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PREMO and MM today

< MM programming environments exist, but
— diverse features
— fragmented specifications
— emphasis on simple media (e.g., audio, video)
< MM and graphics
— little integration
— separate communities



PREMO and MM tomorrow

= Control over configurations

— various media formats

— adaptation of media to available resources
= |Interoperability

— cross—platform

— cross—product

e Distribution



What iIs PREMQO?

e “Programming Environments for Multimedia
Objects” is a new ISO/IEC Standard

e Published as IS in spring 1998 (ISO 14478)

e Created by ISO/IEC JTC1/SC24 (Computer
Graphics and Image Processing)

< Developed in cooperation with the IMA
(International Multimedia Association)



Concept of “middleware”

< Middleware: a layer between the operating system and
the applications. Its role is to:
— ensure interoperability of systems
— ensure interoperability of programmers (...)

— relieve application developers from local specificities
— allow for an optimal and dedicated software development

Applications
MW 2
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Operating system




PREMO as middleware

= Control over distributed multimedia objects
e Tools for synchronisation, configuration, adaptability
« Common platform for MM programming tools

MM Application

PREMO

ODbject services (e.d., OMG services, CORBA; Java packages, RMI)

System 1 System 2 System n




PREMO as a framework

« PREMO does not specify

— new media formats

— new explicit rendering algorithms

— explicit media/Zgraphics primitive hierarchy
« PREMO offers ways to “plug-in” existing
approaches

« PREMO facilitates application level co—operation




PREMO as reference model

< PREMO provides unifying concepts for MM
orogramming (“portability of programmers”)

« PREMO organizes significant concepts into one
coherent framework

« PREMO deliberately spells out details to make
the general concepts clear




PREMO Document

e Cca. 300 page document in 4 Parts:
— Part 1: Object model, fundamentals
— Part 2: Foundation objects
— Part 3: Multimedia System Services
— Part 4: Modelling, Rendering, and Interaction

= Specifications for cca. 50-60 objects (interface,
behaviour, properties)
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Part 1: Object Model

« Traditional object model
— Objects, object types, object references
— multiple inheritance
— non—object datatypes

= Specialized features
— activity of objects

— operation request modes
= synchronous;
— asynchronous; or
< sampled
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Part 1: Environment

e External constraints

— available programming languages (C++, Ada95, Java,
etc.)

— available distribution tools (OMG/CORBA, Java RMI,
DCOM)

e “Environment” requirements:
— object creation and destruction
— object life—cycle
— object references and garbage collection
— casting
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Part 2: Foundation objects

“Top” of the PREMO object hierarchy; defines
Interfaces for
— data structures
— general finite state machine objects
— event management
— clock/timer access
— general synchronisation facilities
— property control
— Object factories
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Event management

raise an event

Source

\

Source

/

Event Handler

dispatch
— >

register

Callback

Callback

Callback

 Event handler is also a callback, i.e., chains can be constructed!




Event-based synchronisation

Synchronizable Object:

Progression space

o|O|O (o] o|Oo

[Callback ref

Event ﬁ
Wait flag —» [ Callback

= Progression space can be integer, float, time

= QObject is a finite state machine (STARTED, STOPPED, PAUSED,
WAITING)

= “Presentation” and “progression” is abstract
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(Very) simple example

o|0]|O
Video “start audio”
o|o]| o
Audio
“map image” “start timer”
~ N

( Timer
“Unmap image”
y
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Why not time?

File

-
—
—t—

=
—l




Synchronisation with time

Time Synchronizable Object:

Timeline

Speed
Progression space
0|0 o

o|O

Callback ref

Event ﬁ
Wait flag —» | Callback

Reference points can be set both in “time” and “space”
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Time slaves and masters

N

[o]e]e] o] [o]o] Master

Speed

[o]o]e] Io] [o] o]
i»:

Slave measures the discrepancy between its own clock and the
master’s

Slave



Property management

« Property: a key—-value pair dynamically attached
to an object

— “dynamic attribute”
— bypasses typing constraints

< Some objects have pre—-defined attributes
= Possible values of a property may be inquired
= Properties can be constrained

e Properties management is a major tool for
dynamic configuration
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Property constraining

Capability

Native property value

- Capabpility: possible values for a type
(all possible audio formats for this type)

-~ Native property value: possible values for an instance
(all possible audio formats for this instance)

e Constrained value: client selects among possible values
(I want only these and these audio formats)

e Selected value: object selects optimal value
(object selects optimal audio formats)
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Creation through Object
factories

LL
T LL[ TypeA |

(possible instances)
‘\ Factory
\ [ Instance ]

Example: “create an object which can manage AVI and
MPEG, and runs on this and this IP address”
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Part 3: Multimedia Systems
Services

_ a
el = K:[[ .

[ Modeller E
\ Surface :
Modeller Graphics

Multimedia System °© dataflow network of media
devices connected through media streams
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Characterisation of devices and
streams

[{ Device #1 H[{ Device #2 ]

= Devices are (conceptually) distributed
e Devices are configurable
= Devices receive/send data through ports

= Devices are oblivious to whom they are
connected

< Media data are synchronised on ports
< Media streams are opague
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Virtual device

[
Configuration

Configuration

‘Cal |back I
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Processing

©
Configuration
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Element
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T ‘Configurationl




StreamControl object

)

presentation may be:

play mute
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Configuration objects

-

StreamControl ‘ I
Callback StreamControl @
-
_— NQQ
StreamControl Processing
Element

‘Callbackl
‘ StreamControl h@
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Configuration objects

e Format objects: describe media formats
- Examples: MPEGVideoFormat, CATVFormat
- Properties: IntraQMatrix, SampleRate, etc.

= Multimedia Transport Protocol: describe media
Independent communication protocol

- Examples: IntraNodeConnection, InterNodeConnection,;
TCP, ATM, NETBIOS

- Properties: ByteOrder

= Quality of Service Descriptor: describe QoS
requirements

— Properties: GuaranteedLevel, Jitter, BandwidthBounds



Configuration example

e Get an image device with PNG, GIF, JPEG, TIFF,

or XPM image formats
done by object factory
e Retrieve lists of available formats on device
InNstance

e.g., PNGFormat and GIFFormat are returned

= Set client’s chosen format on a port

set GIFFormat as configuration object on a port

< More fine—grained configuration on the Format
Instance
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Configuration example (cont.)

[{ Device #1 }]#I{ Device #2 J

e | ook at properties of the Format on port #1
GIF version property might be “87”” and “89”

« Make Format object select optimal value
sets, say, 87

e Assign property for the Format on port #2

< Do the same with other properties, and with
QoSDescriptor and MSP objects
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Processing Element

StreamControl

[
Configuration

Callback

Configurati on
‘Cal |back I

‘ StreamControl I‘

Configuration



Device Examples

‘ “ Display” l *[' “ Store” | ‘ “ Retrieve” P
l

X
e »

*[' “Splitter” ﬁ




“Transformer” device

-

=
Multiplexed
Input queue

process
media
data

Output queue

Output queue

processing element °© global stream control thread
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Network management objects

= Connection objects: set up an manage
connection among devices

— e.g., sets up a socket pair or a pipe among devices
= Groups: combines devices, connections, or other

groups; controls start, stop, resource
management for all constituents

— e.g., controls a set of connections as one entry

e Logical device: connects a group of virtual
devices and behaves like a device

— hierarchies of devices can be constructed



Full network example

—
-

Group
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Part 4: Modelling, Rendering,

and Interaction

e Defines framework for media stream content
— MSS is indeendent of media stream content
— declarative model of media primitives

= Defines collection of media-oriented devices
— ‘Interface’ between the graphics and MM worlds
— generalised notions of modeller, renderer, etc.

e Provides for coordination of concurrent media
— primitives and tools for hypermedia contents
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Primitives

= Design question: which primitive set is best?
— Nonel
— PREMO concerned with interoperation
— abstract from renderer-specific details

= Specifies the content of the media streams
— top level of a (rendering) primitive hierarchy

— possibilities to describe the composition in time of
other primitives

— possibilities to combine with “captured” media



MRI Primitives

Primitive
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Wrapper

Form

Captured

Modifier

Reference

Tracer

Structured ————

Audio
Geometry

Tactile
Text

Acoustic

Geometric

TimeFrame

Music
Speech

——— SoundCharacteristic

Visual

Aggregate

TimeComposite —

VocalCharacteristic

Transformation
Constraint

Light

Material
Shading
Texture

Sequential
Paralld
Alternate



Time composite

*compStart” “compEnd”

@ M duration (min and max) \A
\

N7
A

clock

R S
L Jv
endTime - startTime

— components: sequential, parallel, or alternate
— finishes between min and max. duration
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Time components

e Sequential: constituents are displayed
sequentially

- attributes: startDelta, endDelta
e Parallel: constituents are displayed in parallel
- attributes: startSync, endSync

e Alternate: choice of constituent based on the
state of an FSM

- attributes: references to an FSM, state-to—primitive
table
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MRI Devices

« Specialised virtual devices
— understand MRI primitives
— specify and negotiate processing capabilities for
primitives
— devices to build up complex scenes
— devices to interpret the time composition of
primitives
< |[nput devices
— operation in sampled, event and request modes
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MRI Devices

MRI_Device

I
I I I | |
Modeller Renderer Router Scene  Coordinator
'_I | |
I

InputDevice Engine

Modeller/Renderer: output/input with MRI Primitives; Engine has both
InputDevice: turn primitive data into objects

Router: “switchboards” between input and output ports

Scene: virtual database

Coordinator: planner and scheduler for TimeComposite objects
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A “conceptual” database system
(e.g., element storage in PHIGS)
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Coordinator

-~

Structured primitive (@) ‘ |
O/; @)

A A

“Planner” and “Scheduler” of hypermedia
presentations




Coordination In Practice

= Allocate primitives to available processors
— compare primitive type against port configuration

= Schedule primitives for presentation
— layout primitives along “virtual tracks”

— align primitive boundaries based on composite
structure

e Monitor and adjust progess of presentation
— periodic milestones on port StreamControl objects
— Inject “tracer” primitives
— control over stream progression (stop, drain, etc.)
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Simple MRI example

[
Video
Renderer

| |
Audio
Modeller
[ [
* | Graphics | Graphics
Q i Engine Renderer
X ‘
[

I nput
Device




MRI example

s

audio
renderer

-

audio

modeller logical device
Il [ coordinator
-
o .
I graphics 1 logical device
2 H modeller
% [ graphlcs graphics
eng| ne renderer
I
logical device
:L_
46 T T mouse

router
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Miscellaneous

= Part of the Standard has been described through
formal description tools (Object-Z, Lotos)

= A proof-of-concept implementation is under
preparation in Java+RMI|

= A request has been sent to ISO/IEC to put the
document into public domain through the
Internet



