A Standard for Multimedia

Middleware
(The PREMO Standard)

David Duke
University of York

lvan Herman
CWI, Amsterdam

PREMO and MM today

< MM programming environments exist, but
— diverse features
— fragmented specifications
— emphasis on simple media (e.g., audio, video)
< MM and graphics
— little integration
— separate communities

PREMO and MM tomorrow

= Control over configurations

— various media formats

— adaptation of media to available resources
= |Interoperability

— cross—platform

— cross—product

e Distribution

What iIs PREMQO?

e “Programming Environments for Multimedia
Objects” is a new ISO/IEC Standard

e Published as IS in spring 1998 (ISO 14478)

e Created by ISO/IEC JTC1/SC24 (Computer
Graphics and Image Processing)

< Developed in cooperation with the IMA
(International Multimedia Association)

Concept of “middleware”

< Middleware: a layer between the operating system and
the applications. Its role is to:
— ensure interoperability of systems
— ensure interoperability of programmers (...)

— relieve application developers from local specificities
— allow for an optimal and dedicated software development

Applications
MW 2

MW 1

Operating system

PREMO as middleware

= Control over distributed multimedia objects
e Tools for synchronisation, configuration, adaptability
« Common platform for MM programming tools

MM Application

PREMO

ODbject services (e.d., OMG services, CORBA; Java packages, RMI)

System 1 System 2 System n

PREMO as a framework

« PREMO does not specify

— new media formats

— new explicit rendering algorithms

— explicit media/Zgraphics primitive hierarchy
« PREMO offers ways to “plug-in” existing
approaches

« PREMO facilitates application level co—operation

PREMO as reference model

< PREMO provides unifying concepts for MM
orogramming (“portability of programmers”)

« PREMO organizes significant concepts into one
coherent framework

« PREMO deliberately spells out details to make
the general concepts clear

PREMO Document

e Cca. 300 page document in 4 Parts:
— Part 1: Object model, fundamentals
— Part 2: Foundation objects
— Part 3: Multimedia System Services
— Part 4: Modelling, Rendering, and Interaction

= Specifications for cca. 50-60 objects (interface,
behaviour, properties)

10

Part 1: Object Model

« Traditional object model
— Objects, object types, object references
— multiple inheritance
— non—object datatypes

= Specialized features
— activity of objects

— operation request modes
= synchronous;
— asynchronous; or
< sampled

11

Part 1: Environment

e External constraints

— available programming languages (C++, Ada95, Java,
etc.)

— available distribution tools (OMG/CORBA, Java RMI,
DCOM)

e “Environment” requirements:
— object creation and destruction
— object life—cycle
— object references and garbage collection
— casting

12

Part 2: Foundation objects

“Top” of the PREMO object hierarchy; defines
Interfaces for
— data structures
— general finite state machine objects
— event management
— clock/timer access
— general synchronisation facilities
— property control
— Object factories

13

Event management

raise an event

Source

\

Source

/

Event Handler

dispatch
— >

register

Callback

Callback

Callback

 Event handler is also a callback, i.e., chains can be constructed!

Event-based synchronisation

Synchronizable Object:

Progression space

o|O|O (o] o|Oo

[Callback ref

Event ﬁ
Wait flag —» [Callback

= Progression space can be integer, float, time

= QObject is a finite state machine (STARTED, STOPPED, PAUSED,
WAITING)

= “Presentation” and “progression” is abstract

14

(Very) simple example

o|0]|O
Video “start audio”
o|o]| o
Audio
“map image” “start timer”
~ N

(Timer
“Unmap image”
y

15

16

Why not time?

File

-
—
—t—

=
—l

Synchronisation with time

Time Synchronizable Object:

Timeline

Speed
Progression space
0|0 o

o|O

Callback ref

Event ﬁ
Wait flag —» | Callback

Reference points can be set both in “time” and “space”

17

18

Time slaves and masters

N

[o]e]e] o] [o]o] Master

Speed

[o]o]e] Io] [o] o]
i»:

Slave measures the discrepancy between its own clock and the
master’s

Slave

Property management

« Property: a key—-value pair dynamically attached
to an object

— “dynamic attribute”
— bypasses typing constraints

< Some objects have pre—-defined attributes
= Possible values of a property may be inquired
= Properties can be constrained

e Properties management is a major tool for
dynamic configuration

19

Property constraining

Capability

Native property value

- Capabpility: possible values for a type
(all possible audio formats for this type)

-~ Native property value: possible values for an instance
(all possible audio formats for this instance)

e Constrained value: client selects among possible values
(I want only these and these audio formats)

e Selected value: object selects optimal value
(object selects optimal audio formats)

20

Creation through Object
factories

LL
T LL[TypeA |

(possible instances)
‘\ Factory
\ [Instance]

Example: “create an object which can manage AVI and
MPEG, and runs on this and this IP address”

21

Part 3: Multimedia Systems
Services

_ a
el = K:[[.

[Modeller E
\ Surface :
Modeller Graphics

Multimedia System °© dataflow network of media
devices connected through media streams

22

Characterisation of devices and
streams

[{ Device #1 H[{ Device #2]

= Devices are (conceptually) distributed
e Devices are configurable
= Devices receive/send data through ports

= Devices are oblivious to whom they are
connected

< Media data are synchronised on ports
< Media streams are opague

23

Virtual device

[
Configuration

Configuration

‘Cal |back I

24

Processing

©
Configuration

i©

Element

|~
-

T ‘Configurationl

StreamControl object

)

presentation may be:

play mute

26

Configuration objects

-

StreamControl ‘ I
Callback StreamControl @
-
_— NQQ
StreamControl Processing
Element

‘Callbackl
‘ StreamControl h@

27

Configuration objects

e Format objects: describe media formats
- Examples: MPEGVideoFormat, CATVFormat
- Properties: IntraQMatrix, SampleRate, etc.

= Multimedia Transport Protocol: describe media
Independent communication protocol

- Examples: IntraNodeConnection, InterNodeConnection,;
TCP, ATM, NETBIOS

- Properties: ByteOrder

= Quality of Service Descriptor: describe QoS
requirements

— Properties: GuaranteedLevel, Jitter, BandwidthBounds

Configuration example

e Get an image device with PNG, GIF, JPEG, TIFF,

or XPM image formats
done by object factory
e Retrieve lists of available formats on device
InNstance

e.g., PNGFormat and GIFFormat are returned

= Set client’s chosen format on a port

set GIFFormat as configuration object on a port

< More fine—grained configuration on the Format
Instance

28

Configuration example (cont.)

[{ Device #1 }]#I{ Device #2 J

e | ook at properties of the Format on port #1
GIF version property might be “87”” and “89”

« Make Format object select optimal value
sets, say, 87

e Assign property for the Format on port #2

< Do the same with other properties, and with
QoSDescriptor and MSP objects

29

Processing Element

StreamControl

[
Configuration

Callback

Configurati on
‘Cal |back I

‘ StreamControl I‘

Configuration

Device Examples

‘ “ Display” l *[' “ Store” | ‘ “ Retrieve” P
l

X
e »

*[' “Splitter” ﬁ

“Transformer” device

-

=
Multiplexed
Input queue

process
media
data

Output queue

Output queue

processing element °© global stream control thread

32

33

Network management objects

= Connection objects: set up an manage
connection among devices

— e.g., sets up a socket pair or a pipe among devices
= Groups: combines devices, connections, or other

groups; controls start, stop, resource
management for all constituents

— e.g., controls a set of connections as one entry

e Logical device: connects a group of virtual
devices and behaves like a device

— hierarchies of devices can be constructed

Full network example

—
-

Group

34

35

Part 4: Modelling, Rendering,

and Interaction

e Defines framework for media stream content
— MSS is indeendent of media stream content
— declarative model of media primitives

= Defines collection of media-oriented devices
— ‘Interface’ between the graphics and MM worlds
— generalised notions of modeller, renderer, etc.

e Provides for coordination of concurrent media
— primitives and tools for hypermedia contents

36

Primitives

= Design question: which primitive set is best?
— Nonel
— PREMO concerned with interoperation
— abstract from renderer-specific details

= Specifies the content of the media streams
— top level of a (rendering) primitive hierarchy

— possibilities to describe the composition in time of
other primitives

— possibilities to combine with “captured” media

MRI Primitives

Primitive

37

Wrapper

Form

Captured

Modifier

Reference

Tracer

Structured ————

Audio
Geometry

Tactile
Text

Acoustic

Geometric

TimeFrame

Music
Speech

——— SoundCharacteristic

Visual

Aggregate

TimeComposite —

VocalCharacteristic

Transformation
Constraint

Light

Material
Shading
Texture

Sequential
Paralld
Alternate

Time composite

*compStart” “compEnd”

@ M duration (min and max) \A
\

N7
A

clock

R S
L Jv
endTime - startTime

— components: sequential, parallel, or alternate
— finishes between min and max. duration

38

Time components

e Sequential: constituents are displayed
sequentially

- attributes: startDelta, endDelta
e Parallel: constituents are displayed in parallel
- attributes: startSync, endSync

e Alternate: choice of constituent based on the
state of an FSM

- attributes: references to an FSM, state-to—primitive
table

39

40

MRI Devices

« Specialised virtual devices
— understand MRI primitives
— specify and negotiate processing capabilities for
primitives
— devices to build up complex scenes
— devices to interpret the time composition of
primitives
< |[nput devices
— operation in sampled, event and request modes

41

MRI Devices

MRI_Device

I
I I I | |
Modeller Renderer Router Scene Coordinator
'_I | |
I

InputDevice Engine

Modeller/Renderer: output/input with MRI Primitives; Engine has both
InputDevice: turn primitive data into objects

Router: “switchboards” between input and output ports

Scene: virtual database

Coordinator: planner and scheduler for TimeComposite objects

42

A “conceptual” database system
(e.g., element storage in PHIGS)

43

Coordinator

-~

Structured primitive (@) ‘ |
O/; @)

A A

“Planner” and “Scheduler” of hypermedia
presentations

Coordination In Practice

= Allocate primitives to available processors
— compare primitive type against port configuration

= Schedule primitives for presentation
— layout primitives along “virtual tracks”

— align primitive boundaries based on composite
structure

e Monitor and adjust progess of presentation
— periodic milestones on port StreamControl objects
— Inject “tracer” primitives
— control over stream progression (stop, drain, etc.)

44

45

Simple MRI example

[
Video
Renderer

| |
Audio
Modeller
[[
* | Graphics | Graphics
Q i Engine Renderer
X ‘
[

I nput
Device

MRI example

s

audio
renderer

-

audio

modeller logical device
Il [coordinator
-
o .
I graphics 1 logical device
2 H modeller
% [graphlcs graphics
eng| ne renderer
I
logical device
:L_
46 T T mouse

router

47

Miscellaneous

= Part of the Standard has been described through
formal description tools (Object-Z, Lotos)

= A proof-of-concept implementation is under
preparation in Java+RMI|

= A request has been sent to ISO/IEC to put the
document into public domain through the
Internet

