vertex on the light source. Each edge in the view gen-
erates a shadow edge. In this case, each vertex of the source
casts four shadow edges on the receiver, in addition to four
shadow edges at infinity, which are ignored.

Also, each edge on the source casts a set of shadow edges
from the vertices of the occluder. To determine these shadow
edges, compute the visibility map from a viewpoint moving
along each edge of the light source. Each vertex in the visi-
bility map generates a shadow edge. Here also, each edge of
the source casts four shadow edges on the receiver, in addi-
tion to four shadow edges at infinity, which are ignored.

We point out that the arrangement of the shadow edges
can be computed by matching the signatures of the shadow

P

Figure 21: The shadow edges generated by a vertex on the
source.

P

Figure 22: The shadow edges generated by an edge on the
source are shown.

edge endpoints. Each endpoint of a shadow edge is defined
by a four–edge stabber. In this scene, the number of four–
edge stabbers is 3� 4 = 12 as there are 3 vertices on the
source and 4 vertices on the occluder. This way a pair of
shadow edges are considered adjacent if the signature of
their four–edge stabber is the same without relying on the
accuracy of the computation of the coordinates of the end-
points.

4.2.2. Determining Shadow Edges under Multiple
Occluders

Using the definition of the area light source, the critical
points along its boundary, and the critical edges in its in-
terior, we show in this section how to determine the result-
ing shadow edges. The signature of a shadow edge tells us
whether it arises from a vertex of the lit polygon, an edge on
its boundary, or a critical edge in its interior. The first two
cases are identical to those discussed in Sections 2 and 3. If
each resulting shadow edge is defined by (e1;e2;e3;λ1;λ2),

c The Eurographics Association 2000.



Ghali, Fiume, and Seidel / Shadow Computation: A Unified Perspective

the set of shadow edges can be divided into the following
three sets:

1. Shadow edges for which two of the edges (e1;e2;e3) are
edges belonging to the boundary of the polygon.

2. Shadow edges for which one of the edges (e1;e2;e3) is
an edge belonging to the boundary of the polygon.

3. Shadow edges for which none of the edges (e1;e2;e3)
belongs to the boundary of the polygon.

A collection of the shadow edges resulting from illumi-
nation by an area light source P is shown in Figure 23. The
three sets of shadow edges can be respectively generated as
follows:

1. For each vertex v on the boundary of P, generate shadow
edges for each edge appearing in the visibility map for a
viewer at v. This is identical to generating shadow edges
for a scene illuminated by a point light source situated at
v.

2. For each edge e on the boundary of P, generate shadow
edges for each vertex appearing in the visibility map for
a viewer moving along e. This is identical to generating
shadow edges for a scene illuminated by a linear light
source situated at e.

3. For each edge e inside P, generate a single corresponding
shadow edge. If the critical edge is defined by the three
edges (e1;e2;e3) and is delimited by the edges λ1;λ2),
then the shadow edge is also defined by (e1;e2;e3) and
delimited by λ1;λ2).

Figure 23: The set of shadow edges in a scene illuminated by
an area light source consists of three sets. To determine the
first set, the visibility map at each vertex of the light source
is computed and the edges of each visibility maps are pro-
jected from the vertex. The visibility map is also computed
for a viewpoint moving along the boundary of the area light
source between adjacent critical points. The vertices of these
visibility maps along with the viewpoint trajectory trace the
second set of shadow edges. Finally, each critical line ly-
ing inside the area light source contributes one additional
shadow edge.

5. Implementation

The visibility map and the resulting shadow generation algo-
rithms described in this document have been implemented in
C++. The data structures needed are simple and, in addition
to the PlanarMap outlined above — which itself is im-
plemented by no more than a collection of linked lists and
heavy internal cross–referencing, only need standard struc-
tures such as search trees and priority queues. Also, since
the problems we tackle here are all in object–space, we im-
plemented a postscript driver to make it possible to visualize
the shadow edges while delaying the rasterization step to the
postscript device used for output.

Our implementation was in the context of a study to iden-
tify ways to maximize the internal reuse in a object–space
computer graphics visibility and shadow system. We were
interested in determining the set of reductions that we de-
scribe in this paper algorithmically: just as it is possible to
reduce shadows from a point to visibility from a point, it is
also possible to reduce shadows from a line to both visibility
from a line and to shadows from a point. The class represent-
ing a scene in our system has behavior defined by the meth-
ods insertPointLight, insertLinearLight, and
insertAreaLight. These methods in turn capture the
shadows by issuing a set of lower level messages and the use
of such methods provides flexibility to a system handling il-
lumination problems. This is to be contrasted with lighting
networks,57 where the flexibility of the illumination system
emanated from the ability to build systems by building net-
works of illumination algorithms.

The system was built in three layers. The bottom–level
layer consists of classes for points, lines, segments, etc. A
middle layer consists of the topology or generic structures
such as linked lists, directed graphs, and the winged–edge
data structure. The top level layer consists of the algorithms
we describe in Sections 2, 3, and 4. Even though imple-
menting the equivalent of our bottom–level layer is a mun-
dane task for any graphics practitioner, we would like to add
some details regarding the operations to be made available
in that layer. Three operations are so pervasive in the sys-
tem that we attempt here to convince the reader who might
be building such a software layer to incorporate these oper-
ations. The first operation is a method which takes a point
and two segments in space and returns the single line in
space that is their common stabber. The fact that there is
such a single stabber is a basic observation in classical ge-
ometry. Yet, it is surprising that graphics toolkits often lack
such an operation. Another method, which is needed for il-
lumination under a linear or an area light source but not un-
der a point light source, is to determine the common stab-
ber of four line segments in space. This problem can be
solved directly in the affine space by generating a quadric
surface from three segments and computing its intersection
with the fourth line segment (see the appendix of either of
Gigus et al.’s papers23; 22 for details). Alternatively, Teller

c The Eurographics Association 2000.



Ghali, Fiume, and Seidel / Shadow Computation: A Unified Perspective

and Hohmeyer’s elegant solution63; 64 based on Plücker co-
ordinates may be used.

The final method that we suggest be incorporated is a
method isSilhouette. This method is defined for edges
in the scene and, given a viewpoint position, return true if
the edge is adjacent to a polygon facing the viewer whereas
its dual edge is adjacent to a polygon facing away from the
viewer. Kettner and Welzl38 study the properties of poly-
hedral contours that are thus defined. If our only interest
were to compute the visibility map to determine shadows
from a point light source, one may suspect that a heuristic
that purges those edges that are not silhouette edges from
consideration may be used. This would be not unlike the
standard graphics heuristic of purging back–facing polygons
before rendering. Unfortunately, attempts to use a heuristic
based on isSilhouette were futile; the complete visi-
bility map is necessary to determine (both symbolically and
numerically) the extents of each shadow edge and the poly-
gon on which it falls. Of the edges appearing in the visibility
map after it is computed (the visible edges), it is still possible
to reject a large number of the visible edges from candidacy
to casting shadows based on the isSilhouette test.

To determine the set of critical points, we iterated over
the faces and edges in the scene. This critical point determi-
nation step is likely to remain the bottleneck to generating
shadow edges from a linear light source.

Another observation that is interesting to note follows.
In the arrangement of the shadow edges under a point light
source, every vertex in the arrangement must be adjacent to
exactly two shadow edges (for non–degenerate inputs). The
vertices appearing in the arrangement of shadow edges un-
der a linear light source, however, must be adjacent to ex-
actly three shadow edges the vertices appearing in the ar-
rangement of shadow edges under an area light source must
be adjacent to exactly four shadow edges. By vertices in
these three statements we are refering to the endpoints of the
shadow edges; indeed, under a linear or an area light source,
two shadow edges may in general intersect at a vertex. This
is easy to see if we notice that the permutations of the sig-
nature of a four line stabber defines all the shadow edges
adjacent to it. In the case of illumination by a point light
source, two of these four edges defining the stabber are fixed
and there remains a choice of one out of two. In illumination
under a linear light source, one of the four edges is the linear
light source itself, leaving us with choosing two out of three.
In illumination by an area light source, a choice of three out
of four is possible since none of the four edges must arise in
the definition of a shadow edge. These combinations lead to
the numbers of adjacency of 2, 3, and 4 mentioned above.

Finally, we return to the point alluded to earlier. We at-
tempt to argue that the designer of a visibility and shadow
system has every advantage in forbidding the user from
defining polygons in space but defining instead solids in
space. We give the following arguments:

� The pervasive backface culling step becomes inconsistent
if we define a polygon as having a single face. Consider a
case where two points a and b are hidden from each other
by such a single–faced polygon where a is to the front of
the polygon. A viewer located at a would naturally not see
b. A viewer located at b, however, may erroneously report
that a is visible if the first step taken by the visibility step
is to discard backfacing polygons.

� We propose that the operation of depositing shadow
edges, or identifying the polygon on which the shadow
edge falls, is an important operation in a shadow system.
For such an operation to succeed, the sidedness of the
polygon must be identified. This is easily done if poly-
gons are defined as solids.

Indeed, rather than attempting to say that individual poly-
gons (i.e. with no adjacency) should be forbidden, we sug-
gest that polygons should only be inserted as bifaced. For
example, a triangle in space would consist of three vertices,
six edges, and two polygon sides. This primitive is a stan-
dard one in solid modeling where it is called a lamina,41 as
discussed in Section 1.1. Our current implementation allows
for inserting only laminae and objects of cubic topology in
the scene. Inserting such objects can quickly become pro-
hibitive in the lines of code, in particular in a system that
needs to construct both nodes, arcs, and faces for topology
and vertices, edges, and polygons for the solids. Hierarchi-
cal methods for constructing solids42; 29 possibly reduce the
onus of using more complex solids.

6. Conclusion

We discussed in this paper that shadow problems can be sys-
tematically tackled as visibility problems and that an object–
space visibility structure such as the visibility map is a ver-
satile tool that has and will be highly exploited in a multitude
of algorithms in computer graphics. The use of the visibility
map for device–independent rendering is well–understood;
however, this tool can also be used to replace Atherton et al.’s
fundamental idea1 in computing true shadows from point
light sources and can be used in a unified manner to gen-
erate true shadows edges in illumination from a linear or an
area light source. In this context, discovering a practical al-
gorithm to compute the visibility map in time proportional to
the size of the output (rather than proportional to the number
of wire frame intersections on the image plane) is one of the
most important open problems in computer graphics.

To conclude, it is interesting to point to the relative ease
of generating shadows resulting from a small–sized linear or
area light source. The generation of shadows from an area
light source under a single occluder (which effectively re-
sults in a single view from the area light source) has long
been known.49 But, as discussed in Sections 3 and 4, the
presence of critical points or critical lines inside the linear or
the area light source, respectively, provides the richer setting
that requires the treatment discussed in this paper.

c The Eurographics Association 2000.



Ghali, Fiume, and Seidel / Shadow Computation: A Unified Perspective

References

1. P. Atherton, K. Weiler, and D. P. Greenberg. Polygon shadow
generation. Computer Graphics, 12(3):275–281, 1978. Proc.
SIGGRAPH ’78.

2. B. G. Baumgart. A polyhedron representation for computer
vision. In Proc. AFIPS Natl. Comput. Conf., volume 44, pages
589–596, 1975.

3. M. Bern, D. Dobkin, D. Eppstein, and R. Grossman. Visibility
with a moving point of view. Algorithmica, 11:360–378, 1994.

4. J. Blinn. Me and my (fake) shadow. IEEE Computer Graphics
& Appl., 8(1):82–86, 1988.

5. K. W. Bowyer and C. R. Dyer. Aspect graphs: An introduction
and survey of recent results. Int. J. of Imaging Systems and
Technology, 2:315–328, 1990.

6. CGAL Reference Manual. http://www.cgal.org/.

7. N. Chin and S. Feiner. Near real-time shadow generation using
BSP trees. In Proc. SIGGRAPH ’89, pages 99–106, New York,
August 1989. ACM SIGGRAPH.

8. V. Chvátal. Linear Programming. W. H. Freeman, New York,
NY, 1983.

9. M. F. Cohen and D. P. Greenberg. The hemicube: a radios-
ity solution for complex environments. Computer Graphics,
19(3):31–40, 1985. Proc. SIGGRAPH ’85.

10. S. Coorg and S. Teller. Temporally coherent conservative vis-
ibility. In Proc. 12th Annu. ACM Sympos. Comput. Geom.,
pages 78–87, 1996.

11. F. C. Crow. Shadow algorithms for computer graphics. Com-
puter Graphics, 11(2):242–248, 1977.

12. M. de Berg. Efficient algorithms for ray shooting and hid-
den surface removal. Ph.D. dissertation, Dept. Comput. Sci.,
Utrecht Univ., Utrecht, Netherlands, 1992.

13. F. Dévai. Quadratic bounds for hidden line elimination. In
Proc. 2nd Annu. ACM Sympos. Comput. Geom., pages 269–
275, 1986.

14. S. E. Dorward. A survey of object-space hidden surface re-
moval. Internat. J. Comput. Geom. Appl., 4:325–362, 1994.

15. G. Drettakis and E. Fiume. A fast shadow algorithm for area
light sources using backprojection. Computer Graphics Pro-
ceedings, Annual Conference Series 1994, 28:223–230, Au-
gust 1994.

16. F. Durand, G. Drettakis, and C. Puech. The visibility skele-
ton: A powerful and efficient multi-purpose global visibility
tool. In SIGGRAPH 97 Conference Proceedings, Annual Con-
ference Series, pages 89–100. ACM SIGGRAPH, Addison-
Wesley, 1997.

17. I. Z. Emiris, J. F. Canny, and R. Seidel. Efficient pertur-
bations for handling geometric degeneracies. Algorithmica,
19(1–2):219–242, September 1997.

18. H. Fuchs, Z. M. Kedem, and B. Naylor. On visible surface
generation by a priori tree structures. Computer Graphics,
14(3):124–133, 1980. Proc. SIGGRAPH ’80.

19. S. Ghali. Computation and maintenance of visibility and shad-
ows in the plane. In Sixth Int. Conf. in Central Europe on Com-
puter Graphics and Visualization, WSCG ’98, pages 117–124,
February 1998.

20. S. Ghali. A Geometric Framework for Computer Graphics Ad-
dressing Modeling, Visibility, and Shadows. PhD thesis, De-
partment of Computer Science, University of Toronto, 1999.

21. S. Ghali and A. J. Stewart. A Complete Treatment of D1
Discontinuities in a Discontinuity Mesh. In Proceedings of
Graphics Interface ’96, pages 122–131, San Francisco, CA,
May 1996. Morgan Kaufmann.

22. Z. Gigus, J. Canny, and R. Seidel. Efficiently computing
and representing aspect graphs of polyhedral objects. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
13(6):542–551, June 1991.

23. Z. Gigus and J. Malik. Computing the aspect graph for line
drawings of polyhedral objects. IEEE Trans. Pattern Anal.
Mach. Intell., 12(2):113–122, 1990.

24. M. T. Goodrich. A polygonal approach to hidden line elimina-
tion. In Proc. 25th Allerton Conf. Commun. Control Comput.,
pages 849–858, 1987.

25. M. T. Goodrich. A polygonal approach to hidden-line and
hidden-surface elimination. CVGIP: Graph. Models Image
Process., 54(1):1–12, 1992.

26. C. M. Goral, K. E. Torrance, D. P. Greenberg, and B. Battaile.
Modeling the interaction of light between diffuse surfaces. In
Hank Christiansen, editor, Computer Graphics (SIGGRAPH
’84 Proceedings), volume 18, pages 213–222, July 1984.

27. L. J. Guibas and J. Stolfi. Primitives for the manipulation
of general subdivisions and the computation of Voronoi dia-
grams. ACM Trans. Graph., 4(2):74–123, April 1985.

28. E. A. Haines and D. P. Greenberg. The light buffer: A shadow–
testing accelerator. IEEE Computer Graphics & Applications,
pages 6–16, September 1986.

29. P. Hanrahan. Creating volume models from edge-vertex
graphs. Computer Graphics, 16(3):77–84, 1982. Proc. SIG-
GRAPH ’82.

30. P. Heckbert. Discontinuity meshing for radiosity. Third Euro-
graphics Workshop on Rendering, pages 203–215, May 1992.

31. P. Heckbert. Radiosity in flatland. Eurographics, 11(2), 1992.

32. P. S. Heckbert. Simulating Global Illumination Using Adap-
tive Meshing. PhD thesis, University of California, Berkeley,
CA, January 1991.

33. P. J. Heffernan and J. S. B. Mitchell. Structured visibility
profiles with applications to problems in simple polygons.
In ACM-SIGACT ACM-SIGGRAPH, editor, Proceedings of
the 6th Annual Symposium on Computational Geometry (SCG
’90), pages 53–62, Berkeley, CA, June 1990. ACM Press.

34. H. Higbie. Lighting Calculations. John Wiley, 1934.

35. C. Hoffmann. Geometric and Solid Modeling. Morgan-
Kaufmann, San Mateo, CA, 1989.

c The Eurographics Association 2000.



Ghali, Fiume, and Seidel / Shadow Computation: A Unified Perspective

36. A. T. Campbell III and D. S. Fussell. Adaptive mesh gen-
eration for global diffuse illumination. Computer Graphics,
24:155–164, August 1990.

37. L. Kettner. Designing a data structure for polyhedral surfaces.
In Proc. 14th Annual ACM Symp. Computational Geometry,
1998.

38. L. Kettner and E. Welzl. Contour edge analysis for polyhedron
projections. In Geometric Modeling: Theory and Practice.
Springer–Verlag, 1997. (Proc. Int. Conf. Theory and Practice
of Geometric Modeling in Blaubern, Germany, Oct. 1996).

39. D. E. Knuth. Fundamental Algorithms, volume 1 of The Art of
Computer Programming. Addison-Wesley, Reading, MA, 1st
edition, 1968.

40. D. Lischinski, F. Tampieri, and D. Greenberg. Discontinuity
meshing for accurate radiosity. IEEE Computer Graphics &
Applications, pages 25–39, November 1992.

41. M. Mäntylä. An Introduction to Solid Modeling. Computer
Science Press, Rockville, MD, 1988.

42. M. J. Mäntylä and R. Sulonen. GWB: A solid modeler with
Euler operators. IEEE Computer Graphics & Appl., 2(5):17–
31, 1982.

43. M. McKenna. Worst-case optimal hidden-surface removal.
ACM Trans. Graph., 6:19–28, 1987.

44. K. Mehlhorn and S. Näher. Implementation of a sweep
line algorithm for the straight line segment intersection prob-
lem. Report 94–160, Max-Planck-Institut für Informatik, Saar-
brücken, Germany, 1994.

45. K. Mehlhorn and S. Näher. LEDA: A Platform for Combinato-
rial and Geometric Computing. Cambridge University Press,
Cambridge, UK, 1999.

46. D. E. Muller and F. P. Preparata. Finding the intersection
of two convex polyhedra. Theoret. Comput. Sci., 7:217–236,
1978.

47. K. Mulmuley. Hidden surface removal with respect to a mov-
ing point. In Proc. 23rd Annu. ACM Sympos. Theory Comput.,
pages 512–522, 1991.

48. M. Newell, R. Newell, and T. Sancha. A new solution to the
hidden surface problem. In Proc. ACM Annual Conf., pages
443–448, 1972.

49. T. Nishita and E. Nakamae. Continuous tone representation
of three-dimensional objects taking account of shadows and
interreflection. In B. A. Barsky, editor, Computer Graphics
(SIGGRAPH ’85 Proceedings), volume 19, pages 23–30, July
1985.

50. T. Nishita, I. Okamura, and E. Nakamae. Shading models
for point and linear sources. ACM Transactions on Graphics,
4(2):124–146, April 1985.

51. M. S. Paterson and F. F. Yao. Efficient binary space parti-
tions for hidden-surface removal and solid modeling. Discrete
Comput. Geom., 5:485–503, 1990.

52. M. Pocchiola and G. Vegter. The visibility complex. Internat.
J. Comput. Geom. Appl., 6(3):279–308, 1996.

53. W. T. Reeves, D. H. Salesin, and R. L. Cook. Rendering
antialiased shadows with depth maps. Computer Graphics,
21(4):283–291, July 1987.

54. G. Salmon. A treatise on the Analytical Geometry of Three
Dimensions. Longmans, Green and Co., 1912.

55. A. Schmitt. On the time and space complexity of certain exact
hidden line algorithms. Report 24/81, Fakultät Inform., Univ.
Karlsruhe, Karlsruhe, West Germany, 1981.

56. A. Schmitt. Time and space bounds for hidden line and hidden
surface algorithms. In Proc. Eurographics 81, pages 43–56,
Amsterdam, Netherlands, 1981. North-Holland.

57. Ph. Slusallek, M. Stamminger, W. Heidrich, J.-Ch. Popp, and
H.-P. Seidel. Composite lighting simulations with lighting net-
works. IEEE Computer Graphics & Applications, 18(2):22–
31, March–April 1998. ISSN 0272-1716.

58. A. J. Stewart and S. Ghali. An output sensitive algorithm for
the computation of shadow boundaries. In Proc. 5th Canad.
Conf. Comput. Geom., pages 291–296, 1993.

59. A. J. Stewart and S. Ghali. Fast computation of shadow
boundaries using spatial coherence and backprojections. Com-
puter Graphics Proceedings, Annual Conference Series 1994,
28:231–238, August 1994.

60. I. E. Sutherland and G. W. Hodgman. Reentrant polygon clip-
ping. Commun. ACM, 17:32–42, 1974.

61. I. E. Sutherland, R. F. Sproull, and R. A. Schumacker. A char-
acterization of ten hidden-surface algorithms. ACM Comput.
Surv., 6(1):1–55, March 1974.

62. F. Tampieri. Discontinuity Meshing for Radiosity Image Syn-
thesis. PhD thesis, Cornell University, May 1993.

63. S. Teller and M. Hohmeyer. Computing the lines pierc-
ing four lines. url: http://graphics.lcs.mit.edu/˜seth/pubs/-
fourlines.ps.Z, 1993.

64. S. Teller and M. Hohmeyer. Determining the lines through
four lines. Journal of Graphics Tools, 4(2):11–22, 1999.

65. S. J. Teller. Computing the antipenumbra of an area light
source. Computer Graphics, 26(4):139–148, July 1992. Proc.
SIGGRAPH ’92.

66. B. R. Vatti. A generic solution to polygon clipping. Commun.
ACM, 35(7):56–63, 1992.

67. K. Weiler and P. Atherton. Hidden surface removal using poly-
gon area sorting. Computer Graphics, 11(2):214–222, 1977.
Proc. SIGGRAPH ’77.

68. K. Weiler, T. Duff, S. Fortune, C. Hoffmann, and T. Peters. Is
robust geometry possible? In Celia Pearce, editor, Conference
Abstracts and Applications, pages 217–219. Siggraph Panel
session, Aug 1998.

69. L. Williams. Casting curved shadows on curved sur-
faces. Computer Graphics (SIGGRAPH ’78 Proceedings),
12(3):270–274, August 1978.

70. A. Woo, P. Poulin, and A. Fournier. A survey of shadow algo-
rithms. IEEE Computer Graphics and Applications, 10(6):13–
32, November 1990.

c The Eurographics Association 2000.


