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Abstract
There is a wide range of applications for which surface interpolation or approximation from scattered data points
in space is important. Dependent on the field of application and the related properties of the data, many algorithms
were developed in the past. This contribution gives a survey of existing algorithms, and identifies basic methods
common to independently developed solutions. We distinguish surface construction based on spatial subdivision,
distance functions, warping, and incremental surface growing. The systematic analysis of existing approaches
leads to several interesting open questions for further research.

1. Introduction

The problem treated in this contribution is

Surfaces from scattered point data.
Input. A set P of points in space which are sampled from

the surface.
Output. A surfaceSso that the points ofP lie on or close

to S.

There is a wide range of applications for which surface con-
struction from scattered point data is important. In partic-
ular, scanning of 3D shapes reaching from bodies to land-
scapes, directly accessible or not, with tactile, optical, ul-
trasonic, tomographic, and other sensors, is a rich source of
data for the problem. The construction of surfaces is neces-
sary because many methods and systems require surface data
for further processing. Surfaces also open the application of
the wide-spread surface-oriented visualization and rendering
techniques. For example, surfaces may be used for visualiz-
ing other information e.g. coded in textures (data textures or
real textures) mapped on the surface.

The given formulation of the surface construction prob-
lem is not very precise and lets many degrees of freedom of
interpretation. From an application-based point of view, two
categories of taskscan be distinguished: data analysis and
surface reconstruction.Data analysismeans that nothing is
known about the surface from which the data originate. The
task is to find the most reasonable solutions among usually
several or even many possibilities.Surface reconstruction
means that the surface from which the data are sampled is

known, say in form of a real model, and the goal is to get
a computer-based description of exactly this surface. This
knowledge may be used in the selection of a favourable al-
gorithm.

A proper reconstruction of the desired surface in the latter
case can only be expected if it is sufficiently sampled. Suf-
ficiency depends on the particular method of surface recon-
struction. It might be formulated in form ofsampling theo-
remswhich should give sufficent conditions that can be eas-
ily checked. This aspect was neglected in research up to now,
and little is known for existing reconstruction algorithms on
this aspect. An exception are the works of Attali2 (which
gives a morphology-based sampling theorem at least for the
2D-case) and Bernardini, Bajaj10.

If data are improperly sampled, a reconstruction method
may cause artifacts which have to be delt with. Like in clas-
sical sampling theory, pre-filtering e.g. in the sense of depth-
pass filtering may help to reduce artifacts at the costs of loss
of details. Another possibility is interactive correction by the
user which may be helpful if artifacts occur at some few iso-
lated locations.

The opposite of insufficient sampling is that the sampling
data are unnecessarily dense. This happens in particular if
a surface is sampled with uniform density. In that case the
sampling density required at fine details of the surface causes
too many data points in regions of only minor variation. Sev-
eral approaches todata reductionwere proposed in litera-
ture29. We do not treat this topic here, but only give the hint
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that data reduction should consider the power of the recon-
struction algorithm expressed in sampling theorems, a fact
that also was not explicitly obeyed in the past.

The challenge of surface reconstruction is to find methods
of reconstruction which cover a wide range of shapes, or, for
a given area of application, to find a method of reconstruc-
tion which covers the shapes of this class reasonably. The
challenge of data analysis is to find efficient enumeration
algorithms yielding those of all feasible surfaces that come
closest to the desired one. In particular, ways must be found
to express which of the possible solutions are favorable.

The wide range of applications from which the data may
emerge implies that the data can have quite differentproper-
tieswhich may be considered at the solution of the surface
interpolation problem. For example, the data may be sam-
pled from surfaces that lie unique over a plane. In that case,
a wide range of methods were developed which mainly focus
on geometric properties like smoothness of the constructed
surface30.

While the example just mentioned generalizes the prob-
lem, reconstruction may become more specific if the surface
is captured in multiple samples (multiple view range images)
that have to be fused.Sample fusingmay need data transfor-
mation and fitting. We exclude these aspects from further
discussion and refer e.g. to47; 14; 44.

Sample data may containadditional information on struc-
ture. A typical example are tomographic data. In that case
the points on a slice may be already connected by polyg-
onal contour chains. Another example is that normal vec-
tors are available at the data points. These additional infor-
mations may give additional hints on the unknown surface
which may considered in the construction algorithm. In par-
ticular, for interpolation or approximation of contour data, a
variety of methods were developed37. In the following, no
additional structural information is expected.

Finally, themathematical and data structural represen-
tation of the derived surface has to be considered. The
most common representation is the polygonal or triangular
mesh representation. Because the representation by triangu-
lar meshes allows to express the topological properties of the
surface, and because this is the most difficult sub-problem of
surface construction, most known algorithms use this sort of
representation. If higher smoothness than just continuity is
required, either the parametric or the implicit surface repre-
sentation may be used. Triangular meshes can be seen as a
surface composed by parametrically represented linear sur-
face patches. For surfaces of higher continuity patches of
higher order are required. One way to obtain such surfaces is
to start from a triangular mesh. For that reason, we have cho-
sen the representation by triangular meshes for this paper, if
nothing else is told, and refer to literature for the problem
of deriving smooth surfaces, for instance to17; 24; 20 in which
smoothing of surfaces obtained from sample data is particu-
larly emphasized.

The surface construction problem has found considerable
interest in the past, and is still an important topic of re-
search. The purpose of this contribution is to find unify-
ing basic methods common to independently developed so-
lutions, coupled with a survey of existing algorithms. The
identified basic classes are constructions based on spatial
subdivision (section 2), on distance functions (section 3),
on warping (section 4), and on incremental surface grow-
ing (section 5). In section 6 the aspect is treated that an ob-
ject represented in a sample data set may consist of several
connected components. The systematic analysis of existing
approaches leads to several interesting open questions for
further research (section 7).

2. Spatial Subdivision

Common to the approaches that can be characterized by
”Spatial Subdivision” is that some bounding box of the set
P of sampling points is subdivided into disjoint cells. There
is a variety of spatial decomposition techniques which were
developed for different applications33. Typical examples
are regular grids, adaptive schemes like octrees, or irregu-
lar schemes like tetrahedral meshes. Many of them can also
be applied to surface construction.

The goal of construction algorithms based on spatial sub-
division is to find cells related to the shape described byP.
The selection of the cells can be done in roughly two ways:
surface-oriented and volume-oriented.

2.1. Surface-Oriented Cell Selection

The surface-oriented approach consists of the following ba-
sic steps.

Surface-oriented cell selection:

1. Decompose the space in cells.
2. Find those cells that are traversed by the surface.
3. Calculate a surface from the selected cells.

2.1.1. The Approach of Algorri and Schmitt

An example for surface-oriented cell selection is the algo-
rithm of Algorri and Schmitt1. For the first step, the rectan-
gular bounding box of the given data set is subdivided by a
regular voxel grid. In the second step, the algorithm extracts
those voxels which are occupied by at least one point of the
sampling setP. In the third step, the the outer quadrilater-
als of the selected voxels are taken as a first approximation
of the surface. This resembles the cuberille approach of vol-
ume visualization26.

In order to get a more pleasent representation, the surface
is transferred into a triangular mesh by diagonally splitting
each quadrilateral into two triangles. The cuberille artifacts
are smoothed using a depth-pass filter that assigns a new po-
sition to each vertex of a triangle. This position is computed
as the weighted average of its old position and the position
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of its neighbors. The approximation of the resulting surface
is improved by warping it towards the data points. For more
on that we refer to section 4.2.

(a) (b)

(c) (d)

Figure 1: The steps of the approach of Algorri and Schmitt:
the given point set (a), the cuberille face description (b), the
triangulated cuberilles (c), and the filtered mesh (d). Pic-
ture from Algorri and Schmitt ’961. c
 1996 Eurographics.
Reprinted with Permission.

2.1.2. The Approach of Hoppe et al.

Another possibility of surface-oriented cell selection is
based on the distance function approach of Hoppe28; 29; 27.
The distance function of the surface of a closed object tells
for each point in space its minimum signed distance to the
surface. Points on the surface of course have distance 0,
whereas points outside the surface have positive, and points
inside the surface have negative distance. The calculation of
the distance function is outlined in section 3.1.1.

The first step of the algorithm again is implemented by a
regular voxel grid. The voxel cells selected in the second step
are those which have vertices of opposite sign. Evidently, the
surface has to traverse these cells. In the third step, the sur-
face is obtained by the marching cubes algorithm of volume
visualization33. The marching cubes algorithm defines tem-
plates of separating surface patches for each possible config-
uration of the signs of the distance values at the vertices of
a voxel cell. The voxels are replaced with these triangulated
patches. The resulting triangular mesh separates the positive
and negative distance values on the grid.

Figure 2: The approach of Hoppe et al., from left to right: a
point set, the nonemtpy voxels of a voxelization of the space,
the resulting triangular mesh displayed as wire frame and as
shaded surface. Pictures from Hoppe ’9427. Reprinted with
Permission.

A similar algorithm was suggested by Roth and Wi-
bowoo 40. It differs from the approach of Hoppe et al. in
the way the distance function is calculated, cf. section 3.1.2.
Furthermore, the special cases of profile lines and multiple
view range data are considered besides scattered point data.

A difficulty with these approaches is the choice of the res-
olution of the voxel grid. One effect is that gaps may occur in
the surface because of troubles of the heuristics of distance
function calculation.

2.1.3. The Approach of Bajaj, Bernardini et al.

The approach of Bajaj, Bernardini et al.8 differs from the
previous ones in that spatial decomposition is now irregular
and adaptive.

The algorithm also requires a signed distance function.
For this purpose, a first approximate surface is calculated in
a preprocessing phase. The distance to this surface is used
as distance function. The approximate surface is calculated
usingα-solids which will be explained in section 2.2.5.

Having the distance function in hand, the space is incre-
mentally decomposed into tetrahedra starting with an initial
tetrahedron surrounding the whole data set. By inspecting
the signs of the distance function at the vertices, the tetra-
hedra traversed by the surface are found out. For each of
them, an approximation of the traversing surface is calcu-
lated. For this purpose, a Bernstein-B´ezier trivariate implicit
approximant is used. The approximation error to the given
data points is calculated. A bad approximation induces a
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further refinement of the tetrahedrization. The refinement is
performed by incrementally inserting the centers of tetrahe-
dra with high approximation error into the tetrahedrization.
The process is iterated until a sufficient approximation is
achieved.

In order to keep the shape of the tetrahedra balanced, an
incremental tetrahedrization algorithm is used so that the re-
sulting tetrahedrizations always have the Delaunay property.
A tetrahedrization is said to have theDelaunay propertyif
none of its vertices lies inside the circumscribed sphere of a
tetrahedron39.

The resulting surface is composed of trivariate implicit
Bernstein–B´ezier patches. AC1 smoothing of the con-
structed surfaces is obtained by applying a Clough-Tocher
subdivision scheme.

In Bernardini et al.11; 9 an extension and modification of
this algorithm is formulated6; 10. The algorithm consists of
an additional mesh simplification step to reduce the com-
plexity of the mesh represented by theα-solid7. The reduced
mesh is used in the last step of the algorithm for polynomial-
patch data fitting using Bernstein–B´ezier patches for each
triangle (by interpolating the vertices and normals and by
approximating data points in its neighborhood). Addition-
ally, the representation of sharp features can be achieved in
the resulting surface.

2.1.4. Edelsbrunner’s and Mücke’s Alpha-shapes

Edelsbrunner and M¨ucke19; 36; 18 also use an irregular spatial
decomposition. In contrast to the previous ones, the given
sample points are part of the subdivision. The decomposi-
tion chosen for that purpose is the Delaunay tetrahedrization
of the given setP of sampling points. A tetrahedrization of a
setP of spatial points is a decomposition of the convex hull
of P into tetrahedra so that all vertices of the tetrahedra are
points inP. A tetrahedrization is aDelaunay tetrahedriza-
tion if none of the points ofP lies inside the circumsphere
of a tetrahedron. It is well known that each finite point set
has a Delaunay tetrahedrization which can be calculated ef-
ficiently 39. This is the first step of the algorithm.

The second step is to erase tetrahedrons, triangles, and
edges of the Delaunay tetrahedrization using so-calledα-
balls as eraser sphere with radiusα. Each tetrahedron, tri-
angle, or edge of the tetrahedrization whose corresponding
minimum surrounding sphere does not fit into the eraser
sphere is eliminated. The resulting so-calledα-shapeis a
collection of points, edges, faces, and tetrahedra.

In the third step, the triangles are extracted out of theα-
shape which belong to the desired surface, using the fol-
lowing rule. Consider the two possible spheres of radiusα
through all three points of a triangle of theα-shape. If at
least one of these does not contain any other point of the
point set, the triangle belongs to the surface.

A problem of this approach is the choice of a suitableα.

Sinceα is a global parameter the user is not swamped with
many open parameters, but the drawback is that a variable
point density is not possible without loss of detail in the re-
construction.

An example for a reconstruction of a body is shown in
Figure 3. Ifα is too small, gaps in the surface can occur, or
the surface may become fragmented.

Figure 3: Edelsbrunner’s and M¨ucke’sα-shapes applied to
a sampled bust. Differentα, visualized by the correspond-
ing α-balls, were used. The bottom figure shows the given
data set, the upper left one its convex hull. The pictures were
generated with originalα-shape software19; 36; 18.

Guo et al.25 also make use ofα–shapes for surface recon-
struction but they propose a so–calledvisibility algorithm for
extracting those triangles out of theα–shape which represent
the simplicial surface.

2.1.5. Attali’s Normalized Meshes

In the approach of Attali2, the Delaunay tetrahedrization is
also used as a basic spatial decomposition. Attali introduces
so-called normalized meshes which are contained in the De-
launay graph. It is formed by the edges, faces and tetrahedra
whose dual Voronoi element intersects the surface of the ob-
ject.

In two dimensions, the normalized mesh of a curvec con-
sists of all edges between pairs of points of the given setP of
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sampling points onc which induce an edge of the Voronoi di-
agram ofP that intersectsc. The nice property of normalized
meshes is that for a wide class of curves of bounded curva-
ture, the so-calledr-regular shapes, a bound on the sampling
density can be given within which the normalized mesh re-
tains all the topological properties of the original curve.

For reconstruction ofc, the edges belonging to the recon-
structed mesh are obtained by considering the angle between
the intersections of the two possible circles around a Delau-
nay edge. The angle between the circles is defined to be the
smaller of the two angles between the two tangent planes at
one intersection point of the two circles. This characteriza-
tion is useful because Delaunay discs tend to become tan-
gent to the boundary of the object. The reconstructed mesh
consists of all edges whose associated Delaunay discs have
an angle smaller thanπ2 . If the sampling density is suffi-
ciently high, the reconstructed mesh is equal to the normal-
ized mesh.

While in two dimensions the normalized mesh is a correct
reconstruction of shapes having the property ofr-regularity,
the immediate extension to three dimensions is not possible.
The reason for that is that some Delaunay spheres can in-
tersect the surface without being approximately tangent to
it. Therefore, the normalized mesh in three dimensions does
not contain all faces of the surface.

To overcome this problem, two different heuristics for fill-
ing the gaps in the surface structure were introduced.

The first heuristic is to triangulate the border of a gap in
the triangular mesh by considering only triangles contained
in the Delaunay tetrahedrization.

The second heuristic is volume-based. It merges Delau-
nay tetrahedra to build up the possibly different solids repre-
sented in the point set. The set of mergeable solids is initial-
ized with the Delaunay tetrahedra and the complement of the
convex hull. The merging step is performed by processing
the Delaunay triangles according to decreasing diameters. If
the current triangle separates two different solids in the set
of mergable solids, they are merged if the following holds:

� no triangle from the normalized mesh disappears;
� merging will not isolate sample points inside the union of

these objects, i.e. the sample points have to remain on the
boundary of at least one object.

The surface finally yielded by the algorithm is formed by the
boundary of the resulting solids.

2.1.6. Weller’s approach of Stable Voronoi Edges

Let P be a finite set of points in the plane.P0 is an ε-
perturbationof P if d(pip

0

i)� ε holds for allpi 2P, p0

i 2 P0,
i = 1; : : : ;n. An edgep0

i ; p0

jof the Delaunay triangulation is
calledstableif the perturbed endpointsp0

i , p0

j are also con-
nected by an edge of the Delaunay triangulation of the per-
turbed point setP0.

It turns out that for intuitively reasonably sampled curves
in the plane, the stable edges usually are the edges connect-
ing two consecutive sampling points on the curve, whereas
the edges connecting non-neighboring sampling points are
instable. The stability of an edge can be checked in time
O(#Voronoi neighbors) 50.

The extension of this approach to 3D-surfaces shows that
large areas of a surface can usually be reconstructed cor-
rectly, but still not sufficiently approximated regions do ex-
ist. This resembles the experience reported by Attali2, cf.
section 2.1.5. Further research is necessary in order to make
stability useful for surface construction.

2.2. Volume-Oriented Cell Selection

Volume-oriented cell selection also consists of three steps
which at a first glance are quite similar to those of surface-
oriented selection:

Volume-oriented cell selection:

1. Decompose the space in cells.
2. Remove those cells that do not belong to the volume

bounded by the sampled surface.
3. Calculate a surface from the selected cells.

The difference is that a volume representation, in contrast to
a surface representation, is obtained.

Most implementations of volume-oriented cell selection
are based on the Delaunay tetrahedrization of the given setP
of sampling points. The algorithms presented in the follow-
ing differ in how volume-based selection is performed. Some
algorithms eliminate tetrahedrons expected outside the de-
sired solid, until a description of the solid is achieved13; 31; 48.
Another methodology is the use of the Voronoi diagram to
describe the constructed solid by a ”skeleton”43; 2.

2.2.1. Boissonnat’s Volume-Oriented Approach

Boissonnat’s volume-oriented approach starts with the De-
launay triangulation of the given setP of sampling points.
From this triangulation of the convex hull, tetrahedra having
particular properties are successively removed. First of all,
only tetrahedra withtwo faces, five edges and four pointsor
one face, three edges and three pointson the boundary of
the current polyhedron are eliminated. Because of this elim-
ination rule only objects without holes can be reconstructed,
cf. Figure 4. Tetrahedra of this type are iteratively removed
according to decreasingdecision values. The decision value
is the maximum distance of a face of the tetrahedron to
its circumsphere. This decision value is useful because flat
tetrahedra of the Delaunay tetrahedrization usually tend to
be outside the object and cover areas of higher detail. The
algorithm stops if all points lie on the surface, or if the dele-
tion of the tetrahedron with highest decision value does not
improve the sum taken over the decision values of all tetra-
hedra incident to the boundary of the polyhedron.
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Figure 4: Boissonnat’s volume-oriented approach. An ex-
ample for a tetrahedron which cannot be removed by the
elimination rule of Boissonnat. The tetrahedron in the hole
of the torus has four faces on the boundary.

2.2.2. The Approach of Isselhard, Brunnett, and
Schreiber

The approach of31 is an improvement of the volume-
oriented algorithm of Boissonnat13. While Boissonnat can-
not handle objects with holes, the deletion procedure of this
approach is modified so that construction of holes becomes
possible.

Figure 5: The approach of Isselhard, Brunnett, and
Schreiber. From left to right: The point set, the convex
hull, an intermediate step during the process of tetrahedra
elimination, and the reconstruction result31. Courtesy of
Arbeitsgruppe CAD und Algorithmische Geometrie, Fach-
bereich Informatik, University of Kaiserslautern, Germany.
Reprinted with Permission.

As before, the algorithm starts with the Delaunay triangu-
lation of the point set. An incremental tetrahedron deletion
procedure is then performed on tetrahedra at the boundary of
the polyhedron, as in Boissonnat’s algorithm. The difference
is, that more types of tetrahedron can be removed in order to
being able to reconstruct even object with holes, remember

the configuration depicted in Figure 4. The additionally al-
lowed types of tetrahedra are those withone face and four
verticesor three facesor all four facesor on the current sur-
face provided that no point would become isolated through
their elimination.

The elimination process is controlled by observing an
elimination function. The elimination function is defined as
the maximum decision value (in the sense of Boissonnat)
of the remaining removable tetrahedra. In this function, sev-
eral significant jumps can be noticed. One of these jumps
is expected to indicate that the desired shape is reached. In
practice, the jump before the stabilization of the function on
a higher level is the one which is taken. This stopping point
helps handling different point densities in the point set which
would lead to undesired holes through the extended type set
of removable tetrahedra in comparison to Boissonnat’s algo-
rithm 13.

If all data points are already on the surface, the algorithm
stops. If not, more tetrahedra are eliminated to recover sharp
edges (reflex edges) of the object. For that purpose the elim-
ination rules are restricted to those of Boissonnat, assuming
that all holes present in the data set have been recovered at
this stage. Additionally, the decision value of the tetrahedra
is scaled by the radius of the circumscribed sphere as a mea-
sure for the size of the tetrahedron. In this way, the cost of
small tetrahedra is increased which are more likely to be in
regions of reflex edges than big ones. The elimination con-
tinues until all data points are on the surface and the elimi-
nation function does not decrease anymore.

An example point set and the deletion process is depicted
in Figure 5.

2.2.3. Theγ–indicator Approach of Veltkamp

To describe the method of Veltkamp48; 49 some terminology
is required. Aγ-indicator is a value associated to a sphere
through three boundary points of a polyhedron which is pos-
itive or negative, cf. Figure 6 for an illustration of the 2D-
case. Its absolute value is computed as 1� r

R; where r is
the circle for the boundary triangle andR the radius of the
boundary tetrahedron. It is taken to be negative if the center
of the sphere is on the inner side and positive if the center is
on the outer side of the polyhedron. Note, that theγ-indicator
is independent of the size of the boundary triangle (tetrahe-
dron, respectively). Therefore, it adapts to areas of changing
point density. A removable face is a face with positiveγ–
indicator value.

The first step of the algorithm is to calculate the Delaunay
tetrahedrization.

In the second step, a heap is filled with removable tetra-
hedra which are sorted according to theirγ–indicator value.
The removable tetrahedra are of the same boundary types
as in Boissonnat’s volume-oriented approach13. The tetra-
hedron with the largestγ-indicator value is removed and the
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Figure 6: Two cases for theγ-indicator value, in the 2D-
case. Picture from Veltkamp ’9448. c
 1994 Springer Verlag.
Reprinted with Permission.

Figure 7: The approach of Veltkamp. From left to right: The
given point set, its convex hull, two intermediate stages of
construction, the final result, and the resulting mesh ren-
dered as wire frame. Pictures from Veltkamp ’9448. c
 1994
Springer Verlag. Reprinted with Permission.

boundary is updated. This process continues until all points
lie on the boundary, or there are no further removable tetra-
hedra.

The main advantage of this algorithm is the adaption of
theγ-indicator value to variable point density. Like Boisson-
nat’s approach, the algorithm is restricted to objects without
holes.

Some intermediate stages during the construction of a sur-
face are displayed in Figure 7.

2.2.4. The Approach of Schreiber and Brunnett

The approach of Schreiber and Brunnett42; 43 uses proper-
ties of the Voronoi diagram of the given point set for tetra-
hedra removal. TheVoronoi diagramof a point setP is a

(a) (b)

(c)

Figure 8: The approach of Schreiber and Brunnett. From
left to right: (a) The desired polygon (filled) and Delaunay
triangulation of the given points with an inner MST (drawn
fat), (b) the classification into inner and outer regions, (c)
and the reconstructed polygon. The pictures have been gen-
erated for this paper by the Arbeitsgruppe CAD und Algo-
rithmische Geometrie, Fachbereich Informatik, University of
Kaiserslautern, Germany42; 43.

partition of the space in regions of nearest neighborhood.
For each pointp in P, it contains the region of all points in
space that are closer top than to any other point ofP. It is
interesting to note that the Voronoi diagram is dual to the
Delaunay tetrahedrization ofP. For example, each vertex of
the Voronoi diagram corresponds to the center of a tetrahe-
dron of the tetrahedrization. Edges of the Voronoi diagram
correspond to neighboring faces of the tetrahedra dual to its
vertices. The same observation holds for Voronoi diagrams
in the plane that are used in the following for the explanation
of the 2D-version of the algorithm.

In the first step, the Delaunay triangulation and the dual
Voronoi diagram ofP is determined. The second step, the
selection of tetrahedra, uses a minimum spanning tree of the
Voronoi graph, cf. Figure 8 (a). TheVoronoi graphis the
graph induced by the vertices and edges of the Voronoi dia-
gram. Aminimum spanning tree(MST) of a graph is a sub-
tree of the graph which connects all vertices and has min-
imum summed edge length. Edge length in our case is the
Euclidean distance of the two endpoints of the edge.

In the second step, a pruning strategy is applied to it which
possibly decomposes it into several disjoint subtrees, cf. Fig-
ure 8 (a). Each subtree represents a region defined by the
union of the triangles dual to its vertices.
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Two pruning rules have been developed for that purpose:

1. All those edges will be pruned for which no end point is
contained in the circumcircle of the dual Delaunay trian-
gle of the other end point.

2. An edge will be pruned if its length is shorter than the
mean value of the radii of both circumcircles of the dual
Delaunay triangles of its voronoi end points.

The number of edges to be pruned can be controlled by using
the edge length as a parameter.

The resulting regions are then distinguished into inside
and outside, cf. Figure 8 (b). In order to find the inside re-
gions, we add the complement of the convex hull as further
region to the set of subtree regions. The algorithm starts with
a point on the convex hull which is incident to exactly two
regions. The region different from the complement of the
convex hull is classified ”inside”. Then the label ”inside”
is propagated to neighboring regions by again considering
points that are incident to exactly two regions.

After all regions have been classified correctly, the bound-
ary of the constructed shape is obtained as the boundary of
the union of the region labeled ”inside”, cf. Figure 8 (c).

An adaption of this method to three dimensions is possi-
ble.

2.2.5. Theα-solids of Bajaj, Bernardini et al.

Bajaj, Bernardini et al.8; 6; 10; 11 calculate so-calledα-solids.
While α-shapes are computed by using eraser spheres at ev-
ery point in space, the eraser spheres are now applied from
outside the convex hull, like in Boissonnat’s approach13. To
overcome the approximation problems inherent toα-shapes
a re-sculpturing scheme has been developed. Re-sculpturing
roughly follows the volumetric approach of Boissonnat in
that further tetrahedra are removed. This goal is to generate
finer structures of the object provided theα-shape approach
has correctly recognized the larger structures of the object.

3. Surface Construction with Distance Functions

The distance function of a surface gives the shortest dis-
tance of any point in space to the surface. For closed sur-
face the distances can be negative or positive, dependent on
whether a point lies inside or outside of the volume bounded
by the surface. In sections 2.1.2 and 2.2.5, we have already
described an algorithm which uses the distance function for
the purpose of surface construction. There the question re-
mained open how a distance function can be calculated from
the given setP of sample points. Solutions are presented in
the next subsection.

Another possibility of calculating a distance function is
to construct a surface to the given setP of data points and
take the distance to this surface. The idea behind that is that
this distance function may be used to get a better surface, for
instance a smooth surface as in8.

Besides marching cubes construction of surfaces as ex-
plained in section 2.1.2, distance plays a major role in con-
struction of surfaces using the medial axis of a volume.
The medial axis consists of all points inside the volume for
which the maximal sphere inside the volume and centered at
this point does not contain the maximal sphere of any other
point. Having the medial axis and the radius of the maxi-
mum sphere at each of its points, the given object can be
represented by the union taken over all spheres centered at
the skeleton points with the respective radius. An algorithm
for surface construction based on medial axes is described in
section 3.2.

3.1. Calculation of Distance Functions

3.1.1. The Approach of Hoppe et al.

Hoppe et al.28; 27 suggest the following approach. At the
beginning, for each pointpi an estimated tangent plane is
computed. The tangent plane is obtained by fitting the best
approximating plane in the least square sense16 into a cer-
tain numberk of points in the neighborhood ofpi . In order
to get the sign of the distance in the case of close surfaces, a
consistent orientation of neighboring tangent planes is deter-
mined by computing theRiemannian graph. The vertices of
the Riemannian graph are the centers of the tangent planes
which are defined as the centroids of thek points used to
calculate the tangent plane. Two tangent plane centersoi ;o j
are connected with an edge(i; j) if one center is in thek-
neighborhood of the other center. By this construction, the
edges of the Riemannian graph can be expected to lie close
to the sampled surface. Each edge is weighted by 1 minus
the absolute value of the scalar product between normals of
the two tangent plane centers defining the edge. The orienta-
tion of the tangent planes is determined by propagating the
orientation at a starting point, by traversing the minimum
spanning tree of the resulting weighted Riemannian graph.

Figure 9: Left: The Riemannian Graph. Right: The distance
vectors from the vertices of the surrounding voxel grid. Pic-
tures from Hoppe ’9427. Reprinted with Permission.

Using the tangent plane description of the surface and
their correct orientations, the signed distance is computed
by first determining the tangent plane center nearest to the
query point. The distance between the query point and its
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projection on the nearest tangent plane. The sign is obtained
form the orientation of the tangent plane.

3.1.2. The Approach of Roth and Wibowoo to Distance
Functions

The goal of the algorithm of Roth and Wibowoo40 is to cal-
culate distance values at the vertices of a given voxel grid
surrounding the data points. The data points are assigned to
the voxel cells into whcih they fall. An ”outer” normal vector
is calculated for each data point by finding the closest two
neighboring points in the voxel grid, and then using these
points along with the original point to compute the normal.

The normal orientation which is required for signed dis-
tance calculation is determined as follows. Consider the
voxel grid and the six axis directions(�x;�y;�z). If we
look from infinity down each axis into the voxel grid, then
those voxels that are visible must have their normals point
towards the viewing direction. The normal direction is fixed
for these visible points. Then the normal direction is prop-
agated to those neighboring voxels whose normals are not
fixed by this procedure. This heuristic only works if the
nonempty voxel defines a closed boundary without holes.

The value of the signed distance function at a vertex of
the voxel grid is computed by taking the weighted average
of the signed distances of every point in the eight neighbor-
ing voxels. The signed distance to a point with normal is
the Euclidean distance to this point, with positive sign if the
angle between the normal and the vector towards the voxel
vertex exceeds 90�.

3.2. Bittar’s et al. Surface Construction by Medial Axes

The approach of Bittar et al.12 consists of two steps, the cal-
culation of the medial axis and the calculation of an implicit
surface from the medial axis.

The medial axis is calculated from a voxelization of a
bounding box of the given set of points. The voxels con-
taining points of the given point setP are assumed to be
boundary voxels of the solid to be constructed. Starting at
the boundary of the bounding box, voxels are successively
eliminated until all boundary voxels are on the surface of the
remaining voxel volume. A distance function is propagated
from the boundary voxels to the inner voxels of the volume,
starting wiht distance 0 on the boundary voxels. The vox-
els with locally maximal distance value are included to the
medial axis.

The desired surface is calculated by distributing centers
of spheres on the medial, cf. Figure 10 (a). The radius of
a sphere is equal to the distance assigned to its center on
the medial axis. For each sphere, a field function is defined
which allows to calculate a scalar field value for arbitrary
point in space. A field function of the whole set of spheres
is obtained as sum of the field functions of all spheres. The

(a)

(b)

(c)

Figure 10: Surface Construction by Medial Axes. (a) The
point set with medial axis points selected according to the
search strategy. (b) The constructed implicit surface. (c) The
object from behind. Picture: Courtesy of Bittar et al.12.
c
 1995 Eurographics. Reprinted with Permission.

(a) (b)

Figure 11: A soft field function melts two spheres together
(a) while a sharp field function preserves detail (b). Picture
from Bittar et al. 9512. c
 1995 Eurographics. Reprinted
with Permission.
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(a)

(b)

(c)

Figure 12: Surface Construction by Medial Axes. (a) Low
precision. (b) Mid precision. (c) The precision is too high.
Picture from Bittar et al. 9512. c
 1995 Eurographics.
Reprinted with Permission.

implicit surface is defined as an iso-surface of the field func-
tion, that is, it consists off all points in space for which
the field function has a given constant value, cf. Figure 10
(b),(c).

In order to save computation time, a search strategy is in-
troduced which restricts the calculation of the sum to points
with suitable positions.

The shape of the resulting surface is strongly influenced
by the type of field function. For example, asharpfield func-
tion preserves details while asoft function smoothes out the
details, cf. Figure 11. Also the connectness of the resulting
solid can be influenced by the shape function cf. Figure 12.

Because of the voxelization, a crucial point is tuning the
resolution of the medial axis. If the resolution of the axis
is low, finer details are not represented very accurately. The
display of the surface detail is improved if the resolution is
increased but can also tend to disconnect parts of the surface
if the resolution is higher than the sample density at certain
regions, cf. Figure 12.

A result of this algorithm is shown in Figure 10.

4. Surface Construction by Warping

Warping-based surface construction means to deform an ini-
tial surface so that it gives a good approximation of the given
point setP. For example, let the initial shape be a triangular
surface To some or all of its vertices corresponding points in
P are determined to which the vertices have to be moved in
the warping process. When moving the vertices of the mesh
to their new locations, the rest of the mesh is also deformed
and yields a surface approximation of the points inP.

Surface construction by warping is particularly suited if a
rough approximation of the desired shape is already known.
This simplifies detection of corresponding points.

Several methods of describing deformable surfaces were
developed in the past. Muraki suggested a ”blobby model”
to approximate 2.5 D range images38. Terzopoulos, Witkin
and Kass46; 15 made use ofdeformable superquadricswhich
have to fit the input data points.

Miller et al. 32 extract a topologically closed geomet-
ric model from a volume data set. The algorithm starts
with a simple model that is already topologically closed
and deforms the model on a set of constraints, so that the
model grows or shrinks to fit the object within the volume
while maintaining it closed and a locally simple non-self-
intersecting polyhedron that is either embedded in the object
or surrounds the object in the volume data representation.
A function is associated with every vertex of the polyhe-
dron that associates costs with local deformation adherent
to properties of simple polyhedra, and the relationship be-
tween noise and feature. By minimizing these constraints,
one achieves an effect similiar to inflating a balloon within
a container or collapsing a piece of shrink wrap around the
object.

A completely different approach to warping is model-
ing with oriented particlessuggested by Szeliski and Ton-
nesen45. Each particle owns several parameters which are
updated during the modeling simulation. By modeling the
interaction between the particles themselves the surface is
being modeled using forces and repulsion. As an extension
Szeliski and Tonnesen describe how their algorithm can be
extended for automatic 3D reconstruction. At each sample
location one particle with appropriate parameters is gener-
ated. The gaps between the sample points (particles, respec-
tively) are filled by growing particles away from isolated
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points and edges. After having a rough approximation of the
current surface the other particles are rejusted to smooth the
surface.

In the following three subsections three approaches are
outlined which stand for basically different methodologies, a
purely geometric approach, a physical approach, and a com-
putational intelligence approach.

4.1. Spatial Free Form Warping

The idea of spatial free-form warping is to deform the whole
space in which an object to be warped is embedded in, with
the effect that the object is warped at the same time. Space
deformation is defined by a finite set of displacement vectors
consisting of pairs of initial and target point, from which a
spatial displacement vector field is interpolated using a scat-
tered data interpolation method. There is a huge number of
scattered data interpolation methods known in literature, cf.
e.g.30. Among them that one can be chosen that yields the
most reasonable shape for the particular field of application.

The resulting displacement vector field tells for each point
in space its target point. In particular, if the displacement
vector field is applied to all vertices of the initial mesh, or of
a possibly refined one, the mesh is warped towards the given
data points41.

The advantage of spatial free form warping is that usually
only a small number of control displacement vectors located
at points with particular features like corners or edges is nec-
essary. A still open question is how to find good control dis-
placement vectors automatically.

4.2. The Approach of Algorri and Schmitt

The idea of Algorri and Schmitt1 is to translate given ap-
proximate triangular mesh into a physical model, cf. Fig-
ure 13. The vertices of the mesh are interpreted as mass
points. The edges are replaced with springs. Each nodal mass
of the resulting mesh of springs is attached to its closest point
in given setP of sampling points by a further spring. The
masses and springs are chosen so that the triangular mesh
is deformed towards the data points. Figure 13(b)–(d) shows
the resulting meshes for three different parameter values on
the data of Figure 1.

The model can be expressed as a linear differential equa-
tion of degree 2. This equation is solved iteratively. Effi-
ciency is gained by embedding the data points and the ap-
proximate triangular mesh into a regular grid of voxels, like
that one already yielded by the surface construction algo-
rithm of the same authors, cf. section 2.1.1.

4.3. Kohonen Feature Map Approach of Baader and
Hirzinger

The Kohonen feature map approach of Baader and Hirzinger
4; 5; 3 can be seen as another implementation of the idea of
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Figure 13: (a) Illustration of the spring model used in the
dynamic model warping approach of Algorri and Schmitt.
(b)-(d) show the resulting meshes for three different param-
eter values. Picture from Algorri and Schmitt ’961. c
 1995
Eurographics. Reprinted with Permission.

parameter grid (s,t)

‘cloud’ of 3D-input
 points p

x
y

z

x
y

z

x
y

z

reconstructed
surface

modeled parameter-
grid (s,t)

Phase I.
Parameter Modeling

Phase II.
Surface Reconstruction

Kohonen Map
(weights filled with random values)

weights displayed in
3D-space after first training steps

- order on the map is defined

weights displayed after
final convergence
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Figure 15: Top: The point set. Bottom: The result of the Ko-
honen feature map approach. Pictures from Baader ’953.
c
 1995 VDI Verlag. Reprinted with Permission.

surface construction by warping. Kohonen’s feature map is
a two-dimensional array of units (neurons), cf. Figure 14.
Each unituj has a corresponding weight vector~wj . In the
beginning these vectors are set to normalized random values
(of length equal to 1). During the reconstruction or training
process the neurons are fed with the input data which affects
their weight vectors (which resemble their position in three-
space). Each input vector~i is presented to the unitsj which
produce outputoj of the form

oj = ~wj �~i;

which is the scalar product of~wj and~i. The unit generating
the highest responseoj is the center of the excitation area.
The weights of this unit and a defined neighborhood are up-
dated by the formula

~wj(t +1) = ~wj(t)+ ε j � (~i�~wj(t))

Note that after this update the weight vectors have to be nor-
malized again. The valueε j = η � hj contains two values,
the learning rateη and the neighborhood relationshiphj .
Units far away from the center of excitation are only slightly
changed.

The algorithm has one additional difficulty. If the input
point data do not properly correspond with the neuron net-
work it is possible, that neurons might remain which had
not been in any center of excitation so far. Therefore they
had been updated only by the neighborhood update which
usually is not sufficient to place the units near the real sur-

face. Having this in mind, Baader and Hirzinger have intro-
duced a kind ofreverse training. Unlike thenormal train-
ing where for each input point a corresponding neural unit
is determined and updated the procedure in the intermediate
reverse trainingis reciprocal. For each unituj the part of the
input data with the highest influence is determined and used
for updatinguj .

The combination of this normal and reverse training com-
pletes the algorithm of Baader and Hirzinger and has to be
used in the training of the network.

A result is depicted in Figure 15.

5. Incremental Surface-Oriented Construction

The idea of incremental surface-oriented construction is to
build-up the interpolating or approximating surface directly
on surface-oriented properties of the given data points. This
can be done in quite different manner.

edge

new points

e

p’

p

p’’

k

k

k

angle

a

b

Figure 16: Point pk sees edgeeunder the largest angle.

For example, surface construction may start with an ini-
tial surface edge at some location of the given point setP,
connecting two of its points which are expected neighboring
on the surface. The edge is successively extended to a larger
surface by iteratively attaching further triangles at boundary
edges of the emerging surface. The surface-oriented algo-
rithm of Boissonnat explained in the first subsection may be
assigned to this category.

Another possibility is to start with a global wire frame of
the surface, in order to fill it iteratively to a complete sur-
face. This is the idea of the approach of Mencl and M¨uller
described in section 5.2.

5.1. Boissonat’s Surface-Oriented Approach

Boissonnat’s surface oriented contouring algorithm13 usu-
ally starts at the shortest connection between two points of
the given point setP. In order to attach a new triangle at this
edge, and later on to other edges on the boundary, a locally
estimated tangent plane is computed based on the points in
the neighborhood of the boundary edge. The points in the
neighbourhood of the boundary edge are then projected onto
the tangent plane. The new triangle is obtained by connect-
ing one of these points to the boundary edge. That point is
taken which maximizes the angle between at its edges in the
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Figure 17: This figure shows the behavior of a contouring
algorithm like Boissonnat’s13 during the reconstruction of
a torus. The picture sequence was not reconstructed by the
original software (which was not available).

new triangle, that is, the point sees edge boundary edge un-
der the maximum angle, cf. Figure 16. The algorithm termi-
nates if there is no free edge available any more. The behav-
ior of this algorithm can be seen in Figure 17.

5.2. The Approach of Mencl and Müller

The solution of Mencl and M¨uller consists of seven main
steps34; 35:

1. The computation of the EMST (Euclidean minimum
spanning tree) of the point set.

2. Extension of the graph at leaf points of the EMST.
3. Recognition of features.
4. Extraction of different objects out of the graph.
5. Connection of features of the same kind.
6. Connection of associated edges in the graph.
7. Filling the wire frame with triangles.

The first two steps are designed to build up an initialsur-
face description graph(SDG). This is performed by com-
puting the EMST (Euclidean minimum spanning tree) and an
graph extension step afterwards, cf. Figure 18 (b),(c). Next, a
feature recognition is performed to gain necessary informa-
tion considering the possible structure of the surface in the

(a) (b)

(c) (d)

(e) (f)

Figure 18: The approach of Mencl and M¨uller. From left to
right: (a) the initial point set, (b)-(d) three different steps
during the graph extension, and the final results (e),(f) seen
from two different view points. Note the high changes of
point density in the point set. Point set: Courtesy of Academy
of Media Arts in Cologne, Germany.

third step. As in object recognition of raster images Mencl
and Müller consider features to be regions with special in-
formation about the objects structure like paths, edges, point
rings and so on. After that, these feature areas are discon-
nected and/or connected according to certain rules to have
a proper description of the objects in the point set (step 4
and 5). In the last step before the triangle filling procedure,
the so far computed graph is extended more by connecting
associated edges in the graph under consideration of cer-
tain constraints, cf. Figure 18 (d). Finally, the triangles are
filled into this surface description graph by using a rule sys-
tem to assure a resulting surface with high accuracy (Figure
18 (e),(f)).

As a main concept, Mencl and M¨uller introduce the con-
cept of feature recognition and clustering to improve the ac-
curacy of the surface description graph according to the as-
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sumed surface of the object35. The idea is the possibility to
integrate different kind of recognition algorithms in the main
algorithm while maintaining the structural consistency of the
SDG.

In contrast to many other methods this approach returns
a piecewise linear surface which interpolates exactly the in-
put point set. The algorithm can handle point sets with high
changes in point density. This makes it possible to describe
objects with only the least necessary amount of points since
it is not necessary to oversample areas with low local cur-
vature. The reconstruction of sharp edges in artificial or syn-
thetic objects can be done properly as well as the reconstruc-
tion of non-orientable surfaces like M¨obius strips, for exam-
ple.

6. Clustering

It may happen that more than one connected shape is repre-
sented in a sample data set. Figure 19 (a) shows an example.
In that case, most of the methods discribed up to now may
have troubles. The difficulty can be overcome bysegmenting
or clustering the sample point setP into subsets of points
which are likely to belong to the same component.

6.1. The Approach of Fua and Sander

The following approach of Fua and Sander21; 22; 23 is an ex-
ample of how clustering can be performed. It consists of
three steps.

In the first step, a quadric surface patch is iteratively fitted
around every data point, and the data point is moved onto the
surface patch. One additionally effect of this step besides
yielding a set of local surfaces is that a smoothing of the
given sample data is performed. Figures 19 (a),(b) show a set
of sample points, and Figure 19 (c) the result of smoothing.

When smoothing is done, the data points still form an
irregular sampling of the underlying surface. In the sec-
ond step, the sample points together with their local sur-
face patches are moved on positions on a regular grid. Fig-
ure 19 (d) depicts the result.

In the third step, a surface-oriented clustering is per-
formed. A graph is calculated whose vertices are the cor-
rected sample points of the previous step. An edge is in-
troduced between two vertices if the quadrics assigned with
them are similiar. A measure of similarity and a threshold
are defined for that purpose. The connected components of
the graph define the clusters of the surface in the data set, cf.
Figure 19 (e),(f).

Each of these clusters can now be treated by one of the
reconstruction algorithms of the previous sections.

(a) (b)

(c) (d)

(e) (f)

Figure 19: The approach of Fua and Sander. From left to
right and top to down: (a) Two noisy hemispheres. (b) A
zoom into the scene. (c) Smoothened data of the spheres af-
ter several iterations. (d) Resampled points on the estimated
surface. (e),(f) Two possible segmentations of the data points
according to the segmentation parameter. The 2D Delaunay
triangulation in the tangent plane have been used in both
cases to generate the triangular mesh. In (f), one the of the
spheres is shaded. Pictures from Fua and Sander22. c
 1992
IJCAI. Courtesy of INRIA. Reprinted with Permission.

6.2. The Approach of Mencl and Müller according to
Clustering

Clustering in the approach of Mencl and M¨uller 34; 35 (cf. sec-
tion 5.2) is performed in three consecutive stages.

First, all edges of the surface description graph are inves-
tigated according to their length. If the length of an edge
exceeds a certain local density value (determined by the lo-
cal point density at each of its end points) the edge will be
deleted provided that it does not connect any feature regions.
If a single edge connects certain feature regions, the edge
will remain in the graph. Features often imply a certain struc-
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ture of a surface and a precise consideration in the next stage
is necessary.

Second, all edges connecting feature regions are consid-
ered in more detail. Depending on the structural informa-
tion contained in these features it is determined whether the
connecting edges contradict to the assumed surface structure
and are deleted if necessary.

Third, the neighborhood of all features is examined. The
best connection (a new edge) between neighboring features
is computed and added to the surface description graph if it
is appropriate according to the feature information.

7. Further Developments

The difficulty with the surface construction problem is that
a unique or the desired solution cannot be obtained from
the given set of sampling points. In the case of data analy-
sis, finding possible and reasonable solutions just is the goal
of surface construction. In the case of reconstruction of a
known surface, the data may be not sufficiently dense so that
a good approximating surface can be constructed. The in-
tention of the various methods presented here is to find so-
lutions that cover as many critical cases as possible, usually
by clever ad-hoc heuristics. A more general framework, pos-
sibly including interactivity seems necessary in order to get
a powerful system of surface construction. In the following
some thoughts towards such a system are outlined.

The basic observation is that construction algorithms have
more or less manycontrol parametersby which their behav-
ior can be influenced. These parameters are either offered to
the user who may choose the best ones according to his feel-
ing, or their values are determined in the program based on
featuresof the current state of the algorithm. More flexibil-
ity can be achieved if both, features and control parameters,
are made accessible outside the program. This allows to in-
troduce acontrol unit which decides at each step of the al-
gorithm at which a decision has to be taken, on the choice of
all parameters dependent on the values of all features. The
control unit can be the user or a control program.

The behavior of the control program is directed byrules.
Changing of rules changes its behavior. The user may define
rules that adapt the behavior of the algorithm to the type of
data sets, or even to the type of a local subset of the data set.

The user may formulate these rules based on his experi-
ence. A more advanced approach is that the system learns the
rules from the behavior of the user. This is achieved by log-
ging the decisions taken by the user when he plays the role
of the control unit. The logged decision patterns are general-
ized into decision rules.

If the user takes over the role of the control unit, he may
be supported in his decision by the system, in that the system
enumerates possible solutions. Since usually the number of
solutions is too large to present them exhaustively, the user

must have the possibility to control the process of enumera-
tion. This can again be done by rules expressing constraints
based on features of the solution. The rules can be refined
on-line by the user.

It is a challenge of further research to develop mecha-
nisms and systems along these ideas.
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