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Abstract

Tomographic medical imaging techniques have become more popular in recent years. Thewide avail-
ability of CT, MRI and Ultrasoundin most large hospitalsresultsin a rapidly increasing number of exam-
inationswith these devices. The State of The Art Report summarises the application of techniques devel-
oped over the recent years for visuaising volumetric medical data common in modern medical imaging
modalities such as CT, MRA, MRI, Nuclear Medicine, 3D-Ultrasound, Laser Confocal Microscopy etc.
Although all of the modalitieslisted above provide " dices of the body”, significant differences exist be-
tween the image content of each modality. The focus of the Report is be less in explaining algorithms
and rendering techniques, but rather to point out their applicability, benefits, and potential in the medical
environment.

In the first part, methods for all steps of the volume visuaization pipeline from data preprocessing
to object display are reviewed, with specia emphasis on data structures, segmentation, and surface- and
volume-based rendering. Furthermore, multimodality matching, interventionrehearsal, and aspects of im-
age quality are discussed.

Inthesecond part applicationsareillustrated fromtheareas of craniofacial surgery, traumatol ogy, neu-
rosurgery, radiotherapy, and medical education. Furtherly, some new applicationsof volumetric methods
are presented: 3D ultrasound, laser confocal datasets, and 3D-reconstruction of cardiological datasets, i.e.
vessels aswell as ventricles. These new volumetric methods are currently under devel opment but due to
their enormeous application potentia they are expected to be clinically accepted within the next years.



Part |
Volume Visualization Principles

1 Introduction

Medical imaging technology has experienced a dramatic change over the past two decades. Previously, only
X-ray radiographs were available which showed the depicted organs as superimposed shadows on photo-
graphic film. With the advent of modern computers, new tomographic imaging modalities like computed
tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) could be
developed which deliver cross-sectional images of a patient’s anatomy and physiology. These images show
different organsfree from overlayswith unprecedented precision. Even the three-dimensional (3D) structure
of organs can be recorded if a sequence of parallel cross-sectionsis taken.

For many clinical tasks like surgical planning, it is necessary to understand and communicate complex and
often malformed 3D structures. Experience has shown that the“ mental reconstruction” of objectsfrom cross-
sectional imagesis extremely difficult and strongly depends on the observer’straining and imagination. For
these cases, it is certainly desirable to present the human body as a surgeon or anatomist would seeiit.

The aim of volume visualization (also known as 3D imaging) in medicine is to create precise and redlis-
tic views of objects from medical volume data. The resulting images, even though they are of course two-
dimensional, are often called 3D images or 3D reconstructions to distinguish them from 2D cross-sections
or conventional radiographs. Thefirst attempts date back to the late 1970s, with the first clinical applications
reported on the visualization of bonefrom CT in craniofacial surgery and orthopedics. Methods and applica
tions have since been extended to other subjectsand imaging modalities. The same principlesare also applied
to sampled and simulated data from other domains, such as fluid dynamics, geol ogy, and meteorology [44].

2 Methods

Anoverview of thevolumevisualization pipelineas presented hereisshowninfig. 1. After theacquisition of
aseriesof tomographicimagesof apatient, thedatausually undergoes some preprocessing for dataconversion
and possibly image filtering. From this point, one of several paths may be followed.

The dotted linein fig. 1 represents an early approach where an object is reconstructed from its contours on
the cross-sectional images. All other methods, represented by the solid line, start from a contiguous data
volume. If required, equal spacing in all three directions can be achieved by interpolation. Likea 2D image,
a 3D volume can befiltered to improve image quality. Corresponding to the pixels (picture elements) of a2D
image, volume elements are called voxels (volume el ements).

The next step isto identify the different objects represented in the data volume so that they can be removed
or selected for visualization. The simplest way is to binarize the data with an intensity threshold, e.g. to
distinguishbonefrom other tissuesin CT. Especially for MRI data, however, more sophi sti cated segmentation
methods are required.

After segmentation, there is a choice which rendering techniqueis to be used. The more traditional surface-
based methods first create an intermediate surface representation of the object to be shown. It may then be
rendered with any standard computer graphics method. More recently, volume-based methods have been de-
veloped which create a 3D view directly from the volume data. These methods use the full gray level infor-
mation to render surfaces, cuts, or transparent and semi-transparent volumes. Asathird way, transform-based
rendering methods may be used.
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Figure 1. Overview of the volumevisualization pipeline. Individual processing steps may beleft out, com-
bined, or reversed in order by a particular method.

Extensionsto the volume visualization pipelinenot showninfig. 1 but also covered here include multimodal-
ity matching and intervention rehearsal.



2.1 Preprocessing

The datawe consider usually comes as a spatial sequence of 2D cross-sectional images. If they are put on top
of each other, a contiguous gray level volume is obtained. The resulting data structure is an orthogonal 3D
array of voxels, each representing an intensity value. Thisis called the voxel-model.

Many agorithmsfor volume visualization work on isotropic volumes where the sampling density isequal in
al three dimensions. In practice, however, only very few data sets have this property, especially for CT. In
these cases, the missing information hasto be reconstructed in an interpolationstep. A quitesimplemethodis
linear interpolation of the intensiti esbetween adjacent images. Higher order functionssuch as splinesusually
give better resultsfor fine details[59]. Shape-based methods are claimed to be superior in certain situations
[7]; however these are depending on the results of a previous segmentation step.

With respect to later processing steps such as segmentation, it isoften desirableto improvethe signal-to-noise
ratio of the data, usingimage or volumefiltering. Well-known noisefiltersare average, median and Gaussian
filters[75]. These methods, however, tend to smooth out small detailsaswell; better resultsare obtained with
anisotropic diffusionfilters which largely preserve object boundaries[28].

2.1.1 Data Structuresfor Volume Data

There are anumber of different data structures for volume data. The most important are

e binary voxel-model: voxel values are either 1 (object) or O (no object). Thisvery simple model is not
much in use any more. In order to reduce storage requirements, binary volumes may be subdivided
recursively into subvolumes of equal value; the resulting data structureis called an octree.

e gray level voxel-model: each voxel holds an intensity information. Octree representations have also
been developed for gray level volumes [50].

e generalized voxel-model: in addition to an intensity information, each voxel contains attributes, de-
scribing its membership to various objects, and/or data from other sources (e.g. MRI and PET) [38].

o intelligentvolumes: asan extensionof thegeneralized voxel model, propertiesof objects(such ascolor,
names in various languages, pointersto related information) and their relationships are modeled on a
symbolic level [40, 72, 88]. Thisdatastructureisthe basisfor advanced applications such as medical
atl ases (see below).

2.2 Segmentation

A gray level volumeusually representsalarge number of different structures obscuring each other. To display
a particular one, we thus have to decide which parts of the data we want to use or ignore. Idedlly, selection
would be donewith acommand like* show only thebrain”. This, however, requiresthat the computer knows
which parts of the volume (or, more precisely, which voxels) constitute the brain and which do not.

A first step towardsobject recognitionisto partitionthe gray level volumeinto different regionswhich are ho-
mogeneous with respect to some formal criteriaand correspondingto real (anatomical) objects. This process
iscalled segmentation. The generalized voxel-model isasuitabledatastructurefor representingtheresults. In
afurther interpretation step, the regions may be identified and |abeled with meaningful terms such as “white
meatter” or “ventricle’.

All segmentation methods can be characterized as being either “binary” or “fuzzy”, correspondingto the prin-
ciples of binary and fuzzy logic, respectively [108]. In binary segmentation, the question whether a voxel



belongs to a certain region is always answered yes or no. Thisinformation is a prerequisite e.qg. for creat-
ing surface representationsfrom volume data. Asadrawback, however, uncertainty or cases where an object
takes up only afraction of avoxel (partial volume effect) cannot be handled properly. For example, avery
thin bone would appear with false holeson a 3D image. Strict yes-no decisionsare avoided in fuzzy segmen-
tation, where a set of probabilitiesis assigned to every voxel, indicating the evidence for different materials.
Fuzzy segmentation is closely related to the so-called volume rendering methods discussed | ater.

Currently, alarge number of segmentation methods for 3D medical images are being devel oped, which may
be roughly divided into three classes. point-, edge-, and region-based methods. The methods described often
have been tested successfully on a number of cases; experience has shown, however, that the results should
always be used with care.

2.2.1 Point-Based Segmentation

In point-based segmentation, avoxe isclassified only depending onitsintensity, no matter whereit islocated.
A very simple but nevertheless important example which is very much used in practice is thresholding: a
certain intensity range is specified with lower and upper threshold values. A voxel belongs to the selected
classif and only if itsintensity leve iswithin the specified range. Thresholding is the method of choice for
selecting bone or soft tissue in CT. In volume-based rendering, it is often performed during the rendering
processitself so that no explicit segmentation step is required.

In order to avoid the problemsof binary segmentation, Drebin et al. useafuzzy maximum likelihood classifier
which estimates the percentages of the different materials represented in a voxel, according to Bayes' rule
[21]. Thismethod requiresthat the gray level distributionsof different materialsare different from each other
and known a-priori. Thisis approximately the case in musculoskeletal CT.

Unfortunately, these simple segmentation methods are not suitableif different structures have mostly over-
lapping or even identical gray level ranges. This situation frequently occurs e.g. in the case of soft tissues
from CT or MRI. The situation is somewhat simplified if multiple-parameter data are available, such as T -
and Tr-weighted images in MRI, emphasizing fat and water, respectively. In this case, individua threshold
values can be specified for every parameter. To somewhat generalize this concept, voxelsin an n-parameter
dataset can be considered as n-dimensional vectorsin an n-dimensional featurespace. In patter nrecognition,
thisfeature space is partitioned into subspaces, representing different tissue classes or organs. Thisis called
the training phase: in supervised training, the partition is derived from feature vectors which are known to
represent particular tissues[ 16, 29]. In unsupervisedtraining, the partitionisautomatically generated [29]. In
the subsequent test phase, avoxel isclassified, according to the position of itsfeature vector in the partitioned
feature space.

With especialy adapted image acquisition procedures, pattern recognition methods have successfully been
applied to considerable numbers of two- or three-parametric MRI data volumes [16, 29]. Quite frequently,
however, isolated voxels or small regions are incorrectly classified (e.g. subcutaneousfat in the same class
as white matter). To eliminate these errors, a connected component analysis (see below) is often applied.

A closely related method isbased on neural networ k methodol ogy, as devel oped by Kohonen [48]. Instead of
an n-dimensiona feature space, a so-called topological map of mxm n-dimensional vectorsis used. During
the training phase, the map iteratively adapts itself to a set of training vectors which may either represent
selected tissues (supervised learning) or the whol e data volume (unsupervised learning) [31, 99]. Finaly, the
map devel ops severad relatively homogeneous regions, which correspond to different tissues or organsin the
original data. The practical value of the topological map for 3D MRI data seems to be generally equivalent
to that of pattern recognition methods.



2.2.2 Edge-Based Segmentation

The am of edge-based segmentation methods is to detect intensity discontinuitiesin a gray level volume.
These edges (in 3D, they are actually surfaces; it is however common to speak about edges) are assumed to
represent the borders between different organs or tissues. Regions are subsequently defined as the enclosed
areas.

A common strategy for edge detection isto locate the maxima of thefirst derivative of the 3D intensity func-
tion. A method which very accurately locates the edges was devel oped by Canny [14]. All agorithmsusing
thefirst derivative, however, share the drawback that the detected contours are usually not closed, i.e. they
do not separate different regions properly.

An dternative approach isto detect zero-crossings of the second derivative. The Marr-Hildreth operator con-
volvesthe input data with the Laplacian of a Gaussian; the resulting contour volume describes the locations
of the edges [58]. With a 3D extension of this operator, Bomans et al. segmented and visualized the com-
plete human brain from MRI for thefirst time [12]. Occasionally, however, this operator creates erroneous
“bridges’ between different materials which haveto be removed interactively. Also, location of the surfaces
is not always satisfactory.

Snakes [43] are 2D image curves, which are adjusted from an initial approximation to image features by a
movement of the curve caused by simulated forces. Theso called external forceisproduced by imagefeatures.
Aninterna tension of the curve resists against highly angled curvatures, which makes the Snakes movement
robust against noise. After astarting positionisgivenit isadapted to animage by relaxationto an equilibrium
of the external force and internal tension. To calculate the forces an external energy has to be defined. The
gradient of this energy is proportiona to the external force. Defining the external energy as the distance to
the next maximum of the opacity function [52] produced good results.

The segmentation by Snakesisduetoits 2D definition performed inaslice-by-slicemanner. |. e. theresulting
curvesfor asliceare copiedintothe neighboring sliceand theminimizationis started again. Thesegmentation
process may be controlled by the user, by stoppingthe automatictracking, if the curvesrun out of the contours
and define anew initial curve.

Figure 2: The principle of Segmentation by Snakes



For thisreason two methods have been appliedto enter aninitia curvefor theSnake. Thefirst istheinteractive
input of a polygon. Since the Snake contracts due to itsinternal energy, the contour to be segmented has to
be surrounded by this polygon. The second oneis a contour tracing method, using an A* search tree to find
the path with minimal costs between two interactively marked points[100], [65].

The quality of the result depends on the similarity of two adjacent slices. Normally, thisis varying within a
dataset. Therefore, inregions with low similarity, the slices to be segmented by the interactive method must
be selected rather tightly.

2.2.3 Region-Based Segmentation

Region-based segmentation methods consider wholeregions instead of individual voxelsor edges. Since we
are actualy interested in regions, this approach appears to be the most natural. Propertiesof aregion are e.g.
its size, shape, location, variance of gray levels, and its spatia relation to other regions.

A typical application of region-based methods is to post-process the results of a previous point-based seg-
mentation step. For example, a connected component analysismay be used to determine whether the voxels
which have been classified as belonging to the same class are part of the same (connected) region. If not,
there are likely errorsin classifying the voxelsin the smaller regions.

A practica interactive segmentation system based on the methods of mathematical morphology was devel-
oped by Hohne and Hanson [39, 82]. Regionsareinitialy defined with thresholds; the user can subsequently
apply simple but fast operations such as erosion (to remove small “bridges’ between erroneously connected
parts), dilation (to close small gaps), connected components analysis, region fill, or Boolean set operations.
Segmentation results are immediately visualized on orthogonal cross-sectionsand 3D images, such that they
may be corrected or further refined in the next step (fig. 3). With thissystem, segmentation of gross structures
isusually a matter of minutes.

For automatic segmentation, the required knowledge about data and anatomy needs to be represented in a
suitable model. A comparatively simply approach is presented by Brummer et al., who use afixed sequence
of morphological operations for the segmentation of brain from MRI [13]. For the same application, Raya
and Udupadevel oped a rule-based system which successively generates a set of threshold values[74]. Rules
are applied depending on measured properties of the resulting regions. Bomans generates a set of object hy-
pothesesfor every voxel, depending onitsgray level [11]. Location, surface-volumeratio etc. of theresulting
regions are compared to some predefined values, and the regions are modified accordingly. Menhardt uses
arule-based system which models the anatomy with relations such as “brain is inside skull” [60]. Regions
are defined as fuzzy subsets of the volume, and the segmentation process is based on fuzzy logic and fuzzy
topology.

One of the problems of these and similar methods for automatic segmentationisthat the required anatomical

knowledgeis often represented in more or less ad-hoc algorithms, rules, and parameters. A more promising
approachisto use an explicit three-dimensional organ model. For thebrain, Arataet a. developed an atlas of
the“normal” anatomy and its variation in terms of a probabilistic spatia distribution, obtained from 22 MRI

data sets of living persons [3]. The model was reported suitable for the automatic segmentation of various
brain structures, including white matter lesions. A similar approach is described in [47].

Another interesting ideais to investigate object features in scale-space, i.e. at different levels of image res-
olution. This approach allowsto ignore irrelevant image detail. One such method developed by Pizer et al.
considersthe symmetry of previously determined shapes, described by medial axes[62]. Theresulting ridge
functionin scale-spaceis called the core of an object. It may be used e.g. for interactive segmentation, where
the user can select, add or subtract regions, or moveto larger “parent” or smaller “child” regionsin the hier-
archy. Other applications like automatic segmentation or registration are currently being investigated.



Figure 3: 3D image of a still-born fetus from MRI. About 50 objects were defined using an interactive
segmentation system.

I'n conclusion, automati c segmentati on systemsare not yet robust enough to be generally applicableto medical
volume data. Interactive segmentation which combinesfast operationswith the unsurpassed human recogni-
tion capabilitiesis still the most practical approach.

2.3 Surface-Based Rendering

The key idea of surface-based rendering methods is to extract an intermediate surface description of the rel-
evant objects from the volume data. Only thisinformation isthen used for rendering. If triangles are used as
surface elements, this process is called triangulation.

A clear advantage of surface-based methodsis the possibly very high data reduction from volumeto surface
representations. Resulting computing times can befurther reduced if standard datastructures such astriangle
meshes are used which are supported by common rendering hard- and software.

On the other hand, the surfacereconstruction step throwsaway most of the valuableinformation onthecross-
sectional images. Even simple cuts are meaningless because there is no information about the interior of an
object. Furthermore, every change of surface definition criteria such as thresholdsrequires a recal cul ation of
the whole data structure.

Thefirst method to bewidely used in clinical practice, known as the cuberille model, was devel oped by Her-
man et a. [15]. The gray level volumeisfirst binarized with an intensity threshold. Then, alist of square
voxel faces is created which denote the border between voxelsin- and outside the object.

A more recent method by Lorensen and Cline called marching cubes creates an isosurface, representing the
locations of a certain intensity value in the data [56]. This algorithm basically considers a cube of 2x2x 2
contiguous voxels. Depending on whether one or more of these voxels are inside the object (i.e. above a



threshold value), a surface representation of up to four trianglesis placed within the cube. The exact location
of the trianglesis found by linear interpolation of the intensitiesat the voxel vertices. Theresult isa highly
detailed surface representation with subvoxel resolution (fig. 4). Surface orientationsare calculated from gray
level gradients. Meanwhile, awhole family of similar agorithms has been devel oped [68, 102, 106].

Figure4: Triangulated (top) and shaded (bottom) portion of the brainfrom MRI, created with the marching
cubes agorithm.

Applied to clinical data, the marching cubes algorithm typically creates hundreds of thousands of triangles.
As has been shown, these numbers can be reduced considerably by a subsequent simplification of thetriangle
meshes, without much loss of information [87, 107].

Aneven simpler approach to surface reconstruction devel oped by the same group uses pointsinstead of trian-
gles[17]. This method, called dividing cubes, subdivides a group of 2x2x 2 contiguous voxels into smaller
subcubes, whereby the intensitiesare interpolated. The surface description is made from those subcubesthat
approximate the threshold value. Similar to the marching cubes algorithm, every subcube containsa surface
normal, calculated from gray level gradients.

A different method for the reconstruction of the polygona mesh from the segmentation results is based on
the Delauney interpol ation devel oped and published by Boissonnat [10]. Using thismethod the volume of the
contoursiscomputed by athree-dimensional triangulationwhich allowsan extraction of the surface of the ob-
ject. Anextreme complexity of the surface model can be avoided and, at the sametime, a high approximation
guality can be achieved, but to guarantee areal -time interaction with the anatomic model an additional reduc-
tion step is necessary. Fig. 5 showsthe result of the triangle reduced surface of the Virtual Human Project
patient. The reduction method can be parameterized and thus allows to derive models of different levels of
detail. Even high reduction rates do not imply loss of structure of the anatomic object.



Figure 5: Thevirtual patient

2.3.1 Shading

In general, shading isthe redlistic display of an object, based on the position, orientation and characteristics
of its surface and the light sources illuminating it [26]. The reflective properties of a surface are described
with an illumination mode such as the Phong model, which uses a combination of ambient light, diffuse
(like paper) and specular (like polished metal) reflections. A key input into these modelsisthe local surface
orientation, described by a normal vector perpendicular to the surface.

The origina marching cubes algorithm cal cul ates the surface normal vectors from the gray level gradientsin
the data volume [36], described later. Alternatively, the surface normal vectors of the triangles can be used
directly. Images produced with these two methods are compared in [73, 93].

24 Volume-Based Rendering

In volume-based rendering, images are created directly from the volume data. Compared to surface-based
methods, the major advantage is that all gray level information which has originally been acquired is kept
during the rendering process. As shown by Hohne et al. [38], this makes it an ideal technique for interac-
tive data exploration. Threshold values and other parameters which are not clear from the beginning can be
changed interactively. Furthermore, volume-based rendering allows a combined display of different aspects
such as opague and semi-transparent surfaces, cuts, and maximum intensity projections. A current drawback
of volume-based techniquesisthat thelarge amount of datawhich hasto be handled does not allow real-time

10



applications on present day computers.

24.1 ScanningtheVolume

In volume-based rendering, we basically have the choice between two scanning strategies. pixel by pixel
(image order) or voxel by voxel (volume order). These strategies correspond to the image and object order
rasterization algorithms used in computer graphics[26].

In image order scanning, the data volume is sampled on rays along the view direction. This method is com-
monly known as ray casting:

FOR each pixel on image plane DO
FOR each sampling point on associated viewing ray DO
compute contribution to pixel

Theprincipleisillustrated in fig. 6. Alongtheray, visibility of surfaces and objectsiseasily determined. The
ray can stop when it meets an opague surface. Yagel et a. extended this approach to a full ray tracing sys-
tem which followsthe viewing rays as they are reflected on various surfaces [109]. Multiplelight reflections
between specular objects can thus be handled.

Figure 6: Principle of ray casting for volume visualization. In this case, the object surface is found using
an intensity threshold.

Image order scanning can be used to render both voxel and polygon data at the sametime[54]. Image quality
can be adjusted by choosing smaller (oversampling) or wider (undersampling) sampling intervals[53, 70].
Unless stated otherwise, all 3D images shown here were rendered with aray casting algorithm.

As a drawback, the whole input volume must be available for random access to allow arbitrary view direc-
tions. Furthermore, interpolation of the intensities at the sampling pointsis required. A strategy to reduce
computation times is based on the observation that most of the timeis spent traversing empty space, far away
from the objects to be shown. If the rays are limited to scan the data only within a pre-defined bounding
volume around these objects, scanning times are greatly reduced [4].
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In volumeorder scanning, theinput volumeis sampled along the linesand columns of the 3D array, projecting
a chosen aspect onto the image plane in the direction of view:

FOR each sampling point in volume DO
FOR each pixel projected onto DO
compute contribution to pixel

The volume can either be traversed in back-to-front (BTF) order from the voxel with maximal to the voxel
with minimal distance to the image plane, or vice versain front-to-back (FTB) order. Scanning the input
data as they are stored, these techniques are reasonably fast even on computers with small main memories,
and especially suitable for parallel processing. So far, ray casting algorithms still offer a higher flexibility in
combining different display techniques. However, volumerendering techniquesworking in volume order are
available[105].

2.4.2 Shaded Surfaces

Using one of the described scanning techniques, the visible surface of an object can be determined with a
threshold or an object label. For shading, any of the methods developed for the cuberille model, such as
distance or distance gradient shading, can be applied.

As shown by Hohne and Bernstein [36], avery realistic and detailed presentation isobtained if the gray level
information present in thedataistaken into account. Duetothepartia volumeeffect, thegray levelsinthe3D
neighborhood of a surface voxel represent the relative proportions of different materials inside these voxels.
Theresulting gray level gradients can thus be used to cal culate surface inclinations. Unless stated otherwise,
this method was used for all 3D images shown here. The simplest variant isto calcul ate the components of a
gradient G for asurface voxe ét (i, j, k) from the gray levelsg of itssix neighbors along the main axes as

GX:g(I—I_lek)_g(I_LJvk)
Gy:g(|7]+17k)_g(|7]_17k)
GZ:g(I717k+1)_g(I7J7k_1)

Scaling G to unit length yields the surface normal [93]. The gray level gradient may aso be calculated from
al 26 neighborsin a 3 x 3 x 3 neighborhood, weighted according to their distance from the surface voxel
[93]. Aliasing patterns are thus almost eliminated.

In the case of very small objects like thin bones, the gray level gradient does not correspond to the actual
surfaceinclinationany more. Pommert et al. proposed an adaptivegray level gradient method which chooses
only 3—6 meaningful neighbors, maximizing the gradient magnitude [73, 93]. Thisagorithm yields smooth
images even for thin objects.

24.3 Cut Planes
Once a surface view is available, a very simple and effective method to visualize interior structuresis cut-

ting. When the original intensity val ues are mapped onto the cut plane, they can be better understood in their
anatomical context [38]. A special case is selective cutting, where certain objects are excluded (fig. 7).
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Figure 7: 3D image of abrain from MRI. Origina intensity values are mapped onto the cut planes.

244 Integral and Maximum Intensity Projection

A different way to look into an object is to integrate the intensity val ues along the viewing ray. If applied to
the whole datavolume, thisis astep back to the old X-ray projectiontechnique. If applied in a selectiveway,
thisintegral projection is nevertheless helpful in certain cases[38, 93].

For small bright objects such as vessels from magnetic resonance angiography (MRA), maximum intensity
projection (MIP) is a suitable display technique (fig. 8). Along each ray through the data volume, the maxi-
mum gray level isdetermined and projected onto the image plane[23]. The advantage of this method is that
neither segmentation nor shading are needed, which may fail for very small vessels. But there are a so some
drawbacks: as light reflection is totally ignored, maximum intensity projection does not give aredistic 3D
impression. Spatial perception can be improved by rotating the object or by a combined presentation with
other surfaces or cut planes [38].

245 VolumeRendering

\olumerenderingisthevisualizationequivalent to fuzzy segmentation. For medical applications, these meth-
odswerefirst described by Drebinet al. [21] and Levoy [53]. A commonly assumed underlying model isthat
of acolored, semi-transparent gel with suspended |ow-a bedo (low reflectivity) particles[9]. [Iluminationrays
are partly reflected and change color while traveling through the volume.

Each voxe is assigned a color and an opacity. Thisopacity isthe product of an “ object weighting function”
and a“gradient weighting function”. The object weighting function is usually dependent of the gray level,
but it can aso be the result of a more sophisticated fuzzy segmentation agorithm. The gradient weighting
function emphasizes surfaces for 3D display. All voxels are shaded, using the gray level gradient method.
The shaded values along a viewing ray are weighted and summed up. A somewhat simplified basic equation
modeling frontal illuminationwith aray casting systemis given as follows:
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Figure 8: 3D images of head vessels from magnetic resonance angiography (MRA). While the maximum
intensity projection (Ieft) shows some more details, spatial perception is much better for thresholding seg-
mentation and gradient-based surface shading (right).

intensity  intensity of reflected light

p index of sampling pointonray (O ...maximum depth of scene)
I fraction of incoming light (0.0...1.0

o local opacity (0.0...1.0

S local shading component

intensity(p,l) =a(p)-1-s(p) +(1.0—a(p)) -intensity(p+1,(1.0—a(p)) -1)

The total reflected intensity as displayed on a pixel of the 3D image s given asintensity(0, 1.0).

Since binary decisions are avoided in volume rendering, the resulting images are very smooth and show a
lot of fine details (fig. 9). Another important advantageis that even coarsely defined objects can be rendered
[93].

On the other hand, the more or less transparent images produced with volume rendering methods are often
hard to understand so that their clinical use may belimited [93]. Spatia perception can however beimproved
by rotating the object. Another problem isthelarge number of parameters which haveto be specified to define
the weighting functions. Furthermore, volume rendering is comparably slow because weighting and shading
operations are performed for many voxels on each ray.

25 Transform-Based Rendering

While both surface- and volume-based rendering are operating in a 3D space, 3D images may also be created
from other data representations. One such method is frequency domain rendering, which creates 3D images
in Fourier space, based on the projection-slicetheorem[96]. Thismethodisvery fast, but theresultingimages
are limited to rather simple integral projections (see above).
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Figure 9: Volume rendered image of a child with a craniosynostosis (trigonocephal on) from CT. Semi-
transparent visualization showsalot of different aspects such as skin and bone surface, but spatial perception
isquitedifficult.

A more promising approach are wavel et transforms. These methods provide a multi-scal e representation of
3D objects, with the size of represented detail locally adjustable. Amount of data and rendering times may
thus dramatically be reduced. Application to volume visualizationisshownin [63, 64].

2.6 Multimodality Matching

For many clinical applications, it is desirableto combineinformation from different imaging modalities. For
example, for theinterpretation of PET images which show only physiol ogical aspects, it isimportant to know
the patient’s morphology, as shown in MRI. In general, different data sets do not match geometricaly. It is
therefore required to transform one volume with respect to the other. This processis aso known asregistra-
tion.

The transformation may be defined using corresponding landmarks in both data sets [97]. In a simple case,
external markers attached to the patient are available which are visible on different modalities. Otherwise,
arbitrary pairs of matching points may be defined. A more robust approach is to interactively match larger
features such assurfaces, or selected internal features such asthe AC-PC line(anterior / posterior commissure)
in brainimaging [84]. All thesetechniques may also be applied in scale-space at different levels of resolution
[62].

In a fundamentally different approach, the results of a registration step are evaluated at every point of the
combined volume using voxel similarity measures, based onintensity values[91, 104]. Starting from acoarse
match, registration is achieved by adjusting position and orientation until the mutual information between
both data setsis maximized. Since these methods are fully automatic and do not rely on a possibly erroneous
definition of landmarks, they are increasingly considered superior.
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2.7 Intervention Rehearsal

So far, we havefocused on merely visualizingthedata. A specia caseisto movethe camerainsidethe patient
for simulated endoscopy [27]. Besides in education, potentia applications are in non-invasive procedures,
such as gastrointestinal diagnosis.

A step further is to manipulate the data at the computer screen for surgery simulation. These techniques are
most advanced for craniofacia surgery where a skull is dissected into small pieces, and then rearranged to
achieve a desirable shape. Several systems have been designed which allow the user to interactively draw
closed curves onto the screen, which areinterpreted as cutsinto the volume[66, 110]. Theresulting segments
can beinspected from other view directions, and individually moved and rearranged in 3D space.

While these systems are based on binary data, Pflesser et a. devel oped an a gorithm which handlesfull gray
level volumes [69]. Thus, al features of volume-based rendering, including cuts and semi-transparent ren-
dering of objects obscuring or penetrating each other, are available.

2.8 Image Quality

For applicationsin the medical field, it is mandatory to assure that the 3D images show the true anatomical
situation, or at least to know about their limitations.

A common approach for investigatingimage fidelity isto compare 3D images rendered by means of different
agorithms. This method, however, is of limited value since the truth usually is not known. A more suitable
approach is to apply volume visualization techniques to simulated data [57, 73, 93], and to data acquired
from corpses[22, 32, 67, 71, 76]. In both cases, the actua situation is available for comparison. Using the
first technique, the accuracy e.g. of different shading algorithms has been shown. Resultsof thelatter studies
include visibility of sutures or fracture gaps as afunction of acquisition parameters and object size.

Another aspect of image quality isimageutility, which describeswhether animageisreally useful for aviewer
with respect to a certain task. Investigationsof 3D image utility in craniofacia surgery may be foundin [2,
89, 98].

Part 11
Applicationsto Medical Data

3 Radiological Data

At first glance, one might expect diagnostic radiology to be the major field of application for volume visu-
dization. Thisis however not aways the case. One of the reasonsis clearly that radiologists are especially
skilled in reading cross-sectional images. Another reason is that many diagnostic tasks such as tumor detec-
tion and classification can well be done from tomographic images. Furthermore, 3D visualization of these
objects from MRI requires robust segmentation algorithms which are not yet available. In[78] one can find
a selection of advanced applications and " success stories’” from the application of methods reported here.

The situation is generaly different in al fields where therapeutical decisions have to be made by non-
radiol ogists on the basis of radiological images [37, 111]. A mgjor field of application for volume visualiza-
tion methodsis craniofacial surgery[2, 19, 55, 112]. Volume visualization not only facilitates understanding
of pathologica situations, but is also a helpful tool for planning optimal surgical access and cosmetic results
of an intervention. A typical caseis showninfig. 9. Dedicated procedures for specific disorders have been
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devel oped, which are now in routine application [89].

Another important field of application is traumatology (fig. 10). Due to the emergency situation, planning
times are usually very short. With new faster imaging modalities available and computing power ever in-
creasing, volume visualization techniques are being introduced for difficult cases [25].

Figure 10: 3D image of a pelviswith multiplefractures from CT in a semi-frontal view.

An application that is becoming more and more attractive with the increasing resolution and specificity of
MRI isneurosurgery planning. Here the problem isto choose a proper access path to alesion. 3D visualiza-
tion of brain tissuefrom MRI and blood vesselsfrom MRA before surgical intervention allowsthe surgeonto
find a path with minimal risk in advance[18, 70]. In combinationwith a3D coordinate digitizer, the acquired
information can be used to guide the surgeon during the intervention [1]. In conjunctionwith functional in-
formation from PET images, localization of alesionisfacilitated. The state of the art in computer-integrated
surgery is presented in [92].

Another important application that reduces the risk of a therapeutical intervention is radiotherapy planning.
Here, the objectiveisto focus the radiation as closely as possible to the target volume, while avoiding side
effectsin healty tissue and radiosensitiveorgans at risk. 3D visualization of target volume, organsat risk and
simulated radiation dose alows an iterative optimization of treatment plans[41, 46, 83, 86].

Applicationsapart from clinical work includemedical research and education. In the current Decade of Brain
Research, exploring and mapping brain functions is a major issue. Volume visualization methods provide
a framework to integrate information obtained from such diverse sources as dissection, functional MRI, or
magnetoencephal ography [95].

The knowledgefor theinterpretation of the 3D pictures described so far has still to come from the viewer. In
contrast, the 3D brain atlas VOXEL-MAN/brain shown in figs. 7 and 12 is based on an intelligent volume,
which has been prepared from an MRI data set [40, 72, 88]. It contains spatial and semantic descriptions
of morphology, function, and blood supply. The brain may be explored on the computer screen in a style
closetoaread dissection, and queried at any point. Other atlases are currently in preparation (fig. 3). Beyond
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Figure1l1: Gradua transitionbetween surface and MIP visualization of agamma camera dataset of thepelvis.
Heart, kidneys, liver and spleen are visible. Three haemangioms can be seen in the MIP mode

education, such atlases are also a powerful aid for theinterpretation of clinical images[84].

If high resolution cryosections such as those created in the Visible Human Project of the Nationa Library
of Medicine[90] are used, even more detailed and redlistic atlases can be prepared [85, 94]. An exampleis
showninfig. 13.

4 3D Ultrasound

4.1 Introduction

3D ultrasound is avery new and most interesting application in the area of 'tomographic’ medical imaging,
able to become a fast, non-radiative, non-invasive, and inexpensive volumetric data acquisition technique
with unique advantages for the localisation of vesselsand tumoursin soft tissue (spleen, kidneys, liver, breast
etc.). In general, tomographic techniques (CT, MR, PET etc.) alow for a high anatomical clarity whenin-
specting the interior of the human body. In addition, they enable a 3D reconstruction and examination of re-
gions of interest, offering obvious benefits (reviewing from any desired angle, isolation of crucia locations,
visualization of internal structures, ' fly-by’, accurate measurements of distances, angles, volumes etc.).

The physical principle of ultrasound is as following [61]: sound waves of high frequency (1-15 MHz) em-
anate from arow of sourcesthat are located on the surface of atransducer which isin direct contact with the
skin. The sound waves penetrate the human tissuetravel ling with aspeed of 1450-1580 m/s, depending upon
thetype of tissue. The sound waves are reflected partially if they hit an interface between two different types
of tissue(e.g. muscleand bone). Thereflected wavefronts are detected by sensors (microphones) located next
to the sources on the transducer. Theintensity of reflected energy is proportional to the soundimpedance dif-
ference of the two corresponding types of tissue and depends on the difference of the sound impendances Z;
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Figure 12: Anatomy teaching by dissection at the computer screen: user interface of VOXEL-MAN/brain.
The volume may be arbitrarily rotated and cut. By pointing to a visible surface, the selected region can be
highlighted and annotated. Objectsto be displayed may a so be selected from a knowledge base.

and Zo:

(i 3)

An image of the interior structure can be reconstructed based upon the total travelling time, the (average)
speed, and the energy intensity of the reflected waves. The resulting 3D images essentially represent hidden
internal “surfaces’. The principleissimilar to radar with the difference being that it uses mechanical instead
of electromagnetic waves.

D
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4.2 Collecting 3D-Ultrasound Data

In contrast to the common 2D case where asingleimage sliceis acquired, 3D ultrasonic techniques cover a
volume within the body with a series of subsequent image slices. The easiest way to collect 3D-ultrasound
dataisto employ a Kretz Voluson 530 device. Thisisacommercialy available device alowing for adirect
acquisition of a hole volume area instead of asingle slice. The principle of the Kretz device is based on a
mechanical movement of the transducer during aquisition along arotational or sweep path (see figure 15)

The advantage of the Kretz system lies in its high precision and commercia availability. Its disadvantage
is that the rather high system price makes it somehow difficult to purchage for physicians. The alternative
is afree-hand scanning system allowing the upgrade of virtually any existing conventional (2D) ultrasound
system to full 3D-capabilities. Such an updatecan be done by exclusively external components and hence
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Figure 13: Dissection of the Visible Human. Used in a state of the art visualization environment, thisdata
represents a new quality of anatomical imaging.

does not require any manipulation of the existing hardware and software configuration. After the upgrade
the ultrasound equipment can be operated in both, 2D aswell as 3D mode almost simultaneously. Switching
from the 2D to the 3D mode requires only amouse-click. Asaresult, thefamiliar 2D examination procedure
remains unchanged, and the physician can switch on the 3D maode only there when this is necessary. The
system architecture isillustrated in the figure below. The upgrade requires the employment of two external
components:

1. A 6-degrees-of-freedom (6DOF) tracking system for thetransducer. Such atracking systemismounted
on the transducer and follows very precisely its position and orientation in 3D space. Thus, each 2D
imageis associated with a corresponding position and orientation co-ordinates. The physician can now
move the transducer free-hand over the region under examination. In the market there exist severa
different types of 6DOF tracking systems: mechanical arms, electromagnetic trackers, camera-based
trackers (infrared or visiblelight).

2. A image digitalisationand volume rendering system. This component consist from aframe grabber, a
workstation or PC with sufficient memory and processor power, aserial interface and the usual periph-
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Figure 15: Different mechanica scanning methods

eral devices (monitor, mouse, printer etc.). Thevideo output of the 2D ultrasound machineisconnected
to the frame grabber and the 6DOF tracker to the serial input. Every 2D image presented on the ultra-
sound screen is digitised in real- time and stored together with its corresponding tracker co-ordinates
in the memory. After finishing the scanning procedure, all acquired 2D slices are combined into a 3D
volume sample of the examined area. Thisvolume dataset isthen further processed.
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4.3 Visualization of 3D Ultrasound

One of themajor reasonsfor the limited acceptance of 3D ultrasound to date isthe completelack of an appro-
priate visualisation technique, ableto display clear surfaces out of the acquired data. The very first approach
was to use well known techniques, used for MRI and CT datato extract surfaces. Such techniques, reported
in more detail in thefirst part of this Report, include binarization, iso-surfacing, contour connecting, march-
ing cubes, and volume rendering either as semi-transparent cloud, or asfuzzy gradient shading [52]. Manual
contouring is too slow and impractical for real-life applications. Unfortunately, ultrasound images posses
several features causing all these techniquesto fail totally. The general appearance of avolume rendered 3D
ultrasound dataset is that of a solid block covered with 'noise snow’ (fig. 16 right). The most important of
these features as reported in [79] and [81] are:

significant amount of noise and speckle

much lower dynamic range as compared to CT or MR

high variationsin the intensity of neighbouring voxels, even within homogeneous tissue areas
boundarieswith varyinggrey level caused by thevariation of surface curvature and orientationto the sound
source

5. partidly or completely shadowed surfaces from objects closer and within the direction of the sound source
(e.g. ahand shadowsthe face)

the regions representing boundaries are not sharp but show a width of several pixels

poor aignment between subsequent images (parallel—scan devices only)

8. pixelsrepresenting varying geometric resol utions depending on the distance from the sound source (fan—
scanning devices only)

AwbdPE

N o

The next ideain dealing with ultrasound data was to improve the quality of the data during a pre-processing
step, i.e. prior toreconstruction, segmentation and volumerendering. When filtering medical images, atrade-
off between image quality and information loss must always be taken into account. Several different filters
have been tested: 3D-Gaussian for noise reduction, 2D-speckle removal for contour smoothing, 3D-median
for both noise reduction and closing of small gaps caused by differences in the average luminosity between
subsequent images [ 79]; other filters such as mathematical topol ogy and extended threshol d-based segmenta-
tion have been tested aswell. The best results have been achieved by combining Gaussian and median filters
(seeimage 17).
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Figure 16: Left agrey image of the liver, middle the corresponding opacity values, right a volume rendered
dataset. Note the high opacity values along the interface between data and empty space (middle) causing a
solid’curtain’ obscuring the volume interior (right)

Figure 17: Volume rendering after off-line 3D-median and 3D-Gaussian filtering. Form left to right: unfil-
tered and median with a width of 33, 53 and 73. In the lower row the same data after additional Gaussian
filtering with awidth of 33

However, pre-processing of large datasets (a typical 3D-volumehas aresolution of 256° voxel's) requires sev-
eral minutes of computing, reduces theflexibility to interactively adjust visualization parameters, and aliases
theoriginal data. For solving these problemsinteractivefiltering techni ques based on multi-resolution analy-
sisand feature extraction have been devel oped, allowing a user-adjustable, on-linefiltering within afew sec-
onds and provide an image quality comparabl e to the off-line methods ([81], see image 18).

In order to remove artifacts remaining in the image after filtering, semi-automatic segmentation has been ap-
plied because of the general lack of areliable automatic technique. A segmentation can be provided by using
the mouse to draw afew crude contours (see [79] for more details).

The diagnostic value of surface reconstructionin prenatal diagnosisso far has to be seen in the routine detec-
tionof small irregularitiesof thefetal surface, such ascheil ognatho(pal ato)schisisor small (covered) vertebral
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Figure 19: Fetal face before (left) and after (middle) removing the right hand and the remaining artefacts
(right)

defects aswell as in a better spatial impression of the fetus as compared to the 2D-imaging. A useful side-
effect isa psychologica one, asthe pregnant woman gets a more plasticimpression of the unborn ([35], [5]).
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e

Figure 20: On-line mixing between surface and MIP models. Thisoperation isperformed in real-time
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Image 21 compares an image reconstructed from data acquired in the 25th week of pregnancy with a photo of
the baby 24 hoursafter birth. The resolution of the datawas 256 x 256 x 128 (8 Mbytes); thetime for volume
rendering oneimage with aresol ution of 3002 pixelsisabout 1 second on aPentium Pro 200 doppel processor

PC.

Figure 21: Comparison of a volume reconstructed from 3D-ultrasound data acquired during the 25th preg-
nancy week (3 1/2 months before birth) with a photograph of the same baby taken 24 hours after birth

Image 22 shows several other examples of fetal faces acquired inthe Mannheim Clinic. It isimportant to note
that these datasets have been acquired under routine clinical conditions and therefore they can be regarded
asto be representative. 1n average 80% of the acquired volumes can be reconstructed within ca. 10 minutes
with an image quality comparable to that shown here. All cases where the fetus was facing the abdomina
wall could be reconstructed successfully.

Figure 22: Six different examples of fetal faces acquired under daily clinical routine conditions

Under clinical aspects further work should be aimed towards a better distinction and automatic separation
of surfaces lying close together and showing relatively small grey-scale differences. The reconstruction of
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surfaceswithinthe fetus, e.g. organs, ishighly desired. Surface properties of organs, but also of pathological
structures (ovarian tumors etc.) might give further information for the assessment of the dignity of tumors.

5 3D Cardiac Reconstruction from 2D Projections

Different imaging modalities are applied in order to acquire medical data. In terms of the human heart 3D
tomographic imaging techniques are not yet suitable for resolving neither moving coronary arteries nor the
changing volume of the heart-ventricles.

Thegolden standard for diagnosi sof coronary artery diseaseor volumetry isx-ray angiography, recently com-
bined with intra-vascular ultrasound (IVUS) [51]. The main benefit of thistechnique is the high spatial and
temporal resolution as well as high image contrast.

For treatment planning of angioplasty or bypass surgery or for volumetry sequences of x-ray images are tra-
ditionally acquired and evaluated. Despite the high quality of angiograms an exact judgment of pathological
changes (eg. stenosis) requires alarge amount of experience on the part of the cardiologist.

In order to improve the diagnostic accuracy, 3D reconstruction from 2D coronary angiograms appears desir-
able[101]. In genera two different approaches can be distinguished. The stereoscopic or multiscopic deter-
mination of ray intersectionsis a method which makes it necessary to identify correspondent features within
different images. If thiscorrespondenceis not possibleto be established, back-projection techniques|[24] are
more suitable.

The choice of using either the stereoscopic or the back-projection approach mainly depends on the following
criteria

Number of images For stereoscopic approach at |east two images are necessary to perform the reconstruc-
tion. In order to achieve good results by using back-projection techniques more than twenty images are
necessary.

Relative orientation A small relative orientation resultsin alow accuracy for both stereoscopic and back-
projection techniques. Neverthel essthe necessity of alarge parallax angleis higher for back-projection
techniques.

Morphology In order to reconstruct objects which are composed by a number of small structured parts
stereoscopic technigques are more appropriated. On the other hand large objects with low structure are
easier to reconstruct by back-projection techniques.

Occluding objects Occluding objects cause problems when using stereoscopic methods. In contrast, back-
projection techniques are ableto separate different objects which are laying on the same projection ray.

Since the choice of the right technigue strongly depends on the current application both approaches will be
described briefly within the following sections.

5.1 Reconstruction of Coronary Vessels

In this section a method of reconstructing the 3D appearance of the coronary arteries, based on a sequence
of angiograms, acquired by rotating a mono-plane system around the heart will be described. In order to
determine the exact phase of the heart cycle for each image an ECG is recorded simultaneously. In order
to minimize user interaction and a priori knowledge introduced into the reconstruction process [30] a new
method has been devel oped and implemented. The technique requires a minimum of user interaction limited
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Figure 23: Processing steps used to reconstruct the 3D geometry of the coronary vessels

to the segmentation of vesselsin theinitial image of each angiographic sequence. The segmentationresultis
exploited in the entire series of angiograms to track each individual vessel.

In contrast to the assumption for 3D reconstruction of objectsfrom multipleprojections, coronary arteriesare
not rigid. Due to the deterministic nature of the mobility of the heart with respect to the phase of the heart
motion, distinct images are used, showing the heart at the same phase of the cardiac cycle. The different
processing steps, used for reconstructing the 3D geometry of the vessel are shown in figure 23 and discussed
below [34].

In order to separate the vessel tree to be reconstructed, the image has to be segmented. The major drawback
of most of the existing segmentation agorithmsare either avery limited amount of variationin theinput data
amenabl e to processing by a fully automatic algorithm, and the necessity of an extensive user-assi stance.

The approach leeds to a compromise in which the user only identifies a very small number of pointsinter-
actively. The segmentation process is separated into the detection of the vessel centerline and eval uation of
the vessel contour. The agorithm works with a cost-minimizing A* search tree [100], [65], which proved to
be robust against noise and may be fully controlled by the user. The obtained structure is tracked over the
angiographic sequence by Snakes.

Reconstruction is based on the extracted vessel tree structures, the known relative orientation (i.e. the angle)
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of the projections, and the imaging parameters of the x-ray system. The 3D reconstructionis performed from
images of identical heart phases. It beginswith the two projectionsof the same phase, defining the largest an-
gle. Theobtained result isafterwardsimproved by introducing additional views. Applyinga3D optimization
techniques the shape of a 3D Snake is adapted according to multiple 2D projections[33].

The abtained 3D structure can be either visualized by performing a volume rendering, or in order to be pre-
sented withina VR-systemsit can be transfered into a polygonal representation.

Figure 24: Reconstructed vessels rendered by InViVo (top: combined presentation of the volume rendered
reconstruction result and angiograms bottom: some frames of the 3D movement simulation)

Besides the 3D geometry of the coronary vessdls, the trajectories of distinct points of the vessels are deter-
mined during the tracking process. Asaresult these trajectories can be used to simulate the movement of the
vessdl, caused during the heart beat (Figure 24 bottom row).
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5.2 Reconstruction of Ventricles

Beside the stereoscopic or multiscopic feature based approach, the 3D structure can also be obtained using
densitometric information. Thistechnique, also known as back-projection method, does not need any a priori
knowledge or image segmentation.

left atrium

left ventricle
-

Figure 25. Angiograms acquired by the bi-plane x-ray system

Similar to CT, the 3D information is obtained by determining the intensity of a volume element according
to the density of the imaged structure. The intensity of each pixel within the angiogram correlates to the
amount of x-ray energy which isreceived at the image amplifier. Thisenergy depends on the density and the
absorption capabilities of the traversed material. Asa result a pixel represents the sum of the transmission
coefficients of the different materials which are pierced by the x-ray. For homogeneous materia and parallel
monochromatic x-rays the image intensity can be described by the rule of Lambert-Beer [8]:

| = lpe~Hvd 2)

I: Imageintensity

lo: Initia intensity

M Absorption-coefficient of the structure
v: Density of the structure

d: Thickness of the structure

If the x-ray travelsthrough a materia with varying densities, this equation has to be split into parts with con-
stant density. The total amount of transmitted intensity is the sum of these different parts.

| = lge™ 2 Hividi ©)
To improve the image quality contrast agent is injected during the acquisition process. For this purpose a
catheter is positioned in front of the ventricles (see figure 25).

Applying the back-projection technique the distribution of the coefficients can be determined. During the
acquisition process the x-ray system is rotated around the center of the heart (see figure 26).

In order to reconstruct the appropriate intensities of the heart, all the images are translated into the center of
rotation (seefigure 27), thus according to the amount of images acylinder isdefined by anumber of sampling
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Figure 26: Acquisition of different angiograms by rotating a bi-plane x-ray system around the center of the
heart
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Figure 27: Trandlation of the angiograms in order to determine the voxd intensities

planes. The complete volume of the cylinder can now be determined. Therefore al therays starting from the
X-ray source and intersecting a distinct voxel are accumulated and weighted according to the intensity of the
different planes. Continuing this processfor al the voxels of the cylinder, by taking the projection geometry
into account by introducing a cone-filter [42], the intensity of each cylinder voxel can be determined. The
obtained volume data can be visualized using a volume rendering technique and segmented by Snakes.

6 Visualization of Laser Confocal Microscopy Datasets

Structures in the microscopic scale nerve cells, tissue and muscles, blood vessels etc. show beautiful, com-
plex, and mostly still unexplored patterns usually with higher complexity than those of organs. In order to
understand the spatial relationship and internal structure of such microscopic probes, tomographic series of
slices are required in analogy to the tomographies used for organs and other macroscopic structures.

Laser confocal microscopy is arelatively new method allowing for a true tomographic inspection of micro-
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Figure 28: Volume rendering of the intensitiesobtained by the back-projection technique

scopic probes. The method operates according to asimple, basic principle[20].
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Figure 29: Principle of Laser Confocal Microscopy

Visibleor ultraviolet laser emission is focused on the first confocal pinholeand then onto the specimenas a
diffraction-limited light spot, see fig. 29. The primary incident light is then reflected from particular voxel
elements or emitted from fluorescent molecules excited withinit. Emissionsfrom the object return along the
primary laser light pathway and depart from it by lateral reflection from (or passage through, depending on the
instrument) a dichroic mirror onto the second confocal pinhole. This aperture is confoca with the in-focus
voxel elements in the specimen. The virtua dimination by defocusing of al distal and proximal flanking
emissions at this physical point assures that the light passing onto the detector, a sensitive photodetector or
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camera, is specifically derived from in-focus object voxels with a resolution, e.g. in the Leica instrument,
approaching 200 to 400 nm in the x/y and z directions, respectively. In order to image the entire object, the
light spot is scanned by a second mirror in the x/y plane in successive z sections by means of a precision
stage motor. Rapid scanning preserves fluorescent intensity but must be reconciled with image quality. The
storage, retrieval and manipulation of light intensity information from the object makes static and dynamic
3-D imaging possible.

Although not perfect, the new method shows several significant benefits as compared to the traditional pro-
cedures. The most important of them are: true tomographic method, significant freedom in choosing slice
thickness and size, trivid registration of slices, very fast and easy in operation, capable of acquiring in-vivo
cellsaswell as static or dynamic structures, non-destructive. Lastly, by using different types of laser and flu-
orophore materials, different spatially overlapping structures can be visualized and superimposed within the
same probe.

Thedataacquired with Laser Confocal Microscopy (LCM) show several characteristicsrequiring specialized
treatment in order to make the method applicable:

1. Large data size. Typical datasets have a resolution of 5122 x 64 pixels. These pixels are colored, thus a
typical RGB dataset requires some 50 Mbytes of memory. Obviously, datasets of this size require efficient
processing methods.

2. Low contrast, low intensity gradients, bad signa to noise ratio. These characteristics make a straight-
forward segmentation between the structures of interest and the background (e.g. by using thresholding,
region growing, homogeneity, color differences etc.) impossible. All the methods|isted above apply more
or less hinary decision criteriaif a pixel/voxel belongsto the structure or not. Such criteriatypicaly fail
when used with signals showing the characteristicslisted above.

3. Unequal resolutionsin the plane and the depth directions. Thus, a visualization method has to be able to
perform with "blocks” or unegual size lengths instead with cubic voxels. Re-sampling of the raw datato
aregular cubic field will further reduce the signal quality, introduce interpolation artifacts and generate an
even larger dataset, probably too large to be handled with conventional computers.

4. Regarding the quality, artifacts have to be avoided as far as possible. Introducing artifacts in an unknown
structurewill often havefata effects on their interpretation, since the human observer does not dwayshave
the experience for judging the correctness or the fidelity of the presented structures. As an example, an
obviousartifact caused by basparameter settingsof the software during the visualization of human anatomy
(e.g. of ahead) isimmediately detected by the observer, since the human anatomy iswell known and such
artifacts are trivially detected. Thisisnot the case when inspecting an unknown dataset.

5. Choosing the” correct” illumination model (e.g. MIP, semi-transparent, surface etc.) hasasignificant im-
pact on the clarity and information content of the visualization. Again, dueto the lack of experience such
adecision istypically much more difficulty than in the case of anatomic tomographic data.

6. The speed of visualization becomes the most crucial issue. The visualization parameters have to be ad-
justed in an interactive, trial-and-error procedure. This can take a very long time if, e.g., after an adjust-
ment the user has to wait for several minutes to see the new result. Furthermore, inspection of new, un-
known structures require rapid changing of directions, illumination conditions, visualization models, etc..
Looping and stereo images are of enormous importance for understanding unknown, complicated spatial
structures.

Themain requirement hereisto employ afast volumetric method alowinginteractive and intuitiveparameter
settings during the visualization session. Detailed results of the employed volume visualization are reported
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in [80]. Figures 31 and 30 present a microscopic preparation of the tubular structure of a cat retina. The
dataset consist of 335 x 306 x 67 voxels, each with a dimension of 0.162 x 0.2um. The first image presents
the extra-cellular component of the blood vessel. The vessel diameter before the branch point is 19 um. The
second image shows the wire-like structure of the astrocyte cytosceleton. Both datasets originate from the
same probe. In all subsequent images the difference of the visualization between slicing, MIP, surface and
semi-transparent methods is shown.

Figure 30: Thewire-like structureof the astrocyte cytoscel eton of the same probe. Resolution of 335 x 306 x
67 voxelswith asize of 0.162 x 0.2um. Upper |eft asingleslice, right surface reconstruction; lower left MIP,
right transmission illumination models

The next dataset 32 shows the complicated structure of nerve cells networks. The resolution of the dataset is
with 25 Mbytes (5122 x 100 voxels) large. As one can see on image 32 upper left, single slices are not able
to providefull understanding of the complicated topology. Thethree other images show in much better detail
the internal structure of the cell network.

Laser confocal microscopy playsafundamenta rolefor gathering in-vivo data about not only static, but also
dynamic structures, i.e. structuresexistingtypically only withinliving cellsand for avery short period of time
(e.g. for afew seconds). Such structures are common in several biological applications. In the case refered
here we present temporary structuresformed by polymerized actin, a structure necessary for cell movements.

Figures 33 and 34 demonstrate the importance of LCM data visualization for detecting unknown structures.
In this case, we studied actin filaments in Dictyostelium amoebae with time periods ranging from 10 to 100
seconds. The dataresolutionis512 x 484 x 43 voxels= 10 Mbytes. Note the structure of the surface visible
in the " surface volume rendering” image. These structures are hardly visible and therefore difficult to detect
when regarding individual slices.

7 Conclusions

Medical volume visualization has come along way from the first experiments to the current, highly detailed
renderings. Astherendering algorithmsare improved and the fidelity of the resulting imagesisinvestigated,
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Figure31: Theextra-cellular component of aretinablood vessel of acat. Resolutionof 335:x 306 x 67 voxels
with asize of 0.16% x 0.2um. Upper left asingle slice, right surface reconstruction; lower left MIP, right
transmission illumination models

Figure 32: The complicated topology of nerve cells networks. Resolution 5122x100 voxels = 25 MBytes.
Upper left asingle dlice, right surface reconstruction; lower left MIP, right transmissionillumination models

3D images are not just pretty pictures, but a powerful source of information for research, education, and pa-
tient care. In certain areas such as craniofacial surgery or traumatol ogy, volume visualizationis increasingly
becoming part of the standard preoperative procedures. New applications such as 3 cardiology, 3D Ultra-
sound and laser confocal microscopy are becomming more and more popular. Further rapid development of
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Figure 33: F-actin structuresin Dictyosteliumamoebae, Resolution 512 x 484 x 43 voxels= 10 Mbytes. Up-
per left asingle dlice, right surface reconstruction; lower left MIP, right transmission illumination models

Figure 34: F-actin structures. Resolution 512 x 484 x 70 voxels = 16.5 Mbytes. Upper left asingle slice,
right surface reconstruction; lower left MIP, right transmission illumination models

volume visualization methods is widely expected [45].

A number of problems still hinder an even broader use of volume visualizationin medicine. First, and most
importantly, the segmentation problemis still unsolved. It isno coincidencethat volume visualizationis most
accepted in all areas wherecliniciansare interested in bonefrom CT. Especialy for MRI, however, automatic
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segmentation methods are still far from being generally applicable, while interactive procedures are much
too time-consuming. As has been shown, there is research in different directions going on; in many cases,
methods have already proven valuable for specific applications.

The second magjor problem isthe design of a user interface which is suitablein a clinical environment. Cur-
rently, there is still a large number of rather technical parameters for controlling segmentation, matching,
shading, and so on. Acceptance in the medical community will certainly depend heavily on progressin this
field.

Third, current workstations are not yet able to deliver 3D images fast enough. For the future, it is certainly
desirabletointeract with theworkstationin real time, instead of just looking at staticimagesor pre-calculated
movies. However, with computing power further increasing, thisproblemwill beovercomeinjustafew years
even on low-cost platforms.

Ass has been shown, a number of applications based on volume visualization are becoming operational, such
as surgical simulation systems and three-dimensional atlases. Another intriguing ideais to combine volume
visualization with virtual reality systems, which enable the clinician to walk around or fly through a virtual
patient, see fig. 35[77], [49]. In augmented reality, images from real and virtual world are merged to guide
the surgeon during an intervention [6].

Figure 35. OP 2000: The Operation Theatre of the Future

Integration of volumevisualizationwith virtual reality and roboticstowards computer-integrated surgery will
certainly be amajor topic in the coming decade [92, 103, 77].

Acknowledgements

Georgios Sakas wants to thank Axel Hildebrand, Stefan Grofkopf, Jurgen Jager, Rainer Makewitz and Ste-
fan Walter who did a lot of work within the different sections described above, and Peter Plath and Mike
Vicker from the University of Bremen for the laser confocal microscopy data. Furtherly, data have been pro-
vided by Kretztechnik, Visible Human Project, Deutsche Klinik fuer EDiagnostik Wiesbaden, H.T.M. van

36



Figure 36: Virtual Arthroscopy: using VR and force feed-back for training surgical procedures
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