
EUROGRAPHICS ’99 STAR – State of The Art Report

3D Geometry Compression
and Progressive Transmission

Gabriel Taubin

IBM T.J.Watson Research Center y

Abstract

Polygonal meshes remain the primary representation for visualization of 3D data in a wide range of industries,
including manufacturing, architecture, geographic information systems, medical imaging, robotics, entertainment,
and military applications. Because of its widespread use, it is desirable to compress polygonal meshes stored in
file servers and exchanged over computer networks to reduce storage and transmission time requirements. In this
report we describe several schemes that have been recently introduced to represent single and multi-resolution
polygonal meshes in compressed form, and to progressively transmit polygonal mesh data. The progressive trans-
mission of polygonal meshes allows the decoder process to make part of a single-resolution mesh, or the low
resolution levels of detail of a multi-resolution mesh, available to the rendering system before the whole bitstream
is fully received and decoded. It is desirable to combine compression and progressive transmission, but not all
the existing methods exhibit both features. These progressive transmission schemes are closely related to surface
simplification or decimation methods, which change the surface topology while approximating the geometry, and
can be regarded as lossy compression schemes as well. Finally, we describe in more detail the Topological Surgery
and Progressive Forest Split schemes that are currently part of the MPEG-4 multimedia standard.

1. Introduction

Polygonal meshes are the primary representation used in
the manufacturing, architectural, and entertainment indus-
tries for visualizing 3D data, and they are central to Inter-
net and broadcasting multimedia standards such as VRM-
L 49, and MPEG-4 26 29 6. In these standards, a polygonal
mesh is defined by the position of its vertices (geometry);
by the association between each face and its sustaining ver-
tices (connectivity); and optional colors, normals and texture
coordinates (properties).

It is desirable to compress polygonal mesh data to re-
duce storage and transmission time requirements. In this re-
port we describe the recent efforts in this area. Deering 9

introduced the first geometry compression scheme to com-
press the bitstream sent by a CPU to a graphics adapter,
generalizing the popular triangle strips and fans. Motivat-
ed by Deering’s work, but optimized for transmission over

y P.O.Box 704 Yorktown Heights, NY 10598, USA,
taubin@us.ibm.com

the Internet instead, Taubin and Rossignac introduced the
Topological Surgery (TS) scheme 45, the first connectivity-
preserving single-resolution manifold triangular mesh com-
pression scheme. TS was later extended to handle arbitrary
manifold polygonal meshes with attached properties, and
proposed as a compressed file format to encode VRML files
42. And with a more efficient encoding, Topological Surgery
is now part of the MPEG-4 standard.

Several closely related methods were subsequently devel-
oped by Touma and Gotsman 47, Gumhold and Strasser 17,
Li and Kuo 27 and Rossignac 36. The methods proposed by
Gumhold and Strasser, and by Rossignac only encode con-
nectivity. The method proposed by Touma and Gotsman,
predicts geometry an properties better, and the method pro-
posed by Li and Kuo improves on the entropy encoding of
prediction errors. More recently, Bajaj et. al. 2 proposed yet
another method to encode single-resolution triangular mesh-
es. It is based on a decomposition of the mesh into rings of
triangles originally used by Taubin and Rossignac in their
compression algorithm, but with a different and more com-
plex encoding. All of these schemes require O(n) total bits

c
 Gabriel Taubin 1999. Published by the Eurographics Association, ISSN 1017-4656.

Gabriel Taubin / 3D Geometry Compression and Progressive Transmission

of data to represent a single-resolution mesh in compressed
form.

While single resolution schemes can be used to reduce
transmission bandwidth, it is frequently desirable to send the
mesh in progressive fashion. A progressive scheme sends a
compressed version of the lowest resolution level of a level-
of-detail (LOD) hierarchy, followed by a sequence of ad-
ditional refinement operations. In this manner, successive-
ly finer levels of detail may be displayed while even more
detailed levels are still arriving. To prevent visual artifacts,
sometimes referred to as popping, it is also desirable to be
able to transition smoothly, or geomorph, from one level of
the LOD hierarchy to the next by interpolating the positions
of corresponding vertices in consecutive levels of detail as a
function of time.

The Progressive Mesh (PM) scheme introduced by Hoppe
19 was the first method to address the progressive transmis-
sion of multi-resolution manifold triangular mesh data. PM
is an adaptive refinement scheme where new faces are in-
serted in between existing faces. Every triangular mesh can
be represented as a base mesh followed by a sequence of
vertex split refinements. Each vertex split is specified for the
current level of detail by identifying two edges and a shared
vertex. The mesh is refined by cutting it through the pair
of edges, splitting the common vertex into two vertices and
creating a quadrilateral hole, which is filled with two trian-
gles sharing the edge connecting the two new vertices. The
PM scheme is not an efficient compression scheme. Since
the refinement operations perform very small and localized
changes, the scheme requires O(V log2(V)) bits to double
the size of a mesh with V vertices. Later on Hoppe proposed
a more efficient implementation based on changing the order
of transmission of the edge split operations 20.

In the Progressive Forest Split (PFS) scheme introduced
by Taubin et. al. 40 a manifold triangular mesh is also rep-
resented as a low resolution polygonal model followed by a
sequence of refinement operations. But the forest split refine-
ment operation, which can be seen as a grouping of several
consecutive edge split operations into a set instead of a se-
quence, provides a tradeoff between compression ratios and
granularity. The highest compression ratios are achieved by
reducing the high number of levels of detail produced by the
PM scheme, which are usually not required. Best compres-
sion ratios are achieved in PFS when the size grows expo-
nentially with level of detail, because it requires only O(V)
bits to double the size of a mesh with V vertices.

The topological type (genus) of the lowest resolution lev-
el of detail stays constant during the refinement process for
both the PM and PFS methods. The Progressive Simplicial
Complexes (PSC) scheme introduced by Popovic and Hoppe
34 allows changes in topological type to occur during the
refinement process. The PSC representation retains most of
the advantages of the PM representation, including smooth
transitions between consecutive levels of detail and progres-

sive transmission. However, the increased generality of the
method requires an even higher number of bits to specify
each refinement operation. A closely related scheme, called
MetaStream, was more recently introduced by Abadjev et.
al. 1.

In all the previous progressive representations, multi-
resolution polygonal models are represented in compressed
form. But seen as compression schemes are not as efficient
as the single-resolution schemes described earlier. Taubin et.
al. 41 recently introduced a method to compress any multi-
resolution mesh produced by a vertex clustering algorith-
m with compression ratios comparable to the best single-
resolution schemes. In this scheme, the connectivity of the
LOD hierarchy is transmitted from high resolution to low
resolution, followed by the geometry and properties from
low resolution to high resolution. The main contribution of
this scheme is a method to compress the clustering mappings
which relate consecutive levels of detail, from high to low
resolution. The method achieves high compression ratios but
is not progressive.

The MPEG-4 3D Mesh Coding scheme is based on the
Topological Surgery and Progressive Forest Split schemes.
But incorporates improvements to connectivity encoding
for progressive transmission proposed by Bossen 5, non-
manifold encoding proposed by Guéziec et. al. 16, error re-
siliency proposed by Jang et. al. 24, parallelogram predic-
tion proposed by Touma and Gotsman 47, and error encod-
ing proposed by Li and Kuo 27. It allows the encoding of any
polygonal mesh (including non-manifolds) with no loss of
connectivity information and no repetition of geometry and
property data associated to singular vertices as a progres-
sive single-resolution bitstream, and any manifold polygonal
mesh in hierarchical multi-resolution mode. Extensive ex-
perimentation performed during the course of the MPEG-4
process has shown that the resulting methods are state-of-
the-art.

2. Compression for Accelerated Rendering

Because polygonal faces can be triangulated, and graphics
hardware is optimized for rendering triangles, most geom-
etry compression schemes are restricted to operate on tri-
angular meshes. Each triangle is specified for rendering by
its three vertices (36 bytes), and depending on the rendering
mode, also by some properties (normals, color, and/or tex-
ture coordinates), which in some cases are also bound per
vertex. Because each vertex of an average triangle mesh is
shared by six triangles, transmitting for each triangle all the
data associated with its three vertices is wasteful.

The popular triangle strips and triangle fans of GL 22 and
OpenGL 33 can be regarded as the first geometry compres-
sion scheme designed to reduce the amount of geometric
data transfered from the CPU to the graphics adapter. By
traversing the triangles in a different order, so that subse-
quent triangles share an edge, only the data associated with

c
 Gabriel Taubin 1999.

Gabriel Taubin / 3D Geometry Compression and Progressive Transmission

the opposite vertex needs to be transmitted for each new tri-
angle. In the GL triangle strips the connectivity is specified
by an marching bit per triangle (except for the last triangle of
the strip), which determines on which of the two free edges
of the current triangle the next triangle has to be attached.
In the OpenGL triangle strips no connectivity information is
transmitted, requiring the triangles to be attached alternating
between left and right free edges. Triangle fans do not in-
clude connectivity information either, requiring the triangles
to be attached always on the left free edge. Because the av-
erage triangle mesh has twice as many faces than vertices,
each vertex has to be transmitted at least about twice. No
existing algorithm for decomposing a triangle mesh into tri-
angle strips or fans achieves this lower bound. For example,
in the algorithm proposed by Evans et. al. 10, which is cur-
rently the best algorithm, each vertex is transmitted about
2.5 times.

Since each pair of consecutive triangles share an edge, to
render triangle strips and fans a graphics pipeline needs to
store two vertices and their associated properties. In the gen-
eralized triangle mesh representation introduced by Deering
9 the graphics pipeline has an on-line buffer where sixteen
vertices and associated properties can be stored. The data
stored in the buffer can be replaced, retrieved, and delet-
ed by transmitting one op-code per new vertex, followed by
quantized vertex coordinates and properties, as required by
the op-code. With this approach each vertex of the original
polygonal mesh is transmitted less than twice, but neverthe-
less more than once. Chow 7 proposes an algorithm to de-
compose a triangle mesh into generalized triangle meshes,
missing in Deering’s original work 9. Chow’s algorithm is
also based on the spiraling traversal of the mesh first used
by Taubin and Rossignac in the Topological Surgery com-
pression algorithm 45. Bar-Yehuda and Gotsman analyze the
minimum buffer size required to transmit each vertex exact-
ly once 3, and show that it is impossible not to repeat vertex
data with a finite size buffer.

3. Geometry Compression

Other application areas exist where minimizing the com-
pressed representation size to make better use of storage s-
pace and transmission bandwidth, preserving the connectiv-
ity of the original polygonal mesh, or transmitting the data
progressively, are more important or required factors. In the
rest of the report we concentrate on these methods, with par-
ticular emphasis on the techniques incorporated in MPEG-4.
The course notes of the two courses on 3D Geometry Com-
pression taught at Siggraph’98 44 and Siggraph’99 46 contain
reprints of most of the original papers describing the tech-
niques surveyed here.

4. Polygonal Meshes as MPEG-4 BIFS Nodes

The VRML standard has become a popular Internet file for-
mat to represent 3D data. A polygonal mesh with V ver-

#VRML V2.0 utf8
Shape {
geometry IndexedFaceSet {

coord Coordinate {
point [

-1.63 -0.94 -0.66
1.63 -0.94 -0.66
0.00 0.00 2.00
0.00 1.88 -0.66

] }
coordIndex [

1 2 0 -1
3 2 1 -1
0 2 3 -1
0 3 1 -1

] } }

Figure 1: A tetrahedron represented as an IndexedFace-

Set node.

#VRML V2.0 utf8
Shape {
geometry IndexedFaceSet {

coord Coordinate {
point [

0.00 -0.00 2.00
-1.63 -0.94 -0.66
0.00 1.88 -0.66
1.63 -0.94 -0.66

] }
coordIndex [

0 1 3 -1
3 1 2 -1
3 2 0 -1
0 2 1 -1

] } }

Figure 2: An equivalent IndexedFaceSet representation
for the tetrahedron of figure 1.

tices and F faces is represented in VRML by an Indexed-

FaceSet node with a coord array, and a coordIndex ar-
ray as a minimum. Figure 1 shows a very simple example.
The position of each vertex is described in the coord array
by three floating-point numbers. Each face of the polygonal
mesh with n� 3 corners is represented in the coordIndex
array by n different indices to the coord array, followed by
a the value -1 as a face separator. The polygonal mesh may
also have optional properties (normals, colors, and texture
coordinates) associated to its vertices, faces, or corners, rep-
resented by corresponding arrays (normal, normalIndex,
color, colorIndex, texCoord, texCoordIndex) and s-
calar fields (normalPerVertex, colorPerVertex).

The MPEG-4 standard uses a similar scene graph repre-
sentation called Binary Encoding For Scenes (BIFS) 31; 32,
which contains most VRML nodes as well as many new
ones. But instead of the VRML ASCII encoding, BIFS uses
a more compact binary encoding. Polygonal meshes can be

c
 Gabriel Taubin 1999.

Gabriel Taubin / 3D Geometry Compression and Progressive Transmission

represented in BIFS not only by IndexedFaceSet nodes,
but also by the new Hierarchical3DMesh nodes. The lat-
ter extending the IndexedFaceSet functionality by allow-
ing progressive and asynchronous decoding (streaming) of
the polygonal mesh data into the scene graph through a sep-
arate input stream, and browser control of level of detail,
as soon as the levels of detail are made available by the de-
coding process. Polygonal meshes represented by Indexed-
FaceSet nodes are embedded in the stream containing the
scene graph description, and so, are available for rendering
only after the whole scene graph is decoded. The Hierar-

chical3DMesh functionality was modeled on the prototype
VRML implementation demonstrated by Guéziec et. al. 15.

5. Connectivity-Preserving Schemes

In all the geometry compression schemes described in this
report the coordIndex arrays of the IndexedFaceSet n-
odes given as input to the encoder and reconstructed by the
decoder, are usually not the same. This is so because the or-
der of traversal of vertices and faces has to be changed to
exploit the coherence associated with closeness within the
mesh, as in the methods designed for accelerated rendering
described above.

But in most cases these arrays are related by a one-to-
one transformation decomposable as a sequence of the fol-
lowing three types of basic transformations: a cyclical per-
mutation of the corner values (vertex indices) of a face; a
permutation of the F faces within the coordIndex array;
and a permutation of the V vertex coordinate vectors within
the coord array, with the corresponding inverse permuta-
tion applied to the face corner values. When this is the case
we say that the compression scheme preserves the connec-
tivity of the given polygonal mesh. These transformations,
which define an equivalence relation among IndexedFace-
Set nodes, are regarded as producing new representations of
the same polygonal mesh. When the polygonal meshes have
properties, the corresponding permutations of the property
arrays must be considered as well. Figures 1 and 2 show t-
wo representation of the same polygonal mesh: a tetrahedron
without properties.

6. Dual Graph Traversal

An edge of a polygonal mesh is singular if it is shared by
three or more faces, internal if it is shared by exactly two
faces, and boundary if exactly one face is incident to it. The
dual graph of a polygonal mesh is the graph composed of
the faces of the mesh as dual graph nodes, and the internal
edges of the mesh as dual graph edges.

All the geometry compression schemes reorder the faces
of the mesh according to an order of traversal of a maxi-
mal spanning forest in the dual graph of the mesh, so that
each connected component of the mesh corresponds to one
tree of the forest, and each face is visited exactly once. Since

compressed representations of the different connected com-
ponents are usually concatenated in the bitstream , it is suffi-
cient to consider connected polygonal meshes. In the Topo-
logical Surgery scheme, although the choice may affect the
compression ratios, any spanning tree is acceptable. A root
face is chosen as the root of the tree, and the tree is traversed
in depth-first order using the orientation of the polygonal
face to decide which branch to follow first when a branching
face is visited: leftmost branches are traversed first. In the
modification proposed by Jang et. al. 24 to add error resilien-
cy, the order of the branches is explicitly specified in the
bitstream. Taubin and Rossignac report best compression ra-
tios obtained by constructing the face trees spiraling around
45. Bossen 5 experimented with several alternative construc-
tion schemes, including some which construct the trees as a
function of the geometry and property prediction errors, and
concluded that a hybrid method performs best. All the oth-
er single-resolution compression schemes visit the faces in a
similar spiraling fashion, but in breath-first order.

As in the Deering’s scheme, in all these connectivity-
preserving schemes some information has to added to the
bitstream to determine which vertices correspond to which
previously indexed vertices, so that each vertex is trans-
mitted exactly once. This stitching information is explicitly
transmitted up-front in the Topological Surgery scheme as
a vertex graph, which optionally includes information to re-
cover non-manifold connectivity, or implicit and interleaved
with the rest of the data in the other methods.

7. Encoding of Planar Graphs

Early work on encoding of planar graphs is closely related to
the connectivity-preserving geometry compression schemes
described in this report. In particular, the method introduced
by Turan 48 is closely related to the Topological Surgery rep-
resentation. Since a planar graph can be drawn on a sphere,
encoding a planar graph is the same as encoding the con-
nectivity of a polygonal mesh with sphere connectivity. Tu-
ran builds a spanning tree in the graph of V vertices and
uses it to represent the boundary of a simple polygon of
2V � 2 vertices resulting of cutting the polygonal mesh
with sphere connectivity through the vertex graph edges. He
also presents an encoding scheme which requires slightly
less than 12 bits per vertex. The Topological Surgery rep-
resentation extends Turan’s construction to oriented mani-
fold polygonal meshes of arbitrary topological type, with a
significantly more efficient encoding. Itai and Rodeh 23 pro-
pose a method to encode planar graphs, closely related to
Gumhold and Strasser’s scheme 17, which requires no more
than 4 bits per vertex. Keeler and Westbrook 25 describe a
new encoding for Turan’s construction which requires no
more than 4:6 bits per vertex.

c
 Gabriel Taubin 1999.

Gabriel Taubin / 3D Geometry Compression and Progressive Transmission

A B

C D

Figure 3: (A) Non-manifold mesh, (B) mesh with bound-
ary, (C) mesh with two connected components, and (D) ori-
entable but not oriented mesh.

8. Oriented Manifolds Meshes

A vertex of a polygonal mesh is a boundary vertex if one
or more boundary edges are incident to it, otherwise it is an
internal vertex. A boundary vertex is regular if it has no in-
cident singular edge, and the set of its incident faces can be
organized as a list such that every pair of consecutive faces in
the list share exactly one regular edge. Similarly, an internal
vertex is regular if has no incident singular edge, and the set
of faces incident to it can be organized as a cycle such that
every pair of consecutive faces in the list share exactly one
regular edge. A polygonal mesh is a manifold if all its ver-
tices and edges are regular, or non-singular. Figure 3 shows
examples of manifold and non-manifold polygonal meshes
with different properties.

Each edge of a polygonal mesh has two possible orien-
tations corresponding to the two possible orderings of the
two vertices. Each face of a polygonal mesh has two possi-
ble orientations corresponding with the two possible cyclical
orderings of its corner values. Each of these two orientation-
s induces a consistent orientation on the edges incident to
the face. A manifold polygonal mesh is orientable if an ori-
entation can be chosen for each of its faces such that for
each internal edge, the two incident faces induce opposite
orientations on the common edge. All non-manifold polygo-
nal meshes are considered non-orientable. Polygonal meshes
approximating the boundary surface of solid objects are nor-
mally orientable manifold meshes. An orientable manifold
mesh is oriented if an orientation has been chosen for each
of its faces such that for each internal edge, the two incident
faces induce opposite orientations on the common edge.

When a polygonal mesh is represented as a VRML In-

dexedFaceSet node, each of its faces has an orientation.

A manifold polygonal mesh so defined may be orientable
but not oriented. Such a mesh can be oriented by choosing
a consistent orientation for its faces (which may require to
invert the orientation of one or more faces), but we regard
this transformation as producing a different polygonal mesh.

Most geometry compression schemes are restricted to,
and preserve the connectivity of, oriented manifold polyg-
onal meshes. Determining whether a manifold polygonal
mesh is orientable or not, and if so choosing a consistent
orientation for its faces is an additional pre-processing step
that some geometry compression scheme do perform. To let
the decoder recover the original orientation of the faces, an
additional bit per face must be saved in the compressed bit-
stream. But the methods that reorient faces to convert an ori-
entable manifold into an oriented one usually discard these
bits needed to reorient the faces back to their original ori-
entation. We do not regard these methods as preserving the
connectivity.

Although Many real-world polygonal meshes are non-
manifold meshes, they can be compressed by converting
them to oriented manifold meshes by cutting through sin-
gular vertices and edges 16 without affecting the geometry
of the mesh, and then encoding the additional stitching in-
formation in the bitstream 13. This procedure can also be ap-
plied to any orientable manifold polygonal mesh which is
not oriented, recovering the original connectivity (including
face original face orientations) after decompression. To do
this it is sufficient to regard edges which are not consistently
oriented by their incident faces as singular edges.

9. Topological Surgery

The Topological Surgery scheme introduced by Taubin and
Rossignac 45 was the first method proposed to compress
the connectivity of manifold polygonal meshes of arbitrary
topological type with no loss of information, as well as their
geometry and associated properties with controlled loss only
due to quantization. Because this method was at the core of
the VRML Compressed Binary Format proposal 43 42, a pre-
print description of the method available since early 1996
had wide circulation. We explain in detail how it was imple-
mented in MPEG-4.

As in all the other single-resolution geometry compres-
sion schemes, in the Topological Surgery representation the
faces of an oriented manifold polygonal mesh are intercon-
nected by a face forest spanning the dual graph of the mesh,
with each tree of the face forest spanning one connected
component. The edges of the mesh that do not belong to the
face forest define a vertex graph interconnecting all the ver-
tices of the polygonal mesh. Connected components of the
vertex graph are in one-to-one correspondence with connect-
ed components of the mesh, and so, also with trees of the
face forest. Figure 4 shows an example of this construction.

Note that, since the polygonal mesh is manifold, each ver-

c
 Gabriel Taubin 1999.

Gabriel Taubin / 3D Geometry Compression and Progressive Transmission

A B

C D

E F

Figure 4: Topological surgery representation. (A) A torus
with 9 vertices and 18 triangular faces. (B) It can be con-
structed by identifying edges (stitching) along vertical and
horizontal boundaries. (C) Choose a root face, root edge,
and root vertex for each connected component. (D) Traverse
the dual graph of the mesh constructing a spanning forest.
(E) Remaining edges form the vertex graph. (F) Cut through
vertex graph to create one simple polygon per connected
component.

tex graph edge is either a boundary edge of the mesh or has
exactly two incident faces. If the polygonal mesh is now cut
through the (internal) edges of the vertex graph, a cut mesh
is obtained with the same number of connected components
as the original polygonal mesh, and with the face forest as
its dual graph. Having a tree as a dual graph, each connected
component of the cut mesh has simple polygon connectivity,
with all its vertices on its boundary and a single boundary
loop joining all the vertices and boundary edges. Each in-

ternal edge of the polygonal mesh belonging to the vertex
graph corresponds to exactly two boundary loop edges.

The encoding of this representation in the compressed da-
ta stream is composed of: the encoding of the vertex graph,
the encoding of the simple polygons, and the quantized, pre-
dicted, and compressed geometry and property data. It is im-
portant to pay special attention to how each of these elements
is encoded, but also to their order in the bitstream, and how
they are interleaved, because all of these issues affect not on-
ly the compression efficiency, but also the decoder latency.
In the MPEG-4 implementation the connectivity information
is partitioned into global information, and per-triangle infor-
mation. The global information is transmitted first, followed
by the per-triangle information interleaved with the geome-
try and property data corresponding.

10. Topological Surgery in MPEG-4

In the original formulation 45, the compressed bitstream was
composed of, in order: the encoded vertex graph; the quan-
tized geometry and property data bound per vertex to the
mesh; the simple polygons; and the property data bound per
face and per corner. As a result, the decoder had to decode
and store a significant proportion of the bitstream before it
could made the first face available for rendering.

The single-resolution geometry compression scheme of
MPEG-4 is also based on the Topological Surgery represen-
tation, but incorporates significant improvements in encod-
ing efficiency, and other extensions. The improvements to
the encoding of connectivity and overall bitstream organiza-
tion and entropy encoding were proposed mainly by Bossen
5. But elements of other competing schemes, such as the par-
allelogram prediction method used by Touma and Gotsman
47, and a variation of the progressive quantization scheme
used by Li and Kuo 27, were incorporated as well. The ex-
tension proposed by Guéziec et. al. 16 allows the encoding
of any polygonal mesh (including non-manifolds) with no
loss of connectivity information and no repetition of geome-
try and property data associated to singular vertices. And the
changes proposed by Jang et. al. 24 add data partitioning for
error resiliency features to the encoding.

Extensive experimental data collected within the MPEG-4
core experiments process validated all the accepted modifi-
cations. Figures 5 and 6 show plots of results of some of
these experiments. A database of about 300 VRML model-
s without properties was collected from different sources in
the Internet. About half of these models represent triangu-
lar meshes, and the other half represent meshes with one or
more polygonal faces. In all the plots the models are sort-
ed by total number of vertices. Figure 5-A shows the total
number of vertices and the average number of vertices per
connected component. Figure 6-B plots the absolute com-
pression efficiency of the MPEG-4 Topological Surgery en-
coding compared to: VRML Compressed Binary Format,

c
 Gabriel Taubin 1999.

Gabriel Taubin / 3D Geometry Compression and Progressive Transmission

A

Figure 5: MPEG-4 Results: Models sorted by total number
of vertices, and average number of vertices per connected
component.

naive encoding, and original VRML representation (ascii).
Figure 6-C is similar to Figure 6-B, but showing the relative
compression ratios. In all the cases but the original VRML
files, vertex coordinates are quantized to 10 bits per coor-
dinate. The naive encoding is a straightforward encoding of
the quantized coord and coordIndex arrays. Note that the
MPEG-4 Topological Surgery encoding is more than twice
as efficient as the VRML Compressed Binary Format encod-
ing, and about 30 times more efficient than VRML for this
family of models. The average size of the whole compressed
bitstream including connectivity and geometry is 10-15 bit-
s per vertex, and decreases with the size of the mesh, with
large models requiring as low as 4 bits per vertex.

10.1. MPEG-4 Encoding

Figure 7 illustrates the structure of the Topological Surgery
syntax in MPEG-4. After a global header information (not
shown in the figure) which includes quantization parameter-
s, the compressed connected components are concatenated.
The vertex graph and triangle tree data constitute the glob-
al information each connected component. The triangle da-
ta contains not only the property data, but also a marching
bit and a polygon bit, which constitute the per triangle con-
nectivity information. The per triangle data includes an er-
ror vector to correct the the position of the opposite vertex
predicted by the parallelogram rule from the previous three
vertices, error vectors to correct other property predictions
bound per vertex, per face, or per corner. All the different
fields are arithmetic coded.

B

C

Figure 6: MPEG-4 Results: Compression efficiency (bits per
vertex), and relative performance.

10.2. Vertex Graph Encoding

When the polygonal mesh has sphere topology, the vertex
graph is in fact a vertex tree. Let us consider this case first.
The vertex tree is run-length encoded. The tree is decom-
posed into runs. A run connects a leaf or branching node
to another leaf or branching node through a path of zero or
more regular nodes. The order of traversal of the tree, deter-
mined in the encoder process by the orientation of the mesh,
defines an order of traversals of the runs, and a first and last
node for each run. Each run is encoded as a record com-
posed of three fields (vlast,vlength,vleaf). The vlast field is
a bit that determines if the runs shares the first node with
the next run or not. It determines the pushing of branching
node indices onto a traversal stack. The vlength field is an
integer with a value equal to the number of edges in the run.
The vleaf field is a bit which determines if the run ends in a
leaf or branching node, and the popping of branching node

c
 Gabriel Taubin 1999.

Gabriel Taubin / 3D Geometry Compression and Progressive Transmission

base_layer() {
do {

connected_component()
} while (not(last_component))

}

connected_component() {
vertex_graph()
triangle_tree()
triangle_data()

}

triangle_data() {
root_triangle_data()
for each other triangle {

if(marching_triangle)
marching_bit

if(not(triangular_mesh))
polygon_bit

other_triangle_data()
}

}

Figure 7: Topological Surgery bitstream syntax in MPEG-4
(simplified).

A B

Figure 8: Encoding the vertex tree. (A) Decompose into runs
and run-length encode as table of vertex runs. (B) Each ver-
tex tree edge corresponds to two vertex loop edges.

indices from the traversal stack. Figure 8 shows an example
of this construction, and the relation between the vertex tree
and the boundary loop look-up table build by the decoder
process to stitch the boundary edges of the simple polygon
back together to reconstruct the polygonal mesh.

In general, the vertex graph is not a tree. For a connected
manifold without boundary, each edge of the vertex graph
corresponds to two polygon loop edges (i.e., boundary edges
of the simple polygon), but for manifolds with boundary,
some edges of the vertex graph (those which correspond to
boundary edges of the mesh) correspond to only one poly-
gon loop edge. As we mentioned above, in the case of a sim-

ple mesh (manifold without boundary with Euler number 2,
i.e., topologically equivalent to a sphere), the vertex graph
is a tree. When the manifold mesh is not simple (i.e., when
the mesh has boundary edges, or when the mesh does not
have sphere topology), the vertex graph contains loops. If
the vertex tree is constructed as a spanning tree by depth first
traversing the vertex graph, then for each loop, one back-
edge, or jump edge, connects a leaf node of the vertex tree
with a previously visited node, forming the loop. We repre-
sent the vertex graph as an extended vertex tree, as illustrated
in figure 9, with each jump edge corresponding to two runs
of the extended vertex tree ending in leave nodes.

To determine which edges of the vertex graph should be
classified as jump edges, the compression algorithm travers-
es the boundary edges of the simple polygon, finds the corre-
sponding edges in the graph, and constructs a spanning tree
with a standard algorithm 38.

The extended vertex tree is represented by a table of runs,
as in the case of a mesh with sphere topology. Figure 9 also
illustrates how the decoder process builds the boundary loop
look-up table from the data contained in this data structure.

Even though each jump corresponds to a single edge in
the vertex graph, we represent a jump by two runs in the
extended vertex tree table, one of them having zero length.
The first, and true, run starts at the first node the edge gets
visited. The second run is generated when we reach the pre-
viously visited node, which, then, needs to be considered as
a branching node, and the run generated has zero length.

Each run record of the extended vertex tree table is com-
posed of a variable number of fields. A vertex run connects
a leaf or branching node to another leaf or branching node
through a path of zero or more regular nodes. The order of
traversal of the tree defines a sequential order for the vertex
runs, and a first and last node for each run. Each vertex run is
represented as a vertex run record composed of the following
fields. The vlast field is a bit that determines if the run shares
the first node with the next run or not. The vlength field is an
integer with a value equal to the number of edges in the run,
not counting the jump edges. The vleaf field is a bit which
determines if the run ends in a leaf or branching node. Each
extended vertex run ending in a leaf node (vleaf=1) has an
additional vjump field, indicating if the last node of the ver-
tex run is connected to another node through a jump edge.
Note that each extended vertex run of length zero, which is
always associated with a jump edge, should be considered
as ending in a leaf. For these extended vertex runs, first and
last node are the same. If vjump=1, the record also has a
jumpStart field indicating whether this run corresponds to
the start or end of the run. Each jump edge connects the last
node of a run to a previously visited node. The node visit-
ed first is the start of the jump (jumpStart=1), and the other
one is the end of the jump (jumpStart=0). If jumpStart=0,
the record also has a jumpDepth field. Every time the start of
a jump is encountered, the compression and decompression

c
 Gabriel Taubin 1999.

Gabriel Taubin / 3D Geometry Compression and Progressive Transmission

A B

C D

E F

Figure 9: Building the boundary loop. (A) Decomposed ver-
tex graph into vertex tree (green) and jump edges (red). (B)
Create extended vertex tree by cutting jump edges in half.
(C) The extended vertex tree has two leaves for each jump
edge. (D) Build the extended vertex tree loop. (E) Connect
start and end of each jump edge. (F) Boundary loop.

algorithms push the reference to the jump edge onto an aux-
iliary jump stack. The value of jumpDepth is the depth of the
corresponding jump edge in the jump stack at the time the
compression or decompression programs encounters the end
of the jump. The reference is immediately removed from the
stack, moving subsequent references up, and reducing the
total depth of the stack by one (and so reducing the number
of bits required to represent the depth of subsequent jump
edges).

10.3. Simple Polygon Encoding

If the simple polygon is not composed of triangular faces,
the first step is to triangulate the faces, creating new virtu-

0

1
2

3

4 5
6

7
8

9

10

11

12
13

VL

VR

VO

1

2
1

2

2 3
3

1
0

0

1

2

1
0

VL

VR
VO

[12122331001210]

A B

Figure 10: Constant-length encoding of a simple polygon.
(A) Triangles labels according to their order of traversal.
(B) Triangles labels according to their two bit code. The en-
coding of the polygon is the sequence between the brackets.

al internal edges. In this case one polygon bit per triangle
is added to the bitstream to indicate which internal edges
are virtual and which ones are real. Since the virtual edges
will be removed by the decoding process, reconstructing the
original faces, it is not necessary to take into account the po-
tential creation of geometric artifacts.

The triangulated simple polygon can be constant-length
encoded with two bits per vertex (plus one polygon bit if
necessary). This encoding process, illustrated in Figure 10, is
performed by traversing the triangle tree. The traversal starts
by entering the first triangle through the root edge, with the
root vertex assigned to the left vertex vL, and the second
vertex assigned to the right vertex vR. The third vertex of
the triangle is assigned to the opposite vertex vO , the edge
eL = (vL; vO) is the left edge, and the edge eR = (vR; vO)
is the right edge. One bit is used to indicate whether each
edge (left and right) is a boundary edge or an internal edge
of the polygon. If only the left edge is internal, we set vR =
vO and we continue with the other triangle incident to eL.
If only the right edge is internal, we set vL = vO and we
continue with the other triangle incident to eR. If both edges
are internal, we push vO and vR onto a traversal stack, we
set vR = vO and we continue with the other triangle incident
to eL. If both edges are boundary and the traversal stack
is not empty, we pop vR and vL from the traversal stack,
and we continue with the other triangle incident to the edge
(vL; vR). If both edges are boundary, and the traversal stack
is empty, we have finished visiting all the triangles of the
simple polygon. For example, in Figure 10-A, the triangles
are labeled with their order of traversal, and in Figure 10-B,
with their corresponding two-bit code, as a number in the
range 0; : : : ;3. Here, for each digit the first bit equals 0 if the
left edge is boundary, 1 if the left edge is interior. The second
bit represents the right side and uses the same convention.
The encoding of this polygon is [12122331001210].

The simple polygon can also be represented as a table
of triangle runs in the same way as the vertex tree, except

c
 Gabriel Taubin 1999.

Gabriel Taubin / 3D Geometry Compression and Progressive Transmission

that each triangle run record is composed of only two field-
s (tlength, tleaf). A tlast field is not necessary because the
triangle tree is a binary tree, and each triangle run which
ends in a branching node must be followed by exactly two
runs. The structure of the triangle tree does not completely
describe the triangulation of the simple polygon, though. To
complete the description, an extra bit per triangle associat-
ed with a regular node of the triangle tree must be included.
This sequence of marching bits determines how to triangu-
late the triangle runs by advancing either on the left or on the
right on the boundary of the simple polygon.

Since in general many more marching triangles (codes 1
and 2) are obtained than leaf (code 0) or branching (code
3) triangles, we run-length encode this representation. The
3s and 0s in the constant-length encoded sequence mark the
end of the triangle runs. In this example, the triangle-runs
are defined by the sub sequences [121223], [3], [10], [0], and
[1210]. Each run is encoded as a tlength field, which is the
number of two-bit codes in the corresponding sub sequence
(6,1,2,1, and 4 in this case), and by a tleaf bit value deter-
mined by the last code in the sub sequence (3! 0, 0! 1).
The sequence of 1s and 2s in each run becomes a sequence
of marching bits which determine how to triangulate the run
by marching either on the left or on the right boundary of
the simple polygon. There is one marching bit for each tri-
angle of the run, except for the last one (which is leaf or
branching). In this example the sequence of marching bits is
[010110010].

10.4. Simple Polygon Decoding

The simple polygon decoding process reconstructs the trian-
gles of each simple polygon as triplets t= fi; j;kg of poly-
gon boundary loop indices. These indices are subsequently
replaced with the vertex indices boundary loop look-up table
constructed during the vertex graph decoding process.

Since the order in which the polygon vertices are visit-
ed during tree traversal is usually not the sequential order
of the boundary loop, the following recursive procedure is
used to reconstruct the triangles of each simple polygon. As
described above the traversal of a simple polygon starts by
entering the first triangle crossing the root edge, with the left
boundary loop index iL = 0 corresponding to the root ver-
tex, and the right boundary loop index iR =1 corresponding
to the second vertex. In general, when we enter a triangle, we
know the values of iL and iR, and only the opposite bound-
ary loop index iO must be determined.

If the two-bit code is 1 (leaf node with next triangle on the
left), we set iO = iR+1 (addition and subtraction is modulo
the length of the polygon boundary loop) and reconstruct the
triangle fiL; iO; iRg, we set iR = iO , and continue. If the
two-bit code is 2 (leaf node with next triangle on the right),
we set iO = iL� 1, reconstruct the triangle fiL; iO ; iRg,
we set iL = iO , and continue. To determine the value of iO

for a branching triangle, if we know the distance d along the
boundary loop from the left vertex to the right vertex for the
run attached to the left edge, we set iO = iL+d, reconstruct
the triangle fiL; iO ; iRg, push iR and iO onto the traversal
stack, set iR = iO , and continue. As explained by Taubin
and Rossignac 45, these lengths can be recursively comput-
ed for all the runs from the encoding of the polygon based
on the formula d= l�1+dL+dR, there d is the distance
of one run, l is the length of the run. If the run ends in a
branching node, dL is the distance of the run attached to the
left edge of the last triangle of the run, and dR is the dis-
tance of the run attached to the right edge of the last triangle
of the run. If the run ends in a leaf node, dL = dR = 1. If
the two-bit code of the triangle has the value 0 (leaf node of
the triangle tree), we set iO = iL� 1 or iO = iR+1, and
reconstruct the triangle fiL; iO ; iRg. If the stack is empty
we have finished reconstructing the polygons. Otherwise we
pop iL and iR values from the stack, and continue.

10.5. Compression of Non-Manifold Connectivity

Since non-manifold meshes can be converted to manifold by
cutting through singular vertices and edges 16 without affect-
ing the geometry, most geometry compression schemes are
restricted to manifold polygonal meshes. Guéziec et. al. 13

recently proposed an extension to the Topological Surgery
scheme to preserve the connectivity of any polygonal mesh.
In principle, a stack-based approach with one op-code per
vertex in the order of traversal, and interleaved with the ver-
tex tree data, can be used to establish the extra stitching in-
formation generating during the conversion to manifold. But
since the vertices are interconnected forming a spanning for-
est, the unique paths from each vertex to the root of the tree
it belongs to is used here to define more compact stitches.

10.6. Compression of Geometry and Properties

Vertex coordinates, colors, and texture coordinates are first
enclosed in a bounding box and quantized to a given number
of bits per coordinate. Normals are quantized differently, as
in the VRML Compressed Binary Format proposal 42. Vertex
coordinates and properties bound per vertex are predicted us-
ing the parallelogram rule, and the corresponding errors are
encoded the first time the vertex is visited. Properties bound
per face and per corner are predicted as a linear combination
of ancestors along a tree. Per face properties use the trian-
gle tree. The corner tree used to predict properties bound
per corner is constructed by connecting the corresponding
corners across the marching edges, and by connecting the
opposite corner to the left corner of the triangle.

11. Multi-Resolution meshes

When the number of vertices and faces in a polygonal mesh
is very large, the graphics rendering hardware may not be

c
 Gabriel Taubin 1999.

Gabriel Taubin / 3D Geometry Compression and Progressive Transmission

able to achieve frame rates high enough for interactive ap-
plications. Multi-resolution polygonal meshes, or levels of
detail (LOD) hierarchies, solve the problem by trading im-
age quality for speed. Since the time required to render a
frame grows with the complexity of the scene, rendering
lower resolution levels yield higher frame rates. When there
is relative motion of the objects with respect to the camer-
a, the distance between an object and the camera is used to
select a sufficiently low level of detail and still maintain an
interactive frame rate. When the scene becomes static, lower
frame rates become acceptable and higher resolution levels
are rendered yielding better image quality.

Several existing methods to generate multi-resolution
polygonal meshes are based on vertex clustering algorithms.
In one of these multi-resolution meshes, the set of vertices
of each level of detail is partitioned into disjoint subsets of
vertices called clusters. The next (lower resolution) level of
detail is determined by collapsing all of the vertices in each
cluster into a single vertex.

To prevent visual artifacts, sometimes referred to as pop-
ping, this correspondence between vertices of consecutive
levels of detail can be used to animate the transition, or to
geomorph, from one level of detail to the next by interpolat-
ing the positions of corresponding vertices as a function of
time.

Some vertex clustering algorithms are based on edge col-
lapses 21 35 8, and others are based on triangle collapses 18.
Because they are designed to operate on manifolds, these
methods are efficient at simplifying meshes composed of a
small number of large parts. Other methods based on edge
collapse are constrained to maintain a constant topological
type 12; 19 40.

An early vertex clustering method due to Borrel and
Rossignac 37 4 uses the geometric proximity of vertex po-
sitions to construct clusters. This method can transform the
topology (connect disconnected parts) and is particularly ef-
ficient at simplifying meshes composed of many small dis-
tinct components. The method produces non-manifold con-
ditions (singular vertices and edges) when pairs of vertices
not connected by edges are clustered. Some edge-collapse
based methods also allow the identification of pairs of ver-
tices not connected by edges by creating virtual edges 11.

It is desirable to transmit a multi-resolution mesh progres-
sively from low to high resolution, so that the client could
render a level of detail as soon as it is received and decod-
ed, but before finishing receiving and decoding the whole
hierarchy. This technique permits a user to interact with the
mesh prior to receiving more detailed levels. Of course, it
is also desirable to transmit only the differences between
consecutive levels of detail, and to transmit this information
in compressed form. But progressive transmission of multi-
resolution polygonal mesh data with many levels of detail
and high compression ratios are difficult to achieve at the

same time. On one end of the scale we have methods to pro-
gressively transmit meshes with as many levels of detail as
vertices 19 34 with low compression efficiency. On the other
end we have methods to compress any multi-resolution mesh
produced by a vertex clustering algorithm with compression
ratios comparable to the best single-resolution schemes 41,
but not progressively.

Furthermore, most polygonal mesh simplification algo-
rithms have been designed for accelerated rendering, without
taking into account the constraints that progressive transmis-
sion and a compressed representation may impose.

12. Progressive Transmission

The Progressive Meshes (PM) method for progressive trans-
mission of triangular meshes proposed by Hoppe 19 is re-
stricted to meshes generated by edge collapses with no
change of topological type. Since it requires O(V log

2
(V))

bits to double the size of a mesh with V vertices 40, the P-
M scheme is not an efficient geometry compression scheme
. However, by reordering the sequence of edge collapses
Hoppe can improve compression efficiency 20. By restrict-
ing the edge collapses to form a forest in the graph of the
mesh, the Progressive Forest Split (PFS) scheme of Taubin
et. al. 40 requires only O(V) bits to double the size of a mesh
with V vertices.

The Progressive Simplicial Complexes (PSC) scheme of
Popovic and Hoppe 34 is an extension of the PM scheme
that transmits both the connectivity and the geometry in pro-
gressive fashion, but allowing changes in topology to occur.
However, the scheme also requires O(V log2(V)) bits to
double the size of the mesh and the compression algorithms
are very costly, requiring several hours to compress a mesh
of moderate size.

A scheme closely related to PM and PSC is the MetaS-
tream format of Abadjev et. al. 1.

A method for representing any mesh generated by vertex
clustering in progressive (but not compressed) form was in-
troduced by Guéziec et. al. 14, together with a data structure
to efficiently organize the LOD hierarchy in the client. The
data structure is progressively loaded as the levels of detail
are received.

A method for representing any mesh generated by vertex
clustering in compressed (but not progressive) form was in-
troduced by Taubin et. al. 41. Compared to PSC, the compres-
sion algorithm of this method requires seconds to compress
similar meshes, requires only a third of the memory, and
achieves compression efficiency comparable with the most
efficient single-resolution schemes. But the data is not trans-
mitted progressively.

c
 Gabriel Taubin 1999.

Gabriel Taubin / 3D Geometry Compression and Progressive Transmission

A B

C D

Figure 11: The forest split operation. A: A triangular mesh
with a forest of edges marked in red. B: Resulting mesh af-
ter cutting through the forest edges and splitting vertices in
the resulting tree boundary loops. C: Simple polygons to be
stitched to the boundary loops. The correspondence between
polygon boundaries and tree boundary loops is implicit. D:
The refined mesh. Normally, to produce a smooth transition,
the vertices are displaced only after the boundary loops are
triangulated. In the figure they have been displaced imme-
diately after the cutting to illustrate the connectivity refine-
ment process.

13. Progressive Forest Split

The Progressive Forest Split (PFS) scheme 40 features an
adaptive refinement scheme for storing and transmitting tri-
angle meshes in progressive and highly compressed form. In
this scheme a manifold triangular mesh is represented as a
low resolution polygonal model followed by a sequence of
refinement operations. The scheme permits the smooth tran-
sition between successive levels of refinement. High com-
pression ratios are achieved by using a new refinement oper-
ation which can produce more changes per bit than existing
schemes. The scheme requires only O(V) bits to double the
size of a mesh with V vertices.

The forest split operation, the refinement operation of the
PFS scheme, is illustrated in Figure 11. It is specified by
a forest in the graph of vertices and edges of the mesh, a
sequence of simple polygons (triangulated with no internal
vertices), and a sequence of vertex displacements. The mesh
is refined by cutting the mesh through the forest, splitting the
resulting boundaries apart, filling each of the resulting tree

boundary loops with one of the simple polygons, and finally
displacing the new vertices.

A multi-resolution mesh represented in the PFS format is
composed of an initial low resolution level of detail followed
by a sequence of forest split operations. The TS method is
used to represent the lowest resolution level of detail because
the PFS representation is a natural extension of the represen-
tation used in this scheme.

13.1. The Forest Split Operation

A forest split operation, illustrated in Figure 11, is repre-
sented by: a forest in the graph of vertices and edges of a
mesh; a sequence of simple polygons; and a sequence of ver-
tex displacements. The mesh is refined by cutting the mesh
through the forest, splitting the resulting boundaries apart,
filling each of the resulting tree boundary loops with one of
the simple polygons, and finally, displacing the new vertices.

Applying a forest split operation involves: 1) cutting the
mesh through the forest edges; 2) triangulating each tree
loop according to the corresponding simple polygon; and 3)
displacing the new vertices to their new positions. As will
be explained in the next section, some of the information re-
quired to perform these steps, such as the correspondence
between trees of the forest and simple polygons, and be-
tween tree boundary loop edges and polygon boundary loop
edges of each corresponding tree-polygon pair, is not given
explicitly, but is based on an implicit convention for enumer-
ating mesh elements.

13.2. Enumeration of mesh elements

Given a triangular mesh with V vertices and T triangles,
we assume that the vertices have consecutive vertex indices
in the range 0; : : : ;V �1, and the triangles have consecutive
triangle indices in the range 0; : : : ;T�1. The edges of the
mesh, which are represented by pairs of vertex indices (i; j)
with i < j, are ordered lexicographically and assigned con-
secutive edge indices in the range 0; : : : ;E�1. The trees in
the forest are ordered according to the minimum vertex in-
dex of each tree. The root vertex vrt of each tree in the forest
is the leaf of the tree with the minimum index. Starting at
the root, the boundary loop created by cutting along the tree
can be traversed in cyclic fashion in one of the two direction-
s. The root edge ert of the tree is the only edge of the tree
which has the root vertex as an endpoint. Of the two trian-
gles incident to the root edge of the tree, the root triangle trt
of the tree is the one with the minimum triangle index. The
root triangle of the tree determines the direction of traver-
sal of the tree boundary loop. Of the two edges of the tree
boundary loop corresponding to the root edge of the tree, the
root edge ert of the tree boundary loop is the one incident to
the root triangle. Figures 12-A,B illustrate these concepts.

Each simple polygon has a boundary edge identified as

c
 Gabriel Taubin 1999.

Gabriel Taubin / 3D Geometry Compression and Progressive Transmission

A B

C D

E F

Figure 12: When a mesh is cut through a tree of edges (red
and green edges in A), a tree boundary loop (red and green
edges in B) is created with each edge of the tree correspond-
ing to two edges of the boundary loop. Some vertex indices
are assigned before cutting (C) to new tree boundary loop
vertices, others are assigned subsequent indices (D). The
hole created by the cutting operation is filled by triangulat-
ing the boundary loop using a simple polygon (E) resulting
in a refined mesh (F) with the same topological type as the
initial mesh.

the root edge ert, with one of the two endpoints labeled as
the root vertex vrt, and the other endpoint labeled as the sec-
ond vertex v2. Figure 12-E illustrates these concepts. The
cyclical direction of traversal of the polygon boundary loop
is determined by visiting the root vertex first, followed by
the second vertex. The correspondence between vertices and
edges in a tree boundary loop and the polygon boundary loop
is defined by their directions of cyclical traversal and by the
matching of their root vertices.

A B

C D

C D

Figure 13: Construction and triangulation of tree boundary
loops. A,B: No tree vertices in the mesh boundary. C,D: A
tree vertex isolated in the mesh boundary requires an extra
tree loop edge. E,F: A tree edge on the mesh boundary edges
does not require an extra tree loop edge, but some of the new
vertex indices may only be used by new triangles. Note that
the tree may have several contacts with the mesh boundary.

13.3. Cutting through forest edges

Cutting through a forest of edges can be performed sequen-
tially, cutting through one tree at time. Each cut is typically
a local operation, affecting only the triangles incident to ver-
tices and edges of the tree. However, as in the TS method, a
single cut could involve all the triangles of the mesh. Cutting
requires duplicating some tree vertices, assigning additional
indices to the new vertices and fixing the specification of the
affected triangles.

As illustrated in Figure 13-A,B, if no tree vertex is a
boundary vertex of the mesh, then the tree is completely sur-
rounded by triangles. Starting at the root triangle, all the cor-

c
 Gabriel Taubin 1999.

Gabriel Taubin / 3D Geometry Compression and Progressive Transmission

ners of affected triangles can be visited in the order of traver-
sal of the tree boundary loop, by jumping from triangle to
neighboring triangle, while always keeping contact with the
tree. This process produces a list of triangle corners, called
the corner loop, whose values need to be updated with the
new vertex indices. While traversing this list, we encounter
runs of corners corresponding to the same vertex index be-
fore the cut. A new vertex index must be assigned to each
one of these runs. To prevent gaps in the list of vertex indices
we first need to reuse the vertex indices of the tree vertices,
which otherwise would not be corner values of any triangles.
The first visited run corresponding to one of these vertices is
assigned that vertex index. The next visited run correspond-
ing to the same vertex index is assigned the first vertex index
not yet assigned above the number of vertices of the mesh
before the cut. This procedure performs the topological cut.
For example, in Figure 12-C, the vertex index values of the
corners in the corner loop list are:

[1233333244444421111] :

The list can be decomposed into 6 runs [11111], [2], [33333],
[2], [444444], and [2]. As shown in Figure 12-D, the vertex
indices assigned to these runs are 1, 2, 3, 8, 4, 9.

A tree with m edges containing no mesh boundary ver-
tices creates a tree boundary loop of 2m edges. This may
not be the case when one or more tree vertices are also part
of the mesh boundary. As illustrated in Figures 13-C,D,E,F,
several special cases, must be considered. These special cas-
es treat collapsed edges incident to or on the mesh boundary
produced by the PFS generation algorithms.

13.4. Triangulating tree boundary loops

By replacing each run of corners in the corner loop with
the assigned vertex index, we construct a new list represent-
ing the tree boundary loop, If the tree boundary loop has m
vertices, so does the corresponding polygon boundary loop.
Each triangle t = fi; j;kg of the simple polygon defines a
new triangle of the refined mesh by replacing the polygon
boundary loop indices i; j;k with their corresponding tree
boundary loop indices. This is done using the list represent-
ing the tree boundary loop as a lookup table. The triangles
of the simple polygon are visited in the order of a depth first
traversal of its dual tree. The traversal starts with the trian-
gle opposite to the root triangle and always traverses the left
branch of a branching triangle first.

13.5. Displacing vertices

To satisfy the smooth transition property, vertex coordinates
corresponding to new vertices are first assigned the same co-
ordinates as the corresponding tree vertices before the cut.
To prevent the appearance of holes, these vertices are dis-
placed after the boundary loops are triangulated. Optionally,
all affected vertices may be repositioned.

A B

Figure 14: Effect of post-smoothing. A: Coordinates quan-
tized to 6 bits per coordinate. B: Result of applying the s-
moothing algorithm of Taubin 39 with parameters n = 16
�= 0:60 �=�0:64.

13.6. Pre and post smoothing

The differences between vertex positions before and after
each forest split operation can be made smaller by repre-
senting these errors as the sum of a global predictor plus a
correction. We use the smoothing method of Taubin 39 as a
global predictor. The method requires only three global pa-
rameters which are included in the compressed data stream.
After the connectivity refinement step of a forest split oper-
ation is applied, the new vertices are positioned where their
corresponding vertices in the previous level of detail were
positioned and the mesh has many edges of zero length (al-
l the new triangles have zero surface area). The smoothing
method of Taubin, which tends to equalize the size of neigh-
boring triangles, brings the endpoints of most such edges
apart, most often reducing the distance to the desired ver-
tex positions. The corrections, the differences between the
vertex positions after the split operation and the result of s-
moothing the positions before the split operation, are then
quantized according to the global quantization grid and en-
tropy encoded. To make sure that the resulting vertex po-
sitions have values on the quantization grid, the smoothed
coordinates must be quantized before computing the correc-
tions. In our experiments, this procedure reduces the total
length of the entropy encoded corrections by up to 20-25%.

14. Progressive Forest Split in MPEG-4

In MPEG-4 the hierarchical mode representation is based on
PFS. The base mesh is encoded according to the enhanced
TS scheme, and followed by one or more refinement lay-
ers. The encoding of each refinement layer is composed of
the entropy encoded sequence of forest edges, a sequence
of simple polygons with no vertex coordinate data, but with
per face and per corner property data associated with the new
triangles, and finally displacements for the vertex coordinate
and properties associated with loop vertices, and faces and
corners incident to loops. Optionally, updates for the remain-

c
 Gabriel Taubin 1999.

Gabriel Taubin / 3D Geometry Compression and Progressive Transmission

Figure 15: Progressive forest split example.

ing vertex coordinates and properties can also be encoded to
allow for deformations to be applied.

15. Conclusions

Geometry Compression has developed very rapidly during
the last four years. Starting from methods to reduce the
amount of data transmitted from the CPU to the graphics
adapter, the technology evolved into sophisticated schemes
to transmit compressed mesh data efficiently and progres-
sively. Some of these methods are even considered mature
enough for standardization. But there is still work to be done.
The limits of the current technology have not been reached.
Because the associated optimization problems are too hard
to attack in any other way, all the existing compression algo-
rithm are based on heuristics. What is the minimum num-
ber of bits necessary to encode a mesh ? Efficient multi-
resolution compression schemes with flexible and controlled
changes in topology are still missing. In my view, the next
challenge is to add a new dimension to the problem: anima-
tion, particularly when the topology needs to change.

References

1. V. Abadjev, M. del Rosario, A. Lebedev, A. Migdal, and
V. Paskhaver. Metastream. In VRML’99 Conference Proceed-
ings, 1999.

2. C. Bajaj, V. Pascucci, and G. Zhuang. Single resolution com-
pression of arbitrary triangular meshes with properties. In
IEEE Data Compression Conference Conference Proceedings,
May 1999.

3. R. Bar-Yehuda and C. Gotsman. Time/space tradeoffs for
polygon mesh rendering. ACM Transactions on Graphics,
15(2):141–152, April 1996.

4. P. Borrel and J. Rossignac. Multi-resolution graphic represen-
tation eploying at least one simplified model for interactive vi-
sualization applications, September 1995. US Patent Number
5,448,686.

5. F. Bossen. On The Art Of Compressing Three-Dimensional
Polygonal Meshes And Their Associated Properties. PhD the-
sis, École Polytechnique Fédérale de Lausanne (EPFL), June
1999.

6. L. Chiariglione. Mpeg home page.
http://www.cselt.it/mpeg.

7. M.M. Chow. Optimized geometry compression for real-time
rendering. In IEEE Visualization’97 Conference Proceedings,
pages 347–354, 1997.

8. J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. A-
garwal, F. Brooks, and W. Wright. Simplification envelopes.
In Siggraph’96 Conference Proceedings, pages 119–128, Au-
gust 1996.

9. M. Deering. Geometric Compression. In Siggraph’95 Confer-
ence Proceedings, pages 13–20, August 1995.

10. F. Evans, S.S. Skiena, and A. Varshney. Optimized triangle
strips for fast rendering. In Proceedings, IEEE Conference on
Visualization’96, 1996.

11. M. Garland and P. Heckbert. Surface simplification using
quadric error metrics. In Siggraph’97 Conference Proceed-
ings, pages 209–216, August 1997.

12. A. Guéziec. Surface simplification with variable tolerance. In
Second Annual International Symposium on Medical Robotics
and Computer Assisted Surgery, pages 132–139, Baltimore,
MD, November 1995.

13. A. Guéziec, G. Bossen, F. abd Taubin, and C. Silva. Efficien-
t compression of non-manifold meshes. In IEEE Visualiza-
tion’99 Conference Proceedings, October 1999. (to appear).

14. A. Guéziec, G. Taubin, F. Lazarus, and W. Horn. Simplicial
maps for progressive transmission of polygonal surfaces. In
VRML 98. ACM, February 1998.

15. A. Guéziec, G. Taubin, F. Lazarus, and W. Horn. A framework
for streaming geometry in vrml. IEEE Computer Graphics and
Applications, 19(2):68–78, March-April 1999.

16. A. Guéziec, G. Taubin, F. Lazarus, and W.P. Horn. Converting
sets of polygons to manifold surfaces by cutting and stitching.
In IEEE Visualization’98 Conference Proceedings, pages 383–
390, October 1998.

17. S. Gumhold and W. Strasser. Real time compression of trian-
gle mesh connectivity. In Siggraph’98 Conference Proceed-
ings, pages 133–140, July 1998.

18. B. Hamann. A data reduction scheme for triangulated surfaces.
Computer Aided Geometric Design, 11(2):197–214, 1994.

19. H. Hoppe. Progressive meshes. In Siggraph’96 Conference
Proceedings, pages 99–108, August 1996.

c
 Gabriel Taubin 1999.

Gabriel Taubin / 3D Geometry Compression and Progressive Transmission

20. H. Hoppe. Efficient implementation of progressive meshes.
Computers & Graphics, 1998.

21. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. Mesh optimization. In Siggraph’93 Conference
Proceedings, pages 19–25, July 1993.

22. Silicon Graphics Inc. Gl programming guide, 1991.

23. A. Itai and M. Rodeh. Representation of graphs. Acta Infor-
matica, (17):215–219, 1982.

24. E.S. Jang, S.J. Kim, M. Song, M. Han, S.Y. Jung, and Y.S. Seo.
Results of ce m5 error resilient 3d mesh coding, December
1998. ISO/IEC JTC 1/SC 29/WG 11 Input Document No.
M4251.

25. K. Keeler and J. Westbrook. Short encodings of planar graphs
and maps. Discrete and Applied Mathematics, (58):239–252,
1995.

26. R. Koenen. Mpeg-4 : Multimedia for our time. IEEE Spec-
trum, 36(2):26–33, February 1999.

27. J. Li and C.C. Kuo. Progressive Coding of 3D Graphics Mod-
els. Proceedings of the IEEE, 86(6):1052–1063, June 1998.

28. Mpeg-4 applications (seoul revision), March 1999. ISO/IEC
JTC1/SC29/WG11 Document No. W2724.

29. Mpeg-4 overview (seoul revision), March 1999. ISO/IEC
JTC1/SC29/WG11 Document No. W2725.

30. Mpeg-4 requirements (seoul revision), March 1999. ISO/IEC
JTC1/SC29/WG11 Document No. W2723.

31. ISO/IEC 14496-1 Information technology - Coding of audio-
visual objects, Part 1: Systems (MPEG-4 v.1) , December
1998. ISO/IEC JTC 1/SC 29/WG 11 Document No. W2501.

32. ISO/IEC 14496-1 Information technology - Coding of audio-
visual objects, Part 1: Systems / PDAM1 (MPEG-4 v.2),
March 1999. ISO/IEC JTC 1/SC 29/WG 11 Document No.
W2739.

33. J. Neider, T. Davis, and M. Woo. OpenGL Programming
Guide. Addison-Wesley, MA, USA, 1997.

34. J. Popović and H. Hoppe. Progressive simplicial complexes. In
Siggraph’97 Conference Proceedings, pages 217–224, August
1997.

35. R. Ronfard and J. Rossignac. Full-range approximation of tri-
angulated polyhedra. Computer Graphics Forum, 15(3), 1996.
Proc. Eurographics’96.

36. J. Rossignac. Edgebreaker: Connectivity compression for tri-
angular meshes. IEEE Transactions on Visualization and
Computer Graphics, 5(1):47–61, January-March 1999.

37. J. Rossignac and P. Borrel. Geometric Modeling in Comput-
er Graphics, chapter Multi-resolution 3D approximations for
rendering complex scenes, pages 455–465. Springer Verlag,
1993.

38. R.E. Tarjan. Data Structures and Network Algorithms. Num-
ber 44 in CBMS-NSF Regional Conference Series in Applied
Mathematics. SIAM, 1983.

39. G. Taubin. A signal processing approach to fair surface design.

In Siggraph’95 Conference Proceedings, pages 351–358, Au-
gust 1995.

40. G. Taubin, A. Guéziec, W. Horn, and F. Lazarus. Progressive
forest split compression. In Siggraph’98 Conference Proceed-
ings, pages 123–132, July 1998.

41. G. Taubin, W. Horn, and P. Borrel. Compression and transmis-
sion of multi-resolution clustered meshes. Technical Report
RC-21398, IBM Research, February 1999.

42. G. Taubin, W.P. Horn, and F. Lazarus. The
VRML Compressed Binary Format, June 1997.
http://www.research.ibm.com/vrml/binary.

43. G. Taubin, W.P. Horn, F. Lazarus, and J. Rossignac. Geometric
Coding and VRML. Proceedings of the IEEE, 86(6):1228–
1243, June 1998.

44. G. Taubin and J. Rossignac, editors. 3D Geometry Compres-
sion, Siggraph’98 Course Notes 21, July 1998.

45. G. Taubin and J. Rossignac. Geometry Compression through
Topological Surgery. ACM Transactions on Graphics,
17(2):84–115, April 1998.

46. G. Taubin and J. Rossignac, editors. 3D Geometry Compres-
sion, Siggraph’99 Course Notes 22, August 1999.

47. C. Touma and C. Gotsman. Triangle mesh compression. In
Graphics Interface Conference Proceedings, Vancouver, June
1998.

48. G. Turán. On the succint representation of graphs. Discrete
Applied Mathematics, 8:289–294, 1984.

49. The Virtual Reality Modeling Language.
http://www.web3d.org, September 1997. ISO/IEC
14772-1.

c
 Gabriel Taubin 1999.

