
EUROGRAPHICS ’99 STAR – State of The Art Reports

Multiresolution Modeling: Survey & Future Opportunities

Michael Garland

Computer Science Department, Carnegie Mellon University
Pittsburgh, PA15213, USA

garland@cs.cmu.edu

Abstract
For twenty years, it has been clear that many datasets are excessively complex for applications such as real-time
display, and that techniques for controlling the level of detail of models are crucial. More recently, there has been
considerable interest in techniques for the automatic simplification of highly detailed polygonal models into faith-
ful approximations using fewer polygons. Several effective techniques for the automatic simplification of polygonal
models have been developed in recent years. This report begins with a survey of the most notable available algo-
rithms. Iterative edge contraction algorithms are of particular interest because they induce a certain hierarchical
structure on the surface. An overview of this hierarchical structure is presented,including a formulation relating
it to minimum spanning tree construction algorithms. Finally, we will consider the most significant directions in
which existing simplification methods can be improved, and a summary of other potential applications for the
hierarchies resulting from simplification.

1. Introduction

Advances in technology have provided vast databases of
polygonal surface models, but these models are often very
complex. Surfaces containing millions of polygons are not
uncommon. Laser range scanners, computer vision systems,
and medical imaging devices can produce models of intricate
physical objects. Many companies now design products us-
ing computer-aided design (CAD) systems, resulting in very
complex, highly detailed surfaces. Models produced by sur-
face reconstruction and isosurface extraction methods can
often be very densely sampled meshes with a uniform distri-
bution of points on the surface. Applications in areas rang-
ing from distributed virtual environments to finite element
methods to movie special effects rely on polygonal surface
models generated by these kinds of systems.

In all these applications, a tradeoff exists between the ac-
curacy with which a surface is modeled and the amount of
time required to process it. To achieve acceptable running
times, we must often substitute simpler approximations of
the original model. A model which captures very fine sur-
face detail may in fact be desirable when creating archival
datasets; it helps ensure that applications which later pro-
cess the model have sufficient and accurate data. However,
many applications will require far less detail than is present
in the full dataset.

Consequently, there has been considerable interest in

techniques for the automatic simplification of highly detailed
polygonal models into faithful approximations using fewer
polygons. Several effective techniques have been developed
in recent years, and they provide valuable tools for tailor-
ing large datasets to the needs of individual applications and
for producing more economical surface models. Consider
the model shown in Figure 1 at three different levels of de-
tail. The original surface (a), containing nearly a half million
triangular faces, is very densely over-sampled. By compari-
son, approximation (b) contains 86% fewer triangles, but its
appearance is virtually identical to that of the original. For
many applications, including interactive rendering, this ap-
proximation would be a suitable replacement. Approxima-
tion (c) contains a mere 1000 faces. While most of the fine
detail of the surface is gone, the overall structure remains.
An application trying to measure some gross property of the
surface, say volume, could arrive at a reasonable initial esti-
mate from this very simple model.

Techniques for controlling the run-time level of surface
detail are also very important in real-time rendering systems.
For any given system, available hardware capacity — such as
frame buffer fill rates, transformation and lighting through-
put, and network bandwidth — is essentially fixed. But the
complexity of the scene to render may vary considerably. In
order to maintain a constant frame rate, of say 30 Hz, we
need to keep the level of detail in the scene from exceed-
ing the available hardware capacity. This need arises at the

c© M. Garland 1999.
Published by the Eurographics Association ISSN 1017-4656.

M. Garland / Multiresolution Modeling: Survey & Future Opportunities

(a) 424,376 faces (b) 60,000 faces (c) 1000 faces

Figure 1: A scanned dental model with two approximations.

low end, where computer games and distributed virtual en-
vironments must often operate on systems where available
resources are highly constrained. The same need is present
at the high end as well, where realistic simulation and sci-
entific visualization systems typically have object databases
that far exceed the capacity of even the most powerful graph-
ics workstations.

In order to manage the level of detail of an object, we need
to represent it as amultiresolution model— a surface rep-
resentation which supports the reconstruction of various ap-
proximations which can accommodate a wide range of view-
ing contexts. As an example, consider a surface model such
as the one shown in Figure 2b, containing about 100,000 tri-
angular faces. Suppose the viewer is closely examining the
surface as in Figure 2a; the screen is filled by a small por-
tion of the total surface. Under these conditions, the area
being examined may well have too few triangles while the
rest of the model, which falls beyond the field of view, can
be ignored. Now consider a view like that in Figure 2c; the
model appears as a few small dots. In this case, the model
has far too many polygons for the number of pixels being
rendered. Not only must a multiresolution model allow us to
extract approximations suitable for these three diverse cir-
cumstances, but it must also allow us to change the level of
detail without excessive overhead. If the time necessary to
switch to and render a lower level of detail exceeds the time
necessary to simply render a higher level, we would gain no
advantage from the multiresolution model.

This report begins with an overview of the problem of
surface simplification. Following this is a survey of the al-
gorithms which have been developed. Simplification algo-
rithms based on iterative contraction are of particular inter-
est because they have been used to construct multiresolution
surface representations, and we will consider these described
in the subsequent sections. Finally, the most important di-
rections in which existing techniques can be extended and
improved are explored.

2. Polygonal Surface Simplification

A polygonal modelM is composed of a fixed set of ver-
tices V = (v1,v2, . . . ,vr) and a fixed set of facesF =
(f1, f2, . . . , fn). It provides a single fixed resolution repre-
sentation of an object. Without loss of generality, we can
assume that the model consists entirely of triangular faces,
since any non-triangular polygons may be triangulated in a
pre-processing phase. To streamline the discussion, I will as-
sume that models do not contain isolated vertices and edges
which are not part of any triangle. For best results in prac-
tice, they should be maintained during simplification and
rendered at run time66, 72, 79, 83. For most algorithms, the only
effect of isolated vertices and edges is to complicate the im-
plementation; the underlying algorithms remain the same.

Suppose we have a polygonal modelM and we would like
an approximationM′. While this approximation will have
fewer polygons than the original, it should also be as sim-
ilar as possible toM. The goal of polygonalsurface sim-
plification is to automatically produce such approximations.
User supervision is generally not feasible. Simplification is
naturally targeted towards large and complex datasets which
would be very cumbersome to manipulate manually.

A common application of simplification is reducing the
complexity of very densely over-sampled models. Models
generated by scanning devices and isosurfaces extracted by
algorithms such as marching cubes64 often benefit from sim-
plification. Such models are often uniformly tessellated —
an artifact of the nature of most reconstruction algorithms.
Triangle density is the same in both flat and highly curved
regions. It is usually preferable to be more economical with
triangle coverage; local triangle density should adapt to local
curvature. The number of triangles can often be reduced by
50 percent or more, and the result will be nearly identical to
the original.

More generally, we may want to produce an approxi-
mation which is tailored for a specific use. For instance,
we might want to produce an approximation of the dragon
model in Figure 2 suitable for viewing conditions such as

c© M. Garland 1999.

M. Garland / Multiresolution Modeling: Survey & Future Opportunities

(a) Close inspection (b) Normal viewing (c) Far in distance

Figure 2: The same model used in widely differing contexts.

depicted in Figure 2c. Given the output resolution at which
it is displayed, we could probably achieve identical results
with fewer than 100 triangles.

In other cases, we would like something more flexible
than a single fixed approximation. Suppose that, during an
interactive session, a user was viewing the model shown in
Figure 2 in the diverse contexts shown. There is no single
set of polygons which is appropriate for all of these different
viewing conditions. Instead, we would like to have multiple
different approximations available, selecting the best one for
the current viewing conditions. Rather than a fixed resolu-
tion model, we would like a multiresolution model.

A multiresolution modelis a model representation which
captures a wide range of approximations of an object and
which can be used to reconstruct any one of them on de-
mand. The cost of reconstructing approximations should be
low because we will often need to use many different ap-
proximations at run time. It is also important that a mul-
tiresolution representation have roughly the same size as the
most detailed approximation alone, although a small con-
stant factor increase in size is acceptable. Since rendering
systems are of primary concern here, the appropriate sur-
face approximation for a particular model will depend upon
current viewing conditions (e.g., distance to the viewer).
The appropriate level of detail may also vary considerably
over the surface. As we will see, surface simplification algo-
rithms can be used to construct multiresolution representa-
tions from the initial surface geometry.

3. Evaluating Surface Approximations

The primary aim of simplification is to produce a surface
approximation which is as similar as possible to the original.
In order to assess the quality of an approximation, we need
some means of quantifying the notion of similarity. Given
a polygonal modelM and an approximationM′, we would
like an error metric for which the valueE(M,M′) measures
theapproximation errorof M′.

In general, the preferred similarity criteria will be
application-dependent.Rendering systems are one of the pri-
mary application areas of interest in the simplification liter-
ature, and similarity of appearance is the natural choice for

rendering applications43. However, in almost all cases, re-
searchers in the field of simplification have chosen to use
similarity of shape as the primary criterion for evaluating
approximation quality. Not only do shape-based metrics ap-
pear to be more computationally convenient, but they are
also more appropriate in non-rendering applications such as
finite element analysis. Nevertheless, since similarity of ap-
pearance is often what we would like to achieve, it is impor-
tant to consider how we might define it.

3.1. Similarity of Appearance

For a given view, the appearance of a model is determined
by the corresponding raster image which a renderer would
produce. IfI1 andI2 arem×m RGB raster images of mod-
elsM1 andM2, we can define the difference between them
as the average sum of squared differences between all corre-
sponding pixels

‖I1− I2‖img =
1

m2 ∑
u

∑
v
‖I1(u,v)− I2(u,v)‖2 (1)

where ‖I1(u,v)− I2(u,v)‖ is the Euclidean length of the
difference of the two RGB vectorsI1(u,v) and I2(u,v).
While there are many more elaborate metrics for comparing
images80, this very simple definition appears suitable for the
simplification domain. IfM2 is a good approximation ofM1
for the given view, then‖I1− I2‖img should be small. Given
this image metric, we can characterize the total difference in
appearance between two models by integrating these differ-
ences over all possible views. Naturally, we would expect in
practice to merely sample these per-image differences over
some finite set of viewpoints.

A simplification algorithm guided by an appearance-
based metric of this type has several interesting character-
istics. Its primary advantage is that it directly measures sim-
ilarity of appearance, which is precisely what we are inter-
ested in preserving in rendering systems. It also allows us to
discard occluded details. Suppose that we have some proba-
bility distribution on the possible viewpoints that will occur
at run time. Any features which are occluded in all possi-
ble views can be immediately removed. For example, if we
have a complex model of a submarine and we know that the
viewpoint will always be outside the hull, we can remove all

c© M. Garland 1999.

M. Garland / Multiresolution Modeling: Survey & Future Opportunities

polygons on the interior without introducing any error into
the approximation.

While appearance-based metrics have some appealing
benefits, they also raise some difficult issues. In particular,
the foremost problem is the need to adequately sample the
possible viewpoints. If we neglect some important part of
the viewpoint space, we may very well remove perceptu-
ally significant features. And since each sample may involve
an expensive rendering step, we cannot make many sam-
ples. Indeed, rendering the models for comparison is likely
to be quite expensive; simplification is generally performed
on models which are prohibitively expensive to render in the
first place.

3.2. Geometric Approximation Error

While similarity of appearance is the foremost goal for ap-
proximations used in rendering systems, it is generally easier
to consider geometric measures of error instead. We can use
geometric similarity as a proxy for visual similarity. By striv-
ing to produce geometrically faithful results, we can also
produce approximations that will be useful in application do-
mains other than rendering.

3.2.1. Function Approximation

Before considering the full problem of measuring approxi-
mation error for polygonal models, let us examine a much
simpler case: function approximation. This area of study has
a long history in the mathematics literature, and it will pro-
vide us with some intuition which will carry over into the
polygonal domain.

The two most commonly used error metrics are theL∞
andL2 norms73. Suppose a real-valued functionf (t), an ap-
proximationg(t), and an interval of interest[a,b] are given.
TheL∞ norm, which measures the maximum deviation be-
tween the original and the approximation is defined by

‖ f −g‖∞ = max
a≤t≤b

| f (t)−g(t)| (2)

TheL2 norm defined by

‖ f −g‖2 =

√Z b

a
(f (t)−g(t))2 dt (3)

provides a measure of the average deviation between the two
functions. A piecewise-linear approximationg(t) composed
of n segments is calledoptimalif there is no othern-segment
approximation having a smaller error. TheL∞ norm is gen-
erally regarded as a stronger measure of error in the function
approximation literature73. Because it provides a global ab-
solute bound on the distance between the original and the
approximation, it is often easier to prove quality guarantees.
However, theL2 norm is somewhat more general. Certain
functions, such asf (t) = t−1/3 on the interval[0,1], have a
well-definedL2 norm but noL∞ norm.

TheL∞ norm is most useful because it provides absolute
distance bounds which are a useful error guarantee. How-
ever, it can be overly sensitive to any noise that might be

present in the original model. In contrast, theL2 norm better
reflects overall fit, but may discount large, but highly local-
ized, deviations. For example, consider the curves shown in

(a) (b) (c)

h

Figure 3: Two approximations to the same base curve.

Figure 3. The two approximations (b) and (c) have the same
L∞ error, namely the distanceh. However, curve (c) cer-
tainly seems to be a better overall approximation. TheL2
norm would assign a higher error to curve (b) than curve
(c). Now consider the curves shown in Figure 4. The base

(a) (b) (c)

h

Figure 4: Alternative approximations to the same base
curve.

curve (a) and the approximation (c) are the same as before.
We can choose the size of the tent in approximation (c) such
that both (b) and (c) have the sameL2 error. However, there
are certainly cases in which (b) is a preferable approxima-
tion given that (c) deviates significantly further from the base
curve. Also, suppose that we allow the widthε of the tent in
(c) to approach 0. TheL2 error of (c) will also approach 0,
while itsL∞ error will remainh.

3.2.2. Surface Approximation

We can formulate surface-based analogs of both theL2 and
L∞ function approximation norms. First, we need to gen-
eralize the notion of deviation between the original and the
approximation. In the functional case outlined in the previ-
ous section, we measured deviation as the vertical distance
| f (x)−g(x)|. When comparing general surfaces, there is no
single distinguished direction along which to measure dis-
tances. Instead, we will measure distances between closest
pairs of points. The distance from a pointv to the modelM
is defined to be the distance to the closest pointw on the
model:

dv(M) = min
w∈M
‖v−w‖ (4)

where‖ · ‖ is the usual Euclidean vector length operator.

One commonly used geometric error measure is the Haus-
dorff distance74, an analog theL∞ metric, which can be de-
fined as

Emax(M1,M2) = max

(
max
v∈M1

dv(M2),max
v∈M2

dv(M1)
)

(5)

The Hausdorff error measures the maximum deviation be-
tween the two models. IfEmax(M,M′) < ε, then we know
that every point of the approximation is withinε of the orig-
inal surface and that every point of the original is within

c© M. Garland 1999.

M. Garland / Multiresolution Modeling: Survey & Future Opportunities

ε of the approximation. Along similar lines, we can define
Eavg, an analog of theL2 metric, which measures the aver-
age squared distance between the two models as

Eavg(M1,M2) =
1

w1

Z
v∈M1

d2
v(M2) +

1
w2

Z
v∈M2

d2
v(M1)

(6)

wherew1,w2 are the surface areas ofM1,M2. Note the sym-
metric construction of bothEmaxandEavg. It is not sufficient
to simply consider every point onM1 and find the closest
corresponding point onM2. We must also do the same for
every point onM2.

In practice, these error metrics can be prohibitively ex-
pensive to compute exactly. It is common to formulate ap-
proximations of these ideal metrics based on sampling the
distancedv at a discrete set of pointsX1,X2 on the surfaces
of M1,M2, respectively. These sets should, at a minimum,
contain all the vertices of their respective models.

Some simplification algorithms have used these metrics
to directly guide the construction of approximations. For in-
stance, theEdist energy term used by Hoppeet al. 51, 47 is
very similar toEavg. It differs only in omitting the averaging
terms and by measuring the asymmetric distance fromM1 to
M2. And most published results which attempt to assess the
objective quality of approximations9, 63, 31 use one or both of
these metrics, which can be conveniently calculated using
the Metro10 model comparison tool.

To further reduce the cost of evaluating these error met-
rics, others88, 57, 7, 58 definelocalizedversions of the under-
lying distance functiondv. As defined above,dv(M) finds
the distance ofv to the closest point onM. However, we
can restrict our search to a small regionR of M and evalu-
ate the localized distancedv(R). Many surface simplification
algorithms produce a correspondence between vertex neigh-
borhoods on the approximation and regions on the original
surface. Thus, we can quite naturally define a localized error
metric based on measuring distances to these corresponding
regions.

4. Survey of Polygonal Simplification Methods

The problems of surface simplification and multiresolution
modeling have received increasing attention in recent years.
The underlying concept of multiresolution surface models
is not particularly new; Clark11 discussed the general idea
twenty-five years ago. However, with the exception of work
done on simpler objects such as curves and height fields,
most of the results in the field are fairly recent.

This section surveys some of the notable simplification
algorithms. It is by no means exhaustive; rather, I have tried
to select representative algorithms. The survey by Heckbert
and Garland44 provides more complete coverage of several
algorithms, particularly for height field simplification. Data
on the relative performance of various simplification algo-
rithms can be found in the survey of Cignoniet al. 9 and
elsewhere63, 7, 31.

The two most common methodologies in surface simpli-
fication arerefinementanddecimation. A refinement algo-
rithm is an iterative algorithm which begins with an initial
coarse approximation and adds elements at each step. Es-
sentially the opposite of refinement, a decimation algorithm
begins with the original surface and iteratively removes ele-
ments at each step. Both refinement and decimation share a
very important characteristic: they seek to derive an approx-
imation through atransformationof some initial surface.

An important distinction between algorithms is whether
they perform topological simplification on the surface. Most
methods fall into one of three categories. Some specifically
prohibit any topological alteration13. The majority of algo-
rithms simplify the topologyimplicitly. In other words, they
make choices based on geometric criteria, but they may sim-
plify the topology as a side-effect. Finally, some algorithms
explicitlyconsider the simplification of surface topology42, 23

along with geometric simplification.

Clearly, there are applications in which topological sim-
plification must be prevented. For example, in some medical
imaging applications, preserving a hole in the heart wall may
be much more important than preserving the exact shape of
the surface. However, in most rendering applications, not
only can we safely simplify the topology of models, it is
often desirable to do so. Consider a model of a sponge.
When examined closely, the intricate structure of holes in
the sponge is a visually important feature. However, when
viewed from a distance, these holes are imperceptible. The
entire sponge can be adequately approximated by a simple
block, particularly if we can apply an appropriate texture im-
age to the block that simulates the texture of the original.

Surface models are often assumed to bemanifolds45 —
surfaces for which all points have neighborhoods topolog-
ically equivalent to a disk. Many surfaces encountered in
practice tend to be manifolds, and many surface-based al-
gorithms require manifold input. It is possible to apply
such algorithms to non-manifold surfaces by cutting the sur-
face into manifold components and subsequently stitching
them back together40. However, it can be advantageous for
simplification algorithms to explicitly allownon-manifold
surfaces, particularly when topological simplification is al-
lowed. Imagine a model of a metal plate with many small
holes drilled in it. The common contraction-based approach
for removing a hole from this model would begin by collaps-
ing one end of the hole into a single point, resulting in anon-
manifold vertex neighborhood.While it is possible to explic-
itly cut and re-stitch the surface during simplification85, this
can add substantial complexity to the algorithm.

Before considering general surface simplification, let us
briefly examine two lower-dimensional problem domains —
the simplification of curves and height fields.

4.1. Curves and Functions

Not surprisingly, the simplification of functions and curves
has the longest history. Within this area, the work on the sim-
plification of piecewise-linear curves is most closely related

c© M. Garland 1999.

M. Garland / Multiresolution Modeling: Survey & Future Opportunities

to the problem of simplifying polygonal surfaces. It has de-
veloped in, among other fields, cartography (under the name
“generalization”), computer vision, and computer graphics.

Suppose that we have a piecewise-linear curve withn ver-
tices, and we would like an approximation withm< n ver-
tices. For these simple geometric objects, we can actually
construct optimal approximations — those which use the
minimum number of vertices necessary to achieve a given
error tolerance. Algorithms have been developed for con-
structingL∞–optimal approximations of functions53, plane
curves53, and 3-D space curves52. However, finding these op-
timal solutions quickly becomes expensive. While the algo-
rithm for finding optimal approximations of functions has a
time complexity ofO(n), the algorithms for plane curves and
space curves have much higher complexities ofO(n2 logn)
andO(n3 logm), respectively. This makes them rather im-
practical for very large datasets.

Perhaps the most widely used algorithm for curve simpli-
fication is a simple refinement algorithm, commonly referred
to as the Douglas–Peucker20 algorithm. This algorithm be-
gins with with some minimal approximation, normally a sin-
gle line segment from the first to last vertex. This segment
is split at the point on the original curve which is furthest
from the approximation. Each of the two new subsegments
can be recursively split until the approximation meets some
termination criteria. This is evidently a rather natural algo-
rithm for curve approximation, since it was independently
invented by a number of people44.

Decimation algorithms, which in essence are the
Douglas–Peucker refinement algorithm in reverse, have also
been developed4, 61. While the quality of their results is at
least as good, they tend to be less efficient. Broadly speak-
ing, the time and memory requirements of these iterative al-
gorithms depend on the size of the current approximations
being tracked through successive iterations. The refinement
approach begins with a minimal approximation and grad-
ually refines it, rather than starting with the full model and
gradually simplifying it. Therefore, the intermediate approx-
imations which it constructs tend to be fairly small, particu-
larly if the target approximation is only say 10% or less the
size of the original.

4.2. Height Fields

Height fields are among the simplest types of surface. They
can be defined as the set of points satisfying an equation of
the formz= f (x,y) wherex andy range over a subset of the
Cartesian plane.

In contrast to curve simplification, it is not feasible to con-
struct optimal approximations of height fields. Agarwal and
Suri2 have shown that computing anL∞–optimal approx-
imation of a height field is NP-Hard14. In other words, an
optimal approximation cannot be computed in less than ex-
ponential time. Polynomial time approximation algorithms
have been developed2, 1 which can generate approximations
with someL∞ errorε usingO(k logk) triangles, where there

arek triangles in the optimal approximation. However, their
running time is at bestO(n2) for a height field withn input
points — too high for practical use on large datasets.

Refinement is the most popular approach for terrain ap-
proximation, as it was in the case of curves. One particu-
larly common algorithm begins with a minimal approxima-
tion and iteratively inserts the point where the approximation
and the original are farthest apart. Thisgreedy insertiontech-
nique has received significant attention and has been inde-
pendently rediscovered repeatedly44. Incremental Delaunay
triangulation41 is often used to triangulate the selected ver-
tices, but other data-dependent triangulations can produce
approximations with lower error75, 32.

Decimation algorithms for simplifying height fields have
also been proposed60, 82. However, as was the case with
curves, they do not seem to be as widely used as refinement
methods. Depending on the exact algorithms chosen, deci-
mation may produce higher quality results than refinement.
But the greater speed and smaller memory requirements of
refinement seem to have made it the more common choice.

4.3. Surfaces

Successful algorithms for simplifying curves and height
fields were developed twenty years ago20, 27, but the work
on more general surface simplification is much more recent.
Note that, since height fields are a special case of general
surfaces, optimally approximating a surface is NP-Hard.

4.3.1. Manual Preparation

The traditional approach to multiresolution surface mod-
els has been manual preparation. A human designer must
construct various levels of detail by hand. Manual tech-
niques have been in use in the flight simulator field for
decades15, and similar techniques are in use today by game
developers90. While this process may be aided by a specially
designed surface editor28, it can still be a time-consuming
and difficult task. The general goal of the work done on sur-
face simplification has been to automate this task.

4.3.2. Polyhedral Refinement

Only a small number of algorithms for progressively refining
polygonal surfaces have been proposed25, 18, 19. While refine-
ment has traditionally been the method of choice for approx-
imating curves and height fields, decimation has been much
more widely used for simplifying more general surfaces.
Perhaps the primary difficulty with refinement in this case
involves actually constructing the base approximation. If we
limit ourselves to refining via simple subdivision rules, then
the initial approximation must necessarily have the same
topology as the original model. However, not only does this
prevent us from simplifying the topology, but it is not always
easy to discover the topology of the input surface.

c© M. Garland 1999.

M. Garland / Multiresolution Modeling: Survey & Future Opportunities

4.3.3. Vertex Clustering

Vertex clustering methods79, 66, 83 spatially partition the ver-
tex set into a set of clusters and unify all vertices within the
same cluster. They are generally very fast and work on arbi-
trary collections of triangles. Unfortunately, they can often
produce relatively poor quality approximations.

The simplest clustering method is the uniform vertex clus-
tering algorithm described by Rossignac and Borrel79. A
simple example of uniform clustering is shown in Figure
5. The vertex set is partitioned by subdividing a bounding

Before After

Figure 5: Uniform clustering in two dimensions.

box on a regular grid, and the new representative vertex for
each cell is computed using cheap heuristics based on cri-
teria such as edge length. This process can be implemented
quite efficiently. The algorithm also tends to make substan-
tial alterations to the topology of the original model. Look-
ing at Figure 5, we can see that the triangle in the upper left
corner is reduced to a point, and two separate components
along the top are joined together. Note that, much like uni-
form subsampling of images, the results of this algorithm
can be quite sensitive to the actual placement of the grid
cells. It is also incapable of simplifying features larger than
the cell size. A planar rectangle consisting of many triangles
all larger than the cell size will not be simplified at all, even
though it can be approximated using two triangles without
error.

The most natural way to extend uniform clustering is
to use an adaptive partitioning scheme such as octrees67.
Centering cells around important vertices, rather than
merely partitioning space, can also lead to improved
approximations66.

Clustering methods tend to work well if the original
model is highly over-sampled and the required degree of
simplification is not too great. They also tend to perform
better when the surface triangles are smaller than the cell
size. Since no vertex moves further than the diameter of its
cell, clustering algorithms provide guaranteed bounds on the
Hausdorff approximation error sampled at the vertices ofM
andM′. However, to achieve substantial simplification, the
required cell size increases quite rapidly, making the error
bound rather weak. In particular, at more aggressive simpli-
fication levels, the quality of the resulting approximations
can quickly degrade.

4.3.4. Region Merging

A handful of simplification algorithms54, 46, 37 operate by
merging surface regions together. For example, the “super-
faces” algorithm of Kalvin and Taylor54 partitions the sur-
face into disjoint connected regions based on a planarity cri-
terion. Each region is replaced by a polygonal patch whose
boundary is simplified, and the resulting region is retriangu-
lated. These algorithms are generally restricted to manifold
surfaces, and do not alter the topology of the model. The al-
gorithms of Hinker & Hanson46 and Gourdon37 appear to be
best suited for smooth surfaces that are not highly curved.
However, Kalvin and Taylor’s algorithm seems to produce
good quality results, and it providesbounds on the approxi-
mation error.

Region merging techniques do not seem to have become
widespread. This may well be because they are somewhat
more complicated to implement in comparison to other al-
gorithms without offering superior approximations. And in
contrast to iterative edge contraction, they do not produce a
natural multiresolution representation.

4.3.5. Wavelet Decomposition

Wavelet methods91 provide a fairly clean mathematical
framework for the decomposition of a surface into a base
shape plus a sequence of successively finer surface details.
Approximations can be generated by discarding the least
significant details. They have been used quite successfully
for producing multiresolution representations of signals and
images68, 91.

Lounsberyet al. 65 developed a method for generating
a wavelet decomposition of surfaces with subdivision con-
nectivity. Consequently, the resulting approximations may
be relatively far from optimal because they may use a large
number of triangles simply to preserve subdivision connec-
tivity. Wavelet decompositions are also generally unable to
resolve creases on the surface unless they fall along edges in
the base mesh; Hoppe47 provides a goodillustration of this
effect. Ecket al. 22 developed a procedure for producing a
subdivision mesh from a surface with arbitrary connectiv-
ity. However, this pre-process introduces some level of er-
ror into the base shape, although this error can be limited
by a specified tolerance value. Like other subdivision-based
schemes, wavelet methods cannot easily construct approxi-
mations with a topology different from the original surface.

4.3.6. Vertex Decimation

One of the more widely used algorithms is vertex deci-
mation, an iterative simplification algorithm originally pro-
posed by Schroederet al. 86. In each step of the decimation
process, a vertex is selected for removal, all the faces ad-
jacent to that vertex are removed from the model, and the
resulting hole is retriangulated (see Figure 6). Since this re-
triangulation requires a projection of the local surface onto
a plane, these algorithms are generally limited to manifold
surfaces. The fundamental operation of vertex deletion is
also incapable of simplifying the topology of the model.

c© M. Garland 1999.

M. Garland / Multiresolution Modeling: Survey & Future Opportunities

delete

Before After

Figure 6: A vertex is removed and the resulting hole is retri-
angulated.

Schroeder85 was able to lift these restrictions by incorpo-
rating cutting and stitching operations into the simplification
process. The original vertex decimation algorithm86 used a
fairly conservative estimate of approximation error. More re-
cent methods88, 57, 7, 58 use more accurate error metrics, like
the localized Hausdorff error. They maintain links between
points on the original surface and the corresponding neigh-
borhood on the approximation, and the distances between
these points and the associated faces define the approxima-
tion error.

The algorithm of Schroederet al. is reasonably efficient,
both in time and space, but it seems to have some difficulty
preserving smooth surfaces (c.f. Schroeder85 Fig. 9). The
body of the turbine blade is initially smooth, but becomes
quite rough during simplification. While the other vertex
decimation algorithms produce higher quality results, they
are substantially slower and consume more space.

This methodology of vertex decimation is in fact closely
related to iterative contraction (discussed in the next sec-
tion). In particular, note that the vertex removal pictured in
Figure 6 can just as easily be accomplished by contracting
the bottom edge. Removing a vertex by edge contraction85

is generally more robust than projecting the neighborhood
onto a plane and retriangulating86.

4.3.7. Iterative Contraction

The final major class of algorithms is based on the itera-
tive contraction of vertex pairs3, 33, 34, 39, 63, 59, 47, 72, 77. Some
algorithms have been formulated using face contraction35,
but since a face can be contracted by contracting two of its
edges, the distinction is minor. Contraction algorithms have
become increasingly popular in recent years, and I will focus
on them in greater detail.

A vertex pair contraction, denoted(vi,v j)→ v̄, modifies
the surface in three steps:

1. Move the verticesvi andv j to the position̄v;
2. Replace all occurrences ofv j with vi ;
3. Removev j and all faces which become degenerate —

that no longer have three distinct vertices.

The first step modifies the geometry of the surface, and the
second step modifies the connectivity of its mesh. Unless
the topology is explicitly preserved, this may also implicitly
alter the topology of the surface (e.g., by closing holes). The

final step simply removes elements of the surface which are
no longer needed.

When an edge is contracted, its end points are replaced by
a single point and triangles which degenerate to edges are
removed (see Figure 7). Also note that the fundamental op-

Before After

contract

vi

vj
v–

Figure 7: Edge(vi,v j) is contracted. The darker triangles
become degenerate and are removed.

eration of contraction does not require the immediate neigh-
borhood to be manifold. In fact, contraction can be applied to
any simplicial complex. Thus contraction-based algorithms
can more conveniently deal with non-manifold surfaces than
vertex decimation algorithms.

General pair contractions, where the verticesvi ,v j need
not be connected by an edge, have been proposed to pro-
vide a means of merging separate topological components
during simplification33, 72. The effect of an edge contraction
such as the one pictured in Figure 7 is to remove one ver-
tex and one or more faces from the model. In contrast, con-
tracting a non-edge pair will remove one vertex and join
previously unconnected regions of the surface (see Figure
8). In general, performing topological simplification via pair

Before After

contractvi

vj

v–

Figure 8: Non-edge pair(vi,v j) is contracted, joining pre-
viously unconnected areas. No triangles are removed.

contractions requires the algorithm to support non-manifold
surfaces. At the instant when two separate components are
joined together, a non-manifold region will almost certainly
be created. For instance, the resulting neighborhood pictured
in Figure 8 is non-manifold because the faces surroundingv̄
form two separate fans.

To perform the contraction(vi,v j)→ v̄, we must choose
a target position̄v. Subset placement, where we select one of
the endpoints as the target position, is the simplest strategy
that we can adopt. We can often produce better approxima-
tions usingoptimal placementwhere v̄ is allowed to float
freely in space in order to minimize some error metric. This
will generally result in higher quality approximations, but
as we will see, the storage requirements for multiresolution
representations will be higher.

c© M. Garland 1999.

M. Garland / Multiresolution Modeling: Survey & Future Opportunities

Most of the iterative contraction algorithms which have
been developed follow a simple greedy procedure to select
a sequence of edge contractions. Each pair being considered
for contraction is assigned a “cost”. The way in which this
cost is determined is the primary differentiating factor be-
tween algorithms of this type. Generally, this cost of contrac-
tion is meant to reflect the amount of error introduced into
the approximation by the contraction of the pair in question.
At each iteration, the lowest cost pair is contracted. Once a
contraction is added to the sequence, it is never reconsidered.

Figure 9 illustrates the simplification of a small model by
a series of edge contractions. The original modelM0 is a
square with a hole cut through it; the total model consists of
eight triangular faces. By contracting the highlighted pair of
vertices(v5,v8), we produce the approximationM1. Now,
by contracting the highlighted pair(v6,v7), we arrive at the
approximationM2; notice that the hole is now closed. As-
suming that contractions were selected based on purely geo-
metric criteria, this example illustrates how the topology of
the model may be implicitly simplified by iterative contrac-
tion.

Hoppe’s algorithm47 for constructing progressive meshes
is based on minimization of an energy function. One of its
primary components is a geometric error term very much
like Eavg. The algorithm maintains a set of sample points on
both the original surface, and the distances between these
points and the corresponding closest points on the approx-
imation determine the geometric error. This algorithm pro-
duces some of the highest quality results among currently
available methods. However, the price of this precision is
a very long running time. Hoppe reports48 running times
of around an hour for a model of about 70,000 faces. The
original algorithm could simplify topology by closing holes
in the surface, and the extension by Popovi´c and Hoppe72

can join unconnected regions. The mesh optimization algo-
rithm of Hoppeet al. 51 is an earlier form of the progressive
mesh construction algorithm47. It performs explicit search
rather than simple greedy contraction. Consequently, it ex-
hibits even longer running times, but may produce the high-
est quality results.

The algorithm developed by Guéziec38, 39 maintains a tol-
erance volume around the approximation such that the orig-
inal surface is guaranteed to lie within that volume. The vol-
ume itself is defined by spheres located at each vertex of
the approximation. The convex combination of these spheres
over the faces of the model creates so called “fat triangles”
which comprise the tolerance volume. Vertices of the ap-
proximation are positioned to preserve the volume of the
object. While this algorithm appears somewhat slow, it is
faster than Hoppe’s algorithm, and it appears to generate
good quality results.

In the algorithm of Ronfard and Rossignac77, each vertex
in the approximation has an associated set of planes, and the
error at that vertex is defined by the maximum of squared
distances to the planes in this set. These sets are merged
when vertices are contracted together. While it is necessar-

ily less precise, Ronfard and Rossignac78 show that local-
ized Hausdorff error bounds can be derived from their met-
ric. The resulting approximations appear to have generally
good quality, and the algorithm is fairly efficient compared
to the more exact algorithms.

The quadric error metric developed by Garland and
Heckbert33, 31 also defines error in terms of distances to sets
of planes. However, it uses a much more efficient implicit
representation of these sets. Each vertex is assigned a sin-
gle symmetric 4×4 matrix which can measure the sum of
squared distances of a point to all the planes in the set. Un-
der suitable conditions, the eigenvectors and eigenvalues of
a quadric accumulated over a smooth surface region are de-
termined by the principal directions and principal curvatures
of the surface31. While the quadric metric sacrifices some
precision in assessing the approximation error, the resulting
algorithm can produce quality approximations very rapidly.
For example, only 7 seconds are require to simplify a model
containing 70,000 triangles.

The “memoryless” algorithm recently developed by Lind-
strom and Turk63 is interesting in that, unlike most algo-
rithms, it makes decisions based purely on the current ap-
proximation alone. No information about the original shape
is retained. They use linear constraints, based primarily on
conservation of volume, in order to select an edge for con-
traction and the position at which the remaining vertex will
be located. In fact, the “volume optimization” component
of this metric is identical to a variation on the quadric er-
ror metric31. The reported results suggest that it can generate
good quality results, and that it is fairly efficient, particularly
in memory consumption. By way of comparison, simplify-
ing a 70,000 triangle model requires about 2.5 minutes.

One of the major benefits of iterative contraction is the hi-
erarchical structure that it induces on the surface. This quite
naturally leads to a useful multiresolution surface represen-
tation which we will explore in subsequent sections.

4.4. Material Properties

Much of the work done on simplifying surfaces has focused
exclusively on the geometry of the surface. But in practice,
models may often have various material properties. For ex-
ample, models intended for use in rendering systems might
often have color and texture attached to the surface.

Certainet al. 5 outlined a technique for adding surface
color to a wavelet surface decomposition. Hoppe47 explic-
itly included attributes in his error metric which supports
both per-vertex (or scalar) attributes and per-face (discrete)
attributes. As was the case with geometric fidelity, this al-
gorithm seems to produce high quality results at the cost of
rather high running times. The quadric error metric can also
be generalized34 to consider material properties.

An alternative approach is to treat attributes as maps on
the surface. In this case, we would focus on reparameteriz-
ing the maps rather than preserving actual attribute values.

c© M. Garland 1999.

M. Garland / Multiresolution Modeling: Survey & Future Opportunities

1 2

34

5 6

78

1 2

34

5
6
7

1 2

34

5 6

M0 M1 M2

Figure 9: Simplification of a simple planar object.

Cohenet al. 12 developed an algorithm capable of reparam-
eterizing both texture and normal maps as a surface is sim-
plified. Others — including Maruya69, Soucyet al. 87, and
Cignoni et al. 8 — decouple attributes and geometry even
further. They first compute a simplified surface, without re-
gard for the surface attributes. Given the final approximation,
they resample the attributes of the original into a texture map
on the approximation.

The primary attraction of this approach is that texturing is
widely supported in rendering systems, and it decouples the
resolution of the geometry (vertex count) from the resolu-
tion of the attributes (texture dimensions). If the target ren-
dering system supports bump mapping or normal mapping,
this can be an effective technique for retaining high levels
of visual fidelity8, 12. However, current approaches for gen-
erating this mapping into texture space produce highly frag-
mented textures — neighboring triangles on the surface will
not occupy neighboring regions in the texture. The unfortu-
nate consequence is that we cannot construct image pyra-
mids for the resulting textures because neighboring texels
may be mapped onto entirely separate parts of the model. It
also makes this approach ill-suited for multiresolution mod-
eling applications, since each level of detail would require
its own individual texture map.

5. Discrete Multiresolution Models

The simplest method for creating multiresolution surface
models is to generate a set of increasingly simpler approxi-
mations. For any given frame, a renderer could select which
model to use and render that model in the current frame29.
In this case, we would be using a series ofdiscrete levels of
detail; our multiresolution model would consist of the set of
levels — such as in Figure 10 — and the threshold param-
eters to control the switching between them. The simplicity
of the discrete multiresolution approach is its primary attrac-
tion. If we can produce good surface approximations, we can
produce discrete multiresolution models.

5.1. Level of Detail Blending

Simply switching levels of detail between frames by sub-
stituting one whole discrete model will often incur negligi-

ble overhead at display time. Many systems are designed to
transmit all the geometry of the world to the graphics sub-
system at each frame. Thus, ignoring external factors such as
paging the relevant geometry into main memory, switching
levels of detail simply involves transmitting different geom-
etry for the current frame. If the graphics subsystemsupports
caching several levels of detail in pre-compiled display lists,
we might not even have to transmit any new geometry at
all. However, it can potentially cause significant visual ar-
tifacts. In most cases, the number of polygons in the two
models will differ significantly, and this may cause their ap-
pearances in the output image to be significantly different
as well. Making such a substantial change in appearance be-
tween two consecutive frames can lead to “popping” arti-
facts. This effect can be mitigated by extending the level of
detail transition over several frames and using alpha blend-
ing to perform a smooth cross-dissolve between the images
of the two models30. Visual artifacts are still evident, but
are much less objectionable. Unfortunately, this technique
causes the overall rendering cost to increase during transi-
tions since the system must render two levels of the model
at the same time.

5.2. Geomorphing

Another alternative is to smoothly interpolate between the
geometries of two consecutive levels over several frames.
This geomorphingtechnique has been used in line-based70

and terrain-specific15, 26 systems for some time. Provided
that we have a correspondence between the vertices of suc-
cessive levels of detail, we can also apply geomorphs to gen-
eral polygonal surfaces47. Suppose that we are transitioning
between a modelM and a simpler modelM′ and that ev-
ery vertexv ∈V corresponds to a vertexφ(v)∈V ′. Iterative
contraction algorithms generate exactly this sort of corre-
spondence. During the transition, the model will have the
same mesh connectivity as the more complex modelM, but
its geometry will vary continuously between that ofM and
M′ . For each vertexv in M, we substitute an interpolated po-
sition tv +(1− t)φ(v). At t = 0, the model will have exactly
the same shape asM, and att = 1, the model will have the
shape ofM′. By movingt between 0 and 1 over several suc-
cessive frames, we can smoothly transition between the two

c© M. Garland 1999.

M. Garland / Multiresolution Modeling: Survey & Future Opportunities

Figure 10: Fixed set of levels of detail for a cow model.

models. Unlike the alpha blending approach, the geometric
complexity of the object being rendered is the same asM.
While this is less than ideal, because we have determined
that the required level of complexity is only that ofM′, it is
certainly lower than the combined size of both levels. How-
ever, there is the additional overhead of interpolating the ver-
tex positions for each frame. Whether this is less expensive
than blending the images ofM andM′ may depend on the
hardware architecture.

The principal drawback of discrete multiresolution mod-
els is that the levels of detail available at run time are rather
limited. A renderer would be forced to pick one of our pre-
generated models, even if it needed an intermediate level.
Thus, the renderer would either have to pick a model with-
out sufficient detail (and sacrifice image quality) or choose a
model with excess detail (and waste time). Unless the model
is divided into interchangeable blocks, the renderer would
also be unable to vary the level of detail over different parts
of the model. Suppose, for example, that we are standing
near the corner of a building looking down one side. At the
corner nearest the viewpoint, the renderer needs a high level
of detail to maintain image quality. However, as the walls re-
cede into the distance, the renderer could potentially use less
and less detail. If the renderer is forced to use the same level
of detail over the whole model, it must again choose to use
an insufficient level and sacrifice quality or use an excessive
level and waste time.

Despite this limitation, discrete multiresolution models
can be quite useful in certain situations. If an object is dis-
played such that the entire surface is at roughly the same
scale, then discrete multiresolution models are an effective
means of controlling level of detail. For instance, the discrete
method seems to have been effective in the walkthrough sys-
tem described by Funkhouser and Séquin29. Support for dis-
crete levels of detail has also been included in a number
of commercial rendering systems, including RenderMan94,
Open Inventor95, and IRIS Performer76. The RenderMan in-
terface provides for “mixing” successive levels of detail to-
gether, but leaves the exact mechanism undefined.Performer
provides explicit support for both alpha blending and geo-
morphing. Discrete levels of detail have also been used for
accelerating the computation of radiosity solutions81.

Figure 11: Large terrain viewed from near the surface.

Figure 12: Identical view with adaptive tessellation.

6. Continuous Multiresolution Models

As we have just seen, discrete multiresolution models are
sufficient in some circumstances, but there are other cases in
which they are inadequate. A large surface, such as a terrain,
being viewed at close range from an oblique angle is particu-
larly problematic. Consider the example shown in Figure 11.
The viewpoint is positioned just above the surface, looking
out towards the horizon. Notice how the screen-space den-
sity of the triangulation increases as the surface recedes into
the distance. An approximation with a constant level of de-
tail would either be too dense in the distance (as in Figure
11) or too sparse near the viewpoint. We would prefer an
approximation where the level of detail is allowed to vary
continuouslyover the surface. In particular, we would like
the level of detail of a particular neighborhood to beview
dependent. Figure 12 demonstrates the results. While the ap-
proximation shown in Figure 11 contains many distant trian-
gles whose projected screen size is minute, the approxima-
tion shown in Figure 12 uses a much lower level of detail
for distant surface regions. The result is an approximation
which is specifically tailored to the current viewpoint. Thus,
we are looking for a multiresolution representation that con-

c© M. Garland 1999.

M. Garland / Multiresolution Modeling: Survey & Future Opportunities

tinuously adapts the surface at run time based on viewing
conditions. Run-time adaptation can be combined with the
blending and geomorphing techniques described earlier to
produce smooth transitions.

The need for adaptive level of detail control is particularly
pronounced in the case of terrains, and continuous multires-
olution models have been in use by flight simulator systems
for twenty years15. Several effective adaptive terrain tech-
niques are available21, 62. Many are based on a regular sub-
division (e.g., quadtrees) of the terrain surface. Using reg-
ular subdivisions helps to minimize the run-time overhead
incurred by maintaining an adaptive level of detail.

There has been comparatively less work on continu-
ous multiresolution representations for general triangulated
surfaces. Multi-triangulations17, 16 provide a fairly general
framework that can describe most commonly used mul-
tiresolution representations. Vertex hierarchies48, 50, 67, 97 are
a particular multiresolution representation that have received
considerable attention. An important feature of vertex hier-
archies is that they can be constructed as a by-product of
contraction-based simplification algorithms. While the as-
sociated overhead is often acceptable, it is certainly higher
than that of discrete multiresolution models. For instance,
Hoppe48 reports that model adaptation consumed 14% of the
frame time for his implementation.

Depending on the application at hand, discrete or contin-
uous multiresolution models may be more appropriate. Dis-
crete methods are simpler and require less overhead. Con-
tinuous methods are more flexible but have higher overhead.
This flexibility is important for models such as terrains, but
may not be necessary for objects such as chairs in a room.
Indeed, the best solution is to support different multiresolu-
tion representations which are tailored to different classes of
model.

7. Incremental Representations

Starting with the original modelM0, iterative simplification
algorithms generate a sequence of approximations

M0→M1→M2→ ·· · →Mk

arriving at the final approximationMk. Note that this differs
from the progressive mesh notation used by Hoppe47 where
M0 is the base mesh which, by a sequence of refinements,
is transformed into the original meshMk. An incremental
representationis one which encodes the original modelM0,
the final modelMk, and all the intermediate approximations
M1, . . . ,Mk−1. This is a multiresolution representation be-
cause it allows us to extract a fairly wide range of levels of
detail. However, the available approximations are restricted
to exactly those which were generated during simplification.

7.1. Simplification Streams

The direct by-product of iterative contraction is an incremen-
tal representation which I will term asimplification stream.

During the process of simplification, we generate the se-
quence of models

M0 φ1

→ M1 φ2

→ M2 φ3

→ ·· · φk

→ Mk

where each stepMi−1→Mi corresponds to the application
of a single contractionφi . Thus each intermediate approxi-
mationMi can be expressed as the result of applying some
prefix of the total sequence of contractions

Mi = [φi](M0) = (φi ◦ · · · ◦φ1)(M0) (7)

Suppose that along with the original meshM0 we store
a representation of each contractionφi . By simply applying
(7), we can reconstruct any intermediate modelMi in addi-
tion to the original and final models. In essence, by storing
a record of the simplification process, we can re-apply the
same contraction sequence but choose an earlier stopping
point.

At a minimum, the pieces of information that must be
recorded for a contractionφi are

1. identifiers for the vertices(v j ,vk) being contracted, and
2. the final position̄v.

Note that the actual size of this data may vary. If we are us-
ing an optimal placement strategy,v̄ might require as much
as 3 floating point numbers to determine the new vertex po-
sition. And if the vertices have associated material attributes,
further data will be required for each attribute. On the other
hand, with a fixed placement strategy,v̄ can be encoded im-
plicitly by the order of the vertices(v j ,vk).

Simplification streams do provide an incremental repre-
sentation of the surface. By applying some prefix of the con-
traction sequence,we can reconstruct any of the intermediate
approximations generated during simplification. However,
their practical utility is limited. Lauet al. 59 used simplifi-
cation streams of bounded size as a cache of recently gen-
erated approximations for run-time simplification. Record-
ing the lastk contractions allows their system to refine the
current approximation by at mostk steps. If further refine-
ment is required, simplification begins again from the origi-
nal model. For certain limited applications, this might yield
acceptable results, but simplification streams are unsuitable
for representing a wide range of approximations. Since we
store the entire original modelM0 plus the contraction se-
quence, the resulting representation is necessarily larger than
the original model. If we assume that our original model is
very large and our desired approximation is quite small, cer-
tainly a common case, we are faced with a more significant
problem. In order to reconstruct a small approximation, we
must apply a large number of contractions to a large model.
Thus, the smaller the approximation the greater the time re-
quired to extract it. We would clearly prefer reconstruction
cost to be proportional to the desired approximation size.
Fortunately, a closely related representation can solve both
of these problems.

c© M. Garland 1999.

M. Garland / Multiresolution Modeling: Survey & Future Opportunities

7.2. Progressive Meshes

The progressive mesh (PM) structure, originally introduced
by Hoppe47, 49, provides the same functionality as a simpli-
fication stream. However, it has two important advantages.
First, the resulting representation can actually be smaller
than the original model. Second, reconstruction time is pro-
portional to the desired approximation size.

A progressive mesh is, in essence, a reversed simplifica-
tion stream. It exploits the fact that the contraction operator
is invertible. For each contractionφi we can define a corre-
sponding inverseψi . This operation, called avertex split, is
an inverse ofφi such thatψi(Mi) = Mi−1. Thus, we begin
with the final approximationMk and produce a sequence of
models

Mk ψk

→ ·· · ψ3

→ M2 ψ2

→ M1 ψ1

→ M0

terminating at the original model. The modelMk is called
thebase mesh. Along with this base mesh, we can store the
vertex split sequenceψk,ψk−1, . . . ,ψ1. Each item in the se-
quence must encode the vertex being split, positions for the
two resulting vertices, and which triangles to introduce into
the mesh47. We can reconstruct some intermediate approxi-
mationMi by applying a prefix of the vertex split sequence:

Mi = [ψi+1](Mk) = (ψi+1◦ · · · ◦ψk)(Mk) (8)

Not only does this encode many different levels of detail of
the original model, but Hoppe47 demonstrated that progres-
sive meshes are also an effective technique for compressing
the input geometry.

Progressive meshes are generally developed as the result
of iterative edge contraction. Naturally, they can also be
used with alternative contraction primitives. For instance, a
progressive mesh based on face contraction has exactly the
same structure as one based on edge contraction. However,
because edge contraction is the finest-grained contraction
primitive, it generates progressive meshes with the largest
number of intermediate models. Simplification by pair con-
traction, and hence progressive meshes, can also be general-
ized to operate on arbitrary simplicial complexes72.

8. Simplification and Spanning Trees

As outlined in the previous section, the sequence of contrac-
tions computed during simplification can be used to con-
struct an incremental multiresolution representation of the
model. But the process of iterative contraction actually in-
duces further structure on the surface. In this section, we
shall see that iterative edge contraction is a close analog of a
minimum spanning tree algorithm.

Let us consider a modelM as a graph. Aspanning treeis
an acyclic subgraph ofM which connects all the vertices of
M. A spanning forestis a collection of disjoint trees which
collectively cover all the vertices ofM. Suppose that every
edgei has an associated weight, or cost,wi . The weight of
a graph is the sum of the weights of its edges, and amini-

mum spanning treeis a spanning tree whose total edge cost
is minimal.

Figure 14 provides a simple illustration of the connec-
tion between iterative contraction and spanning trees. In
the right-hand column is a sequence of approximations
M2, . . . ,M7. In this example, we are using a fixed place-
ment strategy; in other words, each contraction is of the form
(vi ,v j)→ vi. I will indicate this by writing the contraction
in the more compact formv j→ vi . For each model, the edge
being contracted to produce the next model is drawn as an ar-
row indicating the contraction in the same manner. Note that
I have labeled the initial modelM2 because it corresponds to
the final model shown in Figure 9.

Each vertex in a given approximation corresponds to some
set of vertices in the original model. In particular, it corre-
sponds to itself plus all the vertices which have been con-
tracted into it. These sets are disjoint and they completely
partition the original set of vertices. In the original model
M2, each vertexvi corresponds to the singleton set{vi}. Af-
ter the contractionv5→ v1, the vertexv1 corresponds to the
set{v1,v5} in the original model. In the left-hand column
of Figure 14, I have indicated the structure of these sets by
enclosing them in shaded regions.

It is easy to show inductively that the construction of these
sets is equivalent to the construction of a spanning forest.
In the initial model,each set contains a single vertex. The
set of all vertices is clearly a spanning forest. In general, a
single edge contraction joins exactly two sets together. As-
suming that each set is already a spanning tree, connecting
these trees by a single edge (the edge being contracted) re-
sults in a larger spanning tree. Notice, however, that there is
not one unique spanning tree corresponding to the simpli-
fication process. When two regions are merged, any dupli-
cate edges connecting them to the same region are removed.
Thus, an edge connecting two vertices in the approximation
corresponds to multiple edges in the original graph. For ex-
ample, when producing the tree forM6 in Figure 14, there
are three different edges which connect the corresponding
parts of the spanning forest.

This view of iterative contraction is very similar to
the minimum spanning tree algorithm of Cheriton and
Tarjan6, 92. The primary difference is that in their algorithm
each edge is assigned a constant weight, but in the simpli-
fication algorithm the weights assigned to the edges change
over time. For example, the quadric error metric33 assigns
the weight of an edge as a function of the quadrics associ-
ated with its endpoints.

We can construct a directed graph by creating an edge
v j → vi whenever we perform the corresponding contrac-
tion. Figure 13 illustrates the resulting graphs for models
M5 andM7. By starting at a node and following the arcs,
we arrive at the currently active vertex which has accumu-
lated the node at which we began. This structure is a com-
mon representation for disjoint sets14, 92; it is often referred
to as a disjoint-set (or union–find) forest. In fact, these struc-
tures are exactly those used by Cheriton and Tarjan6 to track

c© M. Garland 1999.

M. Garland / Multiresolution Modeling: Survey & Future Opportunities

1

5

3 2

6

4

1

5

3 2

6

4

M5 M7

Figure 13: Disjoint-set graph for models shown in Fig. 14.

vi

vi

vi'

vj vj

Fixed Placement
Only

General Placement
(e.g., Optimal)

Figure 15: Graph structure of a single contraction.

disjoint sets of vertices in their minimum spanning tree al-
gorithm. When using these graphs to simply track disjoint
sets, it is common practice to apply a path compression
heuristic — whenever we traverse a path, we update all the
nodes encountered to point directly to the root of their tree.
Consequently, all nodes will ultimately point directly to the
root. Path compression leads to more efficient set member-
ship queries; however, the additional structure of the uncom-
pressed graph has some very useful multiresolution applica-
tions.

Edge contraction has also been used explicitly for con-
structing minimum spanning trees by Kargeret al. 55. This
technique is similar to the algorithm of Xia and Varshney97,
which simplifies the surface by iteratively contracting maxi-
mal independent sets of edges.

9. Vertex Hierarchies

Progressive meshes provide a useful multiresolution struc-
ture, but they are somewhat restrictive. They only allow us
to reconstruct models which were generated during the orig-
inal simplification process. This is because we always per-
form contractions in the order in which they were discov-
ered, but this total ordering of contractions is not necessary.
By using a less restrictive partial ordering, we can achieve
a much more flexible continuous multiresolution represen-
tation which will allow us to generate novel approximations
that were never constructed during simplification.

Let us return to the simplification sequence pictured in
Figure 14. Consider the contractionv5 → v1 (which pro-
ducesM3) and the contractionv6 → v3 (which produces
M4). With a progressive mesh, we would always perform
these two contractions in this order, because that is the order

in which they were initially performed during simplification.
However, by inspection, we can see that they are indepen-
dent. We can just as easily perform them in the opposite or-
der, and the resulting meshes would be just as valid as the
ones shown in the figure.

These two contractions are interchangeable because the
sets of vertices involved in the contraction are disjoint. We
can see this fact reflected in the structure of the graphs shown
in Figure 13. There is no path which includes both contrac-
tionsv5→ v1 andv6→ v3. If we interpret these disjoint-set
forests as dependency graphs, we can determine whether any
given pair of contractions can be performed independently or
not.

The construction pictured in Figure 13 is only applicable
when we are using a fixed placement scheme. In general,
we would like to perform contractions(vi,v j)→ v′i where
v′i 6= vi . In order to accommodate such general placement,
we can treatv′i as a new vertex instance and link bothvi and
v j to it. This structure is illustrated in Figure 15.

The result of applying this rule over the entire simplifica-
tion process will be a binary forest. Assuming that we sim-
plify a model completely to a single vertex, we will have a
binary tree. The resulting graph is avertex hierarchy; Figure
16 illustrates the hierarchy resulting from the simplification
in Figures 9 and 14. This vertex hierarchy structure was de-

1

1

5

5

8 3

3

6

6

7 4

4

4

4

2

M2

M5

M7

Figure 16: The vertex hierarchy resulting from the simplifi-
cation process shown in Figures 9 and 14.

veloped independently by several authors48, 67, 97.

In a vertex hierarchy, cuts through the tree correspond to
allowable approximations. Figure 16 shows the three dif-
ferent cuts corresponding to modelsM2, M5, andM7. Any
given cut divides the tree into some number of components.
The component containing the root remains a tree, essen-
tially a pruned version of the original. I will call the leaves
of this pruned treeactive vertices. Each active vertex is the
root of some subtree in the hierarchy. For every active ver-
tex, we can perform all the contractions described by that
subtree, and we can perform contractions in separate sub-
trees in any order. The result is a valid approximation of the

c© M. Garland 1999.

M. Garland / Multiresolution Modeling: Survey & Future Opportunities

1 2

34

5 6

1 2

34

5 6M2

1 2

34

6

1
2

34

6 M3

1 2

34

1

2

3
4

M4

1 2

4

1

2

4

M5

2

4

2

4

M6

4
4

M7

Figure 14: Simplification process and corresponding spanning tree.

c© M. Garland 1999.

M. Garland / Multiresolution Modeling: Survey & Future Opportunities

original model. However, it is not guaranteed to be free of
artifacts such as mesh fold-over. To prevent such degenera-
cies, we must either perform run-time consistency checks or
encode further dependencies in the hierarchy itself.

9.1. Adaptive Refinement

The primary application for which vertex hierarchies have
been used is view-dependent refinement of models for real-
time rendering48, 50, 67, 97. Suppose that we have a large sur-
face, such as a terrain, that we would like to render using
a continuously varying level of detail. Furthermore, let us
assume that there is generally a high degree of frame-to-
frame coherence in the viewpoint, such as we would expect
in a flight simulator. Now, imagine that our model is repre-
sented using a vertex hierarchy, and that we have selected
a cut through the tree. Any change in this cut, either up or
down the tree, will result in a new, closely related approxi-
mation. By maintaining an active cut through the tree, and
incrementally adjusting it for each frame, we can adapt the
current model to the new viewing conditions.

Vertex hierarchies can also accommodate further syn-
thetic refinement of the model past the original level of de-
tail. Any mesh refinement which can be implemented by
edge splitting can be added into the hierarchy. An edge split,

Before After

split

vi vi
vj

Figure 17: Refining a mesh with a single edge split.

such as the one shown in Figure 17, can be directly encoded
as a vertex split operation on the vertexvi. The leaves of the
vertex hierarchy represent the original vertices, but we can
add temporary levels below the leaves corresponding to fur-
ther refinement of the initial mesh. Consider the example of
modeling a large terrain surface. By extracting some infor-
mation from the input data, we might synthesize additional
detail, consistent with the form of the surface, using fractal-
based edge subdivision.

Naturally, vertex hierarchies are not required to be binary
trees. If we allow generalized contraction operations, each
node may have an arbitrary number of children67. A very
deep hierarchy has the disadvantage that many adaptation
steps are required to smoothly transition from the bottom of
the hierarchy to the top, or vice versa. In some cases, it may
be desirable to reduce this cost by compressing entire sub-
trees so that all the leaves point directly to the root of the
subtree and all internal nodes are eliminated. An extreme
example of this strategy would be to pick a small number of
cuts through the tree, and remove all internal nodes separat-
ing them so that each level was linked directly to the next.

This sort ofstratifiedvertex hierarchy corresponds directly
to the discrete multiresolution models discussed earlier.

10. Future Directions

Recent research in the field of surface simplification has pro-
duced several effective techniques for constructing approx-
imations and multiresolution representations. Several com-
mercial packages have begun to include simplification facil-
ities. The spectrum of algorithms now available offers sev-
eral possible tradeoffs between efficiency and quality. At one
end are very high quality, very slow algorithms such as mesh
optimization51. At the other are the very fast, but low quality
vertex clustering algorithms79. Between these extremes are
a number of algorithms, such as the quadric error metric33

or vertex decimation86, which provide various compromises
between speed and approximation quality. However, there
are a number of areas in which current simplification meth-
ods could be improved. The following avenues appear par-
ticularly important or promising.

10.1. Broader Applicability

Most recent work has focused on the simplification of tri-
angulated surface models. However, there are other model
classes where simplification techniques would also be quite
valuable. Like scanned surface models, tetrahedral vol-
ume models are often very complex and can benefit from
simplification93, 89. For the same reasons we might like
to reduce the number of triangles in a polygonal surface
model, we might like to reduce the number of patches in
a piecewise-polynomial model84, 36.

All current simplification methods assume that the surface
being simplified is rigid. This covers a large class of models
used in practice, including those composed of many individ-
ual moving, yet rigid, parts such as an engine model. How-
ever, there are many other applications where surfaces are
changing over time. For example, many animation systems
represent characters as surfaces attached to articulated skele-
tons. As the skeletal joints bend, the surface is deformed.
Current simplification methods must be extended to handle
this more generalized class of models.

The hierarchical structures resulting from simplification
(e.g., vertex hierarchies) have been used primarily for view-
dependent refinement. However, they have many potentially
important applications. There are a large class of problems
for which the structure itself, which we can think of as a hi-
erarchy of regions on the surface, is useful. Rather than ex-
tracting a single approximation from the hierarchy, we can
perform computations on the hierarchy. For example, these
hierarchical regions can be used to construct a hierarchy of
bounding volumes for applications such as collision detec-
tion or ray tracing. Instead of partitioning space around the
model, these bounding volumes are intrinsically linked to the
surface. Many kinds of simulation problems rely on hierar-
chies of successively larger surface regions. Radiosity meth-
ods, for instance, can be significantly accelerated by employ-
ing simplification techniques96.

c© M. Garland 1999.

M. Garland / Multiresolution Modeling: Survey & Future Opportunities

10.2. More Effective Simplification

There are several areas in which current simplification meth-
ods could be made more effective. One obvious goal is to
devise an algorithm which can produce approximations (for
general surfaces) which are provably close to optimal. An
algorithm which could preserve higher level surface char-
acteristics, such as symmetry, would also be quite useful.
Current simplification methods all seem to perform poorly
at extremely low levels of simplification, of say less than 50
triangles. This may very well be a weakness of their shared
approach: almost all algorithms derive approximations by
repeated transformation (e.g., edge contraction) of the origi-
nal. At these very low levels, a human could presumably do
a substantially better job. This suggests that semi-automatic
tools which could incorporate some human interaction in the
final stages of simplification could be quite useful.

It would also be desirable for simplification systems to in-
corporate better control over topology simplification. Most
methods that allow topological simplification perform it only
implicitly. It would seem that explicit topological simplifica-
tion might require a more volumetric approach to surface
models, and early methods23, 42 have moved in this direc-
tion. This may also lead to more effective aggregation of
separate components. The method of aggregation via pair
contraction33, 72, 24 has not been entirely successful. For in-
stance, it would appear to be overly dependent on the place-
ment of the vertices on the original surface31.

New methods for measuring approximation error are also
needed. For rendering applications, similarity of appear-
ance is the ultimate goal. It would be helpful to have an
appearance-based metric for reliably comparing the visual
similarity of two models. Even if we are primarily concerned
with preserving the shape of an object, the error metricsEmax

and Eavg have some drawbacks. They do not directly ad-
dress the measurement of attribute error. We can treat surface
properties (e.g., color) as points in a Euclidean space and
thus incorporate attributes into these metrics. But this is not a
strictly accurate way of assessing attribute error; color space
is not Euclidean, for example. It is also unclear whether met-
rics likeEmaxandEavgadequately reflect the similarity of an
approximation whose topology has been simplified.

10.3. Decoupling Analysis and Synthesis

Another promising avenue for improving the quality of au-
tomatically generated approximations may well be to decou-
ple the analysis and synthesis phases of the simplification
process. As an example, consider the quadric error metric
algorithm33. A particular vertex begins with a quadric con-
structed from its immediate neighborhood. As other vertices
are repeatedly contracted into this vertex, it accumulates a
quadric that represents ever larger regions of the surface. In
some sense, this is a shape analysis process. The algorithm
is constructing information about ever larger regions of the
surface. However, the current algorithm actually performs a
contraction on the mesh immediately after accumulating the

quadrics for the endpoints — it immediately synthesizes a
new approximation.

Now imagine that we were to decouple these processes
into two separate phases. The first phase would be an analy-
sis phase, gaining information about the structure of the sur-
face at ever coarser levels of detail. This might involve ac-
cumulating quadrics over progressively larger regions, con-
structing face cluster hierarchies, or some completely differ-
ent technique. After this phase is completed, we could begin
simplifying the surface. The current algorithm, when con-
sidering the contraction of an edge, can only consider the
shape of the immediate neighborhood of this edge, repre-
sented by the quadrics of the endpoints. It suffers from a
certain shortsightedness because it can only assess the local
and immediate effect of a contraction. However, if an earlier
analysis phase had already been performed, it could consider
the effect of a contraction at several levels of detail, from the
immediately local to the more global.

10.4. Non-Greedy Frameworks

Many simplification methods are based on the same frame-
work: greedy application of simplification operators. In the
case of iterative contraction, this naturally produces a se-
quence of edge contractions which lead to multiresolution
representations such as progressive meshes and vertex hier-
archies. However, greedy decimation can limit the quality of
the final result. Since it only iteratively picks what appears
to be the best local operation to perform, a bad decision at
some point can lead to results that are far from optimal.

Alternative frameworks are possible. For instance, mesh
optimization 51 uses a simulated annealing-like process.
Other search techniques, more general than greedy decima-
tion, could also be applied. However, this type of search
algorithm generally does not produce a single sequence of
contractions that transform the original object into the final
result. Consequently, they cannot be used to construct pro-
gressive meshes and related multiresolution representations.

Another interesting possibility is an algorithm based on
graph partitioning, which has been used in several areas, in-
cluding sparse matrix computations71, often in conjunction
with contraction-based coarsening algorithms56. Suppose we
have an algorithm based on iterative edge contraction. No-
tice that not only do we know where simplification begins
(with the original model), but we also know the final config-
uration which it will reach. In the end, every connected com-
ponent will have collapsed to a single vertex. Let us consider
a single connected component. The last operation before the
final state of a single vertex must have involved the contrac-
tion of two vertices together. These two vertices correspond
to two disjoint sets of vertices in the original mesh: the set
of vertices which were contracted into the remaining ver-
tices. In other words, we can partition the entire mesh into
two separate regions, one for each vertex. Now, each one of
these vertices was formed by the contraction of two earlier
vertices. This leads to a recursive binary partitioning of the
mesh. At each phase, all the vertices within a single partition

c© M. Garland 1999.

M. Garland / Multiresolution Modeling: Survey & Future Opportunities

are collapsed into a single representative vertex. In essence,
this computes a sequence of contractions in reverse, from
last to first.

11. Acknowledgements

This research was supported in part by the National Science
Foundation (grants CCR-9357763, CCR-9619853, & CCR-
9505472) and by the Schlumberger Foundation. Thanks to
Paul Heckbert, Jarek Rossignac, Martial Hebert, and Andy
Witkin for their many helpful comments and suggestions.
Thanks as well to Tim Vadnais of Iris Development who pro-
vided the dental model.

References

1. Pankaj K. Agarwal and Pavan K. Desikan. An ef-
ficient algorithm for terrain simplification. InProc.
ACM-SIAM Sympos. Discrete Algorithms, pages 139–
147, 1997.

2. Pankaj K. Agarwal and Subhash Suri. Surface ap-
proximation and geometric partitions. InProc. 5th
ACM-SIAM Sympos. Discrete Algorithms, pages 24–
33, 1994. (Also available as Duke U. CS tech report,ftp:
//ftp.cs.duke.edu/dist/techreport/1994/1994-21.ps.Z).

3. María-Elena Algorri and Francis Schmitt. Mesh sim-
plification. Computer Graphics Forum, 15(3), August
1996. Proc. Eurographics ’96.

4. Laurence Boxer, Chun-Shi Chang, Russ Miller, and
Andrew Rau-Chaplin. Polygonal approximation by
boundary reduction. Pattern Recognition Letters,
14(2):111–119, February 1993.

5. Andrew Certain, Jovan Popovi´c, Tony DeRose, Tom
Duchamp, David Salesin, and Werner Stuetzle. Interac-
tive multiresolution surface viewing. InSIGGRAPH 96
Conference Proceedings, pages 91–98, August 1996.

6. David Cheriton and Robert E. Tarjan. Finding min-
imum spanning trees.SIAM Journal of Computing,
5(4):724–742, December 1976.

7. A. Ciampalini, P. Cignoni, C. Montani, and
R. Scopigno. Multiresolution decimation based
on global error.The Visual Computer, 13(5):228–246,
1997.

8. P. Cignoni, C. Montani, C. Rocchini, and R. Scopigno.
A general method for preserving attribute values on
simplified meshes. InIEEE Visualization 98 Confer-
ence Proceedings, pages 59–66,518, Oct 1998.

9. P. Cignoni, C. Montani, and R. Scopigno. A compar-
ison of mesh simplification algorithms.Computers &
Graphics, 22(1):37–54, 1998.

10. P. Cignoni, C. Rocchini, and R. Scopigno. Metro: mea-
suring error on simplified surfaces.Computer Graphics
Forum, 17(2):167–74, June 1998.http://vcg.iei.pi.cnr.it/
metro.html.

11. James H. Clark. Hierarchical geometric models for vis-
ible surface algorithms.CACM, 19(10):547–554, Oc-
tober 1976.

12. Jonathan Cohen, Marc Olano, and Dinesh Manocha.
Appearance-preserving simplification. InProceedings
SIGGRAPH 98, pages 115–122, 1998.

13. Jonathan Cohen, Amitabh Varshney, Dinesh Manocha,
Greg Turk, Hans Weber, Pankaj Agarwal, Frederick
Brooks, and William Wright. Simplification envelopes.
In SIGGRAPH ’96 Proc., pages 119–128, August 1996.
http://www.cs.unc.edu/∼geom/envelope.html.

14. Thomas H. Cormen, Charles E. Leiserson, and
Ronald L. Rivest. Introduction to Algorithms. MIT
Press, Cambridge, MA, 1990.

15. Michael A. Cosman and Robert A. Schumacker. Sys-
tem strategies to optimize CIG image content. InPro-
ceedings of the Image II Conference, pages 463–480.
Image Society, Tempe, AZ, June 1981.

16. Leila De Floriani, Paola Magillo, and Enrico Puppo.
Efficient implementation of multi-triangulations. In
IEEE Visualization 98 Conference Proceedings, pages
43–50,517, Oct 1998.

17. Leila De Floriani, Enrico Poppo, and Paola Magillo. A
formal approach to multiresolutionhypersurface mod-
eling. In W. Straßer, R. Klein, and R. Rau, editors,
Geometric Modeling: Theory and Practice. Springer-
Verlag, 1997.

18. Michael DeHaemer, Jr. and Michael J. Zyda. Simpli-
fication of objects rendered by polygonal approxima-
tions. Computers and Graphics, 15(2):175–184, 1991.

19. Hervé Delingette. Simplex meshes: A general repre-
sentation for 3D shape reconstruction. InConf. on
Computer Vision and Pattern Recognition (CVPR ’94),
June 1994. http://zenon.inria.fr/epidaure/personnel/
delingette/delingette.html.

20. David H. Douglas and Thomas K. Peucker. Algorithms
for the reduction of the number of points required to
represent a digitized line or its caricature.The Cana-
dian Cartographer, 10(2):112–122, December 1973.

21. Mark Duchaineau, Murray Wolinsky, David E. Sigeti,
Mark C. Miller, Charles Aldrich, and Mark B. Mineev-
Weinstein. ROAMing terrain: Real-time optimally
adapting meshes. InIEEE Visualization 97 Confer-
ence Proceedings, pages 81–88, October 1997.http:
//www.llnl.gov/graphics/ROAM/.

22. Matthias Eck, Tony DeRose, Tom Duchamp, Hugues
Hoppe, Michael Lounsbery, and Werner Stuetzle. Mul-
tiresolution analysis of arbitrary meshes. InSIG-
GRAPH ’95 Proc., pages 173–182. ACM, August
1995. http://www.cs.washington.edu/research/projects/
grail2/www/pub/pub-author.html.

23. Jihad El-Sana and Amitabh Varshney. Controlled sim-
plification of genus for polygonal models. InIEEE

c© M. Garland 1999.

M. Garland / Multiresolution Modeling: Survey & Future Opportunities

Visualization 97 Conference Proceedings, pages 403–
410, 1997.

24. Carl Erikson and Dinesh Manocha. GAPS: Gen-
eral and automatic polygonal simplification. InProc.
Symposium on Interactive 3D Graphics ’99, pages
79–88,225, 1999. http://www.cs.unc.edu/∼eriksonc/
Research/Paper/.

25. Olivier Faugeras, Martial Hebert, P. Mussi, and Jean-
Daniel Boissonnat. Polyhedral approximation of 3-D
objects without holes.Computer Vision, Graphics, and
Image Processing, 25:169–183, 1984.

26. R. L. Ferguson, R. Economy, W. A. Kelley, and P. P.
Ramos. Continuous terrain level of detail for visual
simulation. InProceedings of the 1990 Image V Con-
ference, pages 145–151. Image Society, Tempe, AZ,
June 1990.

27. Robert J. Fowler and James J. Little. Automatic extrac-
tion of irregular network digital terrain models.Com-
puter Graphics (SIGGRAPH ’79 Proc.), 13(2):199–
207, August 1979.

28. Thomas A. Funkhouser.Database and Display Al-
gorithms for Interactive Visualization of Architectural
Models. PhD thesis, CS Division, UC Berkeley, 1993.

29. Thomas A. Funkhouser and Carlo H. Séquin. Adaptive
display algorithm for interactive frame rates during vi-
sualization of complex virtual environments.Computer
Graphics (SIGGRAPH ’93 Proc.), 1993.

30. Thomas A. Funkhouser, Carlo H. Séquin, and Seth J.
Teller. Management of large amounts of data in inter-
active building walkthroughs. In1992 Symposium on
Interactive 3D Graphics, pages 11–20, 1992. Special
issue of Computer Graphics.

31. Michael Garland. Quadric-Based Polygonal Surface
Simplification. PhD thesis, Carnegie Mellon Univer-
sity, CS Dept., 1999. Tech. Rept. CMU-CS-99-105.
http://www.cs.cmu.edu/∼garland/thesis/.

32. Michael Garland and Paul S. Heckbert. Fast polygonal
approximation of terrains and height fields. Technical
Report CMU-CS-95-181, Comp. Sci. Dept., Carnegie
Mellon University, September 1995.http://www.cs.
cmu.edu/∼garland/scape.

33. Michael Garland and Paul S. Heckbert. Surface sim-
plification using quadric error metrics. InSIGGRAPH
97 Proc., pages 209–216, August 1997.http://www.cs.
cmu.edu/∼garland/quadrics/.

34. Michael Garland and Paul S. Heckbert. Simplifying
surfaces with color and texture using quadric error met-
rics. InIEEE Visualization 98 ConferenceProceedings,
pages 263–269,542, October 1998.http://www.cs.cmu.
edu/∼garland/quadrics/.

35. Tran S. Gieng, Bernd Hamann, Kenneth I. Joy, Gre-
gory L. Schussman, and Isaac J. Trotts. Constructing

hierarchies for triangle meshes.IEEE Trans. on Visual-
ization and Computer Graphics, 4(2):145–161, April–
June 1998.

36. M. Gopi and D. Manocha. A unified approach for
simplifying polygonal and spline models. InIEEE
Visualization 98 Conference Proceedings, pages 271–
278,543, Oct 1998.

37. Alexis Gourdon. Simplification of irregular surface
meshes in 3D medical images. InComputer Vision, Vir-
tual Reality, and Robotics in Medicine (CVRMed ’95),
pages 413–419, April 1995.

38. André Guéziec. Surface simplification with variable
tolerance. InSecond Annual Intl. Symp. on Medi-
cal Robotics and Computer Assisted Surgery (MRCAS
’95), pages 132–139, November 1995.

39. André Guéziec. Surface simplification inside a toler-
ance volume. Technical report, Yorktown Heights, NY
10598, March 1996. IBM Research Report RC 20440,
http://www.watson.ibm.com:8080/search paper.shtml.

40. André Guéziec, Gabriel Taubin, Francis Lazarus, and
William Horn. Converting sets of polygons to manifold
surfaces by cutting and stitching. InIEEE Visualization
98 Conference Proceedings, pages 383–390,553, Oct
1998.

41. Leonidas Guibas and Jorge Stolfi. Primitives for the
manipulation of general subdivisions and the compu-
tation of Voronoi diagrams. ACM Transactions on
Graphics, 4(2):75–123, 1985.

42. T. He, L. Hong, A. Varshney, and S. Wang. Controlled
topology simplification. IEEE Transactions on Visu-
alization and Computer Graphics, 2(2):171–184, June
1996.

43. Paul S. Heckbert and Michael Garland. Multiresolu-
tion modeling for fast rendering. InProc. Graphics In-
terface ’94, pages 43–50, Banff, Canada, May 1994.
Canadian Inf. Proc. Soc.http://www.cs.cmu.edu/∼ph.

44. Paul S. Heckbert and Michael Garland. Survey of
polygonal surface simplification algorithms. InMul-
tiresolution Surface Modeling Course Notes. ACM
SIGGRAPH, 1997.http://www.cs.cmu.edu/∼ph, draft
of Carnegie Mellon University tech. report, to appear.

45. Michael Henle.A Combinatorial Introduction to Topol-
ogy. Dover, New York, 1994. Reprint of 1979 edition
of W. H. Freeman.

46. Paul Hinker and Charles Hansen. Geometric optimiza-
tion. In Proc. Visualization ’93, pages 189–195, San
Jose, CA, October 1993.http://www.acl.lanl.gov/Viz/
vis93 abstract.html.

47. Hugues Hoppe. Progressive meshes. InSIGGRAPH
’96 Proc., pages 99–108, August 1996.http://research.
microsoft.com/∼hoppe/.

c© M. Garland 1999.

M. Garland / Multiresolution Modeling: Survey & Future Opportunities

48. Hugues Hoppe. View-dependent refinement of progres-
sive meshes. InSIGGRAPH 97 Proc., pages 189–198,
August 1997.http://research.microsoft.com/∼hoppe/.

49. Hugues Hoppe. Efficient implementation of progres-
sive meshes. Computers & Graphics, 22(1):27–36,
1998.

50. Hugues Hoppe. Smooth view-dependent level-of-detail
control and its application to terrain rendering. InIEEE
Visualization 98 Conference Proceedings, pages 35–
42,516, Oct 1998.

51. Hugues Hoppe, Tony DeRose, Tom Duchamp, John
McDonald, and Werner Stuetzle. Mesh optimization.
In SIGGRAPH ’93 Proc., pages 19–26, August 1993.
http://research.microsoft.com/∼hoppe/.

52. Insung Ihm and Bruce Naylor. Piecewise linear ap-
proximations of digitized space curves with applica-
tions. In N. M. Patrikalakis, editor,Scientific Visual-
ization of Physical Phenomena, pages 545–569, Tokyo,
1991. Springer-Verlag.

53. Hiroshi Imai and Masao Iri. Polygonal approximations
of a curve – formulations and algorithms. In G. T. Tous-
saint, editor,Computational Morphology, pages 71–86.
Elsevier Science, 1988.

54. Alan D. Kalvin and Russell H. Taylor. Super-
faces: Polygonal mesh simplification with bounded er-
ror. IEEE Computer Graphics and Appl., 16(3), May
1996. http://www.computer.org/pubs/cg&a/articles/
g30064.pdf.

55. David R. Karger, Philip N. Klein, and Robert E. Tarjan.
A randomized linear-time algorithm to find minimum
spanning trees.Journal of the ACM, 42(2):321–328,
March 1995.

56. George Karypis and Vipin Kumar. A fast and high qual-
ity multilevel scheme for partitioning irregular graphs.
SIAM Journal on Scientific Computing, 20(1):359–392,
1998.

57. Reinhard Klein, Gunther Liebich, and W. Straßer. Mesh
reduction with error control. InProceedings of Visual-
ization ’96, pages 311–318, October 1996.

58. Leif Kobbelt, Swen Campagna, and Hans Peter Seidel.
A general framework for mesh decimation. InProc.
Graphics Interface ’98, pages 43–50, June 1998.

59. Rynson Lau, Mark Green, Danny To, and Janis
Wong. Real-time continuous multi-resolution method
for models of arbitrary topology.Presence: Teleoper-
ators and Virtual Environments, 7(1):22–35, February
1998. http://www.cs.cityu.edu.hk/∼ rynson/pub-cgvr.
html.

60. Jay Lee. A drop heuristic conversion method for ex-
tracting irregular network for digital elevation models.
In GIS/LIS ’89 Proc., volume 1, pages 30–39. Amer-
ican Congress on Surveying and Mapping, November
1989.

61. J.-G. Leu and L. Chen. Polygonal approximation of
2-D shapes through boundary merging.Pattern Recog-
nition Letters, 7(4):231–238, April 1988.

62. Peter Lindstrom, David Koller, William Ribarsky,
Larry F. Hodges, Nick Faust, and Gregory A. Turner.
Real-time, continuous level of detail rendering of
height fields. InSIGGRAPH ’96, pages 109–118, Au-
gust 1996.

63. Peter Lindstrom and Greg Turk. Fast and memory effi-
cient polygonal simplification. InIEEE Visualization
98 Conference Proceedings, pages 279–286,544, Oct
1998.

64. William E. Lorensen and Harvey E. Cline. Marching
cubes: A high resolution 3D surface reconstruction al-
gorithm. Computer Graphics (SIGGRAPH ’87 Pro-
ceedings), 21(4):163–170, July 1987.

65. Michael Lounsbery, Tony D. DeRose, and Joe Warren.
Multiresolution analysis for surfaces of arbitrary topo-
logical type. ACM Trans. on Graphics, 16(1):34–73,
1997.http://www.cs.washington.edu/research/graphics/
pub/.

66. Kok-Lim Low and Tiow-Seng Tan. Model simplifi-
cation using vertex-clustering. In1997 Symposium
on Interactive 3D Graphics. ACM SIGGRAPH, 1997.
http://www.iscs.nus.sg/∼ tants/.

67. David Luebke and Carl Erikson. View-dependent sim-
plification of arbitrary polygonal environments. InSIG-
GRAPH 97 Proc., pages 199–208, August 1997.

68. Stephane G. Mallat. A theory for multiresolution sig-
nal decomposition: The wavelet representation.IEEE
Trans. on Pattern Analysis and Machine Intelligence,
11(7):674–693, July 1989.

69. Makoto Maruya. Generating a texture map from
object-surface texture data.Computer Graphics Forum,
14(3):397–405,506–507,1995. Proc. Eurographics ’95.

70. Nelson L. Max. Computer graphics distortion for
IMAX and OMNIMAX projection. In Nicograph ’83
Proceedings, pages 137–159, December 1983.

71. Gary L. Miller, Shang-Hau Teng, and Steven A. Vava-
sis. Automatic mesh partitioning. In A. George,
J. R. Gilbert, and J. W.-H. Liu, editors,Sparse Matrix
Computations: Graph Theory Issues and Algorithms.
Springer-Verlag, 1993.

72. Jovan Popovi´c and Hugues Hoppe. Progressive simpli-
cial complexes. InSIGGRAPH 97 Proc., pages 217–
224, 1997.http://research.microsoft.com/∼hoppe/.

73. P. M. Prenter.Splines and Variational Methods. John
Wiley & Sons, New York, 1975.

74. Franco P. Preparata and Michael I. Shamos.Compu-
tational Geometry: an Introduction. Springer-Verlag,
New York, NY, 1985.

c© M. Garland 1999.

M. Garland / Multiresolution Modeling: Survey & Future Opportunities

75. Shmuel Rippa. Adaptive approximation by piecewise
linear polynomials on triangulations of subsets of scat-
tered data. SIAM J. Sci. Stat. Comput., 13(5):1123–
1141, September 1992.

76. John Rohlf and James Helman. IRIS Performer: A high
performance multiprocessing toolkit for real-time 3D
graphics. InSIGGRAPH ’94 Proc., pages 381–394,
July 1994.http://www.sgi.com/software/performer/.

77. Rémi Ronfard and Jarek Rossignac. Full-range approx-
imation of triangulated polyhedra.Computer Graphics
Forum, 15(3), August 1996. Proc. Eurographics ’96.

78. Rémi Ronfard and Jarek Rossignac. Full-range approx-
imation of triangulated polyhedra. Technical Report
IBM Research Report RC 20423, IBM T. J. Watson Re-
search, Yorktown Heights, NY, 1996.

79. Jarek Rossignac and Paul Borrel. Multi-resolution
3D approximations for rendering complex scenes. In
B. Falcidieno and T. Kunii, editors,Modeling in Com-
puter Graphics: Methods and Applications, pages 455–
465, 1993.

80. Y. Rubner and C. Tomasi. Texture metrics. InProc.
IEEE Intl. Conf. on Systems, Man, and Cybernetics,
pages 4601–4607, 1998.

81. Holly E. Rushmeier, Charles Patterson, and Aravindan
Veerasamy. Geometric simplification for indirect illu-
mination calculations. InProc. Graphics Interface ’93,
pages 227–236, Toronto, Ontario, May 1993. Canadian
Inf. Proc. Soc. http://www.cc.gatech.edu/gvu/people/
Phd/Charles.Patterson/research/gsii/gsii.html.

82. Lori Scarlatos.Spatial Data Representations for Rapid
Visualization and Analysis. PhD thesis, CS Dept, State
U. of New York at Stony Brook, 1993.

83. G. Schaufler and W. Stürzlinger. Generating multi-
ple levels of detail from polygonal geometry models.
In M. Göbel, editor,Virtual Environments ’95 (Eu-
rographics Workshop), pages 33–41. Springer Verlag,
January 1995.

84. Francis J. M. Schmitt, Brian A. Barsky, and Wen-Hui
Du. An adaptive subdivision method for surface-fitting
from sampled data.Computer Graphics (SIGGRAPH
’86 Proc.), 20(4):179–188, August 1986.

85. William J. Schroeder. A topology modifying progres-
sive decimation algorithm. InIEEE Visualization 97
Conference Proceedings, pages 205–212,545, 1997.

86. William J. Schroeder, Jonathan A. Zarge, and
William E. Lorensen. Decimation of triangle meshes.
Computer Graphics (SIGGRAPH ’92 Proc.), 26(2):65–
70, July 1992.

87. Marc Soucy, Guy Godin, and Marc Rioux. A texture-
mapping approach for the compression of colored 3D
triangulations.The Visual Computer, 12(10):503–514,
1996.

88. Marc Soucy and Denis Laurendeau. Multiresolution
surface modeling based on hierarchical triangulation.
Computer Vision and Image Understanding, 63(1):1–
14, 1996.

89. Oliver G. Staadt and Markus H. Gross. Progressive
tetrahedralizations. InIEEE Visualization 98 Confer-
ence Proceedings, pages 397–402,555, Oct 1998.

90. Paul Steed. The art of low-polygon modeling.Game
Developer, pages 62–69, June 1998.http://www.gdmag.
com/backissue1998.htm#jun98.

91. Eric J. Stollnitz, Tony D. DeRose, and David H.
Salesin.Wavelets for Computer Graphics: Theory and
Applications. Morgann Kaufmann, San Francisco, CA,
1996.

92. Robert Endre Tarjan.Data Structures and Network Al-
gorithms. Number 44 in Regional Conference Series in
Applied Mathematics. SIAM, Philadelphia, 1983.

93. Isaac J. Trotts, Bernd Hamann, Kenneth I. Joy, and
David F. Wiley. Simplification of tetrahedral meshes. In
IEEE Visualization 98 Conference Proceedings, pages
287–295, Oct 1998.

94. Steve Upstill. The Renderman Companion. Addison
Wesley, Reading, MA, 1990.

95. Josie Wernecke.The Inventor Mentor: Programming
Object-Oriented 3D Graphics With Open Inventor, Re-
lease 2. Addison-Wesley, 1994.

96. Andrew J. Willmott, Paul S. Heckbert, and Michael
Garland. Face cluster radiosity. InEurographics Work-
shop on Rendering, June 1999.http://www.cs.cmu.edu/
∼ajw/paper/fcr-eg99/.

97. Julie C. Xia and Amitabh Varshney. Dynamic view-
dependent simplification for polygonal models. InPro-
ceedings of Visualization ’96, pages 327–334, October
1996.

c© M. Garland 1999.

