
EUROGRAPHICS ’99 STAR — State of the Art Report

es

o
or-
es
ery

rts.
ci-

-
n-

a
ata

n

le
t

 the
at
s,
o-
Graph Visualisation and Navigation in Information
Visualisation

I. Herman, G. Melançon, M. S. Marshall

Centre for Mathematics and Computer Sciences (CWI)

Kruislaan 413

1098 SJ, Amsterdam, The Netherlands

{I.Herman, G.Melancon, M.S.Marshall}@cwi.nl

Abstract
This is a survey on graph visualisation and navigation techniques, as used in information visualisation. Graphs
appear in numerous applications, like web browsing, state–transition diagrams, computer data structures, etc.
The ability to visualise and to navigate in these potentially very large, abstract graphs is often a crucial part of
an application. Information visualisation has specific requirements, which means that this survey approaches
the results of traditional graph drawing from a different perspective than the traditional surveys; as such it is
a useful complementary survey to those.

Keywords: information visualisation, graph visualisation, graph drawing, navigation, focus+context, fish–eye,
clustering.

1998 Computing Reviews Classification System: G.2.2., H.3.3, H.4.m, H.m, I.3.4, I.3.m, J.m

1. Introduction

Although the visualisation of graphs is the subject of this
survey, it is not about graph drawing in general. Excellent
bibliographic surveys3, books4, or even on–line tutorials20

exist for graph drawing. Instead, the handling of graphs is
considered with respect to information visualisation. To un-
derstand why graphs play a special and important role in
this area, we will briefly characterize information visualisa-
tion before going into the technical details of our subject.

1.1 Information visualisation

Information visualisation can be defined as the visualisation
and navigation of abstract data structures. Although many
fundamental papers on information visualisation appeared
more than 10 years ago, it is only in the past few years that
the field began to emerge as a separate discipline.

The distinction between scientific visualization and in-
formation visualisation is more a historical artifact than a
logical distinction. Judging purely from their names, one
could reasonably expect scientific visualisation to be a sub-
field of information visualisation. However, scientific visu-
alisation was developed much earlier in response to the
need of scientists and engineers to view data in graphical
format. As the graphical display of data evolved, applica-
tions were developed which no longer fit neatly into the cat-
egory. Despite the artificiality of the distinction, it is

informative to distinguish information visualisation from
scientific visualisation. There are three essential differenc
between the two areas:

1) Scientific visualisation is usually closely related t
mathematical structures and models. In contrast, inf
mation visualisation looks at abstract data structur
such as computer program structures, database qu
results, hypermedia structures, or organisational cha
The major difference is that the data visualised by s
entific visualisation systems often have an inherent
geometry (e.g., the airflow around the wing of an aero
plane) which is not the case for most of the data ha
dled by information visualisation systems. As
consequence, the geometric representation for the d
has to be “invented” by implementors in informatio
visualisation†.

2) Human–computer interaction issues play a central ro
in information visualisation. It is not a coincidence tha
many research results are published, for example, at
yearly ACM SIGCHI conferences. The reason is th
users of scientific visualisation are usually expert
whereas users of information visualisation can be pe
ple at all levels of expertise.

†A noteworthy exception is the visualisation of a physical net-
work, where each node corresponds to a physical location5.
© I. Herman, G. Melançon, & M.S. Marshall, 1999

http://www.cwi.nl/InfoVisu/

I. Herman et al. / Tree Visualisation and Navigation

data
ion
all

ta-
pre-

s),
t-
ge-
s
e-
ral

al-
he
nce
it
sue
-
e 1).
lem
e-
s is
en-
on
 it
for

ad
lo-

ni-
g;
al
ve
the

on
nd
s

tion
y
s,
nt
 5).
ent,
e

c-

ng
h
e,
i-

le-
3) Finally, the requirements of the target computing plat-
forms are usually different. Scientific visualisation
applications typically run on high–end computing sys-
tems such as graphics workstations, supercomputers,
and CAVE systems. This is in sharp contrast to infor-
mation visualisation systems which are more likely to
run on “everyday” computers.

Of course, it is not our intention to present information vis-
ualisation as “conflicting” with scientific visualisation. Ac-
tually, much more relates these fields than separates them,
such as the use of visual paradigms, the strong emphasis on
interaction, their user–centric nature, to name just a few
common aspects. We regard it as a very healthy develop-
ment that, in the past few years, both IEEE’s Visualiza-
tion’XX conference and the Eurographics Visualisation
workshop have adopted information visualisation as a sep-
arate and explicit track, alongside scientific visualisation
and volume visualisation.

1.2 Graphs in Information Visualisation

Information visualisation has become a large field and
“sub–fields” are beginning to emerge (see for example Card
et al.12 for a recent collection of papers from the last dec-
ade). A simple way to determine the applicability of graph
visualisation is to consider the following question: is there
an inherent relation among the data elements to be visual-
ised? If the answer to the question is “no”, than data ele-
ments are “unstructured” and the goal of the information
visualisation system might be to help discover relations
among data through visual means. If, however, the answer
to the question is “yes”, then the data can be represented by
the nodes of a graph, with the edges representing the rela-
tions.

Information visualisation research dealing with unstruc-
tured data has a distinct flavour. However, such research is
not the subject of this survey. Instead, our discussion focus-
es on representations of structured data, i.e., where graphs
are the fundamental structural representation of the data.
Information visualisation has specific requirements, which
means that we will approach the results of traditional graph
drawing from a different perspective than the traditional
surveys3,4,29. We hope that this approach will make the
overview useful and interesting.

1.3 Typical Application Areas

Graph visualisation has many areas of application. Most
people have encountered a file hierarchy on a computer sys-
tem. A file hierarchy can be represented as a tree (a special
type of graph). It is often necessary to navigate through the
file hierarchy in order to find a particular file. Anyone who
has done this has probably experienced a few of the prob-
lems involved in graph visualisation: “Where am I?”
“Where is the file that I'm looking for?” Other familiar
types of graphs include the hierarchy illustrated in an organ-
isational chart and taxonomies which portray the relations
between species. Web site maps are another application of
graphs as well as browsing history. In biology and chemis-
try, graphs are applied as evolutionary trees, molecular
maps, genetic maps, biochemical pathways, and protein
functions. Other areas of application include object–orient-

ed systems (class browsers), data structures (compiler
structures in particular), real–time systems (state–transit
diagrams, Petri nets), data flow diagrams, subroutine–c
graphs, entity relationship diagrams (e.g. UML and da
base structures), semantic networks and knowledge–re
sentation diagrams, project management (PERT diagram
logic programming (SLD–trees), VLSI (circuit schema
ics), virtual reality (scene graphs), and document mana
ment systems. Note that the information isn’t alway
guaranteed to be in a purely hierarchical format — this n
cessitates techniques which can deal with more gene
graphs than trees.

1.4 Key Issues in Graph Visualisation

The size of the graph to view is a key issue in graph visu
isation. Large graphs pose several difficult problems. If t
number of elements is large it can compromise performa
or even reach the limits of the viewing platform. Even if
is possible to layout and display all the elements, the is
of viewability or usability arises, because it will become im
possible to discern between nodes and edges (see Figur
In fact, usability becomes an issue even before the prob
of discernability is reached. It is well known that compr
hension and detailed analysis of data in graph structure
easiest when the size of the displayed graph is small. In g
eral, displaying an entire large graph may give an indicati
of the overall structure or a location within it but makes
difficult to comprehend. These issues form the context
most of this survey.

Other than the usual reference to information overlo
and the occasional reference to the gestalt principle of c
sure, papers in information visualisation rarely apply cog
tive science and human factors. This is for no lack of tryin
very few of the findings in cognitive science have practic
applications at this time and very few usability studies ha
been done. For this reason, an objective evaluation of
merits of a given approach is extremely difficult.

The rest of this survey is organised as follows: In Secti
2, we try to give an impression of graph layout issues a
limitations with regard to scaleability. Then, we discus
several approaches to navigation of large graphs (Sec
3), followed by methods of reducing visual complexit
through reorganisation of the data (Section 4). Afterward
we discuss a few application systems which impleme
many of the techniques described in this survey (Section
To help the reader pursue further research and developm
we have listed the various sources of information which w
found particularly important for graph visualisation (Se
tion 6) and provided an extensive list of references.

2. Graph Layout

This section looks at the current results in graph drawi
and layout algorithms, but from the point of view of grap
visualisation in information visualisation. As we shall se
this point of view differs, in many respects, from the trad
tional view of the Graph Drawing community. We’ll give
an account of the available results and discuss their re
© I. Herman, G. Melançon, & M.S. Marshall, 1999

I. Herman et al. / Tree Visualisation and Navigation

 a
ted
and
 for

ph

n-
is-

es
me
uc-
oss-

es
n-
m-
es
vance for graph visualisation, although, in general, we will
not go too far into the technical details. For those desiring
more information, we recommend the excellent book of
Battista et al.4 as one of the best starting points.

2.1 Background of Graph Drawing

The Graph Drawing community† grew around the yearly
Symposia on Graph Drawing (GD ’XX conferences),
which were initiated in 1992 in Rome. Springer–Verlag
publishes the proceedings of the conference in the LNCS
series, which contains new layout algorithms, theoretical re-
sults on their efficiency or limitations, and systems demon-
strations. The recent electronic Journal of Graph
Algorithms and Applications is dedicated to papers con-
cerned with design and analysis of graph algorithms, as well
as with experiences and applications.

The basic graph drawing problem can be put simply:
given a set of nodes with a set of edges (relations), calculate
the position of the nodes and the curve to be drawn for each
edge. Of course, this problem has always existed, for the
simple reason that a graph is often defined by its drawing;
indeed, Euler himself relied on a drawing to solve the
“Königsberger Brückenproblem” in his 1736 paper (see the
recent book of Jungnickel65). The annotated bibliography
by Battista et al.3 gathers hundreds of papers studying what
a good drawing of a graph is. And that is where the problem
becomes more intricate: it requires the definition of proper-
ties and a classification of layouts according to the type of
graphs to which they can be applied. For example, a familiar
property is planarity — whether it is possible to draw a
graph on the plane with no intersecting edges. Layout algo-
rithms may be categorised with respect to the type of layout
they generate. For example, grid layouts position nodes of a
graph at points with integer coordinates. Other categories of
layouts are defined by the methodology on which they are

based; for example, non–deterministic approaches form
category which uses algorithms such as force–direc
models or simulated annealing. Each class of graphs
layouts thus generates its own set of problems. Planarity,
example, raises problems such as:
• Planarity tests for graphs: is it possible to draw a gra

without edge–crossings?
• Planar layout algorithms according to various co

straints: given that a graph is planar, find a layout sat
fying a group of constraints.

Many constraints in use are also expressed in terms of aes-
thetic rules imposed on the final layout; nodes and edg
must be evenly distributed, edges should all have the sa
length, edges must be straight lines, isomorphic sub–str
tures should be displayed in the same manner, edge–cr
ings should be kept to a minimum, etc.‡ Trees have received
the most attention in the literature. Consequently, additional
aesthetics rules have also been formulated for them. For ex-
ample, nodes with equal depth should be placed on a same
horizontal line, distance between sibling nodes is usually
fixed, etc. See again the book of Battista et al.4 for further
examples.

The Reingold and Tilford algorithm for trees89,106 (see
Figure 1) is a good example of a layout algorithm achieving
these aesthetics goals. Isomorphic subtrees are laid out in
exactly the same way, and distance between nodes is a pa-
rameter of the algorithm. On the other hand, the more
straightforward and naive algorithm for displaying a tree,
consisting of distributing the available horizontal space to
subtrees according to their number of leaves, actually fails
to achieve some of the aesthetic rules listed above.

Although the adjective “aesthetic” is used, some rul
were originally motivated by more practical issues. For i
stance, minimisation of the full graph area might be an i
portant criterion in applications. Although some of the rul

†http://www.cs.brown.edu/people/rt/gd.html

Figure 1: Tree layout for a moderately large graph

‡Actually, some aesthetics are quite arbitrary and are not seen as
absolute rules any more87,88.
© I. Herman, G. Melançon, & M.S. Marshall, 1999

http://www.cs.brown.edu/people/rt/gd.html

I. Herman et al. / Tree Visualisation and Navigation

ef-
of

be
o
hs
p-

s of
od

al-
ral
ale
us-
the
ty
ular
or
but
e-

 be-
it
es.
een
 2.5
d a
of
clearly apply to a certain category of graphs or layouts only,
others have a more “absolute” character. Furthermore, each
of the rules defines an associated optimisation problem,
used in a number of non–deterministic layout algorithms22.

There has been some work lately which questions the ab-
solute character of those rules, however. Usability studies
were conducted in order to evaluate the relevance of these
aesthetics for the end–user. Purchase87 demonstrates that
“reducing the crossings is by far the most important aesthet-
ic, while minimising the number of bends and maximizing
symmetry have a lesser effect”. Her work concludes by pri-
oritising these aesthetics; see also Purchase et al.88 for more
details. Other authors7,23 report differences in the percep-
tion of a graph depending on its layout. Unfortunately, usa-
bility studies necessitate a great effort, both to realise the
experimentation itself and to analyse its results properly;
but we regard this line of work as essential for information
visualisation, too. They have recently gained credibility in
the graph visualisation community as well, recognising
their contribution to help focus on important issues in the ar-
ea.

A wide variety of tasks related to graph drawing have
been studied: layering a graph, turning it into an acyclic di-
rected graph, planarisation of a graph, minimising the area
occupied by a layout, minimising the number of bends in
edges, etc. Unfortunately, many of the associated algo-
rithms are too complex to be practical for applications. On

the positive side, this has motivated the development of
fective heuristics to overcome the complexity of some
these problems4,29.

In graph visualisation, a major problem that needs to
addressed is the size of the graph. Few systems can claim t
deal effectively with thousands of nodes, although grap
with this order of magnitude appear in a wide variety of a
plications. NicheWorks109 or H3Viewer83 are among the
few systems that claim to handle data sets with thousand
elements. The size of a graph can make a normally go
layout algorithm completely unusable. Indeed, a layout
gorithm may produce good layouts for graphs of seve
hundred nodes, but this does not guarantee that it will sc
up to several thousand nodes. For example, Figure 1 ill
trates a tree with a few hundred nodes laid out using
classical Reingold and Tilford algorithm. The high densi
of the layout comes as no surprise, and changing partic
parameters of the algorithm will not improve the picture f
the graph. Other 2D layout techniques could be used,
most layout algorithms suffer from the same problem. B
cause the layout is so dense, interaction with the graph
comes very difficult. Occlusions in the picture make
impossible to navigate and query about particular nod
The use of 3D or of non–Euclidean geometry have also b
proposed to alleviate these problems; Sections 2.4 and
give more details on these techniques. However, beyon
certain limit, no algorithm will guarantee a proper layout

Figure 2: Overview of graph layout algorithms
(Reproduced from Mutzel et al.84.

Courtesy of T. Mutzel, Max–Planck–Institut Saarbrücken, Germany).

Visibility representation

Convex Layout

FPP Layout

Schnyder Layout

No crossings

Ranking

Cross. Min.

Compute Coord.

Barycenter heuristic

Median Heuristic

Split Heuristic

Greedy Insert

Greedy Switch

Cross. Min. Opt.

DFS ranking

Hierarchy ranking

Planar subgraph

Acyclic subgraph

Fast Hierarchy Layout

Rank Assignment

(Two Layer)
Crossing Minimisation

Hierarchy Layout

Subgraph (extraction)

Tree Layout

Sugiyama Layout

Spring Layout

Tutte Layout

Planar Layout
Planar Grid Layout

Grid Layout

Planarise subgraph

Insert edges

Planarisation

Shortest Path

Edge Insertion

Layout

Compaction

Augment.
© I. Herman, G. Melançon, & M.S. Marshall, 1999

I. Herman et al. / Tree Visualisation and Navigation

ec-
ed

n

her
di-

re
re-
–

 is
 ex-
old
e-
m-
n

3.1

ee
r-
large graphs; there is simply not enough space on the
screen. In fact, from a cognitive perspective, it does not
even make sense to display a very large amount of data.
Consequently, a first step in the visualisation process is of-
ten to cut down the size of the graph to display. As a result,
classical layout algorithms still remain usable tools for vis-
ualisation, but only when combined with these techniques.

Other properties of a layout algorithm can be critical
when navigating through a graph. The concept of predicta-
bility has been identified as an important and necessary as-
pect of layout algorithms55,86. What is meant by
predictability is that two different runs of the algorithm, in-
volving the same or similar graphs, should not lead to radi-
cally different visual representations. This property is also
referred to in the literature as “preserving the mental map”
of the user79. Predictability is very often ignored during
analysis of classical layout algorithms, which are often only
used to produce a static view of a graph.

Another important issue is time complexity. Any visual-
ization system needs to provide near real–time interaction,
where updates must be done in very short time intervals.
Having an accurate estimate of the time complexity of an al-
gorithm can be of great help for the implementation of large
systems when planning which algorithm to apply.

2.2 Traditional Layout — an Overview

We will briefly review existing layout techniques in graph
drawing, keeping the issues of predictability and time com-
plexity in mind. Figure 2 gives a classification of existing
layout techniques. This classification is the work of Mutzel
et al.84; most of the algorithms are described in the book of
Battista et al.4. We will concentrate on the Layout box con-
taining a list of possible layout types.

A classical Tree Layout will position children nodes “be-
low” their common ancestor. The algorithm by Reingold
and Tilford89,106 is probably the best known layout tech-
nique in the tree layout category (see Figure 1). It can be
adapted to produce top–down as well as left–to–right tree
layout, and can also be set to output grid–like positioning.
H–tree layouts are also classical representations for binary
trees98 which only perform well on balanced trees. Eades30

gives a variation of the algorithm that behaves well in gen-
eral (see Figure 3). The radial positioning by Eades30 places
nodes on concentric circles according to their depth in the
tree (see Figure 4). A subtree is then laid out over a sector

of the circle and the algorithm ensures that two adjacent s
tors do not overlap (although this condition can be ignor
to obtain relatively good drawings on average57,109). The
cone tree16,92 algorithm can be used to obtain a “balloo
view” of the tree by projecting it onto the plane16,62, where
sibling subtrees are included in circles attached to the fat
node. It is also possible to compute the nodes’ position
rectly, without reference to cone trees76 (see Figure 5; Sec-
tion 2.4 describes cone trees in more detail).

The Reingold and Tilford algorithm produces a mo
classical drawing in the sense that the drawing clearly
flects the intrinsic hierarchy of the data. The radial and H
tree positioning are different in this respect, because it
less clear where the root of the tree is and thus one might
plore the graph in a less hierarchical fashion. The Reing
and Tilford, H–tree, radial, and balloon layouts are all pr
dictable. Tree layout problems usually have the lowest co
plexity which is linear in the number of nodes. As we ca
see, although the Tree Layout box occupies only a small
area of Figure 2, it contains a variety of layouts. Chapter
of the book by Battista et al.4 is a good starting point for a
further overview of these tree layout techniques. Two tr
layout algorithms, which are not part of the “traditional” a

Figure 3: H–tree layout

Figure 4: Radial view

Figure 5: Balloon view
© I. Herman, G. Melançon, & M.S. Marshall, 1999

I. Herman et al. / Tree Visualisation and Navigation

his
al-
rob-
le
ve
d
 to

re-

d
od

ot-
 the
 to
its
ys-
 to
by
es

ss-

ob-

ed
pt
or
he
dth
can
ph
ck
m
er-

be
r-

eir

g
uts

sit-

al
d

ts
lay-
ave

ut

be
f
 on
si-
n

senal, are also worth mentioning here: tree–maps63 (see
Figure 6), and onion graphs99, which represent trees by se-
quences of nested boxes.

A separate box at the bottom of Figure 2 is devoted to
Planarity. This is a critical issue in graph drawing, because
planarity of a graph may be an important constraint imposed
by practical applications (such as graphs representing print-
ed circuit boards). The complexity for testing planarity for
undirected graphs can be linear58 (see Chapter 3.3 in Battis-
ta et al.4; see also Mehlhorn and Mutzel77 for a discussion
on implementation issues). However, many applications
impose the additional requirement that edges are all in the
same direction (planar drawings often make use of edges
going around some nodes to avoid crossings). This condi-
tion, called upward planarity, turns the original problem
into an NP problem (see Garg and Tamassia48; see also
Chapter 6 in Battista et al.4).

In the case of information visualisation it makes sense to
test for planarity only if there are very good reasons to be-
lieve that a graph might be planar. Indeed, a planar graph
with N nodes has a linear number of edges2,24. It does make
sense, however, to check for planarity when dealing with a
small and sparse graph, such as a subgraph obtained by
clustering a larger graph (see Section 4). In general, howev-
er, we can safely say that planarity is not a central issue for
graph visualisation in information visualisation.

The Sugiyama Layout box included in Figure 2 is named
after the seminal work by Sugiyama on layout for general
directed graphs101. The basic approach for laying out a di-
rected graph is to first decide on a layering of its nodes; that
is, assign to each node a layer number and place nodes of a
given layer in a certain order. Several layering techniques
exist, the majority of which rely on the extraction of an acy-
clic subgraph, that is a subgraph containing all nodes of the
original graph, but such that once nodes are placed on their
respective layers, edges will all point in the same direction
(usually downwards). Another solution is not to extract a
subgraph but turn the original graph into an acyclic one by
reverting the direction for a subset of the edges.

Once the nodes have been assigned to layers, one must
position the nodes within the same layer following an im-
posed order. A major effort has been invested in edge–
crossing minimisation4,29 since the crossing of edges has
been recognized as a major obstacle to the readability of
graphs87,88. This is usually done by minimising the number

of edge–crossings between two consecutive layers. T
minimisation step is the really complex core of the whole
gorithm. Note that these strategies do not address the p
lem of minimising the number of crossings in the who
graph: even with the restriction of looking at consecuti
layers only, minimisation of edge–crossings is difficult an
complex. In fact, Garey and Johnson proved the problem
be NP–hard47 and Eades and Whitesides proved the cor
sponding decision problem to be NP–complete31.

The complexity of a proper minimisation has motivate
the development of various heuristics for computing a go
order for the nodes on a layer. Tutte103 was the first to pro-
pose a heuristics: starting from an order on the top and b
tom layers, the coordinates of a node are defined to be
barycenter of those of its neighbours. This corresponds
the intuitive idea that a node should be kept “close” to
neighbours. The solution is then obtained by solving a s
tem of linear equations. One variation to this scheme is
compute barycentric coordinates by performing a layer
layer descent in the graph. More generally, the four box
on the left of the figure correspond to various pre–proce
ing possibilities for the algorithm in the Sugiyama Layout
category. New improvements and perspectives to the pr
lem were published recently64,70, which include a detailed
report on existing techniques71, and a comparison of exist-
ing heuristics72.

The critical element of the general scheme for direct
graphs is its high complexity, although it might be ke
within reasonable bounds if the size of the graph —
should we say subgraph — to be drawn is kept small. T
ranking process in itself has a low cost; indeed, a brea
first search of the graph returns an acyclic subgraph that
be used for layering. However, the choice of this subgra
can determine the quality of the final layout; we come ba
to that issue later. It is also not clear whether any algorith
in this class will be predictable. Some approaches can c
tainly be made predictable, but then the price to pay will
a greater complexity due to the loss in flexibility in reorde
ing the nodes on a layer. Battista et al. give a detailed ac-
count of edge–crossing minimisation in Chapter 9 of th
book4.

The Spring Layout box stands for all non–deterministic
layout techniques, also called Force–Directed Methods.
Eades28 was the first to propose this approach in graph
drawing, modelling nodes and edges of a graph as physical
bodies tied with springs. Using Hooke’s law describin
forces between the bodies he was able to produce layo
for (undirected) graphs. Since then, his method was revi
ed and improved22,41,43,66. Mathematically, the methods
are based on an optimisation problem; different physic
models lead to algorithms of different complexities an
they produce layouts of varying quality. Spring layou
have been used successfully to produce well balanced
out for graphs. In some cases, their output can even beh
well with respect to edge–crossing minimisation witho
any supplementary efforts41.

In general, however, force–directed methods can
rather slow. Each iteration involves a visit of all pairs o
nodes in the graph and the quality of the layout depends
the number of full iterations: each step improves the po
tions following the underlying mathematical model. Eve

Figure 6: Tree–maps; rectangles with identical shading belong
to the same level of a (tree) hierarchy.

(Adapted from Johnson and Schneiderman63)
© I. Herman, G. Melançon, & M.S. Marshall, 1999

I. Herman et al. / Tree Visualisation and Navigation

g an
r

 for

a-

d

n-
ble
ust
mi-
rily
ns
go-
or
s as
er
ce,

 of
r-
 of
vi-

p-
for
ial

dent
 as
son

8
ew
it is

di-
one of the best variants41 is still estimated to work with a
complexity of O(N3), where N is the number of nodes in the
graph. Moreover, two different runs of the algorithm on al-
most identical graphs might produce radically different lay-
outs; in other words, the methods may be highly
unpredictable. This makes them less interesting for infor-
mation visualisation, since unpredictability can be a major
problem for interaction. However, in some cases, the lack of
predictability can be compensated if the graph is small or
sparse, by animating changes in the layout to help the user
in adapting to the new drawing60. For further information
on force–directed methods, the reader should refer to the
comparison of non–deterministic techniques of Branden-
burg et al.9 or Chapter 10 in the book of Battista et al.4.

We shall not discuss layouts on grids. We refer the read-
er to Battista et al.4 for details on that as well as for learning
more about the additional techniques included in the boxes
“Compaction” and “Augmentation” on the right side of
Figure 2. None of these techniques play a central role in
graph visualisation.

2.3 Spanning Trees

A general problem with the majority of the available tech-
niques is that they are only applicable for relatively small
graphs†. The “traditional” concerns of Graph Drawing be-
come much less relevant in graph visualisation, which typ-
ically deals with very large graphs. In general, it makes no
sense to test a graph of several hundreds of nodes for
planarity or to try to minimize edge–crossings. Often the
most obvious and practical solution is simply to layout a
spanning tree for the graph. As we have already seen, tree
layout algorithms16,30,89,106 have the lowest complexity
and are simpler to implement. The problem is then trans-
formed into one of finding a spanning tree. That option in-
volves laying out a graph based on the positioning of a tree
containing all nodes of the graph, which had been previous-
ly extracted from the graph. Additional edges are then add-
ed to that of the tree. The literature in graph theory proposes
a long list of algorithms to compute spanning trees for
graphs, both for the directed and undirected cases (see
Jungnickel65). Incidentally, using a spanning tree to layout
a graph can also be a solution to gain predictability of the
layout. Although spanning trees are obviously not the only
layout approach in graph visualisation, they certainly do
and will play an important role.

Extracting a spanning tree with no particular property
can be done easily. One approach is to visit the nodes of the
graph through a breadth first search and collect edges to
form a tree. The search can start from a node that is more
likely to “act” as the root of the extracted tree; a node whose
distance to all other nodes is minimal is a good candidate8.
More sophisticated algorithms have been designed to satis-
fy various optimisation goals. If a weight function exists for
the graph, algorithms exist to compute spanning trees min-
imising (or maximising) the total weight of the tree. One so-
lution is to iteratively build a tree by adding edges adjacent

to the set of already selected nodes, each time selectin
edge with minimal (maximal) weight. Different choices fo
the weight function will yield different solutions and it will
also affect the complexity of the extracting process (see,
example, Chapters 4 and 5 of Jungnickel65). The complex-
ity of this task varies according to the variant used. The n
ive solution has a complexity of O(N2), better solutions
exist which bring the complexity down to or to

 (where N and E denote the number of nodes an
edges of the graph, respectively).

A weight function can be used to extract different spa
ning trees and, consequently, to obtain different possi
layouts for the same graph (although the implementor m
be aware of the fact that a spanning tree realising an opti
sation goal for a given weight function does not necessa
produce a good view of the graph). Use of weight functio
can also be applied to directed acyclic graphs, to avoid
ing through the task of edge–crossing minimisation. F
large and dense acyclic directed graphs, the use of layer
a weight function (the weight of a node or edge is its lay
number) has proven to give good results (see, for instan
Herman et al.57).

2.4 3D Layout

One popular technique is to display graphs in 3D instead
2D. The hope is that the extra dimension would give, lite
ally, more “space”, and that this would ease the problem
displaying large structures. Furthermore, the user can na
gate to find a view without occlusions. The simplest a
proach is to generalise classical 2D layout algorithms
3D. Figure 7, for example, shows a 3D version of a rad
tree algorithm, while Figure 8 is a generalisation90 of the 2
dimensional approach using nested boxes99. Most force–di-
rected methods are also described in dimension indepen
terms which allows them to be generalised to 3D (such
the approaches based on simulated annealing by David
and Harel22 and also from Cruz and Twarog21). The reader
may find further examples in the overview by Young110.

In spite of their apparent simplicity, Figures 7 and
show that displaying graphs in 3D can also introduce n
problems. Objects in 3D can occlude one another, and
also difficult to choose the best “view” in space33. As a con-
sequence, virtually all 3D displays of graphs include ad

†This is clearly shown by the size of the graphs submitted each
year to the so–called Graph Drawing Contest, although bigger
graphs — and also graphs coming from real–life situations —
have also been included in recent years.

O N Nlog()
O E Nlog()

Figure 7: 3D version of a radial algorithm
(Courtesy of S. Benford, University of Nottingham, UK)
© I. Herman, G. Melançon, & M.S. Marshall, 1999

I. Herman et al. / Tree Visualisation and Navigation

nd
e
m–
t at
eong
ng

so-
re

r can
sen
to-
er-
at
ul-

ge
-
l–
x

tem
I

he
ce)
 on
 are

the
e
ec-
big

to
ed

tc.

nd
on
e
h
D

the
are
tional visual cues, like transparency, depth queuing, etc.
They also allow the user to interactively change the view by
“moving around” in space. But the ability to change per-
spective adds another difficulty; common practices such as
the minimisation of edge–crossings is less rewarding if the
user can change the perspective and see edge–crossings
from another angle. However, it is the job of the application
to provide the best possible view of the information in the
perspective initially provided to the user, so aesthetics can-
not be dismissed.

The cone tree92,93 (see Figure 9) is one of the best
known 3D graph (in this case, tree) layout techniques in
graph visualisation†. In contrast to the previous examples,
cone trees have been developed directly for 3D, instead of
generalising another 2D algorithm. Mathematically, the
layout is quite simple. Nodes are placed at the apex of a
cone with its children placed evenly along its base. In the
original implementation, each layer has cones of the same
height, and the cone base diameters for each level are re-
duced in a progression so that the bottom layer fits into the
width of what the authors called the “room”, i.e., the box
containing the full cone tree. The original idea of cone trees
has been re–implemented by others16,52,62 with, in some

cases, a somewhat refined layout algorithm. Carrière a
Kazman16, for example, calculate an approximation of th
diameter for each cone base by traversing the tree botto
up and by taking the number of descendents into accoun
each step, to make a better use of the available space. J
and Pang62 replace the cones with discs, thereby reduci
the occluded regions in space.

The interactive and visual aspects of cone trees are ab
lutely essential to make them really usable. Not only a
some of the labels at the nodes transparent, but the use
pick any node and rotate the cone tree so that the cho
node is brought to the front. This can either be done au
matically by the system, or as a result of further user int
action. For horizontal cone trees, the effect somewh
resembles stepping through rolodex cards arranged in m
tiple levels.

Gaining more “space” is not the only possible advanta
of using 3D. Because of the familiarity with the “real” hu
man environment, 3D lends itself to the creation of rea
world metaphors which should help in perceiving comple
structures. One of the earliest examples is the File Sys
Navigator (see Figure 10), which came with earlier SG
Workstations until version 5 of their operating system. T
layout of the graph (a tree representing the user’s file spa
is a very simple planar layout. The 3D aspect consists,
the one hand, of adding blocks on the plane whose sizes
proportional to the file sizes and, on the other hand, of
ability to “fly” over the virtual landscape created by thos
blocks. More complex 3D metaphors include the Persp
tive Wall93, which represents the data as posters on a
wall in virtual space. VizNet38 and Vitesse85 both use an
idea similar to the perspective wall by mapping objects on
the surface of a sphere with highly related objects plac
close to a selected object of interest. The Web Book11 dis-
plays an animated book in 3D with Web page contents, e
Here again, we refer the reader to the overview of Young110

for further examples.

In spite of all the technical developments in the area, a
their undeniably attractive features, 3D graph visualisati
techniques have significant difficulties. In our view, th
main reason lies in the inherent cognitive difficulties wit
navigating in 3D, such as the discrepancy of using 2
screens and 2D input devices to interact in a 3D world,
missing motion and stereo cues (see the overview of W

†The term “cam tree” is also used sometimes. Strictly speaking,
cam trees are horizontal arrangements, whereas cone trees are ver-
tical. We will not differentiate between them.

Figure 8: Information cube.
(Courtesy of J. Rekimoto, Sony Computer Science Labo-

ratory, Inc., Japan90)

Figure 9: A Cone Tree.
(courtesy of M. Hemmje, GMD, Germany52)

Figure 10: The File System Navigator.
© I. Herman, G. Melançon, & M.S. Marshall, 1999

I. Herman et al. / Tree Visualisation and Navigation

m
e

ct a

–

 a
nt
o
 is

”,
lic
ls
in-

pen
ane
 of
the
nly

is
ts
on-
the
ove

n
-

e-
 of

of
ut
lay
and Franck107 on how important these cues are), etc. If ad-
vanced VR–like systems such as a workbench or a CAVE
are used, some of these difficulties may be solved. Howev-
er, these facilities are not really widespread and are much
too expensive to serve as a basis for most of the information
visualisation applications. Of course, when more advanced
display and interactive facilities (e.g., haptic displays and
interaction, stereo views, etc.) become more widely availa-
ble, 3D techniques may have a profound effect in graph vis-
ualisation.

2.5 Hyperbolic Layout

The hyperbolic layout of graphs (mainly trees) is one of the
new forms of graph layouts which has been developed with
graph visualisation and interaction in mind. The first papers
in this area are from Lamping et al.73,74, followed by a se-
ries of papers by Munzner81,82,83. Both developed, for ex-
ample, Web content viewers based on these techniques.
Hyperbolic views, which can be implemented in either 2D
or 3D, provide a distorted view of a tree (see Figure 11). It
resembles the effect of using fish–eye lenses on traditional
tree layouts. This distorted view makes it possible to inter-
act with potentially very large trees, making it suitable for
real–life applications. We will come back to this distortion
effect later in this survey (see Section 3.2), when we will
concentrate on navigation rather than pure layout.

Hyperbolic views represent a radically different direc-
tion in layout, when compared to the various algorithms de-
scribed so far, due to their different geometrical
background. In fact, some of the classical layout algorithms
can be re–used in a hyperbolic setting, yielding sometimes
quite different results, as demonstrated later in this section.
Hyperbolic views are also surrounded by a sort of mystery,
because very few people in this community really under-
stand the mathematics of hyperbolic visualisation, and it is
also quite difficult to reproduce the results. Unfortunately,
none of the papers are didactic enough to reveal this mys-
tery. We will expound more on the main elements of these
layout methods, with the hope that the reader will gain a bet-
ter understanding and appreciation of the technique.

Hyperbolic geometry is based on an axiomatic syste
almost identical to the traditional Euclidean axioms with th
exception of one, the so–called 5th postulate. Whereas the
Euclidean postulate states that if a line does not interse
point, then there is only one line intersecting the point and
parallel to the original line (i.e., non–intersecting and co
planar), in hyperbolic geometry there exists more than one
such parallel line. This alternative set of axioms results in
perfectly consistent form of geometry, albeit very differe
in flavour: the traditional trigonometric equations are n
longer valid, the sum of the internal angles of a triangle
no longer 180 degrees, etc.† (These differences, by the way,
represent significant difficulties for implementors using hy-
perbolic geometry.)

It is also possible to define a consistent model for the hy-
perbolic plane (or space) within the Euclidean space, there-
by making a logical link between the two worlds. A model
in this respect means defining a subset of the Euclidean
space and the notions of “points”, “lines”, “intersections
“length” within this subset, so that the axioms of hyperbo
geometry would be valid locally. Several different mode
were developed; the best known are the Klein and the Po
caré models. The Klein model (see Figure 12) uses an o
disc (or sphere for 3D) as a subset, i.e., the hyperbolic pl
in this model consists of the points within the perimeters
the disc. Hyperbolic lines are represented by chords of
disc; intersection is just the Euclidean intersection. The o
major difference is the length of a line segment. We will not
give a detailed definition here, suffice it to say that th
length is defined as a function of the position of the poin
vis–à–vis the perimeter of the disc: segments which are c
gruent in a hyperbolic sense are exponentially smaller in
Euclidean sense when approaching the perimeter. To pr
the local validity of all the axioms of hyperbolic geometry
requires some non–trivial work. The validity of the negatio
of Euclid’s 5th postulate is quite obvious, though, just con
sider the line l and the point P on the figure. The Poincaré
model is quite similar although hyperbolic lines are repr
sented by arcs which intersect ortogonally the perimeter
the disc.

It is now possible to give a more exact description
what the hyperbolic graph layouts do: they perform a layo
algorithm in the hyperbolic plane or space, and then disp

Figure 11: Hyperbolic view of a tree in 3D.
(Courtesy of T. Munzner, Stanford University, USA82)

†The interested reader might want to refer to Coxeter19 for further
details. Also, look at the papers of Gunn49 or Hausman et al.50.

A
B

A’ B’

Figure 12: Klein model for the hyperbolic plane.
The line segments AB and A’B’ have an equal length in the

hyperbolic sense.

l
P

© I. Herman, G. Melançon, & M.S. Marshall, 1999

I. Herman et al. / Tree Visualisation and Navigation

el

s

s its
in
 ex-
-

ible
if-

can

.4.
 in
he

r-
r-
phs
he

re
ex-
e
es
 in
ns-
nal
. In

-

nd
lar
ot
the results in the familiar Euclidean plane or space using
one of the models of hyperbolic geometry. That is, what we
see is not hyperbolic geometry per se, but its representa-
tions in Euclidean geometry. The original paper of Lamping
et al. used the Poincaré model, whereas Munzner mostly
uses the Klein model. In Figure 11, for example, the Klein
model for hyperbolic 3D space is used to display the tree.
The distortion effect referred to earlier is the result of the
exponential shrinking of congruent line segments closer to
the disc perimeter when viewed in the Euclidean space.

The different metric nature of hyperbolic geometry
makes some very simple layout algorithms suddenly viable.
As an example, consider the outline of the following tree
placement algorithm (see Figure 13)†. The algorithm starts

from the root of the tree, positioning the sub–trees recur-
sively in a circular fashion. In each step, the algorithm de-
termines a wedge to place a sub–tree; the goal is to find
wedges in such a way that no crossing would occur between
edges of different sub–trees. If the point P on the figure re-
fers to a node, and the wedge QPR with angle α is the one
assigned to the sub–tree starting at P, the main step of the
algorithm is to define sub–wedges for the sub–trees of P
(starting at P1, P2, and P3). The angle α is divided into (for
the sake of simplicity, equal) sub–angles, one for each sub–
tree. The subdivision of the original wedge results in the ra-
dii PQ’, PQ”, etc. (see the figure). The points P1, P2, P3 are
positioned in the middle of these sub–wedges at some suit-
able distance from P. The next step is to determine the con-
straining wedges for these sub–tree; this can be done by
establishing parallel lines with PQ, PQ’, PQ”, starting at
the points P1, P2, P3, etc. These lines will determine the
new wedges with angles α1, α2, α3, etc., and the recursion
step can continue for each of the corresponding sub–trees.
Obviously, because parallel lines are used, the children’s
wedges will not overlap.

The algorithm is very naive, and would lead to quite un-
usable figures on the Euclidean plane. Indeed, the wedge
angles become very small after a few steps, which shrinks
the space available for the next sub–tree. However, if the
same algorithm is used on a hyperbolic plane, the situation
is quite different. Figure 14 shows the same algorithm in the

Klein model. The major difference is the way the parall
lines to PQ’, PQ”, etc., are calculated: the (hyperbolic) par-
allel lines are the lines intersecting on the perimeter of the
disc of our model. The effect will be to “open” the angle
α1, α2, α3; to cite Lamping et al.74, “each child will typical-
ly get a wedge that spans about as big an angle as doe
parent’s wedge”. Of course, although visible on the Kle
model, this statement has to be substantiated through
plicit formulae using the hyperbolic trigonometric calcula
tions, but this can be done. The result is a perfectly feas
layout algorithm. It should be noted that Munzner uses d
ferent layouts; more details on her spherical placement
be found in one of her papers82 which is, in fact, a general-
isation of the cone tree algorithm described in Section 2
However, here again, the placement algorithm is used
terms of hyperbolic geometry, taking advantage of t
“large space” available in hyperbolic space.

3. Navigation and Interaction

Navigation and interaction facilities are essential in info
mation visualisation. No layout algorithm alone can ove
come the problems raised by the large sizes of the gra
occurring in the visualisation applications. Furthermore, t
task of revealing the structure of the graph calls for innova-
tive approaches, too.

3.1 Zoom and Pan

Zoom and pan are traditional tools in visualisation; they a
quite indispensable when large graph structures are
plored. Zoom is particularly well suited for graphs: th
graphics used to display them is usually very simple (lin
and simple geometric forms), which means that it can,
most cases, be performed by simply adjusting screen tra
formations and redraw the screen’s content from an inter
representation, rather than zooming into the pixel image
other words, no aliasing problems occur.

Zooming can have, in fact, two forms. Geometric zoom
ing just provides a blow up of the graph content; semantic
zooming means that the information content changes a
more details are shown when getting closer to a particu
area of the graph. The technical difficulty in this case is n

†This algorithm is essentially the same as the one used in the paper
of Lamping et al.74.

P

P1

P2

P3

α

α1

α2

α3

Q

R

R1

Q1

Q2

R2

Q3

R3

Q”

Q’

Figure 13: A simple tree drawing algorithm on the
Euclidean plane

P

P1

P2

P3

α

α1

α2

α3

Q

R

R1

Q1

Q2

R2
Q3

R3

Q”

Q’

Figure 14: The tree drawing algorithm on the hyperbolic
plane, using the Klein model to visualize the results.
© I. Herman, G. Melançon, & M.S. Marshall, 1999

I. Herman et al. / Tree Visualisation and Navigation

the
nt

n

ues.
ent
e
ns,
and

ye
ing
see

tu-
int
us

dis-
g

).
e-

re-
us),
e

g-
.,

n-
is

.

 we
or-
all
to
ied

er
m-

al
with the zooming operation itself, but rather to assign an ap-
propriate level of detail, i.e., a sort of clustering, to sub-
graphs. The more general problem of clustering is
addressed in Section 4.

Although conceptually simple, zoom and pan does raise
problems when used in interactive environments. Let us im-
agine, for example, the following setting: the graph being
displayed is the road network of Europe, and the user has
zoomed into the area around Amsterdam. The user then
wants to change the view of the area around Milano. Doing
this without changing the zoom factor, at least temporarily,
might be too slow because the user has to first zoom out,
pan to Milano, and zoom in again. Furthermore, the user
wants the system to make the necessary moves smoothly. A
naive implementation might calculate the necessary chang-
es for the pan and the zoom independently and perform the
changes in parallel. The problem is that when zooming in,
the world view expands exponentially fast, and the target
point runs away faster than the pan can keep up with. The
net result is that the target is approached non–monotonous-
ly: it first moves away as the zoom dominates and only later
comes back to the centre of the view, which can be quite
disturbing.

This, and other, problems related to zoom and pan are, of
course, not related to graphs only, nor is the elegant solution
proposed by Furnas and Bederson45 to alleviate them. Nev-
ertheless, information visualisation systems based on
graphs can greatly benefit from their approach; it is there-
fore worth giving a short description here. Furnas and Bed-
erson introduce the concept of space–scale diagrams (see
Figure 15). The basic idea is to define an abstract space “by
creating many copies of the original 2D picture, one at each
possible magnification, and stacking them up to form an in-
verted pyramid”. Points, in the original image, can be rep-
resented by rays, which contain information both on the
point and its magnification. Various combinations of (con-
tinuous) zoom and pan actions can then be described as
paths in this space, by describing the central position of a
window parallel to the x–y plane. A cost, or “length”, can
also be associated to each path and, if the length is judi-
ciously chosen, a minimum length path can represent an op-
timal combination of zoom and pan movements. Furnas and
Bederson not only give a solution to the problem outlined
above; space–scale diagrams can also be used to describe
semantic zooming (instead of stacking the same picture in

the pyramid, the content of the picture may depend on
magnification level) which also allows for the developme
of a specialised authoring system for semantic zooming46.

3.2 Focus+Context Techniques

A well–known problem of zooming is that if one zooms o
a focus, all contextual information is lost†. This may be-
come a major usability obstacle; hence the importance of
different exploration facilities where the user can focus on
some detail without losing the context. The term “fo-
cus+context” has been used to describe these techniq
They do not replace zoom and pan, but rather complem
them. The complexity of the underlying data might mak
zoom an absolute necessity. However, in some situatio
focus+context techniques are indeed a good alternative,
full–blown applications systems often implement both.‡

3.2.1 Fisheye Distortion

Graphical fisheye views are very popular techniques for fo-
cus+context. Fisheye views imitate the well–known fishe
lens effect, by enlarging an area of interest, and show
other portions of the image with successively less detail (
Figure 16).

Mathematically, what happens is as follows. Concep
ally, the graph is mapped onto the plane and a “focus” po
is defined (usually by the user). The distance from the foc
to each node of the tree is then distorted by a function
and the distorted points, and connecting edges, are
played. The function should be concave, mappin
monotonically the [0,1] interval onto [0,1] (see Figure 17
The distortion created by the fisheye view is the cons
quence of the form of the function, which has a faster inc
ment around 0 (hence affecting the nodes around the foc
with the increment slowing down when closing up to 1. Th
exact definition of the function may yield a lesser or stron
er distorting effect. A simple distortion function used, e.g
by Sarkar and Brown95 is: .
The factor is a distortion factor, which can be set i
teractively by the user. Figure 18 shows the effect of th
function (with d = 4) on the regular grid around the origin

There are some variations to this basic scheme. What
have just described is usually referred to as a “polar” dist
tion, in the sense that it applies to the nodes radially in
directions starting from the focus point. An alternative is
use a “cartesian” fisheye: the distance distortion is appl
independently on the x and y directions before establishing
the final position of the node (see again Figure 16). Oth
variations are possible; the reader should consult, for exa
ple, the overview of Carpendale et al.14 or Keahey et al.68

Figure 15: A space–scale diagram
(adapted from Furnas and Bederson45).

x

y

z

†Unless a separate window, for example, keeps the context visible,
which is done by several systems. This solution is not fully satis-
factory either, though.
‡All techniques described in this section are geometric, i.e., they
operate on the geometric representation of the underlying graphs.
This is in contrast with a logical focus+context view described in
an often cited paper of Furnas44. In our view, the work of Furnas is
more related to what we call “metrics”, rather than to graphic
focus+context; see Section 4.2 for further details.

h x()

h x()

h x() d 1+() d 1 x⁄+()⁄=
d 1≥
© I. Herman, G. Melançon, & M.S. Marshall, 1999

I. Herman et al. / Tree Visualisation and Navigation

the
 a
per
u-
sink
to
ly,
dg-
in-

 the
p-
a-
re
tter
ol

o-
 the
e
od-
ve
r a
p-
be-
can
h
ye
out
us

 An
s
-
ith
e-

at.
o-
ee
i-

or
he
ré

si-
for further examples and for their visual effects. The final
choice should depend on the style of the graph to be ex-
plored as well as the layout algorithm in use.

This simple, albeit very powerful technique is an impor-
tant navigation complementary to zoom and pan. It has one
drawback, though, which implementors should be aware of.
The essence of a fisheye view is to distort the position of
each node. If the distortion were to be applied faithfully, the
edges connecting the nodes should be distorted, too. Math-
ematically, the result of this distortion is a general curve.
Usual graphics systems (e.g., X11, Java2D, OpenGL) do
not offer the necessary facilities to transform lines into these
curves easily (they can be, mathematically, fairly complex).
The implementer’s only choice is, therefore, to approximate
the original line segments with a high number of points,
transform those points, and display a polyline to approxi-

mate the ideal, transformed curve. The problem is that
number of approximating points must be relatively high if
smooth impression is sought (on average 60 points
edge), which leads to a prohibitively large number of calc
lations and may make the responsiveness of the system
to an unacceptably low level. The only viable solution is
apply the fisheye distortion on the node coordinates on
and to connect the transformed nodes by straight–line e
es. The consequence of this inexact solution is that un
tended edge–crossings might occur (see, for example,
upper left quadrant of Figure 16/b). This is one of those ty
ical situations when the pragmatism required by inform
tion visualisation should prevail. If large graphs a
explored, these extra intersection points do not really ma
much, and it is more important to keep the exploration to
fast.

3.2.2 Focus+Context Layout Techniques

The fisheye technique is independent of the layout alg
rithm and is defined as a separate processing step on
graphical layout of the graph. Interacting with fishey
means changing the position of the focus point and/or m
ifying the distortion value. This independence has positi
and negative aspects. On the positive side, it allows fo
modular organisation of software in which fisheye is a se
arate step in the graph rendering pipeline somewhere
tween the layout module and the actual display. Fisheye
also be significantly faster than the layout algorithm, whic
is an important issue for interaction. However, the fishe
distortion may destroy the aesthetics governing the lay
algorithm. For example, as we have seen in the previo
section, it can add new and unwanted edge–crossings.
alternative is to build appropriate distortion possibilitie
into the layout algorithm itself, thereby merging the fo
cus+context effects and the layout proper. Interacting w
the distortion would mean to interact with (some) param
ters governing the layout algorithm.

The hyperbolic layout (see Section 2.5) does just th
The hyperbolic view of a graph, whether in 2D or 3D, pr
duces a distorted view, not unlike the fisheye view (s
Figure 11). The equivalent of the focal point of the graph
cal fisheye view is the centre of the Euclidean circle (
sphere) which is used to “map” the hyperbolic view onto t
Euclidean space through either the Klein or the Poinca
model. Interacting with the view means changing the po
tion of this centre point within the graph.

Figure 16: Fisheye distortions. Figure (a) represents the graph without fisheye; figure (b) uses a polar fisheye, whereas figure (c) uses a
cartesian fisheye with a different layout of the same graph. The dot on figures (b) and (c) are the focal points for the fisheye distortion.

Note also the extra edge–crossing on figure (b).

(a) (b) (c)

Figure 17: Typical distortion function for fisheye

(1,1)

Figure 18: Polar fisheye distortion; distortion value is 4.
© I. Herman, G. Melançon, & M.S. Marshall, 1999

I. Herman et al. / Tree Visualisation and Navigation

c
es
fter
eir

ns,
n-

-

ral
op-

h-
is

ss
der
he
h.

ap-
ey

ight
lti-

nk.
 of

 to
 the

s to

raph
s.
s im-
ld

ys-
er
ge of
Similar effects can be achieved by using 3D techniques
(see also Section 2.4). By putting objects on 3D surfaces,
for example, the view created by the perspective or parallel
projections create a natural distortion on the 2D screen. In
the Vitesse system85, for example, the user has only limited
navigation facilities in 3D; the main goal of mapping ob-
jects onto a sphere or an ellipsoid is indeed to achieve a fo-
cus+context distortion. More complex surfaces (like 3D
surfaces of blended Gaussian curves) have also been used,
for example, by Carpendale et al.13,14, to achieve fo-
cus+context effects. Other 3D visualisation techniques, al-
ready cited in Section 2.4 (like the Perspective Wall93),
should be mentioned in this context, too.

The hyperbolic layout is special because it is a graph lay-
out algorithm which was developed with the focus+context
distortion in mind. In fact, we do not know of any system-
atic research conducted on the existing, and more tradition-
al, layout algorithms to decide whether such layout
dependent distortions are possible or not, and, if yes, to ex-
ploit this feature in real systems. This is in spite of the fact
that, at least in some cases, the possibility of applying such
distortion control is clearly available. For example, Figure 5
shows a very balanced view of a tree, using a balloon layout
algorithm76. This algorithm defines the radii of the circles
by taking the number of descendents into account. The al-
gorithm can be easily directed to give one of the circles a
larger “share” of the display space by shrinking all the oth-
ers, thereby creating a focus+context effect on that circle57.
We think that such research would provide valuable input
for the implementors of graph visualisation systems.

3.2.3 Further Issues in Focus+Context Techniques

There are further issues in the area focus+context which can
be of interest, some of which can be the basis for future re-
search, too (a general characterisation and taxonomy of dis-
tortion techniques is also presented in Leung and
Apperly75). For example, fisheye is based on the choice of
a distortion function, but we presented only a simple ver-
sion here, used by Sarkar and Brown. This function can be
replaced by others with different distortion features (arctan
or tanh functions, piecewise linear approximations to speed
up processing, etc.)39,68,96. The techniques can also be ex-
tended to 3D15. Also, just as we could speak about “seman-

tic zoom”, one could also refer to “semanti
focus+context”, meaning that when the distortion becom
too “extreme”, in some sense, nodes might disappear a
all. Sarkar and Brown describe this technique in th
paper95, but a finer control over this facility might lead to
new insights, too. Note that the space–scale diagrams45 (see
Section 3.1) can also be used to model fisheye distortio
which may lead to interesting results in combining (sema
tic) fisheye with zoom and pan. Finally, multifocal fo
cus+context methods should also be applied 67,68,14,
allowing the user to simultaneously concentrate on seve
important areas of the graph or to use the system in a co
erative environment85.

An interesting example which combines various tec
niques, including multifocal zoom and focus+context,
provided by Schaffer et al.97. Their system also shows the
fundamental importance of clustering, which we addre
elsewhere in this survey (see Section 4). They consi
graphs which have a hierarchical clustering already. T
left hand side of Figure 19 shows the drawing of the grap
The dotted rectangles denote the logical clusters (they
pear on the figure only for the sake of the explanation, th
would not necessarily appear on a real screen). The r
hand side of the same figure shows the graph after a mu
focal zoom/fisheye action on clusters A and D. These clus-
ters are now bigger, while the other clusters have shru
Moreover, cluster C has disappeared as a result of a sort
a “semantic fisheye” action on the graph. Schaffer et al. de-
scribe the mathematics of distortion and shrinking used
achieve these results. Similar ideas can also be found in
DA–TU system of Huang et al.61. However, a lot still re-
mains to be done in combining these different approache
achieve a coherent set of navigation techniques.

3.3 Incremental Exploration and Navigation

We have emphasised several times that the size of the g
is a major problem in graph visualisation application
There are cases when this size is so huge that it become
possible to handle the full graph at any time; the Wor
Wide Web is an obvious example. Incremental exploration
techniques are good candidates for such situations. The s
tem displays only a small portion of the full graph and oth
parts of the graph are displayed as needed. The advanta

Figure 19: Multifocal fisheye/zoom in a hierarchically clustered graph. The dotted rectangles denote the (logical) clusters. Note the dis-
appearance of the cluster C on the right hand side.

C

A

B

D

E

A

E

D

B

© I. Herman, G. Melançon, & M.S. Marshall, 1999

I. Herman et al. / Tree Visualisation and Navigation

t is

vi-
this

ta-
ing
s-
n-

ed
f a

or
ring

as

gs
nd
ng,
er-
ta-
t
ata
n-
ob-
 in
ing

 re-
ful

c-
li-
 or
re-
 Fil-
ing
ing

ph
-

nd

the
ed,
s-
ntic

to
be-
such incremental approach is that, at any given time, the
subgraph to be shown on the screen may be limited in size,
hence the layout and interaction times may not be critical
any more. This approach to graph exploration is still rela-
tively new, but interesting results in the area are already
available10,35,59,60,86,105.

Incremental exploration means that the system places a
visible “window” on the graph, somewhat similar to what
pan does. Exploration means to move this window (also re-
ferred to as logical frames by, e.g., Huang et al.59) along
some trajectory (see Figure 20). Implementation of such in-
cremental exploration has essentially two aspects, namely:

• decide on a strategy to generate new logical frames;

• reposition the content of the logical frame after each
change.

Generating new logical frames is always under the control
of the user. In some cases, the logical frame simply contains
the nodes visited so far; this is the case, for example, in the
NESTOR tool, implemented by Zeiliger105, which uses in-
cremental exploration to record a history of the user’s surf-
ing the World Wide Web: newly accessed web pages are
simply added to the logical frame to generate a new one.
Huang et al.59 (who also implemented a tool along the same
lines to explore the World Wide Web60) anticipate the us-
er’s future interaction by adding not only a new node to a
frame, but also its immediate neighbours. Huang et al.59 or
North86 also include a control over throwing away some
part of the logical frame, to avoid saturation on the screen.

As far as the repositioning is concerned, the simplest so-
lution is to use the same layout algorithm for each logical
frame. This is done, for example by Huang et al.59 (Note
that the latter use a modified spring algorithm. This is one
case where the relatively small graph on the screen makes
the use of a force–directed method perfectly feasible in
graph visualisation.) North86 and Brandes et al.10 go further
by providing dynamic control over the parameters which di-
rect the layout algorithms.

As said above, this line of visual graph managemen
still quite new, but we think that it will gain in importance
in the years to come, and that it will complement the na
gation and exploration methods described elsewhere in
survey.

4. Clustering

As mentioned in the preceding section, it is often advan
geous to reduce the number of visible elements be
viewed. Limiting the number of visual elements to be di
played both improves the clarity and simultaneously i
creases performance of layout and rendering69. Various
“abstraction” and “reduction” techniques have been appli
by researchers in order to reduce the visual complexity o
graph. One approach is to perform clustering.

Clustering is the process of discovering groupings
classes in data based on a chosen semantics. Cluste
techniques have been referred to in the literature as cluster
analysis, grouping, clumping, classification, and unsuper-
vised pattern recognition36,78. We will refer to clustering
which uses only structural information about the graph
structure–based clustering (also referred to as identifying
natural clusters94). The use of the semantic data associated
with the graph elements to perform clustering could be
termed content–based clustering.

Although content–based clustering can yield groupin
which are most appropriate for a particular application a
can even be combined with structure–based clusteri
most mentions of clustering in graph visualisation are ref
ences to purely structure–based clustering, with a few no
ble exceptions80,91. This is probably due to the fact tha
content–based clustering requires application–specific d
and knowledge. Any application which implements co
tent–based clustering is likely to be so specialised to a pr
lem domain that it is no longer general enough for use
other application areas. Furthermore, an advantage of us
structure–based clustering is that natural clusters often
tain the structure of the original graph, which can be use
for user orientation in the graph itself.

It is important to note that clustering can be used to a
complish functions such as filtering and search. In visua
sation terms, filtering usually refers to the de–emphasis
removal of elements from the view, while search usually
fers to the emphasis of an element or group of elements.
tering and search can be accomplished by partition
elements into two or more groups, and then emphasiz
one of the groups.

By far the most common clustering approach in gra
visualisation is to find clusters which are disjoint or mutu
ally exclusive, as opposed to clusters which overlap (fou
by a process called clumping). Disjoint clusters are simpler
to navigate than overlapping clusters because a visit of
clusters only visits the members once. It should be not
however, that it is not always possible to find disjoint clu
ters such as in the case of language–oriented or sema
topologies.

A common technique for finding natural clusters is
choose the clustering with the least number of edges
tween members. This technique is described by Mirkin78. It
is also known as the Ratio Cut technique in VLSI design108.

Fi
Fi-1

Fi-2 F5

Fi+1

F4 F3

F2
F1

The partially unknown graph G

A sequence of logical frames

The path of exploration

Figure 20: Exploration of a huge graph
(Reproduced from Huang et al.59,

courtesy of P. Eades, University of Newcastle, Australia)
© I. Herman, G. Melançon, & M.S. Marshall, 1999

I. Herman et al. / Tree Visualisation and Navigation

he
ob-
 in
ted
vi-

n a
y

or-

res
 to

ith a
nd
er-

 by
al-
er-
ue

ill

he
-

n
sed
ch

do-
tric

-
er-
an
n

de
uch
ith
ta

ela-
es

ric
-

ric
ge
ar-
nd
on.

ics
 de-
This technique extends to the case when edges have a
weight. The task is then to minimize the total weight of the
edges connecting members94. Different results can be ob-
tained by applying a spring model (see below).

4.1 Layout of a clustered graph

After discovering clusters within the data, we can reduce the
number of elements to display by restricting our view to the
clusters themselves. This provides an overview of the struc-
ture and allows us to retain a context while reducing visual
complexity. Looking at the simpler and smaller clustered
graph, the user should be better able to grasp the overall
structure of the graph. Most algorithms look for a balance
between the number of clusters and the number of nodes
within clusters. A small number of clusters allows for a fast
processing and navigation. However, this number should
not be too small, because otherwise the visible information
content is too low.

A common approach is to represent the clusters with
glyphs and treat them as super–nodes in a higher–level or
compound graph which we can now navigate instead of the
original graph. Some approaches have already been
proposed25,32,97. Huang and Eades61 also give a precise
definition of how edges between super–nodes can be in-
duced (they refer to this idea as abridgement). This tech-
nique has also been implicitly implemented in many other
visualisation systems. One original solution is to omit the
edges and position the nodes in a way which indicates their
connectivity109. This solution eliminates the problem of
edge–crossings and reduces visual clutter.

If clustering is performed by successively applying the
same clustering process to groups discovered by a previous
clustering operation, the process is referred to as hierarchi-
cal clustering78. A containment hierarchy will result from
hierarchical clustering and this may be navigated as a tree,
with each cluster represented as a node in the tree (see
Figure 21). Hierarchical clustering can therefore be used to
induce a hierarchy in a graph structure which might not oth-
erwise have a hierarchical structure.

The approaches discussed until now involve first finding
logical clusters, then laying out the graph of clusters. A
completely different approach to clustering is based on
force–directed layout. It lets forces between nodes influ-

ence the position of the node in the layout. All objects in t
system exert repulsive force on the others and related
jects are attracted to each other. After several iterations
which the positions are adjusted according to the calcula
force, the system stabilizes, yielding clusters which are
sually apparent. In a case study of Narcissus54, the authors
report that this technique can produce useful clusters i
relatively small number of iterations. As with other N–bod
problems, the complexity is O(N3). Another example of
clustering by layout is described for the SemNet system37,
where clustering is accomplished by using semantic inf
mation to determine the positioning of nodes.

4.2 Node Metrics for Clustering

In order to cluster a graph, we must use numerical measu
associated with the nodes. A node metric can be used
measure or to quantify an abstract feature associated w
node in order to compare it with others of the same type a
acquire a ranking. A metric can be implemented as a num
ic computable function. Clustering can be accomplished
assigning elements to groups according to their metric v
ue. Metrics can also be used to implement search or filt
ing, in which elements with a certain metric value or a val
above a threshold are highlighted.

The term metric, or node metric, has been used in many
different ways in graph visualisation. In this survey, we w
use the term to refer to a measure of a graph feature which
is associated with a node in the graph. We have identified
the concept of node metrics in several places in t
literature8, 55, 44, 69. Of course, similar concepts can be ap
plied to metrics associated with edges.

A metric is structure–based if it only uses informatio
about the structure of the graph. A metric is content–ba
if it uses information or data associated with the node su
as text. The advantage of a structural metric is that no
main knowledge is required. This makes a structural me
useful for all applications. It is possible, of course, to com
bine structural and content–based metrics for more pow
ful effects. A simple approach is to allow the user to add
application–specific “weight” to the nodes, which is the
combined with the structural metric55,56.

An example of a structural metric is the degree of a no
(i.e., the number of edges connected to the node). With s
a metric, the application could display only the nodes w
a particular degree or higher. This would give a view of da
which shows the nodes that have the largest number of r
tions with other nodes. A metric more specific to tre
(called the Strahler metric104) has been applied in
Figure 22, in which nodes with the highest Strahler met
values generate a skeleton or backbone which is then em
phasized (see Herman et al.55,56).

Metrics can also be composed due to their nume
nature56. By choosing, for example, the weighted avera
of metrics, the user can choose how much influence a p
ticular feature has on the resulting composed metric, a
thereby influence the resulting cluster, search, or skelet
The Degree of Interest (DOI) function of Furnas44 is also an
example of a metric which is composed of two other metr
(in this case, a metric based on distance and a level of
tail).

Figure 21: A structure induced by hierarchical clustering.
(Adapted from Eades and Feng32)
© I. Herman, G. Melançon, & M.S. Marshall, 1999

I. Herman et al. / Tree Visualisation and Navigation

atu-
s
o
tity.
 re-

ppli-
 a

s
e

ec-
m-
ion.
 a

d-
o
lete

uch

r

pt-
en

t
on
Node metrics can be used for many different purposes,
and, in our view, all the possible applications have not yet
been fully explored. For instance, metrics can also be used
to govern a spanning tree extraction procedure (see Section
2.3). Furnas’s DOI function has been used to generate a fo-
cus+context view of the graph†.

 Once a subset of nodes has been selected, as with a skel-
eton, a method of representing the un–selected nodes must
be chosen. In the case of clustering, the selected set of nodes
is the set of super–nodes or the groups themselves. Kimel-
man et al. name three possible approaches69 (see
Figure 22):

• ghosting: de–emphasizing nodes, or relegating nodes
to the background.

• hiding: simply not displaying the un–selected nodes.
This is also referred to as folding or eliding.

• grouping: grouping nodes under a new super–node rep-
resentation.

These approaches may be combined, for example with clus-
ters represented by transparent super–nodes used by
Sprenger et al.100 in the IVORY system. Figure 22(c) dem-
onstrates an alternative where the size and the shape of the
glyph representing the grouping is used to indicate the
structure of the underlying subgraph56. The resulting graph,
technically a compound graph, is a sort of high–level map
or schematic view17,56 of the original graph which is useful
for navigation of the original graph.

Clustering is a difficult problem and is applied in many
different fields, which has the unfortunate consequence that
results about clustering are disseminated in journals and
conferences addressing very different topics. This makes it
difficult to gather the results into a unified theory or into a
structured set of methodologies. Surprisingly, the book by
Battista et al.4 does not include a chapter on clustering, al-
though the Graph Drawing Symposia welcomes papers on
the topic every year. Our feeling is that this issue should re-
ceive much more attention in future, especially from the in-
formation visualisation community.

5. Systems

The area of graph visualisation has reached a level of m
rity in which large applications or application framework
are being developed. However, it is extremely difficult t
enumerate all the systems because of the sheer quan
Some of them have a very short lifetime because they are
search tools and others are embedded in specialised a
cations. A thorough classification, categorisation, and
systematic overview of all the graph visualisation system
would go beyond the scope of this survey. However, w
have already referred to a number of systems in earlier s
tions, based on features which we found interesting or i
portant. Some other systems also caught our attent
Without any claim to completeness, we briefly describe
few additional systems below.

SemNet37 is one of the few systems to provide graph e
iting while still providing a comprehensive set of tools t
visualise large graphs. It is also one of the earliest comp
systems which we know about.

Clustering has been applied by many older systems s
as SemNet37, Narcissus54, SKETCH102, and the Naviga-
tional View Builder80. Some newer systems which cluste
graphs are NicheWorks109, DA–TU61, STARLIGHT91,
and a new system used by Bell Laboratories51 for network
visualisation.

NicheWorks is an example of a system that can be ada
ed for very specific applications. As an example, it has be
used in visualising Y2K related problems34. The fsviz sys-
tem of Carrière and Kazman16, the da Vinci system of the
University of Bremen42, or the Latour system developed a
CWI57 fall into the same category. We should also menti
the company called Tom Sawyer Software‡, which offers a
number of products based on various graph drawing tech-
niques.

There are a few systems that stand out because of unique
features. The STARLIGHT91 system performs content-
based clustering and allows multiple mappings and layouts.
It is one of the few systems which allows a 3D graph to be
linked with locations on a plane (for associating nodes with
geographical positions). Another system, SDM18 is unique
because of a method of filtering in which nodes of interest
are selected from a cityscape view by a plane above them.
A system called Web PATH40 uses a fog effect in a 3D ren-
dering of web history to limit the window of viewing.†As mentioned earlier, although Furnas referred to this technique

as “fish–eye”, his technique is not limited to fish–eye in the geo-
metric sense, as described in Section 3.2.1.

Figure 22: Different schematic views of a tree: (a) ghosting (b) hiding, and (c) grouping

(a) (c)(b)

‡http://www.tomsawyer.com.
© I. Herman, G. Melançon, & M.S. Marshall, 1999

http://www.tomsawyer.com

I. Herman et al. / Tree Visualisation and Navigation

e

ave
li-

e
on
n
rly

d
r

lis,
i-

lis,

-

,
,
d

t
k

The World Wide Web is one of the typical application
areas where graph visualisation may play an important role
in the future. H3View82, based on hyperbolic viewing (see
Section 2.5), is due to be part of a Web site management
tool of SGI whereas the similar ideas of Lamping et al.73,74

are also exploited by a commercial spin–off of the Xerox
company, called Inxight†. Earlier in this survey, we referred
to NESTOR105 or WebOFDAV60, which can be used as
web navigation tools. Other examples in this category are
the Harmony Browser1, Mapa27, or Fetuccino6 (the latter
also combines the results of a web search engine with a
graph visualisation).

6. Journals and Conferences

This survey is based on an extensive literature overview
drawn from various conferences and journals. One of the
difficulties of the field is that results are spread over a large
number of different publications. To help the reader in pur-
suing research in the area, we list here some of the main
publications which may be of interest:

• The Graph Drawing Symposia are organized yearly at
various locations in Europe or overseas. The proceed-
ings are published by Springer–Verlag. These sympo-
sia have evolved into the traditional meeting places of
the graph drawing community.

• The new Journal of Graph Algorithms and Applica-
tions (JGAA) is an online journal which gather a simi-
lar community as the graph drawing symposia. The
home page of the journal is at Brown University, (http:/
/www.cs.brown.edu/publications/jgaa/), but Oxford
University Press will also publish the collected papers
in book formats.

• Graph drawing has strong relationships with computa-
tional geometry and algorithms; as a consequence, spe-
cialised journals like Computational Geometry: Theory
and Applications or Algorithmica might also be a valu-
able source, although the papers in these journals tend
to be much more “mathematical”, hence more difficult
to read for the computer graphics and information visu-
alisation communities.

• As said before, the yearly CHI’XX and UIST’XX con-
ferences, both sponsored by ACM SIGCHI, very often
contain important papers for information visualisation,
due to the importance of user interface issue. Similarly,
the ACM Transaction on Human Computer Interaction
can be a valuable source of information.

• The yearly InfoVis’XX symposia form a separate track
within the well–known IEEE Visualization conference;
these symposia have become one of the leading events
in the area by now.

• Somewhat confusingly, there is also a yearly IEEE
Conference on Information Visualization which, how-
ever, has no real connection to the InfoVis’XX sympo-
sia (besides being sponsored by IEEE, too). Our own
experience is that the academic level of InfoVis’XX is
somewhat better.

• What was known before as the series of Eurographics
Workshop on Scientific Computing’XX has recently
changed its name to Data Visualization’XX, with infor-
mation visualisation as a separate track. The workshop
has also become a joint Eurographics/IEEE TCVG
symposium. As it stands now, this format will stay the
same for the years to come.

• Some traditional computer graphics journals, like th
ACM Transaction on Computer Graphics and Visuali-
zation, or the Computer Graphics Forum (including
the proceedings of the Eurographics conferences), h
an increasing number of papers in information visua
sation.

• Finally, application oriented journals or conferenc
proceedings may also include papers on informati
visualisation related to their respective applicatio
area. Examples include the proceedings of the yea
XXth World Wide Web or the Digital Library’XX con-
ferences.

Obviously, the list is not exhaustive but, hopefully, it is still
useful for the reader as a starting point.

References

1. K. Andrews, “Visualizing Cyberspace: Information
Visualisation in the Harmony Internet Browser”, Pro-
ceedings of the IEEE Symposium on Information
Visualization (InfoVis’95), IEEE CS Press, pp. 97–
105, (1995).

2. P.K. Argawal, B. Aronov, J. Pach, R. Pollack, an
M. Sharir, “Quasi–Planar Graphs Have a Linea
Number of Edges”, Proceedings of the Symposium on
Graph Drawing, GD ’95, Springer–Verlag, pp. 1–7,
(1995).

3. G. di Battista, P. Eades, R. Tamassia, and I.G. Tol
“Algorithms for drawing graphs: an annotated bibl
ography”, Computational Geometry: Theory and
Applications, 4(5), pp. 235–282, (1994).

4. G. di Battista, P. Eades, R. Tamassia, and I.G. Tol
Graph Drawing: Algorithms for the Visualisation of
Graphs, Prentice Hall, (1999).

5. R. A. Becker, S. G. Eick, and A. R. Wilks, “Visualiz
ing Network Data”, IEEE Transactions on Visualiza-
tion and Computer Graphics, 1(1), pp. 16-28, (1995).

6. I. Ben–Shaul, M. Herscovici, M. Jacovi
Y. S. Maarek, D. Pelleg, M. Shtalhaim, V. Soroka
and S. Ur, “Adding support for dynamic and focuse
search with Fetuccino”, Proceedings of 8th Interna-
tional World Wide Web Conference, Elsevier Science,
pp. 575–587, (1999).

7. J. Blythe, C. McGrah, and D. Krackhardt, “The Effec
of Graph Layout on Inference from Social Networ
Data”, Proceedings of the Symposium on Graph
Drawing, GD ’95, Springer–Verlag, pp. 40–51,
(1995).

†http://www.inxight.com.
© I. Herman, G. Melançon, & M.S. Marshall, 1999

http://www.inxight.com
http://www.cs.brown.edu/publications/jgaa/

I. Herman et al. / Tree Visualisation and Navigation

h

ly

of

e

v,

e

,

ed

 in

n

he
h

v-
f

ld
8. R. A. Botafogo, E. Rivlin, and B. Schneiderman,
“Structural Analysis of Hypertexts: Identifying Hier-
archies and useful Metrics,” ACM Transactions on
Information Systems, 10(2), (1992).

9. F.J. Brandenburg, M. Himsolt, and C. Rohrer, “An
Experimental Comparison of Force–Directed and
Randomized Graph Drawing Algorithms”, Proceed-
ings of the Symposium on Graph Drawing GD ’95,
Springer–Verlag, (1996).

10. U. Brandes and D. Wagner, “A Bayesian Paradigm
for Dynamic Graph Layout”, Proceedings of the Sym-
posium on Graph Drawing GD ’97, Springer–Verlag,
pp. 236–247, (1997).

11. S.K. Card, G.G. Robertson, and W. York, “The Web-
Book and the Web Forager: an Information Work-
space for the World–Wide Web”, Human Factors in
Computer Systems, CHI’96 Conference Proceedings,
ACM Press, pp. 111–117, (1996). Also in S.K. Card
et al.12.

12. S.K. Card, J.D. Mackinlay, and B. Shneiderman
(eds), Readings in Information Visualization. Morgan
Kaufmann Publishers, (1999).

13. M.S.T. Carpendale, D.J. Cowperthwaite, and
F.D. Fracchia, “3D Pliable Surfaces”, Proceedings of
the UIST’95 Symposium, ACM Press, pp. 217–266
(1995).

14. M. S. T. Carpendale, D. J. Cowperthwaite,
F. D. Fracchica and T. Shermer, “Graph Folding:
Extending Detail and Context Viewing into a Tool for
Subgraph Comparisons”, Proceedings of the Sympo-
sium on Graph Drawing GD ’95, Springer–Verlag,
pp. 127–139, (1996).

15. M.S.T. Carpendale, D.J. Cowperthwaite, and
F.D. Fracchia, “Extending Distortion Viewing from
2D to 3D”, IEEE Computer Graphics & Applica-
tions, 17(4), pp. 42–51, (1997). Also in S.K. Card et
al.12.

16. J. Carrière and R. Kazman, “Research Report: Inter-
acting with Huge Hierarchies: Beyond Cone Trees”,
Proceedings of the IEEE Conference on Information
Visualisation ‘95, IEEE CS Press, pp. 74–81, (1995).

17. M.C. Chuah, “Dynamic Aggregation with Circular
Visual Designs”, Proceedings of the IEEE Sympo-
sium on Information Visualisation (InfoVis’98), IEEE
CS Press, pp. 30–37, (1998).

18. M. C. Chuah, S. F. Roth, J. Mattis, and J. Kolojej-
chick, “SDM: Malleable Information Graphics”, Pro-
ceedings of the IEEE Symposium on Information
Visualization, IEEE CS Press, pp. 36–42, (1995).

19. H.S.M. Coxeter, Introduction to Geometry, John
Wiley & Sons, Inc., (1973).

20. I. F. Cruz and R. Tamassia, “Online tutorial on Graph
drawing”, URL: http://www.cs.brown.edu/people/rt/
papers/gd-tutorial/gd-constraints.pdf.

21. I. F. Cruz and J. P. Twarog, “3D Graph Drawing wit
Simulated Annealing”, Proceedings of the Sympo-
sium on Graph Drawing GD ‘95, Springer–Verlag,
pp. 162–165, (1995).

22. R. Davidson and D. Harel, “Drawing Graphs Nice
Using Simulated Annealing”, ACM Transaction on
Graphics, 15(4), pp. 301–331, (1996).

23. E. Dengler and W. Cowan, “Human Perception
Laid–Out Graphs”, Proceedings of the Symposium on
Graph Drawing GD ’98, Springer–Verlag, pp. 441–
444, (1998).

24. A. Denise, M. Vasconcellos, and D.J.A. Welsh, “Th
random planar graph”, Congressus Numerantium,
113, pp. 61–79, (1996).

25. C. A. Duncan, M.T. Goodrich, and S. G. Kobouro
“Balanced Aspect

26. Trees and Their Use for Drawing Very Larg
Graphs”, Proceedings of the Symposium on Graph
Drawing GD ’98, Springer–Verlag, pp. 111–124
(1998).

27. D. Durand and P.Kahn, “MAPA”, Proceedings of
Ninth ACM Conference on Hypertext and Hyperme-
dia (Hypertext’98), Pittsburgh, USA, (1998).

28. P. Eades, “A Heuristic for Graph Drawing,” Congres-
sus Numerantium, 42, pp. 149–160 (1984).

29. P. Eades and K. Sugiyama, “How to Draw a Direct
Graph”, Journal of Information Processing, 13(4),
pp. 424–434, (1990).

30. P. Eades, “Drawing Free Trees”, Bulletin of the Insti-
tute for Combinatorics and its Applications, pp. 10–
36, (1992).

31. P. Eades and S.H. Whitesides, “Drawing Graphs
Two Layers”, Theoretical Computer Science, 131(2),
pp. 361–374, (1994).

32. P. Eades and Q.–W. Feng, “Multilevel Visualizatio
of Clustered Graphs”, Proceedings of the Symposium
on Graph Drawing GD ’96, Springer–Verlag,
pp. 101–112, (1997).

33. P. Eades, M. E. Houle, and R. Webber, “Finding t
Best Viewpoints for Three–Dimensional Grap
Drawings”, Proceedings of Symposium on Graph
Drawing GD ’97, Springer–Verlag, p. 87–98, (1998).

34. S. G. Eick, “A Visualization tool for Y2K”, IEEE
Computer, 31(10), p. 63–69, (1998).

35. J. Eklund, J. Sawers, and R. Zeiliger, “NESTOR Na
igator: A tool for the Collaborative Construction o
Knowledge Through Constructive Navigation”, Pro-
ceedings of Ausweb’99, The Fifth Australian Wor
Wide Web Conference, Southern Cross University
Press, (1999).

36. B. Everitt, Cluster Analysis, First edition, Heinemann
Educational Books Ltd., (1974).
© I. Herman, G. Melançon, & M.S. Marshall, 1999

http://www.cs.brown.edu/people/rt/papers/gd-tutorial/gd-constraints.pdf

I. Herman et al. / Tree Visualisation and Navigation

u-

n
.

t

-
-

e,
as

d

d

i-

V

r-
e

,

es
37. K. M. Fairchild, S. E. Poltrock, G. W. Furnas,
“SemNet: Three–Dimensional Representation of
Large Knowledge Bases”, Cognitive Science and Its
Applications for Human–Computer Interaction, Law-
rence Erlbaum Associates, Inc., pp. 201–233, (1988).
Also in S.K. Card et al.12.

38. K.M. Fairchild, “Information Management Using
Virtual Reality–Based Visualisations”, Virtual Real-
ity: Application and Explorations, Academic Press,
(1993).

39. A. Formella and J. Keller, “Generalized Fisheye
Views of Graphs”, Proceedings of the Symposium on
Graph Drawing GD ’95, Springer–Verlag, pp. 242–
253, (1995).

40. E. Frécon and G. Smith, “WebPath — A Three
Dimensional Web History”, Proceedings of the IEEE
Symposium on Information Visualisation (InfoVis’98),
IEEE CS Press, (1998).

41. A. Frick, A. Ludwig and H. Mehldau “A Fast Adap-
tive Layout Algorithm for Undirected Graphs”, Pro-
ceedings of the Symposium on Graph Drawing
GD ’93, Springer–Verlag, pp. 389–403, (1994).

42. M. Fröhlich and M. Werner, “Demonstration of the
Interactive Graph Visualization System da Vinci”,
Proceedings of the DIMACS Workshop on Graph
Drawing ’94, Springer–Verlag, (1995).

43. T.M.J. Fruchterman and E.M. Reingold, “Graph
Drawing by Force–Directed Placement,” Software —
Practice & Experience, 21, pp. 1129–1164, (1991).

44. G.W. Furnas, “Generalized Fisheye Views”, Human
Factors in Computing Systems, CHI ’86 Conference
Proceedings, ACM Press, pp. 16–23, (1986).

45. G.W. Furnas and B.B. Bederson, “Space–scale Dia-
grams: Understanding Multiscale Interfaces”, Human
Factors in Computing Systems, CHI ’95 Conference
Proceedings, ACM Press, pp. 234–241, (1995).

46. G.W. Furnas and X. Zhang, “MuSE: A Multi–Scale
Editor”, Proceedings of the UIST’98 Symposium,
ACM Press, (1998).

47. M.R. Garey and D. S. Johnson (1983). “Crossing
number is NP–complete”, SIAM Journal of Algebraic
and Discrete Methods 4(3), pp. 312–316, (1983).

48. A. Garg and R. Tamassia, “On the Computational
Complexity of Upward and Rectilinear Planarity
Testing”, Proceedings of Symposium on Graph
Drawing, GD’95, Springer–Verlag, pp. 286–297,
(1995).

49. C. Gunn, “Visualizing Hyperbolic Space”, Proceed-
ings of the Workshop on Computer Graphics and
Mathematics, Springer–Verlag, pp. 299–313, (1992).

50. B. Hausmann, B. Slopianka, and H.–P. Seidel,
“Exploring Plane Hyperbolic Geometry”, Proceed-
ings of the Workshop on Visualization and Mathemat-
ics, Springer–Verlag, pp. 21–36, (1998).

51. T. He, “Internet–Based Front–End to Network Sim
lator”, Data Visualiation ‘99, Proceedings of the
Joint Eurographics and IEEE TCVG Symposium o
Visualization, Springer–Verlag, pp. 247–252, (1999)

52. M. Hemmje, C. Kunkel, and A. Willet: “LyberWorld
— A Visualization User Interface Supporting Fulltex
Retrieval”, Proceedings of ACM SIGIR’94, ACM
Press, (1994).

53. M. Hemmje, Actual Listing of Information Visualiza-
tion Systems, URL: http://www.darmstadt.gmd.de/
~hemmje/Viri/visual.html, (1996).

54. R. J. Hendley, N. S. Drew, A. M. Wood, and R. Beale,
“Narcissus: Visualising Information”, Proceedings of
the IEEE Symposium on Information Visualization,
IEEE CS Press, pp. 90–96, (1995).

55. I. Herman, M. Delest, and G. Melançon, “Tree Visu
alisation and Navigation Clues for Information Visu
alisation”, Computer Graphics Forum, 17(2),
pp. 153–165, (1998).

56. I. Herman, M.S. Marshall, G. Melançon, D.J. Duk
M. Delest, and J.–P. Domenger, “Skeletal Images
Visual Cues in Graphs Visualization”, Data Visualia-
tion ‘99, Proceedings of the Joint Eurographics an
IEEE TCVG Symposium on Visualization, Springer–
Verlag, pp. 13–22, (1999).

57. I. Herman, G. Melançon, M.M. de Ruiter, an
M. Delest, Latour — a Tree Visualisation System,
Reports of the Centre for Mathematics and Computer
Sciences, INS-R9904, http://www.cwi.nl/InfoVisu/
papers/LatourOverview.pdf, (1999).

58. J. Hopcroft and R. E. Tarjan, “Efficient Planarity
Testing”, Journal of the ACM, 21(4), pp. 549–568,
(1974).

59. M.L. Huang, P. Eades, and J. Wang, “Online An
mated Graph Drawing Using a Modified Spring
Algorithm”, Journal of Visual Languages and Com-
puting, 9(6), 1998.

60. M.L. Huang, P. Eades, and R.F. Cohen, “WebOFDA
— Navigating and Visualizing the Web On–line with
Animated Context Swapping”, Proceedings of the 7th

World Wide Web Conference, Elsevier Science,
pp. 636–638, (1998).

61. M.L. Huang and P. Eades, “A Fully Animated Inte
active System for Clustering and Navigating Hug
Graphs”, Proceedings of the Symposium on Graph
Drawing GD ’98, Springer–Verlag, pp. 374–383
(1998).

62. C.–S Jeong and A. Pang, “Reconfigurable Disc Tre
for Visualizing Large Hierarchical Information
Space”, Proceedings of the IEEE Symposium on
Information Visualisation (InfoVis’98), IEEE CS
Press, (1998).
© I. Herman, G. Melançon, & M.S. Marshall, 1999

http://www.darmstadt.gmd.de/~hemmje/Viri/visual.html
http://www.cwi.nl/InfoVisu/papers/LatourOverview.pdf

I. Herman et al. / Tree Visualisation and Navigation

s
://

g
g

y-

z-
-

c-

s

r

r,
,
,

-

)

est

at-

f

63. B. Johnson and B. Schneiderman, “Tree–maps: a
Space–filling Approach to the Visualisation of Hier-
archical Information Structures”, Proceedings of
IEEE Visualisation’91, IEEE CS Press, pp. 275–282,
(1991). Also in S.K. Card et al.12.

64. M. Juenger and P. Mutzel, “2–layer Straightline
Crossing Minimization: Performance of Exact and
Heuristic Algorithms”, Journal of Graph Algorithms
and Applications, 1, pp. 33–59, (1997).

65. D. Jungnickel, Graphs, Networks and Algorithms,
Springer Verlag, (1999).

66. T. Kamada and S. Kawai, “An Algorithm for Draw-
ing General Undirected Graphs”, Information
Processing Letters, 31, pp. 7–15, (1989).

67. K. Kaugars, J. Reinfelds, and A. Brazma, “A Simple
Algorithm for Drawing Large Graphs on Small
Screens”, Proceedings of the Symposium on Graph
Drawing GD ’94, Springer–Verlag, pp. 278–281,
(1995).

68. T.A. Keahey and E.L. Robertson, “Techniques for
Non–Linear Magnification Transformations”, Pro-
ceedings of the IEEE Symposium on Information Vis-
ualisation (InfoVis’97), IEEE CS Press, pp. 38–45,
(1997).

69. D. Kimelman, B. Leban, T. Roth, and D. Zernik,
“Reduction of Visual Complexity in Dynamic
Graphs”, Proceedings of the Symposium on Graph
Drawing GD ’93, Springer–Verlag, (1994).

70. M.R. Laguna, R. Martí, and V. Vals, “Arc Crossing
Minimization in Hierarchical Digraphs with Tabu
Search”, Computers and Operations Research,
24(12), pp. 1165–1186, (1997).

71. M. Laguna and R. Martí, “GRASP and Path Relink-
ing for 2–Layer Straight Line Crossing Minimiza-
tion”, INFORMS Journal on Computing, 11, pp. 44–
52, (1999).

72. M. Laguna and R. Martí, “Heuristics and Meta–Heu-
ristics for 2–Layer Straight Line Crossing Minimiza-
tion”, URL: http://www-bus.colorado.edu/Faculty/
Laguna/, (1999).

73. J. Lamping, R. Rao, and P. Pirolli, “A Focus+context
Technique Based on Hyperbolic Geometry for Visu-
alizing Large Hierarchies”, Human Factors in Com-
puting Systems, CHI ’95 Conference Proceedings,
ACM Press, (1995).

74. J. Lamping and R. Rao, “The Hyperbolic Browser: A
Focus+context Technique for Visualizing Large Hier-
archies”, Journal of Visual Languages and Comput-
ing, 7(1), pp. 33–55, (1996). Also in S.K. Card et
al.12.

75. Y. K. Leung and M. D. Apperly, “A Review and Tax-
onomy of Distortion–Oriented Presentation Tech-
niques”, ACM Transactions on Computer–Human
Interaction, 1(2), pp. 126–160, (1994). Also in S.K.
Card et al.12.

76. G. Melançon and I.Herman, Circular Drawings of
Rooted Trees, Reports of the Centre for Mathematic
and Computer Sciences, INS-R9817, http
www.cwi.nl/InfoVisu/papers/circular.pdf, (1998).

77. K. Mehlhorn and P. Mutzel, “On the Embeddin
Phase of the Hopcroft and Tarjan Planarity Testin
Algorithm”, Algorithmica, 16, pp. 233–242, (1996).

78. B. Mirkin, Mathematical Classification and Cluster-
ing, Kluwer Academic Publishers, (1996).

79. K. Misue, P. Eades, W. Lai, and K. Sugiyama, “La
out Adjustment and the Mental Map”, Journal of Vis-
ual Languages and Computing, 6, pp. 183–210,
(1995).

80. S. Mukherjea, J.D. Foley, and S. Hudson, “Visuali
ing Complex Hypermedia Networks through Multi
ple Hierarchical Views”, Human Factors in
Computing Systems, CHI ’95 Conference Proceed-
ings, ACM Press, pp. 331–337, (1995).

81. T. Munzner and P. Burchard, “Visualizing the Stru
ture of the World Wide Web in 3D Hyperbolic
Space”, Proceedings of the VRML’95 Symposium,
ACM SIGGRAPH, ACM Press, (1995).

82. T. Munzner, “H3: Laying out Large Directed Graph
in 3D Hyperbolic Space”, Proceedings of the 1997
IEEE Symposium on Information Visualization (Info-
Vis’97), IEEE CS Press, pp. 2–10, (1997).

83. T. Munzner, “Drawing Large Graphs with H3Viewe
and Site Manager”, Proceedings of the Symposium on
Graph Drawing GD ’98, Springer–Verlag, pp. 384–
393, (1998).

84. P. Mutzel, C. Gutwengwer, R. Brockenaue
S. Fialko, G. Klau, M. Kruger, T. Ziegler, S. Naher
D. Alberts, D. Ambras, G. Koch, M. Junger
C. Bucheim, S. Leipert, “A Library of Algorithms for
Graph Drawing”, Proceedings of the Symposium on
Graph Drawing GD ’97 Symposium, Springer–Ver-
lag, pp. 456–457, (1998).

85. L. Nigay and F. Vernier, “Design method of interac
tion techniques for large information space”, Pro-
ceedings of Advanced Visual Interfaces (AVI’98,
ACM Press, (1998).

86. S. North, “Incremental Layout in DynaDAG”, Pro-
ceedings of the Symposium on Graph Drawing
GD ’95, Springer–Verlag, pp. 409–418, (1995).

87. H.C. Purchase, “Which Aesthetic has the Great
Effect on Human Understanding?”, Proceedings of
the Symposium on Graph Drawing GD ’97, Springer–
Verlag, pp. 248–261, (1998).

88. H.C. Purchase, R.F. Cohen, and M. James, “Valid
ing Graph Drawing Aesthetics”, Proceedings of the
Symposium on Graph Drawing GD ’95, Springer–
Verlag, pp. 435–446, (1995).

89. E.M. Reingold and J.S. Tilford, “Tidier Drawing o
Trees”, IEEE Transactions on Software Engineering,
SE-7(2), pp. 223–228, (1981).
© I. Herman, G. Melançon, & M.S. Marshall, 1999

http://www.cwi.nl/InfoVisu/papers/circular.pdf

I. Herman et al. / Tree Visualisation and Navigation

f

nd

g

t,
rt-
,

/

90. J. Rekimoto and M. Green, “The Information Cube:
Using Transparency in 3D Information Visualisa-
tion”, Proceedings of the Third Annual Workshop on
Information Technologies & Systems (WITS’93),
(1993).

91. J. S. Risch, D. B. Rex, S. T. Dowson, T. B. Walters,
R. A. May, and B. D. Moon, “The STARLIGHT
Information Visualization System”, Proceedings of
the IEEE Conference on Information Visualisation,
IEEE CS Press, pp. 42–49, (1997).

92. G.G. Robertson, J.D. Mackinlay, and S.K. Card,
“Cone Trees: Animated 3D Visualizations of Hierar-
chical Information”, Human Factors in Computing
Systems, CHI ’91 Conference Proceedings, ACM
Press, pp. 189–194, (1991).

93. G.G. Robertson, S.K. Card, and J.D. Mackinlay,
“Information Visualization Using 3D Interactive Ani-
mation”, Communication of the ACM, 36(4), pp. 57–
71, (1993). Also in S.K. Card et al.12.

94. T. Roxborough and A. Sen, “Graph Clustering Using
Multiway Ratio Cut”, Proceedings of the Symposium
on Graph Drawing GD ‘97, Springer Verlag,
pp. 291–196, (1998).

95. M. Sarkar and M.H. Brown, “Graphical Fish–eye
views of graphs”, Human Factors in Computing Sys-
tems, CHI ’92 Conference Proceedings, ACM Press,
pp. 83–91, (1992).

96. M. Sarkar and M.H. Brown, “Graphical Fisheye
Views”, Communications of the ACM, 37(12),
pp. 73–84, (1994).

97. D. Schaffer, Z. Zuo, S. Greenberg, L. Bartram, J. Dill,
S. Dubs, and M. Roseman, “Navigating Hierarchi-
cally Clustered Networks through Fisheye and Full–
zoom Methods”, ACM Transactions on Computer–
Human Interaction, 3(2), pp. 162–188, (1996).

98. Y. Shiloach, Arrangements of Planar Graphs on the
Planar Lattices, PhD Thesis, Weizmann Institute of
Science, Rehovot, Israel, (1976).

99. G. Sindre, B. Gulla, H. G. Jokstad, “Onion Graphs:
Aesthetics and Layout”, Proceedings of IEEE/CS
Symposium on Visual Languages (VL’93), IEEE CS
Press, pp. 287–291, (1993).

100. T. C. Sprenger, M. Gross, D. Bielser, and T. Strasser,
“IVORY — An Object–Oriented Framework for
Physics–Based Information Visualization in Java”,
Proceedings of the IEEE Symposium on Information
Visualisation (InfoVis’98), IEEE CS Press, (1998).

101. K. Sugiyama, S. Tagawa and M. Toda, “Methods for
Visual Understanding of Hierarchical Systems Struc-
tures”, IEEE Transactions on Systems, Man and
Cybernetics SMC–11(2), pp. 109–125, (1989).

102. K. Sugiyama and K. Misue, “Visualization of Struc-
tural Information: Automatic Drawing of Compound
Digraphs”, IEEE Transactions on Systems, Man, and
Cybernetics, 21(4), pp. 876–892, (1991).

103. W. Tutte, “How to draw a Graph”, Proceedings of the
London Mathematical Society 3(13), pp. 743–768,
(1963).

104. X.G. Viennot, “Trees everywhere”, Proceedings of
the 15th CAAP Conference, Springer–Verlag, pp. 18–
41, (1990).

105. R. Zeilinger, “Supporting Constructive Navigation o
Web Space”, Proceedings of the Workshop on Per-
sonalized and Solid Navigation in Information Space,
(1998).

106. J.Q. Walker II, “A Node-positioning Algorithm for
General Trees”, Software — Practice and Experience,
20(7), pp. 685–705, (1990).

107. C. Ware and G. Franck, “Evaluation of Stereo a
Motion Cues for Visualising Information in Three
Dimensions”, ACM Transactions on Graphics, 15(2),
pp. 121–140, (1996).

108. Y. C. Wei and C. K. Cheng, “Ratio Cut Partitionin
for Hierarchical Designs,” IEEE Transactions on
Computer Aided Design, 10(7), pp. 911–921,(1991).

109. G.J. Wills, “Niche Works — Interactive Visualization
of Very Large Graphs”, Proceedings of the Sympo-
sium on Graph Drawing GD ’97, Springer–Verlag,
pp. 403–415, (1998).

110. P. Young, Three Dimensional Information Visualisa-
tion (Survey), Computer Science Technical Repor
No. 12/96, Centre for Software Maintenance Depa
ment of Computer Science, University of Durham
URL: http://www.dur.ac.uk/~dcs3py/pages/work
documents/lit-survey/IV-Survey/index.html, (1996).
© I. Herman, G. Melançon, & M.S. Marshall, 1999

http://www.dur.ac.uk/~dcs3py/pages/work/documents/lit-survey/IV-Survey/index.html

	1. Introduction
	1.1 Information visualisation
	1.2 Graphs in Information Visualisation
	1.3 Typical Application Areas
	1.4 Key Issues in Graph Visualisation

	2. Graph Layout
	2.1 Background of Graph Drawing
	2.2 Traditional Layout — an Overview
	2.3 Spanning Trees
	2.4 3D Layout
	2.5 Hyperbolic Layout

	3. Navigation and Interaction
	3.1 Zoom and Pan
	3.2 Focus+Context Techniques
	3.2.1 Fisheye Distortion
	3.2.2 Focus+Context Layout Techniques
	3.2.3 Further Issues in Focus+Context Techniques

	3.3 Incremental Exploration and Navigation

	4. Clustering
	4.1 Layout of a clustered graph
	4.2 Node Metrics for Clustering

	5. Systems
	6. Journals and Conferences
	References

	publ: Published by the Eurographics Association, ISSN 1017-4656

