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Abstract

Realism is often a primary goal in computer graphics imagery, we strive to create images that are

perceptually indistinguishable from an actual scene. Rendering systems can now closely approximate

the physical distribution of light in an environment. However, physical accuracy does not guarantee

that the displayed images will have authentic visual appearance. In recent years the emphasis in

realistic image synthesis has begun to shift from the simulation of light in an environment to images

that look as real as the physical environment they portray. In other words the computer image

should be not only physically correct but also perceptually equivalent to the scene it represents. This

implies aspects of the Human Visual System (HVS) must be considered if realism is required. Visual

perception is employed in many di�erent guises in graphics to achieve authenticity. Certain aspects of

the human visual system must be considered to identify the perceptual e�ects that a realistic rendering

system must achieve in order to e�ectively reproduce a similar visual response to a real scene. This

state-of-the-art report outlines the manner in which knowledge about visual perception is increasingly

appearing in state-of-the-art realistic image synthesis. This STAR is organised into three sections,

each exploring the use of perception in realistic image synthesis, each with slightly di�erent emphasis

and application. First, perception driven rendering algorithms are described, these algorithms focus on

embedding models of the Human Visual System (HVS) directly into global illumination computations

in order to improve their e�ciency. Then perception based image quality metrics, which aim to

compare images on a perceptual rather than physical basis are presented. These metrics can be used

to evaluate, validate and compare imagery. Finally, Tone Reproduction Operators, which attempt

to map the vast range of computed radiance values to the limited range of display values, are discussed.

1. Perceptually driven rendering

Even for realistic image synthesis there may be little

point spending time or resources to compute detail in

an image that would not be detected by a human ob-

server. By eliminating any computation spent on cal-

culating image features which lie below the threshold

of visibility, rendering times can be shortened leading

to more e�cient processing. Because the chief objec-

tive of physically based rendering is realism, incorpo-

rating models of HVS behaviour into rendering algo-

rithms can improve performance, as well as improv-

ing the quality of the imagery produced. So by tak-

ing advantage of the limitations of the human eye,

just enough detail to satisfy the observer can be com-

puted without sacri�cing image quality. Several at-

tempts have been made to develop image synthesis

algorithms that detect threshold visual di�erence and

direct the algorithm to work on those parts of an im-

age that are in most need of re�nement.

Raytracing produces an image by computing sam-

ples of radiance, one for each pixel in the image plane.

Producing an anti-aliased image is di�cult unless very

high sampling densities are used. Mitchell 23 realised

that deciding where to do extra sampling can be

guided by knowledge of how the eye perceives noise as

a function of contrast and colour. Studies have shown

that the eye is most sensitive to noise in intermediate

frequencies 31. While frequencies of up to 60 cycles

c
 The Eurographics Association 2000.



McNamara / Visual Perception

per degree can be visible, the maximum response to

noise is at approximately 4.5 cycles per degree, so sam-

pling in regions with frequency above this threshold

can be minimised, without a�ecting the visual quality

of the image. Mitchell begins by sampling the entire

image at low frequency then uses an adaptive sample

strategy the image according to the frequency content.

This results in a non uniform sampling of the image,

which enables aliasing noise to channeled into high fre-

quencies where artifacts are less conspicuous. However

non-uniform sampling alone doesn't eliminate alias-

ing, just changes its characteristics to make it less no-

ticeable. Mitchell applies two levels of sampling. To

decide whether the high sampling density should be

invoked the variance of samples could be used, 12, but

this is a poor measure of visual perception of local

variation. Instead Mitchell chooses to use contrast to

model the nonlinear response of the eye to rapid vari-

ations in light intensity.

C =
Imax � Imin

Imax + Imin

As each sample consists of three separate intensities

for red, green and blue, three separate contrasts can

be computed for red, green and blue. These three con-

trasts are tested against separate thresholds, 0.4, 0.3

and 0.6 for red, green and blue respectively, and super-

sampling is done if any one exceeds the threshold. He

then uses the contrast metric to determine when the

high sampling density should be invoked. This test

is most sensitive to green in accordance with the hu-

man eye's response to noise as a function of colour.

Multi stage �lters are then used to reconstruct the

non-uniform samples into a digital image. Although

this idea has the beginnings of a perceptual approach,

it is at most a crude approximation to the HVS. Only

two levels of sampling are used and it doesn't account

for visual masking.

The HVS exhibits di�erent spatial acuities in re-

sponse to di�erent colours. Evidence exists that colour

spatial acuity is less than monochrome spatial acuity.

Exploiting this poor colour spatial acuity of the HVS,

Meyer and Liu, 21 developed an adaptive image syn-

thesis algorithm which uses an opponents processing

model of colour vision, 20 comprising chromatic and

achromatic colour channels. Using a Painter and Sloan
26 adaptive subdivision, a k-D tree representation of

the image is generated. Areas of the image contain-

ing high frequency information are stored at the lower

levels of the tree. They then modi�ed a screen subdivi-

sion raytracer to limit the depth to which the k-D tree

must be descended to compute the chromatic colour

channels. The limit is determined by psychophysical

results describing the colour spatial frequency. They

achieved a modest saving in computational e�ort and

showed, using a psychophysical experiment, that de-

creasing the number of rays used to produce the chro-

matic channels had less of an e�ect on image qual-

ity than reducing the number of rays used to create

the achromatic channels. This was the �rst work to

attempt to mimimize the computation of colour cal-

culations, as opposed to just decreasing costly object

intersection calculations.

Bolin and Meyer 2 took a frequency based approach

to raytracing, which uses a simple vision model mak-

ing it possible for them to control how rays are cast

in a scene. Their algorithm accounts for the contrast

sensitivity, spatial frequency and masking properties

of the HVS. The contrast sensitivity response of the

eye is non-linear. So, when deciding where rays should

be cast the algorithms deems a luminance di�erence

at low intensity to be of greater importance than the

same luminance di�erence at high intensity. The spa-

tial response of the HVS is known to be less for pat-

terns of pure colour than for patterns that include lu-

minance di�erences. This means it is possible to cast

fewer rays into regions with colour spatial variations

than are cast in regions with spatial frequency varia-

tions in luminance. Finally, it is known that the pres-

ence of high spatial frequency can mask the presence

of other high frequency information (masking). When

used in conjunction with a Monte Carlo raytracer,

more rays are spawned when low frequency terms are

being determined than when high frequency terms are

being found. Using this strategy the artifacts that are

most visible in the scene can be eliminated from the

image �rst, then noise can be channeled into areas

of the image where artifacts are less conspicious. This

technique is an improvement on Micthell's method be-

cause the vision model employed accounts for contrast

sensitivity, spatial frequency and masking.

Despite the simplicity of the vision models used in

these approaches, the results are promising, especially

as they demonstrate the feasibility of embedding HVS

models into the rendering systems to produce more

economical systems without forfeiting image quality.

Fuelled by the notion that more sophisticated models

of the HVS would yield even greater speedup, several

researchers began to introduce more complex models

of the HVS into their global illumination computa-

tions.

Myskowski 24 applied a more sophisticated vision

model to steer computation of a Monte Carlo based

raytracer. Aiming to take maximum advantage of the

limitations of the HVS, his model included threshold

sensitivity, spatial frequency sensitivity and contrast

masking. A perceptual error metric is built into the

rendering engine allowing adaptive allocation of com-

putation e�ort into areas where errors remain above

perceivable thresholds and allowing computation to
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be halted in all other areas (i.e. those areas where

errors are below perceivable threshold and thus not

visible to a human observer). This perceptual error

metric takes the form of Daly's 6 Visible Di�erence

Predictor, �gure 4. The VDP takes as input a pair of

images and applies a model of human vision to them to

transform them to a visual representation. The "dis-

tance" between the images is then computed to form

a local visual di�erence map. This map is then com-

pared against a perceptual threshold value to ascertain

whether or not the di�erence is perceptible. The VDP

is used by Myszkowski by applying it to two inter-

mediate images computed at consecutive time steps

of the solution to give a functional error estimate. A

more comprehensive description of the VDP is given

in section 2

Bolin and Meyer 1 devised a similar scheme, also

using a sophisticated vision model in an attempt to

make use of all HVS limitations. They integrated a

simpli�ed version of the Sarno� Visible Discrimination

Model (VDM) into an image synthesis algorithm to

detect threshold visible di�erences and, based on those

di�erences direct subsequent computational e�ort to

regions of the image in most need of re�nement. The

VDM takes two images, speci�ed in CIE XYZ colour

space, as input. Output of the model is a Just Notice-

able Di�erence (JND) map. One JND corresponds to a

75% probability that an observer viewing the two im-

ages would detect a di�erence 14. They use the upper

and lower bound images from the computation results

at intermediate stages and used the predictor to get

an error estimate for that stage. The image quality

model is used to control where to take samples in the

image, and also to decide when enough samples have

been taken across the entire image, providing a visual

stopping condition. A more comprehensive description

of the VDM is given in section 2.

Applying a complex vision model at each consecu-

tive time step of image generation requires repeated

evaluation of the embedded vision model. The VDP

can be expensive to process due to the multi-scale

spatial processing involved in some of its compo-

nents. This means that in some cases the cost of re-

computing the vision model may cancel the savings

gained by employing the perceptual error metric to

speed up the rendering algorithm. To combat this

Ramasubramanian 28 introduced a metric that han-

dles luminance-dependent processing and spatially-

dependent processing independently, allowing the ex-

pensive spatially-dependent component to be precom-

puted. Ramasubramanian developed a physical error

metric that predicts the perceptual threshold for de-

tecting artifacts in the image. This metric is then used

to predict the sensitivity of the HVS to noise in the

indirect lighting component. This enables a reduction

in the number of samples needed in areas of an im-

age with high frequency texture patterns, geometric

details, and direct lighting variations, giving a signi�-

cant speedup in computation.

Using validated image models that predict im-

age �delity, programmers can work toward achieving

greater e�ciencies in the knowledge that resulting im-

ages will still be faithful visual representations. Also

in situations where time or resources are limited and

�delity must be traded o� against performance, per-

ceptually based error metrics could be used to provide

insights into where corners could be cut with least vi-

sual impact.

2. Perceptually Based Image Quality Metrics

Figure 1: Photograph of a Conference Room

Figure 2: Photo-Realistic Rendering of the above con-

ference room

Reliable image quality assessments are necessary for

the evaluation of realistic images synthesis algorithms.

Typically the quality of the image synthesis method

is evaluated using image to image comparisons. Often
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comparisons are made with a photograph of the scene

that the image depicts, as shown in �gures 1,2.

Several image �delity metrics have been developed

whose goals are to predict the amount of di�erences

that would be visible to a human observer. It is well

established that simple approaches like mean squared

error do not provide meaningful measures of image �-

delity, �gure 3. The image on the left has been slightly

blurred, the image on the right has deliberate scrib-

bles. The rmse value for blurred image is markedly

higher than the rmse for the image on the right. How-

ever, a human observer might indicate a higher corre-

lation between the image on the left. This illustrates

the use of rmse is not su�cient, after 27. Clearly more

sophisticated measures which incorporate a represen-

tation of the HVS are needed. It is generally recognised

that more meaningful measures of image quality are

obtained using techniques based on visual (and there-

fore subjective) assessment of images, after all most

�nal uses of computer generated images will be viewed

by human observers.

In 1998, Li and Meyer conducted a comprehensive

study that compared two of the more successful image

quality models, outlined here:

Daly's Visible Di�erence Predictor

The Visible Di�erence Predictor (VDP) is a per-

ceptually based image quality metric proposed by

Daly 6. The VDP takes a psychophysically based ap-

proach to construct a model of human vision. Two

images serve as input to the VDP, a di�erence map

is produced as output. This di�erence map predicts

the probability of detection of di�erences between the

two images. Figure 4, gives a block diagram of the

components of the predictor. The main stages are an

initial non-linearity, frequency domain weighting with

the human contrast sensitivity function CSF, and a

series of detection mechanisms.

To account for adaptation and the non-linear re-

sponse of retinal neurons a non-linear response func-

tion is applied to each image. Daly assumed that the

adaptation depends is a function of each pixel indi-

vidually. The model used for adaptation estimates the

relationship between brightness sensation and lumi-

nance. At low levels of luminance a cube-root power

law is applied, while at higher luminance levels it ap-

proximates the logarithmic dependence.

The next stage involves converting the image to the

frequency domain. The transformed data is weighted

with the CSF i.e. the scaled amplitude for each fre-

quency is multiplied by the CSF for that spatial fre-

quency. This data is then normalised (by dividing each

point by the original image mean) to give local con-

trast information.

The image is then divided into 31 independent

streams. It is known that the HVS has speci�c se-

lectivities based on orientation (6 channels) and spa-

tial frequency (approximately one octave per channel).

Each of the �ve overlapping spatial frequency bands is

combined with each of the six overlapping orientation

bands to split the image into thirty channels. Along

with the orientation-independent base band this gives

a total of 31 channels. At this point the individual

channels are transformed back into the spatial domain.

A mask is associated with each channel, the mask

is a function of location in the image. The presence

of masking information at a speci�c location, spatial

frequency and orientation increases the threshold of

detectability for a signal with those characteristics. A

threshold elevation map for each channel is computed

as a function of the mask contrast. Finally, mutual

masking is applied between the two sets of threshold

elevation maps from both input images to produce a

single threshold elevation map per channel.

Contrasts of corresponding channels in one image

are subtracted from those of the other images, and

the di�erence is scaled down by threshold elevation.

The scaled contrast di�erences are used as the argu-

ment to a psychometric function to compute a detec-

tion probability. The psychometric function yields a

probability of detection of a di�erence for each loca-

tion in the image, for each of the 31 channels. The

detection probabilities for all of the channels are com-

bined using the assumption of independent probabili-

ties, giving an overall signed detection probability for

each location in the image.

Sarno� Visual Discrimination Model

The Sarno� VDM 13 focuses more attention on

modelling the physiology of the visual pathway. There-

fore the VDM operates in the spatial domain (as op-

posed to the frequency domain approach of VDP). The

main components of the VDM include spatial resam-

pling, wavelet-like pyramid channeling, a transducer

for JND calculations and a �nal re�nement step to

account for CSF normalisation and dipper e�ect simu-

lation. The VDM also takes as input two images along

with a set of parameters for viewing conditions, here

the output is a map of JND's. The overall structure

of the VDM is shown in �gure 5.

To account for the optics of the eye and mosaic

structure of the retina, a single point spread function

(PSF) is used to predict the foveal performance of the

two dimensional optics of the eye (it is assumed the

PSF is circularly symmetric). The e�ect of the PSF
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Figure 3: Comparing top images to the image on the bottom using RMSE 27

convolution is blurring of the input images. A spatial

resampling, at a rate of 120 pixels per degree, it then

applied to account for the �xed density of the cones

in the fovea. This resampling is essential in a spatial

domain approach since the extraction of the di�erent

frequency bands is dependent on the resampling ker-

nels and the resampling rates. If the original image is

too big, and the local image quality cannot be assessed

in a single glance then the image can be subdivided

into smaller blocks.

A laplacian pyramid stores a wavelet representation

of the resampled input images and a quadrature mir-

rored pair of convolution kernels records information

along each of the four orientations. On completion of

this stage, the raw luminance signal has been con-

verted into units of local contrast. Due to the use of

a spatial domain convolution approach, the peak fre-

quency of each level has to be a power of two. The

seven bandpass levels have peak frequencies from 32

to 0.5 cycles/degree, where each level is separated from

its neighbours by one octave. A steerable pyramid is

used to perform the decomposition, to increase perfor-

mance. This is a multi-scale, multi-orientation, image

transform with both frequency and orientation com-

ponents. The last step in the decomposition process is

computation of a phase-independent energy response

by squaring and summing odd phase and even phase

coe�cients. They are determined by convolving the

quadrature mirror pair �lters with a certain frequency

band.

The energy measure is normalised by the square of

the reciprocal of the CSF, then a transducer is used

to re�ne the JND map by taking the spatial masking

dipper e�ect into account. The dipper shape re
ects

on characteristic of the contrast discrimination func-

tion. This stage involves the transformation by a sig-

moid non-linearity. Finally the model includes a pool-

ing stage in which transducer outputs are averaged

over a small region by convolving with a disc-shaped

kernel.

Once the JND di�erence map has been computed

for each channel, the �nal stage involves putting to-

gether the contributions from each channel. This leads
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Figure 5: A block diagram of the Visual Discrimina-

tion Model

to the concept of a space of multiple dimensions. There

are 28 channels involved in the summation, seven

pyramid level times four di�erent orientations. For

each spatial position the �nal JND distance can be

regarded as the distance between the 28-dimensional

vectors.

Meyer and Li concluded that although both meth-

ods performed comparably, the Sarno� VDM was

deemed slightly more robust producing better JND

maps and required less re-calibration than the Daly

VDP. Despite this both have been successfully incor-

porated into global illumination algorithms to produce

favorable results 24; 25; 1.

The main contribution of this study was the in-

dependent veri�cation of the major features of each

model. Meyer and Li do agree however, that psy-

chophysical experiments involving a large set of im-

ages would be needed for a complete evaluation, to

investigate the performance of models under a wider

range of conditions.

3. Comparing Real and Synthetic Scenes

While image quality metrics have been successfully

incorporated into global illumination algorithms to

guide computations more e�ciently, metrics can also

be useful to validate and compare rendering tech-

niques. As the goal of realistic image synthesis is to

generate representations of a physical scene, simula-

tions should therefore be compared to the real world

scenes.

Using a simple �ve sided cube as their test environ-

ment Meyer et al 22 presented an approach to image

synthesis comprising separate physical and perceptual

modules. They chose di�usely re
ecting materials to

build a physical test model. Each module is veri�ed

using experimental techniques. The test environment

was placed in a small dark room. Radiometric val-

ues predicted using a radiosity lighting simulation of

a basic scene are compared to physical measurements

of radiant 
ux densities in the real scene. Then the

results of the radiosity calculations are transformed

to the RGB values for display, following the principles

of colour science. Measurements of irradiation were

made at 25 locations in the plane of the open face for

comparison with the simulations. Results show that

irradiation is greatest near the centre of the open side

of the cube. This area provides the best view of the

light source and other walls. In summary, there is good

agreement between the radiometric measurements and

the predictions of the lighting model.

Meyer et al. then proceeded by transforming the

validated simulated value to values displayable on a

television monitor. Twenty participants were asked to

di�erentiate between real environment and the dis-

played image, both of which were viewed through the

back of a view camera. They were asked which of the

images was the real scene. Nine out of the twenty par-

ticipants (45%) indicated that the simulated image

was actually the real scene, i.e. selected the wrong an-

swer, revealing that observers would have done just as

well by simple guessing. Although participants consid-

ered the overall match and colour match to be good,

some weaknesses were noticed in the sharpness of the

shadows (a consequence of the discretisation in the

simulation) and in brightness of the ceiling panel ( a

consequence of the directional characteristics of the

light source). The overall agreement lends strong sup-

port to the perceptual validity of the simulation and

display process. This was the �rst attempt to com-

pare real and simulated scenes side by side, using hu-

man observers. Although the results of the study are

encouraging, the scene under examination was very

simple, and the actual methodology for comparison

itself however was not inherently controlled, and the

results suggest that the participants could have simply
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guessed. To really investigate the di�erences between

a real environment and its synthetic representation a

more robust approach is required.

Figure 6: NIST Comparison using a Conference

Room, 30

Another approach to comparing real and simulated

scenes takes a captured image of the real scene in ques-

tion and uses numerical techniques to determine the

perceptual di�erences between the two. Rushmeier et

al. 30 explored using perceptually based metrics, based

on image appearance, to compare image quality to a

captured image of the scene being represented. The

scene in question was a conference room, as shown

in �gure 6. The following image comparison metrics

were derived from 6, 8, 15 in a study which com-

pared real and synthetic images by Rushmeier et al
30. Each is based on ideas taken from image compres-

sion techniques. Image compression techniques seek

to minimise storage space by saving only what will be

visible in an image (similar to the goal of perceptually

driven rendering where the aim is to mimimise render-

ing times by computing only what will be visible in the

image). The goal of Rushmeier's study was to obtain

results from comparing two images using these models

that were large if large di�erences between the images

exist, and small when they are almost the same. These

suggested metrics include some basic characteristics

of human vision described in image compression lit-

erature. First, within a broad band of luminance, the

eye senses relative rather than absolute luminances.

For this reason a metric should account for luminance

variations, not absolute values. Second, the response

of the eye is non-linear. The perceived \brightness"

or \lightness" is a non-linear function of luminance.

The particular non-linear relationship is not well es-

tablished and is likely to depend on complex issues

such as perceived lighting and 3-D geometry. Third,

the sensitivity of the eye depends on the spatial fre-

quency of luminance variations. The following meth-

ods attempt to model these three e�ects. Each model

uses a di�erent Contrast Sensitivity Function (CSF)

to model the sensitivity to spatial frequencies.

Model 1 After Mannos and Sakrison 15: First, all

the luminance values are normalised by the mean lu-

minance. The non linearity in perception is accounted

for by taking the cubed root of each normalised lumi-

nance. A Fast Fourier Transform (FFT) is computed

of the resulting values, and the magnitude of the re-

sulting values are �ltered with a CSF to an array of

values. Finally the distance between the two images is

computed by �nding the Mean Square Error (MSE) of

the values for each of the two images. This technique

therefore measures similarity in Fourier amplitude be-

tween images.

Model 2 After Gervais et al 8: This model includes

the e�ect of phase as well as magnitude in the fre-

quency space representation of the image. Once again

the luminances are normalised by dividing by the

mean luminance. An FFT is computed producing an

array of phases and magnitudes. These magnitudes

are then �ltered with an anisotropic CSF �lter func-

tion constructed by �tting splines to psychophysical

data. The distance between two images is computed

using methods described in 8.

Model 3 After Daly:adapted from 5: In this model

the e�ects of adaptation and non-linearity are com-

bined in one transformation, which acts on each pixel

individually. In the �rst two models each pixel has

signi�cant global e�ect in the normalisation by con-

tributing to the image mean. Each luminance is trans-

formed by an amplitude non-linearity value. An FFT

is applied to each transformed luminance and then

they are �ltered by a CSF (computed for a level of 50

cd/m2). The distance between the two images is then

computed using MSE as in model 1.

They demonstrated how these perceptual metrics,

derived from research in vision and image compression

may be used to numerically compare renderings and

captured images in a manner that loosely corresponds

to human subjective impressions. If the three metrics

introduced, the Daly model 6 tested best against their

testing criteria, and was the only one to consider hu-

man dark adaptation. It was noted however that the

Gervais model 8 was the only one to include phase in-

formation and so its performance su�ered due to rela-

tively minor image registration problems between cap-

tured and simulated images, and that in cases where

geometric alignment is not an issue this model might

even outperform the other two.

Myskowski 24 realised the VDP had many potential

applications in realistic image synthesis. He completed

a comprehensive validation and calibration of VDP

response via human psychophysical experiments. He

subsequently used the VDP local error metric to steer

decision making in adaptive mesh subdivision, and in

isolating regions of interest for more intensive global

illumination computations. The VDP was tested to

determine how close VDP predictions come to sub-

jective reports of visible di�erences between images
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by designing two human psychophysical experiments.

Results from these experiments showed a good cor-

respondence with VDP results for shadow and light-

ing pattern masking by masking and in comparison

of the perceived quality of images generated as sub-

sequent stages of indirect lighting solutions. He used

the VDP to measure the \perceptual convergence"

of the image quality as a function of computation

time. At every stage of computation we use the VDP

to predict di�erences between images for the fully

converged and intermediate solutions obtained using

the Monte Carlo Path Tracing technique. The di�er-

ences reported by the VDP are expressed in terms

of the di�erence-detection probability by the human

observer. The probability values are provided for ev-

ery pixel. This is illustrated in �gure 7. The left col-

umn shows subsequent stages of computation at 6 (top

row), 48, and 210 seconds. The middle column depicts

the absolute di�erences of pixel intensity between im-

ages for the current and fully converged solutions. The

right column shows the corresponding visible di�er-

ences predicted by the Visual Di�erences Predictor.

Figure 8 shows the fully converged solution used for

reference (left) and the scales used for encoding the

di�erences in the middle column, and probabilities in

the right column. Via alpha blending, color is added to

each pixel in the original grey-scale image in order to

indicate its absolute di�erence or di�erence-detection

probability value (right).

Figure 7: Perceptual convergence of the image quality
24

Figure 8: Fully Converged Image, and Perceptual

Scales 24

These perception based image quality metrics have

demonstrated the success of implementing a visual

model, in spite of the fact that knowledge of the vi-

sual process is as yet incomplete. However, there is a

fundamental problem with all these methods from the

point of view of validation. Although these methods

are capable of producing images based on models of

the HVS, there is no standard way of telling if the

images \capture the visual appearance" of scenes in

a meaningful way. One approach to validation could

compare observers' perception and performance in real

scenes against the predictions of the models. This en-

ables calibration and validation of the models to assess

the level of �delity of the images produced.

Using perceptual data we can compare and validate

existing rendering algorithms, allowing us to demon-

strate to the world just how useful and reliable the

images we create can be. Psychophysics is one ap-

proach to evaluating, comapring and validating syn-

thetic imagery to real images occurring in our physical

surroundings. By conducting a series of psychophysi-

cal experiments McNamara et al. 17; 16; 19; 18 demon-

strated how the �delity of graphical reconstructions of

a real scene can be assessed. The study was based on

the simple task of lightness perception.

McNamara et al 17 began by building an experi-

mental framework to facilitate human comparison be-

tween real and synthetic scene. They ran a series of

psychophysical experiments in which human observers

were asked to compare simple two dimensional tar-

get regions of a real physical scene with regions of

the computer generated representation of that scene.

The comparison involved lightness judgements in both

the generated image and the real scene. Results from

these experiments showed that the visual response to

the real scene and a high �delity rendered image was

similar. T

Then extended this work to investigate comparisons

using three dimensional objects as targets, rather than

simple regions. This allows examination of scene char-
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acteristics such as shadow, object occlusion and depth

perception.

The test environment was a �ve sided box shown in

�gure 9. Several objects that were placed within the

box for examination.

Figure 9: The test environment showing real environ-

ment and computer image.

Ten images were considered for comparison to the

real scene, they included a digital photograph, a series

of Radiance 35 images, and a couple of Renderpark

images 29 as shown in �gures 10, 11,12, 13,14.

Figure 10: Digital Photograph (left) Radiance 2 Am-

bient Bounces (right), 16

Figure 11: Radiance 8 Ambient Bounces (left) bright-

ened (right), 16

Each participant was presented with a series of im-

ages, �gures 10, 11,12, 13,14, in a random order, one of

which was the real environment. Participants were not

Figure 12: Radiance Default (left) Estimated Mate-

rials (right), 16

Figure 13: Radiance Estimated Light Source (left)

Tone Mapped (right), 16

explicitly informed which image was the physical en-

vironment. The images presented were the real scene,

the photograph and the 9 rendered images. There were

17 di�erent objects in the test environment, subjects

were also asked to match the 5 sides of the environ-

ment (
oor, ceiling, left wall, back wall and right wall)

giving a total of 21 matches. Participants were asked

to judge the lightness of target objects in a random

manner.

In summary, the results show that there is evidence

that the 2 Ambient Bounces image, the Default image,

the Controlled Error Materials image, the Raytraced

image and the Radiosity image are perceptually de-

graded compared to the photograph. However, there

is no evidence that the others images in this study

are perceptually inferior to the photograph. From this

they conclude that the 8 Ambient Bounces image,

the Brightened 8 Ambient Bounces image, the Tone

Mapped image and the Controlled Error Illumination

Figure 14: Renderpark Raytraced (left) Radiosity

(right), 16
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image are of the same perceptual quality as a photo-

graph of the real scene.

The results from such psychophysical studies are be-

coming increasingly important for realistic image syn-

thesis as these results provide a perceptual, rather than

mere physical, match between an original scene and

its computer generated counterpart. This information

can then be used for image evaluation, as well as for

comparison of various global illumination simulation

algorithms and ultimately can be used to improve the

e�ciency of such algorithms.

4. Tone Mapping

The range of luminance we encounter in natural en-

vironments (and hence the range of luminances that

can be computed by a physically based rendering al-

gorithm) is vast. Over the course of the day the ab-

solute level of illumination can vary by more than

a 100,000,000 to 1 from bright sunlight down to

starlight. The dynamic range of light energy in a single

environment can also be large, on the order of 10,000

to 1 from highlights to shadows. However, typical dis-

play media have useful luminance ranges of approxi-

mately 100 to 1. This means some mapping function

must be used to translate real world values into values

displayable by the device in question, be is electronic

(CRT) or print media. Initial attempts to develop such

a mapping were simple ad-hoc methods which failed

miserably for high dynamic range scenes. These ad-

hoc methods proceeded by employing a linear arbi-

trary scaling either mapping the average of a lumi-

nance in the real world to the average of the display, or

the maximum non-light source luminance to the max-

imum displayable value. While such a scaling proved

appropriate for scenes with similar dynamic range to

the display media, it failed to preserve visibility in

scenes with high dynamic ranges of luminance. This

is due the fact that very bright or very dim values must

be clipped to fall within the range of displayable val-

ues. Also, using this method all images are mapped in

the same manner irrespective of absolute value. This

means a room illuminated by a single candle could be

mapped to the same image as a room illuminated by

a search light, resulting in loss of the overall impres-

sion of brightness and so losing the subjective corre-

spondence between real and displayed scene. It follows

more sophisticated mappings were required.

Tone Mapping, originally developed for use in pho-

tography and television, addresses the problem of

mapping to a display, and is an attempt to recreate

the same perceptual response in the viewer of a syn-

thetic image as they would have if looking at the real

scene. Taking advantage HVS sensitivity to relative lu-

minances rather than absolute luminances allows the

overall subjective impression of a real environment to

be replicated on some display media, despite the fact

that the range of real world luminances often dwarfs

the displayable range.

Tone reproduction operators can be classi�ed ac-

cording to the manner in which values are trans-

formed. Single-scale operators proceed by applying

the same scaling transformation for each pixel in the

image, and that scaling only depends on the current

level of adaptation, and not on the real-world lumi-

nances.Multi-scale operators take a di�ering approach

and may apply a di�erent scale to each pixel in the

image, this time the scaling is in
uenced by many fac-

tors.
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Figure 15: A block diagram of Tone Reproduction

4.0.1. Single Scale Tone Reproduction

Operators

Tumblin and Rushmeier were the �rst to apply the dy-

namics of tone reproduction to the domain of realistic

image synthesis 34. Using a psychophysical model of

brightness perception �rst developed by Stevens and

Stevens 33, they produced a tone reproduction opera-

tor that attempted to match the brightness of the real

scene to the brightness of the computed image dis-

played on a CRT. To achieve this an observer model

is built which describes how real world and display

luminances are perceived, and a display model that

describes how a frame-bu�er value is converted into

displayed luminance, �gure 15. The image is presented

to a hypothetical real world observer, who adapts to

a luminance La(w). Applying Stevens' equation, which

relates brightness to target luminance, the perceived

value of a real world luminance, Lw, is computed as:

Bw = 10�(La(w))(� � 10�4Lw)
�(L

a(w))

where �(La(w)) and �(La(w)) are functions of the real

world adaptation level:

�(La(w)) = 0:4 log10(La(w)) + 1:519
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�(La(w)) = �0:4(log10(La(w)))
2
�0:218 log10(La(w))+6:1642

Luminances are in cdm�2. If it is assumed that a dis-

play observer viewing a CRT screen adapts to a lumi-

nance, La(d), the brightness of a displayed luminance

value can be similarly expressed:

Bd = 10�(La(d))(� � 10�4Ld)
�(L

a(d))

where �(La(d)) and �(La(d)) are as before. To match

the brightness of a real world luminance to the bright-

ness of a display luminance, Bw must equal Bd. The

luminance required to satisfy this can be determined:

Ld =
1

� � 10�4
10

�
a(w)��a(d)

�
a(d) (� � 10�4Lw)

�
a(w)
�
a(d)

This represents the concatenation of the real-world ob-

server and the inverse display observer model. To de-

termine, n, the frame bu�er value the inverse display

system model is applied to give:

n = [
Ld � Lamb

Ldmax
]
1



giving

�TUMB(Lw) = [
10

�
a(w)��a(d)

�
a(d) (� � 10�4Lw)

�
a(w)
�
a(d)

� � 10�4
]

Taking a slightly di�erent approach, Ward 35

searched for a linear transform a similar result, while

keeping computational expense to a minimum. He pro-

posed transforming real world luminances, Lw, to dis-

play luminances, Ld, through m, a scaling factor:

Ld = mLw

The consequence of adaptation can be thought of as

a shift in the absolute di�erence in luminance required

in order for a human observer to notice a variation.

Based on psychophysical data collected by Blackwell
4, Ward de�nes a relationship that states that if the

eye is adapted to luminance level La, the smallest al-

teration in luminance that can be seen satis�es:

4(La) = 0:0594(1:219 + L
0:4
a )2:5

Real world luminances are mapped to the display lu-

minances so the smallest discernible di�erences in lu-

minance can also be mapped, using:

4L(La(d)) = m4L(La(w))

Where Law and La(d) are the adaptation levels to the

real world scene and display device respectively. The

scaling factor, m, dictates how to map luminances

from the world to the display such that a Just No-

ticeable Di�erence (JND) in world luminances maps

to a JND in display luminances :

m =
4L(La(d))

4L(La(d))
= (

1:219 + L0:4
a(d)

1:219 + L0:4
a(w)

)2:5

To estimate the adaptation levels, LawtoLad, Ward

assumed the adaptation level is approximately half the

average radiance of the image, (La(d) = Ldmax=2).

Substituting in to equation (above) results in values

from 0 to Ldmax, dividing by Ldmax then gives values

in the required range from [0..1]. The scaling factor is

then given by:

m =
1

Ldmax
[
1:219 + (Ldmax=2)

0:4

1:219 + (L0
a(w)

:4)
]2:5

where Ldmax is typically set to 100cdm�2.

In 1996, Ferwerda et al. 7 developed a model con-

ceptually similar to Ward's, but in addition to pre-

serving threshold visibility, this model also accounted

for changes in colour appearance, visual acuity, and

temporal sensitivity. Di�erent tone reproduction op-

erators are applied depending on the level of adap-

tation of the real world observer. A threshold sensi-

tivity function is constructed for both the real world

and display observers given their level of adaptation.

A linear scale factor is then computed to relate real

world luminance to photopic display luminance. The

required display luminance is calculated by combining

the photopic and scotopic display luminances using a

parametric constant, k which varies between 1 and 0

as the real world adaptation level goes from top to

bottom of the meopic range.

To account for loss in visual acuity, Ferwerda et al.

used data obtained from experiments that related the

detectability of square wave gratings of di�erent spa-

tial frequencies to changes in background luminance.

By applying a Gaussian convolution �lter, frequencies

in the real world image which could not be resolved

when adapted to the real world adaptation level are

removed. Light and dark adaptation are also consid-

ered by Ferwerda, a parametric constant, b is added

to the display luminance, the value of which changes

over time. The value of b is set so that...remains con-

stant over time. This means the overall luminance of

the displayed image remains the same during the time

dependent adaptation process.

A critical and underdeveloped aspect of all this work

is the visual model on which the algorithms are based.

As we move through di�erent environments or look

from place to place within a single environment our

eyes adapt to the prevailing conditions of illumination

both globally and within local regions of the visual

�eld. These adaptation processes may have dramatic
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e�ects on the visibility and appearance of objects and

on our visual performance. In order to produce realis-

tic displayed images of synthesised or captured scenes,

a more complete visual model of adaptation needs to

be developed. This model will be especially important

for immersive display systems that occupy the whole

visual �eld and therefore determine the viewer's visual

state.

4.0.2. Multi-Scale Tone Reproduction

Operators

After careful investigation of the e�ects of tone map-

ping of a small test scene illuminated only by a single

incandescent bulb, Chiu et al 3 believed it was in-

correct to apply the same mapping to each pixel. By

uniformly applying any tone mapping operator across

the pixel of an image, incorrect results are likely. They

noted that the mapping applied to a pixel should be

dependent on the spatial position in the image of that

pixel. This means that some pixels having the same

intensities in the original images may have di�ering

intensity values in the displayed image. Using the fact

that the human visual system is more sensitive to rel-

ative changes in luminance rather than absolute lev-

els, they developed a spatially non-uniform scaling

function for high contrast images. First the image is

blurred to remove all the high frequencies, and the re-

sult is inverted. This approach was capable of repro-

ducing all the detail in the original image, but reverse

intensity gradients appeared in the image when very

bright and very dark areas were close to each other.

Schlick, 32 proposed a similar transformation based

on a rational tone reproduction operator rather than

a logarithmic one. Neither of these methods accounted

for di�ering levels of adaptation. Their solutions are

based purely on experimental results, no attempt is

made to employ psychophysical models of the HVS.

Larson et al, 11 developed a histogram equaliza-

tion technique that used a spatial varying map of

foveal adaptation to transform a histogram of image

luminances in such away that the resulting image lay

within the dynamic range of the display device and

image contrast and visibility were preserved. First a

histogram of brightness (approximated as a logarithm

of real-world luminances) is created for a �ltered im-

age in which each pixel corresponds to approximately

1o of visual �eld. A histogram and a cumulative dis-

tribution function were then obtained for this reduced

image. Using threshold visibility data from Ferwerda,

an automatic adjustment algorithm is applied to cre-

ate an image with the dynamic range of the original

scene compressed into the range available on the dis-

play device, subject to certain restrictions regarding

limits of contrast sensitivity of the human eye.

In addition to tone reproduction operators be-

ing useful for rendering calculated luminance to the

screen, they are also useful for giving a measure of

the perceptible di�erence between two luminances at

a given level of adaptation. This function can then be

used to guide algorithms, such as discontinuity mesh-

ing where there is a need to determine whether some

process would be noticeable or not to the end user.

Gibson and Hubbold 9 have used features of the

threshold sensitivity displayed by the HVS to acceler-

ate the computation of radiosity solutions. A percep-

tually based measure controls the generation of view

independent radiosity solutions. This is achieved with

an a-priori estimate of real-world adaptation lumi-

nance, and uses a tone reproduction operator to trans-

form luminance values to display colours and is then

used as a numerical measure of their perceived di�er-

ence. The model stops patch re�nement once the dif-

ference between successive levels of elements becomes

perceptually unnoticeable. The perceived importance

of any potential shadow falling across a surface can

be determined, this can be used to control the num-

ber of rays cast during visibility computations. Finally,

they use perceptual knowledge to optimise the element

mesh for faster interactive display and save memory

during computations. This technique was used on the

adaptive element re�nement, shadow detection, and

mesh optimisation portions of the radiosity algorithm.

Discontinuity meshing is an established technique

used to model shadows in radiosity meshes. It is com-

putationally expensive, but produces meshes which

are far more accurate and which also contain fewer

elements. Hedley 10 used a perceptually informed er-

ror metric to optimise adaptive mesh subdivision for

radiosity solutions. The goal being to develop a scal-

able discontinuity meshing methods by considering vi-

sual perception. Meshes were minimised by discarding

discontinuities which had a negligible perceptible ef-

fect on a mesh. They demonstrated that a perception-

based approach results in a greater reduction in mesh

complexity without introducing visual artifacts than

a purely radiometrically-based approach.

5. Summary

Some of the applications of visual perception in com-

puter graphics were explored. For many applications

computer imagery should not only be physically cor-

rect but also perceptually equivalent to the scene it

represents. Knowledge of the HVS can be employed to

greatly bene�t the synthesis of realistic images at var-

ious stages of production. Global illumination compu-

tations are costly in terms of computation. There is a

great deal of potential to improve the e�ciency of such

algorithms by focusing computation on the features of

a scene which are more conspicuous to the human ob-
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server. Those features that are below perceptual visi-

bility thresholds have no impact on the �nal solution,

and therefore can be omitted from the computation,

increasing e�ciency without causing any perceivable

di�erence to the �nal image. Perceptual metrics in-

volving advanced HVS models can be used to deter-

mine the visible di�erences between a pair of images.

These metrics can then be used to compare and eval-

uate image quality. They can also be used within the

rendering framework to steer computation into regions

of an image which are in most need of re�nement, and

to halt computation when di�erences in successive it-

erations of the solution become imperceptible.

Future applications will require perceptual accuracy

in addition to physical accuracy. Without perceptual

accuracy it is impossible to assure users of computer

graphics that the generated imagery is anything like

the scene it depicts. Imagine a visualisation of an ar-

chitectural design, without perceptual accuracy it is

di�cult to guarantee the architect that the visual-

isation su�ciently represents their design, and that

the completed building will look anything like the

computer representation. This chapter discussed how

knowledge of the HVS is being incorporated at various

stages in the image synthesis pipeline. The problem is

that much of the data used has been obtained from

speci�c psychophysical experiments which have been

conducted in specialised laboratory environments un-

der reductionistic conditions. These experiments are

designed to examine a single dimension of human vi-

sion, however, evidence exists to indicate that features

of the HVS do not operate individually, but rather

functions overlap and should be examined as a whole

rather than in isolation. Tone reproduction operators

map computed radiance values to display values in

a manner that preserves perception of the original

scene. Tone reproduction operators produce a percep-

tual match between the scene and the image in the

hopes that the image may be used predictively.

There is a strong need for the models of human

vision currently used in image synthesis computations

to be validated to demonstrate their performance is

comparable to the actual performance of the HVS.
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Figure 4: A block diagram of the Visible Di�erence Predictor 5
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