EUROGRAPHICS’ 00

STAR - State of The Art Report

| nteractive Display of Global Illumination Solutions
for Non-Diffuse Environments

Wolfgang Heidrich

Department of Computer Science
The University of British Columbia
2366 Main Mall
Vancouver, B.C. V6T 124 CANADA
hei dri ch@s. ubc. ca

Abstract

In recent years there has been a lot of work on interactively displaying global illumination solutions for non-
diffuse environments. This is an extremely active field of research, in which a lot of different approaches have been
proposed recently. In this State-of-The-Art-Report, we will discuss and compare these. This will hopefully lay the
ground for systematically addressing the open questions in the future.

1. Introduction

Indirect illumination is an important visual effect that con-
tributes significantly to the realism of computer generated
imagery. Thus, it is not surprising that several methods for
including these effects in interactive applications have been
developed over the past few years.

For example, a common technique for displaying the indi-
rect illumination in a diffuse environment is to use Gouraud
shading and texture mapping for displaying the results of a
Radiosity simulation®- 23 4, Due to the view-independent na-
ture of illumination in a diffuse environment, the expensive
precomputation step can easily be separated from the inex-
pensive display step, which allows for high frame rates using
graphics hardware.

The case of non-diffuse reflection is more challenging and
interesting, because it requires either precomputing and stor-
ing a large amount of data, or the execution of relatively ex-
pensive operations on the fly. The purpose of this State-of-
The-Art-Report is to show the current status quo of methods
related to interactive display of global illumination solutions,
and to compare the different approaches to each other.

In practice, we find that the different approaches consti-
tute a smooth transition from precomputed illumination with
large storage requirements to on-the-fly computations con-
suming little or no memory. For the purposes of this report,

(© The Eurographics Association 2000.

we have grouped the different methods in the following cat-
egories:

e Image-based methods using precomputed environment
maps (Section 2). These methods ignore parallax effects
due to objects that are large compared to their environ-
ment. Environment maps allow for an efficient reconstruc-
tion based on texture mapping.

e Image-based methods using precomputed light fields
(Section 3). As in the case of environment maps, this al-
lows for efficient reconstruction that is mostly a simple
table lookup or a lookup combined with some interpola-
tion.

e Reconstruction from sparse or scattered light field infor-
mation (Section 4). Like the methods in Section 3, these
techniques also work on precomputed light fields, but they
usually use fairly sparse representations that require a sig-
nificant amount of work during a reconstruction phase to
be performed on the fly.

e On-the-fly methods (Section 5). Here, the global illumina-
tion is completely computed during rendering time. This
means that dynamic scenes can trivially be handled, but
on the other hand the complexity of the scene or the illu-
mination effects that can be dealt with are often seriously
limited for performance reasons.

W. Heidrich / Interactive Display of Global Illumination Solutions

2. Environment Maps

In this part of the tutorial we are going to discuss environ-
ment maps® and their applications to interactive rendering.
Environment maps are particular textures that describe for
all directions the incoming or outgoing light at one point in
space. The main use of these maps is to simulate mirror re-
flections in curved objects, but they can do much more than
that. In particular in hardware-accelerated renderers, envi-
ronment maps are often used to store precomputed direc-
tional information that is too expensive to compute on the

fly.

The basic idea of environment maps is that, if a reflecting
object is small compared to its distance from the environ-
ment, the incoming illumination on the surface really only
depends on the direction of the reflected ray. Its origin, that
is the actual position on the surface, can be neglected. There-
fore, the incoming illumination at the object can be precom-
puted and stored in a 2-dimensional texture map.

If the parameterization for this texture map is cleverly
chosen, the illumination for reflections off the surface can
be looked up very efficiently. Of course, the assumption of
a small object compared to the environment often does not
hold, but environment maps are a good compromise between
rendering quality and the need to store the full 4-dimensional
radiance field on the surface.

Both offline® and interactive, hardware-based renderers”
have used this approach to simulate mirror reflections, often
with amazing results.

In this section, we first discuss the issue of parameteriza-
tions (or representations) for environment mapping. After-
wards, we compare techniques for using environment maps
for matte reflections and different reflection models.

2.1. Parameterizations for Environment Maps

Since environment maps represent directional information
as a 2D texture, it is necessary to decide for a mapping from
directions to texture coordinates in order to define a con-
crete representation. This mapping, which is also called the
parameterization of the environment map, should fulfill a
couple of properties in order to be useful for interactive ren-
dering:

o for walkthroughs of static environments, it should not be
necessary to create a new environment map every frame.
This means that

— the computation of the texture coordinates is possible
for all viewing directions.

— all light directions need to be represented equally well
in the environment map. Although some light direc-
tions are more important than others for a certain view-
ing direction, all directions are equally important for a
walkthrough, where the viewing direction is not previ-

Figure 1: Left: A spherical environment map from the center
of a colored cube. Note the bad sampling of the cube face
directly in front of the observer (black). Right: a spherical
map of a real scene.

ously known. This property is called the uniformity of
the parameterization.

o for interaction with dynamic environments, it should be
easy and inexpensive to create a new environment map
from perspective images of the scene (because this is what
the hardware can generate).

e the method for computing the texture coordinates should
be simple and efficient, and it should be easy to imple-
ment in hardware. This means that complicated and ex-
pensive mathematical functions line trigonometric func-
tions should not be necessary.

In the following, we will discuss the three parameteriza-
tions for environment maps that have gained some impor-
tance in interactive and hardware-accelerated rendering.

Spherical Maps. The parameterization traditionally used in

computer graphics hardware is the spherical environment
map8. It is based on the analogy of a small, perfectly mir-
roring metal ball centered around the object. The image
that an orthographic camera sees when looking at such a
ball from a certain viewing direction is the environment
map. An example environment map from the center of a
colored cube is shown on the left of Figure 1, a map of a
real scene is shown on the right.
The major reason why spherical maps are used is that the
lookup can be computed efficiently with simple opera-
tions in hardware (see Figure 2 for the geometry): for each
vertex compute the reflection vector T of the per-vertex
viewing direction V. A spherical environment map which
has been generated for an orthographic camera pointing
into direction Vo, stores the corresponding radiance infor-
mation for this direction at the point where the reflective
sphere has the normal h := (Vo +F)/||Vo + F||. If Vo is the
negative z-axis in viewing coordinates, then the 2D tex-
ture coordinates are simply the x and y components of the
normalized halfway vector R. For environment mapping
on a per-vertex basis and a reference viewing direction vo
identical to the negative z-axis in eye space, these texture
coordinates are automatically computed by the texture co-
ordinate generation mechanism of OpenGL.

(© The Eurographics Association 2000.

W. Heidrich / Interactive Display of Global Illumination Solutions

h p

Figure 2: The lookup process in a spherical environment

map.

The sampling rate of spherical maps reaches its maximum
for directions opposing the viewing direction (that is, ob-
jects behind the viewer), and goes towards zero for di-
rections close to the viewing direction, because these cor-
respond to the tangential areas of the virtual metal ball
used to generate the map. Because of this singularity in
the viewing direction, it is clear that this parameterization
is not suitable for viewing directions other than the origi-
nal one, especially since the automatic texture coordinate
mode does not support this case. Thus, maps using this
parameterization have to be regenerated for each change
of the view point, even if the environment is otherwise
static. The creation of a spherical map requires a texture
mapping step in which perspective images are warped into
the spherical form.

Despite these disadvantages, the spherical map is very
useful if the only interaction with the scene is rotating an
object in front of the screen. This is the case, for example,
in design and CAD applications.

Cube Maps. The second parameterization, cubical environ-
ment maps or cube maps® 19 consist of six independent
perspective images from the center of a cube through each
of its faces. From this description it is clear that the gen-
eration of such a map simply consists of rendering the six
perspective images. A warping step as required for spher-
ical maps is not necessary. The sampling of these maps is
fairly good. It can be shown that the sampling rates for all
directions differ by a factor of 3v/3=5.2.

The calculation of the texture coordinates proceeds as fol-
lows:

e compute eye-space reflection vector Te.

e transform Te to object space, yielding Fo (cube faces
are aligned with main axes in object space).

e the component of Fo with the largest absolute value and
the sign of this component determine the cube face.
The other two components divided by the largest one
are the texture coordinates. For example, if y = —.7

(© The Eurographics Association 2000.

is the largest absolute value, then the cube face aty =
—1is used, and s:=x/y and t := z/y are the texture
coordinates within that face.

Obviously, this parameterization is suitable for arbi-
trary viewing directions, and several current PC graphics
boards support it via a specific OpenGL extension. One
problem here is the use of six independent textures, which
requires some special mechanisms in the texture specifi-
cation. Also, the separation into six textures may produce
seams between the cube faces. In particular, this is the
case if mip-mapping is used, because then each face is
downsampled individually. It would be possible to over-
come these problems by adding a border of several pixels
to each of the faces, and to replicate some information
from neighboring faces there.

Parabolic Maps. Finally, Parabolic maps® 12, sometimes

also called dual paraboloid maps, are based on an analogy
similar to the one used to describe spherical environment
maps. Assume that the reflecting object lies at the origin,
and that the viewing direction is along the negative z axis.
The image seen by an orthographic camera when looking
at a metallic, reflecting paraboloid contains the informa-
tion about the hemisphere facing towards the viewer. The
complete environment is stored in two separate textures,
each containing the information of one hemisphere. The
geometry is depicted in Figure 3.

.

Figure 3: The rays of an orthographic camera reflected off
a paraboloid sample a complete hemisphere of directions.

This parameterization has also been introduced by
Nayar®3 in a different context. He actually built a lens and
camera system that is capable of capturing this sort of im-
age from the real world. Besides ray-tracing and warping
of cubical environment maps, this is actually one way of
acquiring maps in the proposed format. Since two of these
cameras can be attached back to back, it is possible to cre-
ate full 360° images of real world scenes.

The geometry described above has some interesting prop-
erties. Firstly, the reflected rays in each point of the
paraboloid all originate from a single point, the focal point
of the paraboloid, which is also the origin of the coordi-
nate system (see dashed lines in Figure 3). This means
that the resulting image can indeed be used as an environ-

W. Heidrich / Interactive Display of Global Illumination Solutions

ment map for an object in the origin. Spherical environ-
ment maps do not have this property; the metal spheres
used there have to be assumed small.

Secondly, the sampling rate of a parabolic map varies by
a factor of 4 over the complete image (see Heidrich1# for
a proof). Pixels in the outer regions of the map cover
only 1/4 of the solid angle covered by center pixels. This
means that directions perpendicular to the viewing direc-
tion are sampled at a higher rate than directions parallel
to the viewing direction. Depending on how we select
mip-map levels, the factor of 4 in the sampling rate cor-
responds to one or two levels difference, which is quite
acceptable. In particular this is somewhat better than the
sampling of cubical environment maps.

It also turns out!-12 that the texture coordinates can be
computed by calculating the reflection vector in eye space,
transforming it back into object space, adding it to the
(constant) vector (0,0,1), and finally dividing by the z
component of the resulting vector. This is equivalent to
a projective transformation of the reflected viewing vec-
tor, and can be performed easily in graphics hardware by
using the texture matrix stack.

Anti-aliasing is of particular importance for environment
maps, since, depending on the surface geometry, reflections
can occur both magnified and minified, and therefore have a
large range of possible scales.

In hardware, anti-aliasing of textures is done with mip-
mapping?®, or, more recently, with anisotropic filtering
methods like footprint assembly26. If available with the spe-
cific hardware in use, anisotropic filtering is highly recom-
mendable, because most of the time some parts of objects
will be seen at grazing angles.

Both for mip-mapping and footprint assembly, it is nec-
essary to compute a hierarchy of texture maps at different
resolutions. For normal texture mapping, these are most of-
ten generated by simply averaging a 2 x 2 block of pixels
to obtain one pixel value for the next level. For environment
maps, however, this is not the right way. Rather than that,
each pixel should be weighted by the solid angle it covers to
account for the non-uniformity of the used environment map
parameterization.

Furthermore, in order to avoid seams for representations
that use multiple 2D textures for one environment map, there
should be a border that is several pixels wide for each of
the textures. This border should replicate information from
the other textures in the environment map, so that the mip-
mapping uses cross-texture information.

2.2. Complex Reflection Models and Environment Map
Prefiltering

Once an environment map is available, it can be used to add
a mirror reflection term to an object. Using multi-pass ren-
dering and alpha blending, this mirror reflection term can be

added to local illumination terms that are generated using
hardware lighting. In order to incorporate global illumina-
tion with other reflection models than a perfect metallic mir-
ror, we need to perform some precomputations, since real-
time calculations are typically not possible due to the high
computational cost. The two fundamental techniques for us-
ing environment maps with more general reflection models
are

e Decomposition. The reflection model is decomposed into
simpler contributions, which can be treated separately. For
example, a reflection model may be separated into a dif-
fuse and a specular term, where the specular term is addi-
tionally multiplied with an angular dependent term (Fres-
nel term).

o Prefiltering. For certain reflection models, the reflection
of an environment map can be analytically precomputed
and stored into a new map. The latter is called prefiltered
environment map or reflection map.

In the following we will describe these two techniques and
demonstrate some applications for them.

2.2.1. Decomposition

As stated above, decomposition of a reflection model means
separating its terms into simpler expressions that can be han-
dled individually. The most fundamental example is a sepa-
ration into diffuse and specular contributions. We will show
in below that the diffuse term as well as certain specular
terms can be treated with prefiltering. Another term could be
if we had a reflection model with a term for retro-reflection
(light that is reflected back into the direction of incoming
light). Also a very interesting example is the factorization
of the specular component into a standard environment map
and an angular dependent term (Fresnel term), as described
in the following.

Generalized Mirror Reflections using a Fresnel Term
The Fresnel term is a physical term describing the
reflectivity of a material depending on its optical density
n (“index of refraction”) and the angle of incoming light.
It is given as

(c(g+¢)—1)
(c(g—c)+1)?

with ¢ =< i,V > and g% = n? +-¢? — 1.

A regular environment map without prefiltering describes
the incoming illumination at a point in space. If this in-
formation is directly used as the outgoing illumination, as
is described above, and as it is state of the art for interac-
tive applications, only metallic surfaces can be modeled.
This is because for metallic surfaces (surfaces with a high
optical density) the Fresnel term is almost constant one,
independent of the angle between light direction and sur-
face normal. Thus, for a perfectly smooth (i.e. mirroring)

_(g=¢?
2(g+c)?

1+ , 1)

(© The Eurographics Association 2000.

W. Heidrich / Interactive Display of Global Illumination Solutions

Figure 4: The two textures comprising an environment map for an object in the center of a colored cube.

surface, incoming light is reflected in the mirror direction
with a constant reflectance.

For non-metallic materials (materials with a small optical
density), however, the reflectance strongly depends on the
angle of the incoming light. Mirror reflections on these
materials should be weighted by the Fresnel term for the
angle between the normal and the reflected viewing direc-
tion ry, which is, of course, the same as the angle between
normal and viewing direction V.

For any given material, the Fresnel term F(cos8) for the
mirror direction Fy can be stored in a 1-dimensional tex-
ture map, and rendered to the framebuffer’s alpha channel
in a separate rendering pass. The mirror part is then mul-
tiplied with this Fresnel term in a second pass, and a third
pass is used to add the diffuse part. If we have a reflec-
tion model consisting of a mirror component Lm and a
diffuse component Lg, this yields an outgoing radiance of
Lo=F-Lm+Lg.

In addition to simply adding the diffuse part to the
Fresnel-weighted mirror reflection, we can also use the
Fresnel term for blending between diffuse and specular:
Lo =F -Lm+ (1 —F)Lq. This allows us to simulate dif-
fuse surfaces with a transparent coating: the mirror term
describes the reflection off the coating. Only light not re-
flected by the coating hits the underlying surface and is
there reflected diffusely.

Figure 5 shows images generated using these two ap-
proaches. In the top row, the Fresnel-weighted mirror term
is shown for indices of refraction of 1.5, 5, and 200. In
the center row, a diffuse term is added, and in the bottom
row, mirror and diffuse terms are blended using the Fres-
nel term. Note that for low indices of refraction, the ob-
ject is only specular for grazing viewing angles, while for
a high indices of refraction we get the original metal-like
reflection.

2.2.2. Prefiltered Environment Maps

Generally speaking, prefiltered environment maps capture
all the reflected exitant radiance towards all directions v from

(© The Eurographics Association 2000.

a fixed position x:
Lo(x;V,A,T) =)

—

[o010 WA D)L (T) <> o,
Q

where V is the viewing direction and T'is the light direction
in world-space, {f,, i x T} is the local coordinate frame of
the reflective surface, W(V, i, T) represents the viewing direc-
tion and W(T,f,T) the light direction relative to that frame,
fr is the BRDF, which is usually parameterized via a local
viewing and light direction.

A prefiltered environment map stores the radiance of light
reflected towards the viewing direction v, which is computed
by weighting the incoming light L; from all directions T with
the BRDF fr. Note, that L; is stored in the unfiltered original
environment map. As you can see, in the general case we
have a dependence on the viewing direction as well as on the
orientation of the reflective surface, i.e. the local coordinate
frame {A,T, 7 x T}.

This general kind of environment map is five-
dimensional. Two dimensions are needed to represent
the viewing direction V (a unit vector in world coordinates)
and three dimensions are necessary to represent the coor-
dinate frame {f,T,fi x T}; e.g. three angles can be used to
specify the orientation of an arbitrary coordinate frame.

Of course, five-dimensional textures have enormous
memory requirements, which is why the prefiltered environ-
ment maps which we will examine drop some dependencies
(e.g. the tangent T) and are often reparameterized (e.g. index-
ing is not done with the viewing direction V, but the reflected
viewing direction). Because this reduction in dimensionality
also removes some to the generality of the approach, the de-
composition method is often required to combine several of
these simplified models.

If the original environment map is given in a high-
dynamic range format’, then the prefiltering technique al-
lows for effects similar to the ones described by Debevec?8.

W. Heidrich / Interactive Display of Global Illumination Solutions

Figure 5: Top row: Fresnel weighted mirror term. Center row: Fresnel weighted mirror term plus diffuse illumination. Bottom
row: Fresnel blending between mirror and diffuse term. The indices of refraction are (from left to right) 1.5, 5, and 200.

Diffusely Prefiltered Maps As we have seen, we can com- coming light. The outgoing radiance for a diffuse BRDF

bine a mirror reflection term using an environment map
with local illumination terms that are generated using
hardware lighting. It is also possible to add a diffuse
global illumination term through the use of a precomputed
texture. For the generation of such a texture, there are two
methods. In the first approach, a global illumination al-
gorithm such as Radiosity is used to compute the diffuse
global illumination of every surface point.

The second approach is purely image-based, and uses a
prefiltered environment map®9. The environment map
used for the mirror term contains information about the
incoming radiance L;(x, 1), where x is the point for which
the environment map is valid, and T the direction of the in-

is then:

Lo(X, 1) = kg - / Li(x,1)-cos(f, Ndax). (3)
Q(M)

Due to the constant BRDF of diffuse surfaces, Lo is only
a function of the surface normal i and the illumination
L; stored in the environment map, but not of the outgo-
ing direction V. Thus, it is possible to precompute a map
containing the diffuse illumination for all possible surface
normals. For this map, like for the mirror map, any param-
eterization from Section 2.1 can be used. The only dif-
ference is that diffusely prefiltered maps are always ref-
erenced via the normal of a vertex in environment map
space, instead of via the reflection vector. Figure 6 shows

(© The Eurographics Association 2000.

W. Heidrich / Interactive Display of Global Illumination Solutions

such a prefiltered map, a torus with diffuse illumination
only as well as a torus with diffuse and mirror illumina-
tion.

Glossy Prefiltering of Environment Maps A simplifica-
tion similar to the one used for diffuse materials is also
possible for certain specular reflection models!2 19, most
notably the Phong model. Voorhies et al.20 used a similar
approach to implement Phong shading for directional
light sources.

As shown by Lewis?, the Phong BRDF is given by

R 1/r T 1/r
fr(x,l—>V):ks-<?"V> :ks-<?v’|> @
cosa cosa

where 1}, and Ty are the reflected Iith- and viewing direc-
tions, respectively, and cosa =< f, | >. Thus, the specular
global illumination using the Phong model is

I—» =

Lo(X,) =ks-/§'2(ﬁ) <R TSV Lk D) do(D), (5)

for some roughness value r. This is only a function of the
reflection vector Ty and the environment map containing
the incoming radiance L; (x, 1. As for diffuse illumination,
it is therefore possible to take a map containing Li(x,T),
and generate a filtered map containing the outgoing radi-
ance Lo(x,Tv) for a glossy Phong material.

Figure 7 shows such a map, as well as a glossy sphere and
torus textured with this map.

A Fresnel weighting of these prefiltered environment
maps similar to the way it is described above is only pos-
sible with approximations. The exact Fresnel term for the
glossy reflection cannot be used, since this term would
have to appear inside the integral of Equation 5. How-
ever, for glossy surfaces with a low roughness, the Fres-
nel term can be assumed constant over the whole specular
peak (which is very narrow in this case). Then the Fres-
nel term can be moved out of the integral, and the same
technique as for mirror reflections applies.

The use of a Phong model for the prefiltering is somewhat
unsatisfactory, since this is not a physically valid model.
However, this method works for all reflection models hav-
ing lobes that are rotationally symmetric about the re-
flected viewing direction, and whose shape does not de-
pend on the angle to the surface normal.

Approximations of General Isotropic BRDFs Based on

this concept, Kautz and McCool? extended the Phong
environment maps idea to other isotropic BRDFs hy
approximating them with a special class of BRDFs:

=

fr(V,1) = p(< A, R(R) >, < (), 1>),

where p is an approximation to a given isotropic BRDF,
which is not only isotropic, but also radially symmetric
about () = 2(f - V)i —V, and therefore only depends on
two parameters.

(© The Eurographics Association 2000.

Now consider Equation 2 using this reflectance function:
Lo(x;V,1,T) = (6)
<AL R(A) >, < Py(),T>) -
Sy P) > < (1))
LoD <A, T> do(I).

The authors then make the assumption that the used
BRDF is fairly specular, i.e. the BRDF close to zero al-
most everywhere, except for ry (i) ~ T. Using this assump-
tion they reason that < i, Fy(ff) > ~ < f,I >. Now the
equation can be reparameterized and rewritten the follow-
ing way:

LO(X;?V7 < ﬁ7?\/ >) = (7)

<A, Py > / p(< A, By >, <Py, 1>)-
Q(m)

Li (1) dax(),
which is three dimensional. The third dimension is used
to vary the diameter of the lobe with the angle between
reflection vector and surface normal. This way, it is possi-
ble to have materials that are almost mirror-like at grazing
viewing angles, while they are matte if looked at perpen-
dicularly. This is a behavior that can be seen quite often
with real materials.
In addition to this, Kautz and McCool also proposed an
approximation technique that generates a BRDF with ro-
tationally symmetric lobes from an arbitrary BRDF. This
is done by averaging the lobes for different viewing direc-
tions.
This technique has the advantage that it can use approxi-
mations of arbitrary isotropic BRDFs and achieves inter-
active frame rates. Off-specular peaks can also be incor-
porated into this technique. An additional Fresnel factor
like Miller®® and Heidrich2 proposed is not needed be-
cause it can be incorporated into the dependency on the
viewing angle, i.e. the third dimension of the map. On the
down side, 3D textures are quite space consuming and are
not supported by most current low-end hardware.
Depending on the BRDF, the quality of the approxima-
tion varies. For higher quality approximations Kautz and
McCool also propose to use a multilobe approximation,
which basically results in several prefiltered environment
maps which have to be added.
For instance, if a BRDF is to be used, which is based
on several separate surface phenomena (e.g. has retro-
reflections, diffuse reflections, and glossy reflections)
each part has to be approximated separately, since no radi-
ally symmetric approximation can be found for the whole
BRDF. This again means a decomposition of the reflec-
tion model into several parts.

Warping for Environment Maps with Isotropic BRDFs

A different technique which makes similar assumptions
(isotropic and radially symmetric BRDF) was presented
by Cabral et al.22. They prefilter an environment map

W. Heidrich / Interactive Display of Global Illumination Solutions

Figure 6: Left: diffusely prefiltered environment map of the cafe scene. Center: diffusely illuminated torus. Right: same torus
illuminated with both a diffuse and a mirror term.

Figure 7: A prefiltered version of the map with a roughness of 0.01, and application of this map to a reflective sphere and torus.

for different fixed viewing directions, resulting in view-
dependent, spherical environment maps. An alternative
to the prefiltering process is to take photographs from
different viewing directions of a sphere made of the same
material one would like to represent.

In contrast to the previous approach, this is actually a four-
dimensional environment map

Lo(x;V,1) = C))
/ p(< APy >, <Py, >)-
Q(m)

LT < /1> do(I),

but the two dimensions representing the viewing direc-
tion V are only sampled very coarsely. A different two
dimensional spherical map is extracted from this four-
dimensional map for every new viewpoint. This map cor-
responds to one specific viewing direction and is gen-
erated using warping. The new view-dependent environ-
ment map is then applied to an object. The warping com-
pensates for the undersampled viewing directions, and
minimizes the visible artifacts. Although the warping re-
quires high-end graphics hardware to achieve interactive

frame rates, the final rendering can be done with standard
sphere mapping, which is major the reason for generating
the intermediate spherical map.

Warping is done based on an assumption what the central
reflection direction of the BRDF is (the reflected view-
ing direction and the surface normal are mentioned as ex-
amples in the original paper??). For example, if a specu-
lar highlight is assumed, then the warping is performed
such that the location of the highlights are located in the
same position after warping to the destination direction.
The assumption of a single, predominant reflection direc-
tion fails for BRDFs that have off-specular reflections like
strong diffuse components or retro-reflection. Similarly,
since radially symmetric BRDFs are used, this method has
the same difficulties with complex BRDFs as the previous
method. To overcome these problems, the method can be
combined with a decomposition approach.

As mentioned before the generated two dimensional en-
vironment map is view-dependent, so the reflective ob-
ject needs to be viewed with an orthographic projection or
otherwise the reflections are incorrect, since the reflection
directions are computed based on an infinite viewer. For

(© The Eurographics Association 2000.

W. Heidrich / Interactive Display of Global Illumination Solutions

example, if the material contains a strongly varying Fres-
nel term, it cannot be represented in this form, because
the spherical map does not depend on the angle between
normal and light direction.

Hardware Accelerated Prefiltering For interactive appli-
cations it would be nice if environment map prefiltering
could be done on the fly. This means that if the scene
changes, glossy reflections change accordingly. Here, we
will describe a method to perform hardware-accelerated
Phong filtering23 of a given environment map.

In a prefiltered environment map, every texel is a weighted
sum of all pixels in a source environment map. This
means, we can think of the filtering process as applying a
(BRDF-dependent) filter kernel to some unfiltered source
map. We would like to map this filtering operation to the
operations provided by a graphics hardware pipeline. The
OpenGL imaging subset only supports shift-invariant two
dimensional filters of certain sizes, and we would like to
use this feature to perform the filtering. Hence, for hard-
ware accelerated prefiltering we have to choose an envi-
ronment map technique that uses only two dimensional
environment maps with a BRDF which results in a shift-
invariant filter over the hemisphere, and an environment
map representation that keeps the filter shift-invariant.
The Phong model has a shift-invariant filter kernel over
the hemisphere, since its cosine lobe is constant for all
reflected viewing directions Fy. It is also radially sym-
metric about Ty. The filter size can also be decreased if
smaller values are clamped to zero (this will be necessary
due to the restricted filter size of the graphics hardware).
The filter shape is obviously circular, since it is radially
symmetric. Therefore Phong environment maps fulfill the
necessary requirements for hardware accelerated prefilter-
ing. We still need to find an environment map represen-
tation that maps the shift-invariant circular filter kernel
on the hemisphere to a shift-invariant circular filter ker-
nel in texture space. It turns out? that the parabolic maps
come close to this desired property. A circular filter ker-
nel which is mapped from the parabolic environment map
back to the hemisphere is also (almost) circular.
Unfortunately a shift-invariant filter kernel on the sphere
does still not completely map to a shift-invariant filter in
the parabolic space. Besides the slight distortion, the size
of the filter kernel varies with the distance d to the cen-
ter of the map. The ratio between the smallest filter radius
and largest filter radius is 1 : 2, since the ratio for the ar-
eas is 1:4, as shown above. To adjust for this, we generate
two prefiltered environment maps, one with the smallest
and one with the largest necessary filter size. Then we
blend between both prefiltered environments. The value
with which we need to blend between both maps is differ-
ent for different pixels in the parabolic environment map,
but it depends only on the distance of the pixel from the
center of the map.

Using the same arguments as above, we can not only use

(© The Eurographics Association 2000.

Phong materials for this hardware prefiltering, but any
BRDF with radially symmetric lobes.

The problem of the environment map approach is that all
objects are assumed infinitely small and distant to the envi-
ronment. This means that the parallax that can be observed
for large objects, and especially large planar reflectors, can-
not be correctly simulated with environment maps. Nonethe-
less, environment maps as well as decomposition and pre-
filtering are the most commonly used approach for rendering
non-diffuse global effects in highly interactive applications
today. This includes both games and a variety of virtual re-
ality systems.

3. Light Fields and Lumigraphs

In order to correctly account for the parallax effects that the
environment map approach cannot handle, we require one
environment map for each point in space (or at the very least
for each point on the surface of the reflective object).

This is the fundamental idea of light fields. A light field2*
is a 5-dimensional function describing the radiance at every
point in space in each direction. It is closely related to the
plenoptic function introduced by Adelson?, which in addi-
tion to location and orientation also describes the wavelength
dependency of light.

In the case of a scene that is only to be viewed from out-
side a convex hull, it is sufficient to know what radiance
leaves each point on the surface of this convex hull in any
given direction. Since the space outside the convex is as-
sumed to be empty, and radiance does not change along
a ray in empty space, the dimensionality of the light field
can be reduced by one, if an appropriate parameterization is
found. The so-called two-plane parameterization fulfills this
requirement. It represents a ray via its intersection points
with two parallel planes. Several of these pairs of planes
(also called slabs) are required to represent a complete hull
of the object. Since each of these points is characterized by
two parameters in the plane, this results in a 4-dimensional
function that can be densely sampled through a regular grid
on each plane (see Figure 8).

One useful property of the two-plane parameterization is
that all the rays passing through a single point on the (s,t)-
plane form a perspective image of the scene, with the (s,t)
point being the center of projection. Thus, a light field can be
considered a 2-dimensional array of perspective projections
with eye points regularly spaced on the (s,t)-plane. Other
properties of this parameterization have been discussed in
detail by Gu et al.?6.

Since we assume that the sampling is dense, the radiance
along an arbitrary ray passing through the two planes can
be interpolated from the known radiance values in nearby
grid points. Each such ray passes through one of the grid
cells on the (s,t)-plane and one on the (u,v)-plane. These

W. Heidrich / Interactive Display of Global Illumination Solutions

/

\(u,v) plane

[
[[N/

L]
[[tk

\

(s,t) plane

Figure 8: A light field is a 2-dimensional array of images
taken from a regular grid of eye points on the (s,t)-plane
through a window on the (u,v)-plane. The two planes are
parallel, and the window is the same for all eye points.

are bounded by four grid points on the respective plane, and
the radiance from any of the (u, v)-points to any of the (s,t)-
points is stored in the data structure. This makes for a total
of 16 radiance values, from which the radiance along the ray
can be interpolated quadri-linearly. As shown in by Gortler
et al?” and Sloan et al.?8, this algorithm can be considerably
sped up by the use of texture mapping hardware.

Other parameterizations for the light field have been pro-
posed by several authors?®30 in order to achieve a better
sampling uniformity. In practice, however, these are not of
great importance since the reconstruction time for the radi-
ance along any given ray can no longer be done in constant
time as with the regular grid in the two-plane parameteriza-
tion.

3.1. Lumigraphs: Light Fields Plus Geometry

The quadri-linear interpolation in the light field data works
well as long as the resolution of the light field is high. For
low resolutions, the interpolation only yields a sharp image
for objects in the (u,v)-plane. The further away points are
from this plane, the more blurred they appear in the interpo-
lated image.

The Lumigraph 27 extends the concept of a light field by
adding some geometric information that helps compensating
for this problem. A coarse polygon mesh is stored together
with the images. The mesh is used to first find the approx-
imate depth of the object along the ray to be reconstructed,
and then this depth is used to correct the weights for the
interpolation. This will reduce the ghosting artifacts for the
geometry itself. However, in the case of very shiny materi-

als, the reflections will still exhibit some amount of ghosting,
since the depth correction is performed for the geometry and
not for the apparent depth of the object seen in the reflection.
This is a problem that none of the light field or Lumigraph
methods can solve at the moment.

Heidrich et al.3! take a similar, but purely sampling-based
approach. Instead of a polygon mesh, the depth of each pixel
in the light field is stored. This information is then used to
refine the light field with warped images until the rendering
quality is satisfactory. This decouples the more expensive
depth correction from the efficient quadri-linear interpola-
tion, and thus can be used to achieve higher frame rates.
This basic idea of a sampling-based representation for the
geometry has since been used for adaptive acquisition of
light fields®2 and a high-quality, warping-based reconstruc-
tion instead of the quadri-linear interpolation33.

3.2. Surface Light Fields

If we take the concept of combining geometry and light
field data to its extremes, we arrive at the original geometric
model of the object. Instead of parameterizing the ray space
using intersections with virtual geometry (such as a light slab
in the case of the two-plane parameterization), we can then
reparameterize the light field to use the 2D surface position
on the original geometry as two of the four parameter val-
ues. The remaining two directions would then parameterize
the hemisphere of directions over the tangent plane of that
surface point. This concept is called a surface light field34.

In other words, a surface light field is a 4D data structure
which describes for every point on a surface parameterized
over a 2D parameter domain u, v, which radiance leaves that
surface point for all possible directions (parameterized over
s,t). In order to render an image of the object, we then have
to first compute the intersection of the ray with the original
geometry, and then reconstruct the radiance for that intersec-
tion point and viewing direction by quadri-linear interpola-
tion. Miller et al.3* describe both a specific parameterization
for the directions, as well as a way of partially exploiting the
graphics hardware for doing the interpolation.

While Miller et al. use synthetically generated surface
light fields for parametric objects, Wood et al.3> describe in
a recent paper how to acquire surface light fields from real
world objects. They generate a set of so-called lumispheres
for a dense set of surface points by using techniques from
mesh simplification and surface fairing. They also describe
how to compress the resulting data set, which will be de-
scribed in more detail below. In order to arrive at a parame-
terization for the geometry, which may be a polygonal model
of arbitrary topology, Wood et al. use the MAPS algorithm
by Lee et al s,

The obvious advantage of the surface light field approach
is that images rendered in this fashion will always show

(© The Eurographics Association 2000.

W. Heidrich / Interactive Display of Global Illumination Solutions

sharp geometry, although reflections may still exhibit ghost-
ing as described above. The downside of the surface light
field approach is that the rendering time is no longer inde-
pendent of geometric complexity, which is generally con-
sidered one of the most interesting features of image-based
rendering in general.

3.3. Hlumination From Light Fields

Instead of using light fields or Lumigraphs directly for view-
ing, it is also possible to use them for illumination purposes
only. An example of such an algorithm is the canned light
source approach3’, where complex luminaries with strongly
varying spatial and directional light distributions are stored
in a light field data structure. Such a canned light can then
later be used for illuminating arbitrary objects, for example
in a ray-tracing step, but also in hardware-accelerated ren-
dering.

Another example is the rendering of refractive ob-
jects using light field representationd for storing geometric
information38. In this work, a two-plane parameterized light
field of a refractive object stores the refracted ray leaving
the object for every incident viewing ray. In this way, the
geometry-dependent visibility information is precomputed
and stored in a light field data structure. At rendering time,
the object is displayed using the normal light field render-
ing algorithm, yielding an image representing the refracted
ray for every pixel. For each of these pixels, the illumination
along that ray is then looked up either from an environment
map or from another light field. In this way, the geometry is
decoupled from the illumination, and both can be exchanged
independently.

3.4. Compression of Light Fields

Since the size of light field data sets can easily exceed several
Gigabytes, several researchers have worked on compression
schemes to make light fields more practical. For an efficient
rendering it is usually desirable to have the possibility for a
random access, constant time reconstruction of the radiance
along a given ray. This is the case for the two-plane param-
eterized light field, but difficult to achieve in combination
with a good compression scheme.

The first compression scheme for light fields was vec-
tor quantization, and was presented in the original paper
by Levoy and Hanrahan?*. Later, a hardware-accelerated
form of reconstruction for vector-quantized light fields was
presented38. In the compression scheme proposed by Levoy
and Hanrahan, blocks of adjacent light field samples (e.g.
blocks of 4% pixels) are concatenated to form vectors. Each
block is then replaced by a 16-24 bit index into a vector ta-
ble describing the radiance along all rays between points in
the vector. This gives moderate compression ratios of about
24:1, depending on the exact size of the table and the blocks,
but constant reconstruction time is maintained.

(© The Eurographics Association 2000.

Wood et al.3> have extended the vector quantization ap-
proach to surface light fields. Here, the reconstructed lumi-
spheres (see Section 3.2) are quantized after some transfor-
mations that try to increase the similarity between the differ-
ent spheres. Since the lumispheres are actually continuous
functions rather than vectors, Woo et al. call their approach
function quantization rather than vector quantization. Sim-
ilarly, they propose a method they call principal function
analysis, which is a generalization of principal component
analysis.

Better compression ratios can be achieved by block based
coding with motion prediction similar to the MPEG and
H263 methods for video compression. Such methods have
been introduced by Miller et al.3* for surface light fields,
and by Magnor and Girod® for two-plane parameterized
light fields. This maintains a constant reconstruction time,
but since a whole block is decompressed at once, a sequen-
tial reconstruction is faster than random access.

Finally, Lalonde and Fournier“® have worked on wavelet
compression for light fields. The compression ratios reported
for their scheme are interesting, but reconstruction time is
logarithmic rather than constant, and in absolute rendering
times the reconstruction takes significantly longer than the
other methods.

4. Light Field-Like Representations

The illumination representations used by the methods de-
scribed in this section can be interpreted as light fields al-
though the authors of the work have not originally described
their algorithms in this fashion. In contrast to the techniques
from Section 3, the methods described here use a sparser,
less regular representation of the light field information. This
results in significantly reduced storage costs, but also in a
more expensive reconstruction step. In addition, the sparse
sampling of the light field typically means that less spatial
or directional detail can be preserved.

4.1. View-Dependent Vertex Colors

A simple method for interactive viewing of precom-
puted global illumination solutions is to extract the view-
dependent color for each vertex of a polygonal model from
the illumination solution, and then use graphics hardware to
render the model with Gouraud shading. In order to facilitate
the view-dependent per-vertex computations, the illumina-
tion should be stored in a fashion that makes this operation
as efficient as possible.

Stamminger et al.#* propose the illumination sample
method for generating the global illumination solution in the
first place. This algorithm is a radiance clustering method
that efficiently represents incoming illumination at patches.
After the solution has been computed, this representation is
transformed into a directional representation of the illumina-
tion at the vertices of the polygonal model. A Haar wavelet

W. Heidrich / Interactive Display of Global Illumination Solutions

basis was chosen by Stamminger et al. for storing the di-
rectional information. This approach can be interpreted as a
surface light field where the spatial samples are located at
vertices only, and the directional samples are projected in a
wavelet basis.

Figure 9: An example of the algorithm by Stamminger et
al.*1, Image courtesy of Marc Stamminger.

At rendering time, the color at each vertex has to be de-
termined for the current viewing direction by reconstructing
the outgoing radiance towards the viewer from the wavelet
representation. Since this can be quite costly to do for every
vertex, a threshold for the change in viewing direction is in-
troduced, below which the color from the previous frame is
reused. Since the lighting is per-vertex, the spatial resolution
of the reconstructed illumination is typically fairly low, es-
pecially compared to the light field methods from Section 3.

4.2. Interactive Display of Photon Maps

A scattered representation of the light arriving at a surface
has been proposed by Shirley et al.#2. Photons are traced
from the light sources, and reflected or refracted via specular
surfaces. The density of the photon hits is later used to esti-
mate the local radiance distribution at a surface point (den-
sity estimation). Since the photons are traced stochastically,
both the points where they hit an object, and their incoming
direction direction at that point is random. This corresponds
to a scattered data representation of the light field arriving at
the surfaces in the scene.

Stirzlinger and Bastos*® proposed an interactive view-
ing algorithm for displaying the results of this simulation,
which we will describe in the following. Like Shirley et
al.#2, Stirzlinger and Bastos use splatting of the individual
photons for the density estimation step. To this end, they
choose an object-space filter kernel, which they store in a 2-
dimensional texture map. Then they render each individual
photon as an object-space triangle with that texture applied.

In order to account for view-dependent effects, the splat for
each photon has to be weighted by the BRDF value for the
given viewing direction and the direction of the incoming
photon.

To improve the visual quality of the rendering method,
Stirzlinger and Bastos®® extend this basic algorithm such
that direct illumination is performed by hardware lighting
combined with shadow maps, and the photons are only used
for rendering the indirect light contributions. This method
produced near-interactive frame rates for moderately com-
plex scenes on high-end graphics hardware.

4.3. Virtual Lights

Another branch of research for interactively displaying indi-
rect illumination is the fitting of virtual lights to previously
obtained global illumination solutions. Different sets of vir-
tual lights are computed for each of the objects in the scene
or even for different parts of an object. Each set of lights
is only active while the respective object or object part is
rendered. These virtual lights allow for the use of graphics
hardware combined with a Phong reflection model for ap-
proximating the true indirect illumination of the object. One
could interpret this approach as a highly compressed repre-
sentation for surface light fields, where each virtual light cor-
responds to a beam of incident light on the surface. There-
fore, the spatial resolution of the illumination is high (the
reflection can be computed at every pixel of the final image),
but the directional sampling is limited by the number of light
sources used.

The first work based on this general idea was presented
by Stamminger et al.#4. They obtained their global illumina-
tion solution with a Wavelet Radiance method“®, a general-
ization of Wavelet Radiosity#6 to non-diffuse environments.
The link structure of the Wavelet Radiance solution gives
an indication which objects or patches in the scene send
the most energy towards any given object. The brightest of
these patches are then replaced by virtual point lights whose
brightness is set according to the energy exchanged between
the patch and the object. An example of this method is shown
in Figure 10.

The second approach, presented by Walter et al.#” starts
with a global illumination solution provided in the form of
a surface light field. For a collection of points or vertices on
the object, for which the outgoing radiance is known, the au-
thors greedily fit a number of Phong lobes corresponding to
the effect of directional light sources. Since Phong lobes are
positive everywhere, it is not possible to subtract energy that
has once been added. This complicates the fitting process.

Both the approach from Stamminger et al.** and Walter
et al.#” suffer from the fact that graphics hardware supports
only a very small number of light sources, typically 8. This
means that detailed reflection patterns cannot be represented
with this method, except when the set of virtual light sources

(© The Eurographics Association 2000.

W. Heidrich / Interactive Display of Global Illumination Solutions

—=| Seceneliewer (Examiner) [D

| T | T | 45.0

Figure 10: An example of the virtual light fitting method by
Stamminger et al.#4. Image courtesy of Marc Stamminger.

is chosen for very small geometric entities, such as polygons.
In that case, however, the parameters of the light sources
have to be changed frequently, which is a slow operation on
graphics hardware, and is thus only feasible for small scenes.

4.4. Instant Radiosity

Instant Radiosity® is an approach that also uses virtual light
sources, but on a global scale rather than different lights for
each of the objects in the scene. As the name suggests, the
basic method has been developed for diffuse scenes, but the
paper also describes an extension to glossy environments.

The core of the method is to trace the path of photons
emitted from a light source with a quasi-random walk. In
a diffuse scene, a virtual point light is placed wherever the
photon hits a surface. This light represents the light re-
flected from that point in all directions. In a specular scene,
light should only be reflected in a specific direction. This is
achieved by reflecting the origin of the ray from which the
photon arrived at the surface that was hit by the photon, and
placing a light source there. The effect of the light source
is then clamped to the region contained in the generalized
pyramid from the light position through the boundaries of
the polygon.

Since virtual lights affect all objects in the scene in an In-
stant Radiosity implementation, shadowing effects have to
be taken into account. Keller*® solves this by implementing
a shadow map approach described in4. To account for dy-
namic environments, Keller suggests to replace a subset of
the photon paths for every frame. This is a relatively cheap
operation since only a few rays have to be traced.

(© The Eurographics Association 2000.

5. On-The-Fly Computation

The methods described so far have all been based on pre-
computed global illumination solutions. As a consequence,
most of them are not well suited for dynamic environments
(with the exception of the hardware-accelerated prefiltering
of environment maps, Section 2.2.2, as well as Instant Ra-
diosity, Section 4.4). In this section, we describe methods
for computing certain light paths in real time. This includes
both specialized methods for very specific geometry and ma-
terials, as well as general solutions based on ray-tracing.

5.1. Mirror Reflections in Planar or Slightly Curved
Geometry

A commonly used technique for rendering mirror reflections
on planar objects is given by Diefenbach® 51; with a simple
affine model/view matrix, the scene is mirrored at the pla-
nar reflector. This mirrored scene is rendered at every pixel
where the reflector is visible in the current view. This is typ-
ically achieved in two rendering passes. First, the original
scene is rendered, and all pixels of the planar reflector are
marked in the stencil buffer. Then, the model/view matrix
is modified to accommodate for the reflection. The scene is
now rendered again, but only pixels marked in the stencil
buffer are set. If the stencil buffer has more than one bit, it is
also possible to realize multiple reflections by recursing the
procedures?,

A similar effect can be achieved using texture mapping.
Instead of mirroring the scene, the eye point p is mirrored,
yielding a reflected eye point p’, as depicted on the left side
of Figure 11. Rendering the scene from this eye point with
the reflector as an image plane yields the texture image to
be applied to the reflector as seen from the eye. Note that
this approach has two major disadvantages relative to the
one from Diefenbach. Firstly, the rendered image from the
first pass needs to be transferred from the framebuffer into
texture memory, which requires additional bandwidth, and
secondly, the texturing represents a resampling step that re-
sults in reduced image quality.

5.1.1. Glossy Reflection for Planar Reflectors

For these reasons, the modified algorithm is an inferior
choice for implementing reflections on planar surfaces, but
it is useful for approximating glossy reflections. Bastos et
al. 5253 propose to convolve the texture (which they generate
with an image-based warping step rather than a geometry-
based rendering) with a space-invariant filter kernel corre-
sponding to the BRDF.

This is similar in spirit to the prefiltering approach de-
scribed in Section 2.2.2, but since the filter is space-
invariant, a orthographic viewer is implicitly assumed for
the prefiltering. This will produce artifacts for large reflec-
tors or wide angle cameras. In addition to prefiltering, Bas-
tos et al. 52 53 also use decomposition, as explained in Sec-
tion 2.2.1, since they also separate the Fresnel term from the

W. Heidrich / Interactive Display of Global Illumination Solutions

Planar reflector Tangent planein x

Figure 11: Multi-pass mirror reflections in planar and
curved objects. While a single reflected eye point p’ exists
for planar reflectors, curved reflectors do not have such a
uniquely defined point. If a curved object is approximated by
a triangle mesh with per-vertex normals, one reflected point
can be defined for each vertex in the mesh using the tangent
plane in that vertex.

BRDF and apply it in a separate rendering pass using texture
mapping.

5.1.2. Texture-Based Rendering of Curved Mirrors

Based on the texture-based rendering approach for planar
mirrors described above, we can also develop a naive (and
inefficient) method for generating reflections on curved sur-
faces represented as triangle meshes: for curved surfaces the
problem is that the reflected eye point is not constant, but
varies across the surface. However, if the surface is reason-
ably smooth, then it suffices to compute the reflected eye
point only at some discrete points on the surface, say the
vertices of the triangle mesh, and to interpolate the radiance
for each point inside a triangle from the textures obtained for
each of the three vertices. Note that each of the textures cor-
responds to a dynamically generated, 2-dimensional slice of
a light field describing the incoming illumination around the
reflector, and the interpolation step is nothing but the recon-
struction of a novel view from this light field information.

The complete algorithm would then work as follows (see
right side of Figure 11): For each vertex in the triangle mesh
the tangent plane is determined, the eye point is reflected in
that plane, and the reflection texture for that tangent plane
is rendered. Then, for each vertex, the triangle fan surround-
ing it is rendered with the reflection applied as a projective
texture. During this rendering, the alpha value for the center
vertex of the fan is set to 1, the alpha values for all other ver-
tices are set to 0, and the result from texturing is multiplied
by the alpha channel. This way, the alpha channel contains
the basis functions for the Barycentric coordinates in each
pixel. The final image results from adding up all the contri-
butions from the different triangle fans in the frame buffer.
This is exactly the interpolation scheme used for the hard-
ware implementation of light fields and Lumigraphs.2”- 28

Clearly, this approach is not feasible for real time or in-
teractive applications, since the number of vertices (and thus

the number of rendering passes) on typical reflectors are of-
ten in the order of tens of thousands. On the other hand, for
a static scene the incoming light field at the object does not
change. Therefore, it is not necessary to rerender the geom-
etry multiple times for each frame in order to generate the
2D slices used as textures. Instead, a practical light field-
based method could rely on some amount of precomputation
to achieve interactive frame rates.

5.1.3. Geometry-Based Rendering of Curved Mirrors

A geometry-based method for reflections on curved surfaces
has recently been introduced by Ofek and Rappoport>*. For
each frame, all vertices of the reflected geometry are indi-
vidually transformed in software to form a virtual reflected
object. To this end, it is necessary to determine the point on
the reflector, on which the reflection of the vertex is visible.
This is done by testing all triangles on the reflector. For ev-
ery eye point, each reflector triangle with per-vertex normal
defines a 3D region, called reflected cell, in which 3D geom-
etry reflected via this triangle can reside. Once the triangle
on which the reflection occurs has been determined, the lo-
cation of the exact reflection point can be found, and finding
the virtual vertex position from that point and its normal is
easy. After all vertices of the surrounding environment have
been mirrored this way, the resulting virtual object is simply
rendered using graphics hardware.

In the case of a convex reflector, the reflected cells of the
different reflector triangles do not overlap, so that each ver-
tex of the surrounding geometry maps to exactly one ver-
tex on the virtual object. This corresponds to the fact that
only one copy of the surrounding environment can be visi-
ble in a convex reflector. Reflections in concave objects can
be achieved in a similar fashion, but mixed reflectors of con-
vex and concave regions have to be partitioned to the simples
cases first. For each convex or concave region, there can be
one virtual object corresponding to the complete geometry
of the surrounding environment.

This approach only works at interactive performance for
relatively smooth objects that are either concave or convex.
Like the texturing method described above, this geometry-
based approach also quickly becomes infeasible for more
complex scenes.

5.2. Interactive Ray-Tracing and Ray Caching

The most serious restriction of the methods described so far
is that the illumination effects that can be captured are very
limited. For every new effect, a completely new, specialized
algorithm has to be developed. In contrast, ray-tracing is a
very general method that can simulate a wide variety of dif-
ferent illumination effects, especially when combined with
stochastic sampling (e.g. distribution ray tracing®® or bidi-
rectional path tracing®).

In the past few years, CPU performance has grown to a

(© The Eurographics Association 2000.

W. Heidrich / Interactive Display of Global Illumination Solutions

level where it has become possible to perform interactive
ray-tracing of non-trivial scenes on large multiprocessor sys-
tems. Parker et al.5” describe how to make such a system
work by carefully optimizing the ray-tracer for the specific
caching architecture of the multiprocessor machine, and by
applying efficient tests of whether a surface point is in the
penumbra or not. Only for points in the penumbra, lot of
light source samples are required, while points in the umbra
or completely lit points don not require any sampling.

Despite these optimizations and a large number of pro-
cessors, there will clearly be scene sizes that cannot be han-
dled at interactive frame rates any more. Therefore, Parker et
al.5” employ frameless rendering®® to incrementally update
the pixels in a random order instead of updating all pixels in
the image, and then displaying the whole image at once. Us-
ing these methods, they achieve several frames per second
on a 60 processor Onyx2 for fairly complex scenes.

5.2.1. The Holodeck

The holodeck algorithm3® combines ray-tracing with a
caching of the previously computed rays, so that these can
be reused for different views. Rays are generated on the fly
and stored in data base. A specific grid data structure is used
to store beams (rays of light passing through the same cell
in the same direction). Over time, the holodeck algorithm
builds up the complete information of a light field. The al-
gorithm as proposed by Larson does not have a notion of
moving objects, and continues to reuse rays for an indefi-
nite period of time. Thus, the original algorithm only deals
with static scenes, but it has the advantage over light field
rendering?* 27 that the data is built up incrementally rather
than requiring a lengthy precomputation phase.

The rendering using the holodeck algorithm works as fol-
lows. For new viewpoint, the display process determines
which beams are required to render the image. Then, all rays
inside this beam are searched for, first in main memory, then
on disk (if rays have been swapped out of a smaller RAM
cache), and finally, new sample rays are generated. From all
the samples obtained in a certain time budget, an image is re-
constructed by rendering the individual samples, and filling
the inbetween holes with a Voronoi diagram of the samples.

5.2.2. The Render Cache

A similar caching scheme for dynamic scenes has been pro-
posed by Walter et al.0 The entities cached in their system
are individual samples of illumination, composed of a 3D
point location, color, object and image id (the latter can be
used to compute the viewing direction), as well as an age.

The first step in rendering a new frame is to reproject the
individual samples to the new viewpoint. In a second phase
the image is traversed, and depth culling and hole filling are
performed. This process uses heuristics based on strong dif-
ferences in the depth buffer and object id, and removes dis-

(© The Eurographics Association 2000.

tant objects shining through closer geometry. The resulting
image can be displayed to the user.

During this second phase, a sampling priority is generated
for each pixel in the destination image. This is used to deter-
mine the set of rays to be traced or re-traced for the current
view. The age of a sample is also taken into account during
generation of the priority value. Since only a subset of pixels
can be sampled for each frame, an error-diffusion dithering
algorithm is used to thin out the samples and to distribute
new rays across the image according to the local sampling
priority.

5.3. Combined Ray-Tracing and Hardware Rendering

Because pure ray-tracing is still quite expensive and because
interactive frame rates can today only be achieved on large
multiprocessor machines, a natural solution is to use graph-
ics hardware for rendering those parts it can deal with, and
then only using ray-tracing for filling in those parts that the
hardware cannot handle. These approaches will be summa-
rized in the following.

5.3.1. Hybrid Hardware Rendering and Ray-Tracing

Udeshi and Hansen®! propose a system where OpenGL hard-
ware is used to render the direct illumination on diffuse sur-
faces including shadows (a shadow volume algorithm®2 50 js
used for this purpose). Furthermore, one-bounce indirect il-
lumination for diffuse surfaces is computed on the fly with a
hemicube-style approach® for which the graphics hardware
is also used.

Finally, the hardware renders an item buffer that is used
to spawn primary rays for all surfaces that are not diffuse.
A parallel ray-tracer working on several CPUs of a shared
memory system is then used to fill in these non-diffuse parts.
Frame rates of several frames per second are achieved with
this method, where the rendering of the polygons gener-
ated for the shadow volume dominates the rendering times.
Replacing the shadow volume method with a shadow map
algorithm#9. 14 could probably remove this bottleneck.

5.3.2. Corrective Texture Mapping

Stamminger et al.%* have recently proposed a texture based
approach for hybrid ray-tracing and hardware rendering. A
scene is first rendered by means of graphics hardware. This
rendering can include global illumination effects, e.g. shad-
ows. Although this approximate rendering contains all geo-
metric features of the scene (which is important for naviga-
tion), it will in general not cover the whole range of lighting
effects, as for example multiple reflections and refractions,
or complex reflection characteristics.

In order to improve the quality of these interactive ren-
derings, high-quality samples are acquired asynchronously
by ray-tracing. The resulting error values, that is, the dif-
ferences between these samples and the interactive solution,

W. Heidrich / Interactive Display of Global Illumination Solutions

Figure 12: Left: hardware rendering of a scene with diffuse direct illumination only. Center: high-quality solution generated
by corrective texture mapping. Right: the corrective texture used for one of the objects. Images courtesy of Marc Stamminger.

are stored in corrective textures which are mapped onto the
corresponding object during the interactive display process.
Figure 12 shows the result of the method along with one cor-
rective texture.

As new samples for one specific object are ray-traced,
they are splatted into the corrective texture. The area influ-
enced by this new sample depends on the age of the sam-
ples already in the texture, as well as on the difference in
viewing direction, under which the sample has been gener-
ated. Furthermore, the error between the ray-traced sample
and the OpenGL rendering is used to guide the placement of
new sample rays, so that highly specular regions are updated
more frequently than mostly diffuse ones, and dynamic parts
of the scene more frequently than static ones.

Figure 13: Left: the object structure of a sample scene. Each
red box corresponds to one object that shares one corrective
texture. Right: a resulting rendering exhibiting reflections,
refractions, and a caustic. Images courtesy of Marc Stam-
minger.

6. Conclusion

In this State-of-The-Art report we have reviewed the work
of many researchers on interactive display of global illumi-
nation solutions. We have seen that many of the methods
rely on precomputed global illumination solutions stored in

a form that at least loosely resembles a light field. This is
not too surprising, since the problem of storing directionally
dependent illumination on 2D manifolds naturally leads to
a 4D data structure of some kind, which can then be inter-
preted as a light field. Unfortunately, four dimensions are not
sufficient to extend the approaches to participating media if
the viewer is to be allowed to stand inside the medium. An
additional dimension, however, would further amplify the
storage problems of these methods.

It is interesting to note that those representations used
most frequently in interactive and realtime applications (and
especially in games) make further simplifying assumptions
and reduce the 4D light field to 2D environment maps. This
certainly has something to do with the tradeoff between stor-
age costs and efficiency of reconstruction for the light field
methods, as discussed in Sections 3 and 4. We can expect
these disadvantages of light fields to become less impor-
tant as more research goes into more efficient compression
schemes and adaptive acquisition techniques.

Finally, there needs to be more research on methods that
can deal with dynamic scenes by recomputing the global il-
lumination on the fly. The work that has been done on inter-
active ray-tracing and hybrid ray-tracing/hardware rendering
is promising, but not feasible for many practical applications
at the moment. Since many of these techniques are actually
bound by memory bandwidth rather than CPU performance,
and bandwidth does not improve as quickly as CPU speed,
more research is required to overcome this problem.

7. Acknowledgments

This document was written while the author was working
at the Max-Planck-Institute for Computer Science in Saar-
briicken, Germany. Many thanks to Marc Stamminger for
providing images for several techniques described in this re-
port.

(© The Eurographics Association 2000.

W. Heidrich / Interactive Display of Global Illumination Solutions

References

1.

10.

11.

12.

13.

14.

15.

16.

Michael F. Cohen and John R. Wallace. Radiosity and
Realistic Image Synthesis. Academic Press, 1993.

Karol Myskowski and Tosiyasu. L. Kunii. Texture map-
ping as an alternative for meshing during walkthrough
animation. In Photorealistic Rendering Techniques,
pages 389-400. Springer, June 1994,

Francois X. Sillion and Claude Puech. Radiosity &
Global Illumination. Morgan Kaufmann, 1994.

Rui Bastos. Efficient radiosity rendering using textures
and bicubic reconstruction. In Symposium on Interac-
tive 3D Graphics, 1997.

James F. Blinn and Martin E. Newell. Texture and re-
flection in computer generated images. Communica-
tions of the ACM, 19:542-546, 1976.

Pat Hanrahan and Jim Lawson. A language for shad-
ing and lighting calculations. In Computer Graphics
(SIGGRAPH 90 Proceedings), pages 289-298, August
1990.

Mark Segal and Kurt Akeley. The OpenGL Graphics
System: A Specification (Version 1.2), 1998.

Paul Haeberli and Mark Segal. Texture mapping as a
fundamental drawing primitive. In Fourth Eurograph-
ics Workshop on Rendering, pages 259-266, June 1993.

Ned Greene. Applications of world projections. In
Proceedings of Graphics Interface ’86, pages 108-114,
May 1986.

D. Voorhies and J. Foran. Reflection Vector Shading
Hardware. In Computer Graphics (SIGGRAPH ’94
Proceedings), pages 163-166, July 1994.

Wolfgang Heidrich and Hans-Peter Seidel. View-
independent environment maps. In Eurograph-
ics/SIGGRAPH Workshop on Graphics Hardware,
pages 39-45, 1998.

Wolfgang Heidrich and Hans-Peter Seidel. Realistic,
hardware-accelerated shading and lighting. In Com-
puter Graphics (SIGGRAPH ’99 Proceedings), August
1999.

Shree K. Nayar. Catadioptric omnidirectional camera.
In IEEE Conference on Computer Vision and Pattern
Recognition, pages 482-488, June 1997.

Wolfgang Heidrich. High-quality Shading and Light-
ing for Hardware-accelerated Rendering. PhD thesis,
University of Erlangen-Nirnberg, April 1999.

Lance Williams. Pyramidal parametrics. In Computer
Graphics (SIGGRAPH ’83 Proceedings), pages 1-11,
July 1983.

Andreas Schilling, Glnter Khnittel, and Wolfgang

(© The Eurographics Association 2000.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

217.

28.

29.

Straer. Texram: A smart memory for texturing. IEEE
Computer Graphics and Applications, 16(3):32-41,
May 1996.

Paul E. Debevec and Jitendra Malik. Recovering
high dynamic range radiance maps from photographs.
In Computer Graphics (SIGGRAPH ’97 Proceedings),
pages 369-378, August 1997.

Paul E. Debevec. Rendering synthetic objects into real
scenes: Bridging traditional and image-based graphics
with global illumination and high dynamic range pho-
tography. In Computer Graphics (SIGGRAPH 98 Pro-
ceedings), pages 189-198, July 1998.

Gene Miller and Robert Hoffman. Illumination and
Reflection Maps: Simulated Objects in Simulated and
Real Environments. In SIGGRAPH 84 Course Notes —
Advanced Computer Graphics Animation, July 1984.

Robert R. Lewis. Making shaders more physically
plausible. In Fourth Eurographics Workshop on Ren-
dering, pages 47-62, June 1993.

Jan Kautz and Michael McCool. Approximation of
glossy reflection with prefiltered environment maps. In
Proc. of Graphics Interface, May 2000.

Brian Cabral, Marc Olano, and Paul Nemec. Reflection
space image based rendering. In Computer Graphics
(SIGGRAPH 99 Proceedings), pages 165-170, August
1999.

Jan Kautz, Pere-Pau Vazquez, Wolfgang Heidrich, and
Hans-Peter Seidel. Unified approach to prefiltered en-
vironment maps. In submitted, 2000.

Marc Levoy and Pat Hanrahan. Light field rendering.
In Computer Graphics (SIGGRAPH ’96 Proceedings),
pages 31-42, August 1996.

E. H. Adelson and J. R. Bergen. Computational Models
of Visual Processing, chapter 1 (The Plenoptic Function
and the Elements of Early Vision). MIT Press, Cam-
bridge, MA, 1991.

Xianfeng Gu, Steven J. Gortler, and Michael F. Co-
hen. Polyhedral geometry and the two-plane parameter-
ization. In Rendering Techniques 97 (Proceedings of
Eurographics Rendering Workshop), pages 1-12, June
1997.

Steven J. Gortler, Radek Grzeszczuk, Richard Szelin-
ski, and Michael F. Cohen. The Lumigraph. In Com-
puter Graphics (SIGGRAPH ’96 Proceedings), pages
43-54, August 1996.

Peter-Pike Sloan, Michael F. Cohen, and Steven J.
Gortler. Time critical Lumigraph rendering. In Sym-
posium on Interactive 3D Graphics, 1997.

Emilio Camahort, Apostolos Lerios, and Donald

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

W. Heidrich / Interactive Display of Global Illumination Solutions

Fussell. Uniformly sampled light fields. In Rendering
Techniques ’98 (Proceedings of Eurographics Render-
ing Workshop), pages 117-130, March 1998.

Glenn Tsang, Sherif Ghali, Eugene L. Fiume, and
Anastasios N. Venetsanopoulos. A novel parameteriza-
tion of the light field. In Proceedings of the Image and
Multi-dimensional Digital Signal Processing Workshop
(IMDSP), 1998.

Wolfgang Heidrich, Hartmut Schirmacher, and Hans-
Peter Seidel. A warping-based refinement of lumi-
graphs. In Proceedings of WSCG, 1999.

Hartmut Schirmacher, Wolfgang Heidrich, and Hans-
Peter Seidel. Adaptive acquisition of Lumigraphs
from synthetic scenes. In Computer Graphics Forum
(Proceedings of Eurographics ’99), pages 151-160,
September 1999.

Hartmut Schirmacher, Wolfgang Heidrich, and Hans-
Peter Seidel. High-quality interactive lumigraph ren-
dering through warping. In Graphics Interface 2000,
May 2000.

Gavin Miller, Steven Rubin, and Dulce Ponceleon.
Lazy decompression of surface light fields for precom-
puted global illumination. In Rendering Techniques "98
(Proceedings of Eurographics Rendering Workshop),
pages 281-292, March 1998.

Daniel N. Wood, Daniel I. Azuma, Ken Aldinger, Brian
Curless, Tom Duchamp, David H. Salesin, and Werner
Stuetzle. Surface light fields for 3D photography. In
Computer Graphics (SIGGRAPH 2000 Proceedings),
July 2000.

Aaron W. F. Lee, Wim Sweldens, Peter Schroder,
Lawrence Cowsar, and David Dobkin. Maps: Multires-
olution adaptive parameterization of surfaces. In Com-
puter Graphics (SIGGRAPH ’98 Proceedings), pages
31-42, July 1998.

Wolfgang Heidrich, Jan Kautz, Philipp Slusallek, and
Hans-Peter Seidel. Canned lightsources. In Rendering
Techniques 98 (Proceedings of Eurographics Render-
ing Workshop), 1998.

Wolfgang Heidrich, Hendrik Lensch, Michael F. Co-
hen, and Hans-Peter Seidel. Light field techniques for
reflections and refractions. In Rendering Techniques
99 (Proceedings of Eurographics Rendering Work-
shop), 1999.

Marcus Magnor and Bernd Girod. Adaptive block-
based light field coding. In 3rd International Work-
shop on Synthetic and Natural Hybrid Coding and
Three-Dimensional Imaging, pages 140-143, Septem-
ber 1999.

Paul Lalonde and Alain Fournier. Interactive rendering

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

of wavelet projected light fields. In Graphics Interface
’99, pages 107-114, June 1999.

Marc Stamminger, Annette Scheel, Xavier Granier,
Frederic Perez-Cazorla, George Drettakis, and Francois
Sillion. Efficient glossy global illumination with inter-
active viewing. In Graphics Interface *99, pages 50-57,
June 1999.

Peter Shirley, Bretton Wade, Philip Hubbard, David
Zareski, Bruce Walter, and Donald P. Greenberg.
Global illumination via density estimation. In Euro-
graphics Rendering Workshop 1995, pages 219-231,
June 1995.

Wolfgang Stiirzlinger and Rui Bastos. Interactive ren-
dering of globally illuminated glossy scenes. In Ren-
dering Techniques ’97, pages 93-102, 1997.

Marc Stamminger, Philipp Slusallek, and Hans-Peter
Seidel. Interactive walkthroughs and higher order
global illumination. In Modeling, Virtual Worlds, Dis-
tributed Graphics, pages 121-128, November 1995.

Per Christensen. Hierarchical Techniques for Glossy
Global Illumination. PhD thesis, University of Wash-
ington, 1995.

Peter Schroeder. Wavelet Algorithms for Illumination
Computations. PhD thesis, Princeton University, 1994,

Bruce Walter, Gun Alppay, Eric Lafortune, Sebastian
Fernandez, and Donald P. Greenberg. Fitting vir-
tual lights for non-diffuse walkthroughs. In Computer
Graphics (SIGGRAPH ’97 Proceedings), pages 45-48,
August 1997.

Alexander Keller. Instant radiosity. In Computer
Graphics (SIGGRAPH ’97 Proceedings), pages 49-56,
August 1997.

Marc Segal, Carl Korobkin, Rolf van Widenfelt, Jim
Foran, and Paul Haeberli. Fast shadow and lighting
effects using texture mapping. In Computer Graph-
ics (SIGGRAPH ’92 Proceedings), pages 249-252, July
1992.

Paul J. Diefenbach and Norman Badler. Pipeline Ren-
dering: Interactive refractions, reflections and shad-
ows. Displays: Special Issue on Interactive Computer
Graphics, 15(3):173-180, 1994.

Paul J. Diefenbach. Pipeline Rendering: Interaction
and Realism Through Hardware-based Multi-Pass Ren-
dering. PhD thesis, University of Pennsylvania, 3401
Walnut Street, Suite 400A, Philadelphia, PA 19104-
6228, June 1996.

Rui Bastos, Keneth Hoff, William Wynn, and Anselmo
Lastra. Increased photorealism for interactive architec-
tural walkthroughs. In Symposium on Interactive 3D
Graphics, pages 183-190, 1999.

(© The Eurographics Association 2000.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

W. Heidrich / Interactive Display of Global Illumination Solutions

Rui Bastos. Superposition Rendering: Increased Real-
ism for Interactive Walkthrough. PhD thesis, University
of North Carolina at Chapel Hill, 1999.

Eyal Ofek and Ari Rappoport. Interactive reflections
on curved objects. In Computer Graphics (SIGGRAPH
’98 Proceedings), pages 333-342, July 1998.

Robert L. Cook, Thomas Porter, and Loren Carpenter.
Distributed ray tracing. In Computer Graphics (SIG-
GRAPH ’84 Proceedings), pages 134-145, July 1984.

Eric Veach and Leonidas Guibas. Optimally combin-
ing sampling techniques for monte carlo rendering. In
"Computer Graphics (SIGGRAPH ’95 Proceedings),
pages 419-428, August 1995.

Steven Parker, William Martin, Peter-Pike J. Sloan, Pe-
ter Shirley, Brian Smits, and Charles Hansen. Interac-
tive ray tracing. In 1999 ACM Symposium on Interac-
tive 3D Graphics, pages 119-126, April 1999.

Gary Bishop, Henry Fuchs, Leonard McMillan, and
Ellen J. Scher Zagier. Frameless rendering: Double
buffering considered harmful. In Computer Graphics
(SIGGRAPH ’94 Proceedings), pages 175-176, July
1994,

Gregory Ward Larson and Maryann Simmons. The
holodeck ray cache: An interactive rendering system
for global illumination in non-diffuse environments.
ACM Transactions on Graphics, 18(4):361-368, Octo-
ber 1999.

Bruce Walter, George Drettakis, and Steven Parker. In-
teractive rendering using the render cache. In Euro-
graphics Rendering Workshop, June 1999.

Tushar Udeshi and Charles Hansen. Towards interac-
tive, photorealistic rendering of indoor scenes: A hybrid
approach. In Rendering Techniques 99, pages 63-76,
June 1999.

Franklin C. Crow. Shadow algorithms for computer
graphics. In Computer Graphics (SIGGRAPH ’77 Pro-
ceedings), pages 242-248, July 1977.

Michael F. Cohen, Shenchang Eric Chen, John R. Wal-
lace, and Donald P. Greenberg. A progressive re-
finement approach to fast radiosity image generation.
In Computer Graphics (SIGGRAPH ’88 Proceedings),
pages 75-84, August 1988.

Marc Stamminger, Jorg Haber, and Hartmut Schirma-
cher. Walkthroughs with corrective texturing. In Ren-
dering Techniques 2000, pages 377-388, June 2000.

(© The Eurographics Association 2000.

