EUROGRAPHICS '97 STAR — State of The Art Report

On the Computational Requirements of Virtual Reality
Systems

Frank Dévai

School of Computing & Mathematics, University of Ulster
Londonderry, BT48 7JL, UK

Abstract

The computational requirements of high-tjtya real-time rendering eceeds the limits of generally available
computing power. However illumination effectgcept shadows, are less noticeable on moving pictures. Shadows
can be produced with the same techniques used for visibility computations, therefore the basic requirements of
real-time rendering are transformations, pre-selection of the part of the scene to be displayed and visibility com-
putations. Transformations scale well, ie, their time requirement grows linearly with the input size. Pre-selection,
if implemented by the traditional way of polygon clipping, has a growing ratelo§N in the worst case, where

N is the total number of edges in the scene. Visibility computations, exhibitjogdratic growing rate, are the
bottleneck from a theoretical point of view. Thiagproaches are discussed to speed up lisilcomputations:

(i) reducing the expected running time tgMDogN) (ii) using approximation algorithms with MK) worst-case

time, where K is the linear resolution of the image, and @iplying parallel techniques leading to logarithmic

time in the worst-case. Though the growing rate of the time requirement of pre-selection is significantly slower
than that of visibility, it is demonstrated that pre-selection has to deal with a significantly highmmdamf data

than visibility computations, as the average clipping volume is 1/27 of the volume of the model.

1. Introduction pedimentidag, the delay between performing an action and

))) _ seeing the result of that action. Lag is critical when trying to
Virtual reality (VR) is a new human-computer interface zchieve immersiof.

paradigm to create the effect of a three-dimensional envi-

ronment in which the user directly interacts with virtual ob- In spite of the shortcomings of contemporary VR sys-

jects. Animmersive virtual environmemtlows human par- tems, a wide range of application areas are reported in the

ticipants to engage their perceptual skills in solving prob- literature: flight’* and driving® simulation, scientific visu-

lems#7.83, Immersive systems require special equipment, eg, alisation®, medicine4 44, walk-through and fly-through of

a head-mounted displayesktop, or non-immersigystems complex environmengs 48 88 89 |ighting-desigr#® and even

use a normal visual display unit that displays the image of performance analysis of parallel computer syst&n€obb

the environment. The user interacts with input devices, such et al 14 examined the feasibility of VR as a tool for the UK

as a data glove or a three-dimensional mouse. manufacturing industry. Education and training is another

area with vast potential: students can fly through landscapes

Despite recent advances in computer-graphics hardware, for a geography lesson, or travel down blood vessels in an

complex virtual environments cannot be displayed with a anatomy clas#.

sufficiently high frame rate because of limitations in the

available rendering performance. The necessary frame rate Spectacular applications are a training model for the re-

is around 25 frames/sec, though some researchers would tol-pair mission of the Hubble Space Telescope and the recon-

erate lower rates. With frame rates less than 20 frames/secstruction of the Dresden Frauenkirche. Shortly after NASA

scenes appear as a series of separate frames, and even framaunched the Hubble Space Telescope in 1990, astronomers

rates between 20 an 60 frames sec may produce ghosting ef-discovered flaws in its optical system. A preparation and

fects, ie, multiple images of the same obj&cAnother im- the crew training for a repair and maintenance mission be-

© The Eurographics Association 1997. Published by Blackwell Publishers, 108 Cowley
Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA 02148, USA.

Dévai / Computational Requirements of VR Systems

came a major NASA project. More than 100 members of the ~ Development has traditionally been extensive in computer
ground-supportflight team were trained in immersive virtual graphics: bigger memories and faster processors are becom-
environments, and the repair mission was successfully com- ing available due to increasingly faster electronic compo-
pleted in December 1998. The Dresden Frauenkirche was nents. However, there are two inherent difficulties with this
destroyed when the city was bombed by the Allied forces in way of development. On one hand, this approach has already
1945. During the reconstruction of the church a model was been pushed almost as far as it will go: simply the speed of
created from the original building plans. A software pack- light imposes a limit that cannot be surpassed by any elec-
age developed at the IBM T. J. Watson Research Center wastronic component. On the other hand, bigger memory ca-
used to view and walk through the model using both immer- pacity and computing power lead to bigger problems to be
sive and non-immersive technologiés solved and more functionality requirements.

Another potentially spectacular application aredei- Unfortunately the prevailing theoretical backgnd for
sensationa sort of a three-dimensional photography, when three-dimensional computer graphics is inherently wrong.
a scene from a remote location, eg, from nature or from a Indeed, this theoretical background cannot even predict or
museum, is transmitted to a viewer. Then the scene is re- explain the performance of the most widely used hidden-
generated at the viewer’s location, who can enter the scene,surface technique, the z-buffer algorithm. The running time
walk around there, and touch the objects found there of the z-buffer algorithm is often claimed to be a linear func-

) ») tion of the input size, or even consta#it3l 3233 6585 QOn

Though VR is based on _traubnal computer-gra_m_)h'CS the other hand, Schmift demonstrated how vertical and
technology, some new techniques developed specifically for pqi;0ntal rectangles can force any hidden-line or hidden-
VR also emerged recently. One of these techniquebjisct surface algorithm to take at least quadratic time in the worst
pre-selectioror culling, when simple mechanisms are used ¢a5e (This result is wrongly attributed to Fiufidoy Foley
to reject most of the objects. As a result, only a very small g 4132.33) The quadratic lower bound can be demonstrated

portion of the model has to go through the time-consuming aven if the input is only one simple polyhedrén
process of visibility computations. Actually the concept is

well known in computer graphics as clipping, but consider- A constant running time, ie, a running time independent
ing the huge amount of input data, some preprocessing is Of the size of the input is a nonsense, which is impossible to
justified. Yagel and Ra$8 report on such a culling mecha- achieve even with parallel processing. We will demonstrate
nism based on regular space subdivision. Only objects in the in section 5 that the hidden-line and hidden-surface prob-
potentially visible set of cells are actually submitted to the 1€ms cannot be solved in faster than logarithmic time under
hidden object removal algorithm. Schaufler and Stiirzlinger @ widely accepted parallel model of computation even if ar-
73 propose a three_dimensional image cachel bltral’l|y many pI’OCGSSOI‘S were aVaiIabIe.

Another group of new techniques arierarchical The false assumption of the constant running time of the
or level-of-detail algorithmsand object simplification ~ Z-Puffer algorithm is the resuit of a gross misunderstand-
43.47,72.80.81 VR applications also increased the practical g of some speculations made more than 20 years ago by
significance of research on reducing grewing rateof vis- Sutherland et &F. As the underestimated — and not exper-
ibility algorithms 19.20.21.18.58,59 hoth in the worst case and imentally obtained — timing results were tabulated, authors
on the average. Though the conceptput-sensitive visibil- Of textbooks took them as experimental data. Itis regrettable
ity algorithmshas been raised as early as the 1986 Computa- that new textoooks on computer graphics are usually based
tional Geometry conferend® 66 Sudarsky and Gotsmdf on older ones, and not on research publications, therefore
recently reported the application of output-sensitive visibil- Practitioners, system designers and even researchers work
ity algorithms to dynamic scenes in VR. under the delusion that the z-buffer algorithm takes constant

time.

On the hardware level graphics acceleratfsit,

logic-enhanced memorie% 5.0, texture mapping and This paper offers a new theoretical background for the

scaleable architecture®.5160 are the new developments. real-time, reallstlc_ renderlng_ of static scenes in gengral, and
for the computational requirements of virtual-reality and

Coppenet al 17 describe a distributed frame buffer archi- CAD " . icular. 1 tion 2 first th fund
tecture, designed to achieve fast display updates in response systems in particular. In section 2 irst three funda-

to dynamic transformations of graphical objects. As a matter mental computational problems of rendering of static scenes

of fact, developing scaleable architectures are basically the grﬁ |dent|f|ecti.t1_'heseT?re t_rta_ns;ormatlotnst, ﬂ'ﬁf"?g an? VISt
same concept as reducing the growing rate of algorithms. ity computations. Then it 1s demonstrated that any trans-
formation can be performed in time proportional to the to-

Slater and UsoFf propose an alternative viewing pipeline tal numberN of the edges of the model, clipping in time

simulating peripheral visionin immersive virtual environ- at most proportional tdl logN, and that visibility computa-
ments. Peripheral vision offers important cues for direction tions need time at least proportionalNg in the worst case.
of gaze and movement. Relatively few pape#s deal with Though for smalN the cost of visibility computations can

the design and computational requirements of VR systems. be negligible due to a small constant of proportidyam-

© The Eurographics Association 1997

Dévai / Computational Requirements of VR Systems

posed by a simple hidden-surface algorithmNaiscreases all four algorithms are based on elementary data structures,
visibility computations are becoming a bottleneck. In sec- hence amenable to hardware implementation.

tion 2.1 we demonstrate that the average clipping volume is
1/27 of the volume of the model, and section 2.1 that poly-
gon clipping can be solved in linear time iff@logN) time

of preprocessing is allowed.

In section 7 a method and a test-data generation algorithm
for the experimental performance evaluations of planar visi-
bility algorithms are ppposed. Finally in section 8 the prac-
tical significance of the proposed theoretical background is

In section 3 a surprising fact is revealed that many hidden- evaluated, and directions for further work are recommended.
line and hidden-surface algorithms thought to be efficient
earlier actually take time proportional t8° in the worst
case. Though the growing rate of the worst-case time is not 2. Rendering three-dimensional scenes
easy to reduce below the functidiflogN for any practical
algorithm, the first approach reported here to deal with the
visibility bottleneck is a hidden-surface algorithm with an
expected running time proportional klogN.

For the description of three-dimensional objects polygon-
mesh models are most widely us&d284, These models
provide an exact description for objects modelled by poly-
hedra, and an approximation for objects with curved sur-
In section 4 the possibilities of the exploitation of the fi- faces. A polygon-mesh model is a collection of simple poly-
nite resolution of the rendered image are investigated. A new gons possibly with holes, such that the polygons can inter-
analysis method is proposed that takes into account also thesect only at their edges. In image synthesis the polygons can
linear resolutiorK of the image. The traditional classifica- e treated separately, and the model to be displayed is of-
tion of visibility computations as object-space and image- ten called a scene. Therefore, we can assume that the scen
space algorithms is challenged by distinguishing exact and is a collection of pairwise disjoint simple polygons possibly
approximation algorithms. The z-buffer algorithm is demon- With holes. In a static scene the distance between any pair
strated to take time proportional t8K?2 both in the worst ~ Of vertices is fixed, though the observer's jtios, called the
case and on the average. Then a second method is proposetiewpoint, is allowed to move.
to speed up visibility computations by using an approxima-
tion algorithm generating a data structure iNK) time in
the worst case that can be displayed i(K®) time.

In practice the viewpoint is fixed. To provide the illusion
of movement, the system should be able to change the posi-
tion and the dimensions of the model. For example, when the

In section 5 the application of parallel algorithms that take observer is given the illusion of movingamd an object, the
O(logN) time in the worst case is proposed as a third ap- Sceneis rotated in the opposite direction. Tlusion of per-
proach. While it is well known that approximation meth- ~ spective is also required in many applications. All the above
ods such as the z-buffer, and ray tracing algorithms are rela- functionality can be provided by the transformations of the
tively easy to implement on parallel computers, the parallel model.
complexity of the exact hidden-line problem has been estab-
lished only recently2 25, Though these results are based on
a theoretical model of parallel computation, the proposed al-
gorithms can also be executed on real parallel machines in
O(log” N time, whered is a small positive constant depend-
ing on the particular machine.

In image synthesis usually a left-handed coordinate sys-
tem is used such that tixeaxis points to the right, thg-axis
upwards and the-axis away from the observer. The perspec-
tive transformation moves the viewpoint to infinity, therefore
aviewpoint ofu= (0,0, —) can be assumed for the remain-
der of the image synthesis process.

A more practical approach with the technology available
in the foreseeable future is to assign a processor to each row
of picture elements of a raster-scan image, in order to com-
pute the image of that particular ra®. Then the dominant
computational problem is the determination of the visibil-
ity of a planar set of line segments. In section 6 distributed-
memory parallel algorithms are considered. First a proof is
provided that the planar visibility problem in itself takes
Q(nlogn) time even if the output is not required in a sorted
order. Then four new algorithms, including two Las-Vegas Finally the system should provide thkision that objects
type probability ones, are pposed and compared with five nearer to the observer may hide objects farther from the ob-
existing algorithms. A computational complexity analysisis server. This functionality is provided by visibility computa-
provided in terms of time and space requirements for each al- tions. There is evidence that the human visual system recog-
gorithm. None of the new algorithms require sorting, merg- nises solids by extracting edges in an im&géndeed, line-
ing or advanced data structures such as priority queues ordrawing images often used for visualisation of solids in CAD
segment trees. Segment trees are used only for the proofsystems, in addition to shaded, realistic images. Therefore
of the upper bound on the deterministic algorithms, while two types of visibility problems are disijuished.

The models of practical importance are usually very large,
and the system is required to render only a part of the model,
eg, a field of view in a virtual-reality environment. Similarly
in a CAD system the user most often concentrates only on
a detail, and the parts of the model falling outside the range
of the display device should be discarded. The above func-
tionality is achieved by a process called clipping in computer
graphics.

© The Eurographics Association 1997

Dévai / Computational Requirements of VR Systems

Given a setS of pairwise disjoint, opaque and planar a line segment with a set of polygons that can be solved in
simple polygons possibly with holes and with a totalNof O(NlogN) time in the worst cas#. In section 2.2 we will

edges in three-dimensional space, and a viewpaint = demonstrate that clipping can also be done in linear time if
(0,0, —00). preprocessing is allowed.
¢ If one wishes to find each intervabf all the boundaries

of the polygons inS, such that all points of are visible ‘ A N A

from u, this problem is called thkeidden-line problem.

¢ If oneis interested to find each regiprof each polygon
in S, such that all points of are visible fromu, then the
problem is referred to as thieédden-surface problem.

Sinceu = (0,0, —), a pointp, p = (Xp,Yp, Zp), Of Sis Visi-

ble if z, is smaller than the-coordinate of any other point of
Salong the line through p parallel to tlzeaxis. In practice

we require somewhat less than stated above. As we wish to
generate a two-dimensional image, we need only a projec- Figure 1: A worst-case scene for visibility
tion of the visible points onto projection planet

Once the facilities for transformations, clipping and To determine the time requirement of visibility computa-
visibility computations have been provided, any two- tions considertwo groups of triangles such that each triangle
dimensional image of a three-dimensional sceneilluminated in one group intersects every triangle in the other group as
from the viewpoint can be generated. Visibility computa- shown in Figure 1. If the number of trianglesNg 6 in each
tions can also be used for shadow calculations: the parts of group, the total number of edgesNs and the total number
the scene are in shadow which are not visible from a given of edge intersections is\&/6 by 2N/6 which isN?/9 inter-
light source. In a global illumination model, such as the ra- section points. Each intersection point is the endpoint of a
diosity method* all light interactions in the scene can be visible line segment which must be reported in the output of
determined in advance in a view-independent way. Theoret- any hidden-line algorithm. Also each intersection pointis the
ically this would require the determination of the visibility vertex of a visible region which must be reported in the out-
of the scene from every point of the scene. In practice an ap- put of any hidden-surface algorithm. Therefore there exists
proximation is sufficient. Then a hidden-surface algorithm an input for any hidden-line or hidden-surface algorithm that
can be used to determine what is visible form the viewpoint. forces the algorithm to determine at ledBt/9 intersection
The result is photo-realistic images produced at the speed of points forN edges. We can conclude tkﬁ(Nz) is a lower
a hidden-surface algorithm. bound for the visiblity problem, ie, the time requirement
of any visibility algorithm grows at least as fast as tie
function in the worst case. The time requirements of the vi-
sualisation of a polygon-mesh model with a totaNoédges
are summarised in Table 1.

Our purpose is the analysis of image synthesis algorithms
in a machine-independentway. Since polygon-mesh models
typically contain a total of 18-10° edges, ie, the size of the
input is large, the growing rate of time and space require-
ments is a good measure of efficiency. The following nota-
tion is used: Iff andg are functions of nonnegative variables function time requirement
n,m, ..., we sayfis O(g)’if there are positive constantg

transformations O(N)
andcy such that clipping O(NlogN)
f(n,m,...) < cig(n,m,...)+c2 visibility computations Q(N?)

forallnm, We say f is Q(g)' if gis O(f), and 'f is
O(g)'if fisboth Qg)andQ(g).

Any transformation can be implemented by the multipli-
cation of each vector corresponding to a vertex of the scene

with a 4 by 4 matrix. This matrix multiplication requires 16 . : .
S " ; ity computations is very small compared to the constant for
multiplications and 12 additions feach one of the vertices. .
. . the transformations. Note, however, that merely the number
The number of vertices is the same as the number of edges__ . S o
. of intersection points is counted for the vitiy problem,
for a set of polygons, and proportional to the number of . .
. while the number of actual operations for the transforma-
edges of a polygon-mesh model. All transformations can be tions
combined in a single transformation matrix, therefore trans- '
formations takeé®(N) time in the worst case. Clipping can For the sake of argument let us suppose that the calcula-
be reduced to the problem of determining the intersection of tion of one intersection point takes at least one time unit, eg,

Table 1: Computational requirements for displaying 3D
scenes

One can argue that the constant factor obtained for visibil-

© The Eurographics Association 1997

Dévai / Computational Requirements of VR Systems

the time of one multiplication. Allowing one time unit also
for an addition, 28! is an upper bound on the time require-
ment of transformations. The break-even point can be ob-
tained from the formula 28 = N?/9, which givesN = 252.

If N> 252, visilility calculations take more time than trans-
formations.

On one hand it should be noted, however, that we made
conservative estimates both on the lower bound for the vis-
ibility problem and on theipper bound for the transforma-
tion. On the other hand, our estimates apply to the time re-
quirements in the worst case. One could find a more efficient
algorithm for the average case. We follow this approach in
section 3.

2.1. The average clipping volume

With object pre-selection or culling it is assume that only
a small portion of the model has to go through the time-
consuming process of visibility computations. The question
how small this portion actually is naturally arises. In other
words, what is the size of the average clipping volume?

Two answer this question, first we determine the size and
the position of the average clipping window in two dimen-
sions. Though small windows are probably more often used
in practice, it will result in conservative estimates if we as-
sume that windows with all sizes and positions are equally
likely. We restrict ourselves to a moddlwith sides parallel
to the coordinate axes.

Let M be a rectangle determined by the diagonal with the
endpoints(0,0) and (m,n), wherem,n > 0. Now we de-
termine the size and the location of the average window.
For simplicity letm andn be integers. All windows being
equally likely is the same as if the endpoints of their di-
agonals were chosen uniformly, independently at random
from M. Choosing a point uniformly at random frokh can
be done by choosing axcoordinate uniformly at random
from the interva[0, m] and then choosinggcoordinate uni-
formly at random from the intervgD, n] independently of
thex-coordinate.

For simplifying the presentation, consider only win-
dows with integer coordinates. Then tReextents, thex-
coordinatex, of the left-hand sides of the possible windows
and the appropriate number of windows can be given by the
following table.

x-extent x_ number of windows
1 0,1,2,....m-1 m
2 0,1,2,....m-2 m-—1
i 0,1,2,...,m—i —i+1
m-1 01 2
m 0 1

© The Eurographics Association 1997

The total number of windows with differemtcoordinates is
the sum of the third column of the table:

z K m-|—1)

The possiblex; values for a window ofx-extenti are

0,1,2,...,m—i. Letabe the average value &f. Then
2 omi 2 oo m—i
a=—-= j=—— m—i+1)—
m(m+1) Zl]zo m(m+1) i;() 2
1 o .
= mmiD iZ\((m—l) —|—m—|>.
s, (m—i)? can be rewritten ag™;i2, and it can be

demonstrated by mathematical induction tiglt ;i? =
n(n+1)(2n+ 1)/6, hence we obtain

B 1 (m—l)m(2(m—1)-|—1 m(m
7 mmt (6)
_ (m=1)(2m-1)4+3(m-1) nP-1 -1
6(m+1) 3(m-|—1) 3

As m increasesa approachesn/3. We can make a simi-
lar argument for they-dimension, then it follows that the
bottom-left corner of the average window approaches the
point(m/3,n/3) if mandn get large.

Now letc andd respectively be thg- andy-dimensions of
the average window. There are-i + 1 windows ofx-extent
i with differentx-coordinates, therefore

2 m
- m(m+1) i;(m

The sum can be rewritten as follows.

i(m— i+1)i= mii —ii2+£i = (m-|—1

Substituting " ;i = m(m+1)/2 and
sM,i%? = m(m+1)(2m+1)/6, we obtain

—i+1)i.

.= 2 m(m+1)2 m(m+1)(2m+1)
T m(m+1) 2 6
g 21 _mi2

3 3

With a similar reasoning fod we can conclude that the
size of the average window approach&s byn/3 if the di-
mensionan and n of the model get large. Our derivations
generalise in three dimensions with the important conse-
guence that the average clipping volume is 1/27 of the vol-
ume of the model, assuming that all clipping volumes are
equally likely.

2.2. Polygon clipping

As we have already mentioned, polygon clipping can be
solved in GNlogN) time in the worst case, whef¢is the

Dévai / Computational Requirements of VR Systems

total number of edges in the scene. In this section we will
demonstrate that it can also be done in linear time if some
preprocessing is allowed.

The intersection of an arbitrary polygon with any face of
the clipping volume can be obtained by determining the in-
tersection of a line segment and a polygon. Indeed, if we
project the polygon into a plane perpendicular to the face of
the clipping volume, then it is sufficient to determine the in-
tersection of the image of the polygon with the image of the
face of the clipping volume — which is a line segment. Then
the intersection points of the edges of the image of the poly-
gon are projected back to the original polygon to obtain the
intersection points of its edges with the face of the clipping
volume.

A related problem we are going to solve is calledlthe-
polygon classificatiofLPC) problem, and it can be formu-
lated as follows. Given a line segmentand a polygorP
with N edges in the plane, find their intersection. The result
is a classification of the points &fin three subsets, such as
Linp containing the points df lying in the interior ofP, the
subset onp of the points ol lying on the boundary d? and
finally a subset qytp lying outsideP.

We begin with some definitions, and introduce the no-
tion of ordinary polygonsA pathis a sequence of points
P1, P2, -, Pn, and line segmenst, Pz, P2, P3, - - - » Pn—1; Pn
connecting the appropriate point pairs. If the last point of the
path is the same as its first point, the path is calletbaed
path.

A polygonis a subseP of the plane, such tha& does
not contain a half-line, and the boundarypfs a finite set
of closed paths. The points defining the closed paths on the
boundary ofP are called theverticesof P, and the line seg-
ments of the closed paths connecting the verticeB afe
called theedgesf P.

A polygonP is anordinary polygonif P is a connected

subset of the plane, the closed paths defining the boundary

of Pare disjoint, and no non-consecutive edges of any closed
path intersect.

If P is an ordinary polygon, then each of its vertices is
shared by exactly two edges. The subdivision of the plane
induced by the boundary & may have some regions which
do not contain a half-line, but do not belongRo Such a
region is called &ole

An ordinary polygon can be described by the set of closed
paths defining its boundary. Each closed path can be given
by the sequence of its vertices. One of the closed paths will
describe th@uter boundaryf the polygon, and the remain-
ing ones (if any) will specify holes. We will adopt the con-
vention that the vertices of the outer boundary are given in
counter-clockwise order, and the vertices of a hole in clock-
wise order. Then thénterior of an ordinary polygon will
always lie to the left as its boundary is traversed.

An ordinary polygon which is a simply connected subset
of the plane is called simple polygonA polygonPis said to
beconvexf any line segment connecting two points inskle
is itself entirely insiddP. There is a hierarchy strictly ordered
by the subset relation

convex C simple C ordinary polygons,

that is, the class of ordinary polygons include all convex
polygons, all simple polygons, and all simple polygons with
holes. Now we will prove a lower bound.

Lemma 1 Q(NlogN) is a lower bound on worst-case time
for determining the intersection of a line segment and an or-
dinary polygon withN edges, assuming the algebraic tree
model of computation.

Proof: We will demonstrate that any algorithm that deter-
mines the intersection of a line segment and an ordinary
polygon with N edges can decide thecloseness prob-
lem by using OWN) additional algebraic operations. The
closeness problem is as follows. Gividnt 1 real numbers
ry,r2,...,ry ande > 0, decide if any pairj andrj are at a
distance less thanfrom each other, i.e., there areand j,
1<i,j <N, suchthat # jand|ri —rj| < &

Let A be an arbitrary LPC algorithm, and bet, xo, ... , XN
be a set o\ real numbers such that

[xi —xj| > eforalli# j,1<i,j<N.

We construct an ordinary polygo® with boundaries
((a,—¢), (b,—¢), (b,€), (a,€)) and((x;,0), (% +3,0), (X +
6,-9)), as shown in Figure 1, whege= min{x} — € and
b=max{x}+efor1<i<N,andd 0< d< g, is an arbi-
trarily small real number.

Let a candidate line segmdnbe defined by the endpoints
(a—1,0) and(b+ 1,0). Then the settj,p returned byA will
containN + 1 line segments of length € — 6.

Now letd approach zero, and let
X1,X2,. .+ XN

be an instance of thecloseness problem. Classifywith
respect tdP using algorithmA. Then if any interval irLjnp
has a length less thapreturn a ¥es, otherwise a answer
for thee-closeness problem.

The e-closeness problem také&3(NlogN) time in the
worst case, assuming the algebraic tree model of computa-
tion 6. Let Ta (N) be the running time of algorithiA. There
exists a positive constantsuch that the construction &f
and the examination of the intervalsligyp together can be
done in at mostN algebraic operations, therefore

Ta(N)+cN=Q(NlogN)
from which the lemma followsa
First we describe a preprocessing algorithm that converts
polygonP into aplanar straight-line graph GG will contain

© The Eurographics Association 1997

Dévai / Computational Requirements of VR Systems

(a,€) (b,€)
(X +9,9) (Xj+9,9)
(a—1,0) / (b+1,0)
Xi\ X
(X +9,-9) (Xj+90,-9)
(a,—¢) (b,—¢)

Figure 2: Thee-closeness problem is reducible to the LPC problem

all vertices ofP, and some additional vertices and edges. For
simplifying the presentation, we will assume that all vertices
of P have distinctx- andy-coordinates, and the half-line

(to be specified later) containingdoes not go through any
vertices ofG. From here it follows that no edge &f will

be vertical or horizontal, andynp is a set of measure zero.
Without the above restrictions algorithms longer in detail but
not in asymptotic time can be given.

We say that two edgesand f of P arecomparable at
absciss& if the vertical linex = € intersects botke and f.
Then the relatiormbove at can be defined as follows:is
abovef atg if eandf are comparable & and the intersec-
tion of e with the linex = & has an ordinate greater than the
ordinate of the intersection dfwith the linex = &. Note that
the relation above & is a linear order on the set of edges
intersected by the same vertical line. We will use an abstract
data type, called &nearly ordered set, Tto maintain the
order of edges. An important technical detail, as we will see
later, that the edges ifi are represented by the equation of
the line containing the particular edge.

Let vi, 1 <i < N, be the set of vertices d?, and let
a=min{x}, b=maxx}, c=min{y;} andd = max{y;},
wherex; andy; are thex- andy-coordinates of vertey;. Let
Vi = (%, Yt) andvyp, = (Xp, Ypp) respectively denote the top and
bottom extreme vertices &, i.e.,y; = d andy, = c. Ac-
cording to our first assumption, the verticasandvy, are
unique. We will introduce four new vertices B, such as
V3N4+1 = (a— l,C), V3N42 = (b-I— 170), V3N43 = (a— 1,d)
andvanta = (b+1,d). (See Figure 2.) Once the prepara-
tion of G has been finished, we will remove these vertices
together with the edges incident on them. At each vertex of
G we imagine a line parallel to theaxis, and call the edges
incident with the vertex and left to the imaginary line the
coming edgeand those right to the line trmutgoing edges
Then the preprocessing algorithm can be stated as follows.
1. Let G be P initially. Add verticesvany1,--.,VaNt4 tO
G together with the edg88NT1, Vb, Vb, VaN+2, VaN+3, Vi
andVi,Vanta, and initialiseT with edgesiani1,Vp and
Vant3, vt- Sort the vertices o by their x-coordinate in

© The Eurographics Association 1997

increasing order, and initialise tWwé-element arrays @p
and BOTTOM.
2. Examine the verticeg of P in turn from left to right.

a. Delete fronil the incoming edges @ incident onv;,
and insert inT the outgoing edges @ incident onv;.
Letvy; andvs;i respectively be the intersection points
of the vertical line throughy; with the edgevj, vk
abovey; in T and with the edg®&, v, belowy; in T,
where 1< j,k,I,m<3N+4.

Add verticesvy; andvs; and edges;, vz andvi, va; to
G, and replace eddg, Vi by edgesrj, v andvay, v,
and edgeq, v by edgesi, vai andva;, V.

Whenever a horizontal ed@g, V¢ or Vi, Vi is replaced,
write thex-coordinatexy; of vo; in the next element of
the array Dp, and whenever a horizontal edgevy,
or Vp, Vm is replaced, write the-coordinatexs; of vs;
in the next element of the arraydB TOM.

b.

3. Remove verticegan,1 to vany4 from G together with
the edges incident on them.

The faces ofs will be trapezoids which may degenerate into
triangles. An example is given in Figure@.is shown after
step 2 of the above algorithm. The edge&ofhich are also
edges oP or contained by the edgesBfare shown in heavy
lines.

Although some of the edges & may be replaced by
O(N) edges inG, we can demonstrate th& has asymp-
totically the same size &

Lemma 2 The planar subdivisio® has at mostR vertices
and at most Bl edges.

Proof: Initially G will have the same number of vertices and
edges a®, i.e., N vertices andN edges. At each vertex

of P, 1 <i <N, we introduce at most two new vertices in
step 2.b of the above algorithm. The four extra vertices in-
troduced in step 1 will be removed in step 3, therefore the
total number of vertices o6 is at most 3. Similarly, at
each vertew; we introduce at most two new edges, and re-
place each of at most two existing edgesby two new
edges. Therefore, the total number of edge& ég at most
5N. O

Dévai / Computational Requirements of VR Systems

V3N+3 Vit V3N+4
T \
/ \
/
/-
V3N+1 Vp V3N42

Figure 3: The preprocessi

The linearly ordered séft can be realised by a balanced
tree1 2 such that the leaf nodes of the tree are labelled by

line equations, and are also threaded by a doubly linked 4.

list. Then the operationgsert and deletecan be imple-
mented in QlogN) time, whileaboveandbelowin constant
time. Thus step 2.a takes®@logN) time, and step 2.b ™)
time. Step 1, including the sorting, can be implemented in
O(NlogN) time, and step 3 takes constant time, therefore
we obtain the following upper bound on the preprocessing
time.

Lemma 3 An ordinary polygon withN edges can be con-
verted into a planar subdivision witB(N) trapezoidal faces
in O(N logN) time in the worst case.

The planar subdivisiorG can be represented by doubly
linked adjacency lists. Then any half-line can be classified
with respect toG, and thereforeP, by a linear-time incre-
mental algorithm. This algorithm traverses the boundary of
each trapezoid intersected by the half-line in turn. Ret
be the rectangle defined by the four coordinate p@irs),
(b,c), (b,d) and(a,d), and letp andq be the endpoints of

L, and finally leth be the half-line starting fronp and con-
tainingL. The equation oh in the parametric form is

r=p+(q—pjt for0<t < oo,

wherer is an arbitrary point of, andt is a scalar parameter.
ThenL can be classified with respectfoas follows.

1. If LnR=0, L andP must be disjoint, the algorithm ter-
minates.
Otherwise ith has one intersection point with the bound-
ary ofR, lets be the intersection point. Fhas two inter-
section points, rename the intersection point neargr to
asp, and lets be the other intersection point.
. Find the trapezoid thath entering at poins. If sis on

a vertical side ofR, this means the selection of one of

2.

ng of an ordinary polygon

two edges, and $is on a horizontal side @&, find Z by

binary searching the arraysoP or BoTTOM.

Starting froms, traverse the boundary & to find the
intersection pointv wherep,sleave<Z if such aw exists.
Repeat this procedure from step 4 by renamirags un-

til an intersection pointv cannot be found, ar coincides
with p.

5.

The algorithm requires only elementary data structures, such
as lists and arrays. We obtain the intersection points of
with the edges o6 in decreasing order of the values of the
parametet, and consider only the intersection points where
the edge ofG is also an edge d? or contained by an edge

of P. Then we can prove the following result.

Theorem 1 The intersection of a line segment and an ordi-
nary polygon withN edges can be determined inND(time,
assuming®(NlogN) preprocessing time is allowed.

Proof: According to Lemma 3,G can be prepared in
O(NlogN) time in the worst case. The first two steps of the
classification algorithm take constanttime, and step 3 can be
executed in @ogN) time in the worst case. In step 4 and
step 5 we traverse any edge@hat most two times. Accord-

ing to Lemma 2 has at mostH edges, which results in an
O(N) bound for the classification algorithm, and from here
the theorem follows

Since all the operations of the above algorithms are avail-
able in the algebraic tree model of computation, considering
Lemma 1, we obtain a tight bound on the complexity of the
LPC problem.

Corollary 1 The line-polygon classification problem for an
ordinary polygon withN edges take®(NlogN) time in the
worst case, and this time cannot be reduced in the algebraic
tree model of computation.

© The Eurographics Association 1997

Dévai / Computational Requirements of VR Systems

Given two ordinary polygon$® and Q with m andn
vertices, respectively. Their intersecti®mn Q can be con-
structed as follows. Led;, 1 <i < m, be the set of edges of
P, and leta]"? be the set of closed intervals along whigh
is contained by polygo®. Let we denote byA"@ the part
of the boundary oP contained byQ, and byB"P the part
of the boundary o€ contained byP. Then the boundary of
PNQ is the union ofA"Q andB"P. We use the following
algorithm.

1. Prepare the trapezoidal decompositionfFor each

edgea; of P, find a"? by using the line-polygon inter-

section algorithm proposed here. ThenaB® = Ui a:nQv

for1<i<m.

. FindB"P analogously.

. ObtainP N Q as the polygon whose boundaryA8Q U
BinP_

Now, we can prove a tight bound on the complexity of the
polygon intersection problem.

Theorem 2 Determining the intersection of an ordinary
polygon of m edges with another ordinary polygon of
edges take®(mlogm+ mn+nlogn) time in the worst case,
and this cannot be further improved in the algebraic tree
model of computation.

Proof: The set of intervalsl"? for all 1 < i < m can be
found in Q'mn) time, after preprocessin@ in O(nlogn)
time. Therefore, step 1 takes(@n+ nlogn) time. Simi-
larly, step 2 takes @nn+ mlogm) time. ThenP N Q can
be specified with the enumeration of its boundary by alter-
nately traversing the edgesAifQ andB"P according to the
orientation ofP andQ. Therefore step 3 takes(@n) time,
and the whole algorithm @nlogm+ mn+nlogn) time. An
Q(mlogm+ nlogn) lower bound follows from Lemma 1,
and anQ(mn) bound from the fact that the intersection of a
simplem-gon with a simplen-gon may havennvertices®.

]

Note thatP N Q may be disconnected, and therefore not
necessarily an ordinary polygon. Ona¥Q andB"P has
been determined?UQ, P— Q andQ — P can also be de-
termined by traversing edges ir{(@n) additional time.

For clipping a set of three-dimensional polygons, as we
have already seen, we have to solve the following problem.
Given a line segmerit and a set oM possibly non-disjoint
ordinary polygon#, P», ..., Py with a total ofN edges in
the plane. Find the set of (possibly non-disjoint) intervals of
L corresponding to the intersection lofvith all B, 1 <i <
M.

After the preprocessing of each polygon in trapezoids as
given above, the set of intervals can be found ilND{me.
For the preprocessing (@logN) total time will be suffi-
cient. Indeed, leh1, ny, ..., Ny be respectively the number
of edges ofP, P, ..., Pv. Theny;nj = N, and for each
polygon P, there exists a positive constamsuch that the

© The Eurographics Association 1997

preprocessing d® can be obtained in time(n;logn;). Since
logn; < logN for anyn;, the total preprocessing time for the
set ofM polygons is

M M
¢ (nilogni) < c(logN) » ni =cNIogN.
i=1 i=1

Hence we can conclude that the polygon-clipping problem
can be solved in linear time if MlogN) time of prepro-
cessing is allowed.

3. Improving the expected running time

Even if one can find all intersections in(I9?) time, it is

not sufficient to determine visibility. Most of the algorithms
proposed in thditerature34 37,4546 57 divide edges into line
segments at the intersection points, then test each line seg-
ment for visibility againseach polygon. As we have seen
earlier, the total number of intersection points — and there-
fore the total number of line segments —%N?) in the
worst case.

If the input polygons form the faces of a collection of sim-
ple polyhedra, it can be demonstrated that the total number
of polygons is at leadtl/3. Indeed, lem be the total num-
ber of polyhedra. Then for each polyhedrpnl <i < m,
Euler’s polyhedron theorem

vi+fi=a+2 1)

holds, wherey;, f; ande;, respectively, are the number of
vertices, faces and edges of polyhedmnlt follows from

1 that f; > ¢ —v; for eachp, then for the total number of
facesy fi, one can write

m m m m
i>Yea-Svi=N-=\y
igl I igl i; I i; I

wherey g is the total number of edges, afyd;; is the to-

tal number of vertices. There must be at least three edges
emanating from each vertex, and each edge is incident on
exactly two vertices, thereforgy; < 2N/3. Then it follows

from 2 thaty f; > N/3. TestingQ(N?) line segments against
N/3 faces take€2(N3) time. It is also possible to demon-
strate, however, tha@®(N?) time is sufficient for the above-
mentioned algorithms in the worst case.

)

For an improvement it should be noted that any viijb
algorithm has to determine the union ®{N) hidden in-
tervals on©(N) edges in the worst case. Sinc¢NlogN)
is a lower bound for determining the union Nfintervals
69, it appears that the best one can hope to achieve is a
O(N?logN) worst-case time. Though it has been demon-
strated tha®(N?) worst-case time can actually be attained
both for the hidden-liné® and for the hidden-surface prob-
lem 59 it is not easy to reduce belo®(N?logN) for any
practical algorithm.

Our worst-case lower bound is based on the fact that there

Dévai / Computational Requirements of VR Systems

can beQ(N?) intersection points. Then the question natu- 4. Approximation algorithms
rally arises whether a better algorithm exists for the cases
when there are a smaller number of intersections. Indeed, the
algorithm given below takes @N + k)logN) time, where

k, k <0< N(N-1)/2, is the total number of intersection
points.

A widely used classification of visibility algorithms distin-
guishes two main classes: object-space and image-space al-
gorithms 32336579, Object-space algorithms are supposed
to make calculations on the three-dimensional scene, while
image-space algorithms on the two-dimensional image. (Fo-
The following observations are us&d|f all polygonsare ey et al®2 use a slightly different terminology: image- and
projected into the viewing plarre the edges of the polygons object-precision algorithms, actually with the same mean-
induce a planar subdivisio® of 1. To avoid confusion, the ~ iNg.) Image-space algorithms are also supposed to exploit
vertices, edges and faces ®fwill be referred to as nodes, the finite resolution of the image, while object-space algo-
arcs and regions respectively. When moving from one region fithms are assumed to be independent of the display device.

into a neighbouring region by crossing an ardfone ei- This classification, however, is inappropriate in some re-
ther enters the projection of a polygBror leave the projec- gpects. First, as visibility can only be decided by the com-
tion of a polygonQ. Within each region o6 the polygons parison ofz-coordinates, it is not possible to perform all cal-
can be ordered according to their distance from the observer culations in image space. Thus, there is no pure image-space
even if the polygons cyclically overlap. The ordering can be ajgorithm. Second, performing any possible amount of cal-
maintained by a priority queue, and the algorithm, called the cyations in image space does not necessarily mean the ex-
priority-queue methods stated as follows. ploitation of the finite resolution of the image.

1. Determine the planar subdivisidd of the projection The algorithm presented in section 3 does most of its cal-
planertinduced by the images of théedges in the input. culations in image space (finding edge intersections, deter-

2. Visit all regions ofG systematically by moving from one ~ mining and traversing the subdivision af but the resolu-
region into a neighbouring region by crossing an arc of tion of the image is not even mentioned. We propose a more

G. If the projection of a polygor® is entered, inser® appropriate classification.

in a priority queueH, and if the projection of a polygon An algorithm is called aexact algorithnif it determines
Qs left, deleteQ from H. The polygon corresponding each visible point of the scene, and maps them onto the pro-
to the minimum element dff will be visible within the jection planert Then the algorithm in section 3 should be
currently visited region. classified as an exact algorithm. Another class of algorithms,

calledapproximation algorithmsas opposed to exact algo-
rithms, determine and map onto the projection plane only
a subset of the visible points of the scene. In other words,
these algorithms compute approximations to the visible set
of points.

Step (1) can be implemented if @+ k) logN) time 7. 10.64,
While traversing the regions &, one has to account at most
one insertion and at most one deletion for each crossing of
an arc ofG. Both an insertion and a deletion can be done
in O(logN) time 2.5275 and the number of arcs is O(N +
k), therefore step (2), and also the whole algorithm, can be In raster displays picture elements, calfxelsfor short,
implemented in @ N+ k)logN) time. of € by € size are used to approximate the exact image. As

) o the aspectratio of images is usually constant, we can assume

Having an upper bound on the running time as a func- \ithout loss of genetity that the number of pixels§ = 1/¢,

tion of k, we can now prove that if the expected number of s the same in both the horizontal and vertical directions.
intersections is (N), the expected running time of the al- o) -~ B)

gorithm is QNIlogN), regardless of the underlying proba- The visibility algorithms traditionally classified as image-
bility distribution of the nput data. Indeed, let &} be the ~ SPace algorithms are actually approximation algorithms in
expected number of intersection points, and (&t) be the most of the cases. The dominant visibility algorithms in use
expected running time of the algorithm. An upper bound on nowadays are z-buffer scan-line algorithms and ray casting
the running timeT(N) of the algorithm can be expressed *- It €asy to see that the z-buffer and the ray casting meth-
asc(N +k)logN for somec > 0. Now, assume that &} = ods taked(K?N) time in the worst case. It is also not hard

O(N). Then to demonstrate that the expected running time of the z-buffer
algorithm is stillO(K?N), eg, for a set of orthogonal rectan-
t(N) = E{T(N)} <E{c(N+Kk)logN} gles, assuming that the coordinates of their vertices are taken
— cNlogN + c(logN)E{k} uniformly, independently at random from a rectangular par-

allelepiped. Indeed, if one chooses two points uniformly, in-
dependently at random from a unit square in the plane, the
expected value of the area of the orthogonal rectangle deter-
mined by the two points is 1/9.

= O(NIogN),

which was to be demonstrated. Note that no assumption on
the distribution of the input data was made, the only require-
ment is that the expected number of edge intersections is Assuming just as many pixels as edgeski#= N, would

O(N). suggest that accepting an approximation does not pay: exact

© The Eurographics Association 1997

Dévai / Computational Requirements of VR Systems

algorithms, eg, Goodrich’s algorithAd, are asymptotically
faster. Perhaps using a hierarchical approach that can com-
pare more than one pixel at a time to each polygon would
resultin a faster algorithm. Warnock developed an algorithm
that uses the observation that pixels within large areas of the
image are coherent in the sense that they represent a sin-
gle polygon®s 32, However, it has been demonstratédhat
Warnock’s algorithm also take®(K2N) time in the worst
case. Greene et & describe a heuristic method similar to E
Warnock’s algorithm, and report that a hierarchical approach
can be faster in practice than the ordinary z-buffer algorithm.
In the remainder of this section we demonstrate that hierar-
chical data structures, called z-trees, can be used to develop
approximation algorithms with running times of sublinear
functions of the total number of pixels. subtree, and if the left endpoint &fis to the right of

. . . L, execute the algorithm on the right subtre&/of
_ A scaq-hne variant c_)f the z_—buffer algorithm tak@eKN) (3.2) otherwise spliX is by L, and execute the algorithm
time, while the scan-line variant of the z-tree method takes on both the left and the right subtrees\of

O(NlogK +K) time in the worst case. A z-tree for a two-

dimensional problem is a binary tree, where the root node A binary z-tree foiN line segments anid pixels can be built
represents the whole scan line Kfpixels, the left son of ~ in O(NlogK) time, and takes (X) space in the worst case
the root the pixels numbered from 1 6K +1)/2], and the 23, The visibility of the scan line can be obtained by a pre-

Figure 4: A z-tree representation of a line segment

right son the pixels numbered fropiK 4-1) /2| + 1 toK. In order traversal of the z-tree. LeV be initially the rootnode
general, if a node represents pixels frorto r, its left son of the tree, and lef be a background segment which is far-
will represent those frorhto | (r +1)/2], and its right son ther from the viewpointithan any other segmentin the scan
from [(r41)/2| + 1 tor. plane. Then a preorder traversal of a binary z-tree can be

) _ _ _ _ done recursively as follows.
Associated with each nonterminal nodeis a vertical

line L such that the pixels represented by the left soof (1) Visit nodeV. If F is nearer tai than the blockeB of V,

are to the left ofL, and those represented by the right son _ Substitute the appropriate partfeffor B. -

of V are to the right ofL. There are also associated with (2) LetF be the blocker oV obtained in step (1). Visit in
each node two integer andz. The line segmenB de- preorder the subtree with ro®f, then the_ subtree with
termined by pointgl,z;) and(r,z) is called theblockerof rootV,, whereVy andV; are the left and right sons f

V. In Figure 4 a z-tree representation of a line segmentis ~ "€SPectively.

given: blockers assigned to leaves denoted by solid squaresthe above algorithm takes(®) time, which is asymptoti-
generate the original segment. cally the same as the output time of a z-buffer. Therefore, the
scan line variant of the z-tree method takgN®gK + K)

time in the worst case. A three-dimensional generalisation
of the z-tree method generates a hierarchical data structure
in O(NK) time that can be displayed in(®?) time 23.

The introduction of blockers allows for the representation
of all the N line segments in the scan plane by a single z-
tree. If several blockers occur with the same node, then only
the nearest to the viewpoint is retained. Assuniihpixels,

a binary z-tree has at moktleaf nodes an& — 1 internal
nodes, regardless of the number of line segments inserted in5, Parallel complexity
the tree. That s, the information for the invisible parts of the

segments is lost. Distinguishing exact and approximation methods is also im-

portant when considering parallel solutions to the visibil-
The z-tree conversion of a line segment can be accom- ity problem. Most parallel approaches recommended until
plished recursively as follows. L&t be the root node of the recently are based on the z-bufférs! or ray-tracing?*e. 68
tree initially. methods that classify as approximation algorithms. With
these methods usually a processor is assigned to each pixel.
(1) If the current line segmem is totally hidden by the In ger‘]era|l by using approxima’[ion methods the \y||$yb

blockerB of nodeV, then discarK and return. problem can be divided conveniently among as many pro-
(2) Otherwise ifBis totally hidden byX, substituteX for B, cessors as are available.
and return.

It is more difficult to find solutions to the exact hidden-
line and hidden-surface problems. The most widely accepted
(3.1) if the right endpoint oK is to the left of the vertical theoretical models of parallel computation are the variants

line L assigned t&¢/, execute the algorithm on the left of the Parallel Random Access Machif@RAM) model.

(3) IfnodeV is not a leaf, then

© The Eurographics Association 1997

Dévai / Computational Requirements of VR Systems

The PRAM model is a collection of random access ma- time andN processors. The product of time and processor
chines and a global memory. All the processors have accessnumber is equal to the sequential complexity of the problem,
to the global memory, and run synchronously. The global therefore the algorithm achieves a perfect speedup.

memory accesses are assumed to take unit time. The vari-

ants of the PRAM model handle concurrent reads and writes
to the global memory cells differently. The major variants
are the exclusive read, exclusive write (EREW), concurrent
read, exclusive write (CREW) and concurrent read, concur-
rent write (CRCW) models. The most often used variant is
the CREW PRAM model. In this model any number of pro-

cessors can read a given global memory cell at once, but at

most one processor is allowed to write into a given mem-
ory cell in one step. If more than one attempts to write, the
computation is invalid.

The generally accepted deifion for the fast solvability
of a problem by parallel algorithms is if it can be solved in
time polynomial in logN by using a number of processors
polynomial inN, whereN is the problem size. This class of
problems is commonly referred to BsC. One reason why

In section 5.2 the parallel interval-union algorithm is used
to develop an algorithm for hidden-line elimination. The
hidden-line algorithm takes @gN) time with N2 pro-
cessors, and therefore achieves a linear speedup on the
O(N2logN) worst-case time of the best known practicable
sequential algorithms.

5.1. The interval-union problem

In a wide range of application areas such as computer-aided
design, geographic information systems, data processing and
computer graphics we are often required to finduhen of
point sets Given a collectiorRy, Ry, ...,Ry of N point sets,
determine the se® defined byR; UR; U ... URy. In partic-

ular, the hidden-line problem requires the determination of
a subset of a line segmehtcontained by a collection of

N C is broadly accepted as the class of problems amenable point setsRi, Ry, ...,R¢. More precisely, ifL is the image of

to parallelization is that this class remains the same whether
it is defined in terms of any variant of the PRAM model, or
in terms of any other reasonable model, eg, uniform circuits.
To convert one model to another, a slow-down or speed-up
of a factor of logN emerges. The advantageNfC is that

it allows us to ignore the factors of Idgthat separate the
various models.

It has been demonstrated that the exact hidden-line prob-
lem can be solved i®(logN) time in the worst case witN?
processors, and that ti@&logN) time cannot be further im-
proved in the CREW PRAM model, even if arbitrarily many
processors are availalfie We prove the same result for the
EREW modePs. The EREW model is the variant of PRAM
closest to real machines.

First we propose a parallel algorithm for determining the
union of a set of intervals, and then we use this algorithm to
develop a parallel hidden-line algorithm. No parallel algo-
rithm is known in the literature for the interval-union prob-
lem, though it has been demonstratéthat the hidden-line
problem can be solved @(logN) time with N2 processors
under the CREW model. The parallel hidden-line algorithm
proposed earlie? uses a parallel sorting algorithm as a pre-

processing step, and parallel sorting seems to be a promis-

ing starting point also for the interval-union problem. We
can use an optimal EREW parallel sorting algorithm pro-
posed by Colés. Unfortunately, the hidden-line problem is
significantly more difficult than sorting, and the earlier paral-
lel hidden-line algorithnd? relies heavily on concurrent-read
operations.

In section 5.1 we introduce the problem of union of point
sets. In particular, if the point sets aeintervals of the real
line, we demonstrate that the complexity of the problem is
©(NlogN) under the algebraic tree model of computation.
Then we present a parallel algorithm that takedo@N)

an edge, an®, Ry, ..., Ry are images of polygons lying be-
tween the edge and an observer in three-dimensional space,
then the visible subs#t of L to be displayed is

V=L-{RIURU..UR} 3)

where R1,Ry,...,R¢ are also polygons. Surprisingly, the
computation of equation 3 according to the digifim would

be both excessive and insufficient at the same time. It is in-
sufficient, because a particular polygBn 1 <i <k, may
coverL along some intervals, but may not cover it along
some other intervals, eg,i is a simple polygon with holes.
On the other hand, the computation of equation 3 is exces-
sive, sinceRy URy U ... UR is not required; what we only
need is the union of the hidden intervalsLof

Then theinterval-union problemas a special case of the
problem of the union of point sets, can be formulated as fol-
lows: Given a list of A real numbers representing the end-
points ofN intervals, compute the union of these intervals.

Fredman and Weid® have established the complexity of
a similar problem, ie, theneasuref the union of a set of in-
tervals, under the linear decision tree model of computation.
It is relatively straightforward to establish the complexity of
the interval-union problem under a more general model of
computation, called thalgebraic treeé by demonstrating
that any algorithm that can find the unionNfintervals can
also decide the element distinctness problem. &leenent
distinctness problens stated as follow$®. Given N real
numbers x1,Xo, ...,Xn, decide if all are different (ie, there
are noi andj, 1 <i,j <N, suchthat # j andx = ;).

Indeed, giverxy, X2, ...,Xn @s an input for the element dis-
tinctness problem, form the intervdlg, x],1 <i <N, and
find their union. If the number of output intervals is exactly
N, the numberss, Xz, ...,xn were all different, and the an-
swer is ‘yes'’ to the element distinctness problem, otherwise

© The Eurographics Association 1997

Dévai / Computational Requirements of VR Systems

‘no’. From here it follows that th&(NlogN) lower bound

for the element distinctness problem is also a lower bound

for determining the union dfl intervals.

To devise an optimal algorithm which we will attempt to
parallelize, we only need a counterinitialisedc = 0. For

simplifying the presentation we assume that all the endpoints

of the inputintervals are disjoint. First we sort the endpoints

of the intervals in increasing order, relabel them such that
X1,X2,...,X2N IS the sorted sequence. Then we scan that se-

guence starting wittx;, and increment by 1 if xj,1 <i <

2N, is a left endpoint, decremeatby 1 if x; is a right end-
point of an input interval. Whenever= 1, we recordx; as
the left endpoint of an output interval, and whenever 0,

we record; as the right endpoint of an output interval.

It is not hard to demonstrate that whenewer 1, x; must
be the left endpoint, and & = 0, x; must be the right end-
point of an input interval. Also ik; is the left endpoint of
an input interval and > 1, or if x; is the right endpoint of
an input interval angd > 0, x; must be overlapped by one or
more intervals. The running time of the above algorithm is

dominated by the sorting step, therefore we can summarise

our results as follows.

Lemma 4 The complexity of determining the union of
intervals of the real line i®(NlogN) in the worst case, as-
suming the algebraic tree model of computation.

Though the proposed algorithm is quite simple, there are two

difficulties with its parallelization. First, scanning the sorted
list is inherently sequential. Second, even if we know the

endpoints of the output intervals, it is not easy to store them

in the memory parallely. We will use a linked list such that

the elements of the list are stored in an array with mappings

pred andsucg wherepred provides the element preceding
a given element, ansuccprovides the element subsequent

left endpoint, therw; = 1, and ifx; is a right endpoint,
thenw; = —1;

(3) Compute the parallel prefix sum

Ci=Wi1+Wo+...+W

forall xj, 1<i <2N;

4) for all xj, j=1,3,...,2N —1,do in parallel
j

if ((xj is a left endpoinéind ¢j > 1) or
(xj is a right endpoinand c; > 0)) then
removex; from the doubly linked lisD
endif
endfor;

(5) Repeatstep (4) for aXj, j = 2,4,...,2N, in parallel;
(6) Rank the doubly linked lisb, and write the endpoints of

theM < N outputintervals parallely intoM consecutive
cells of the global memory.

The correctness of the above algorithm is based on the same
observations as we made for the sequential algorithm, there-
fore we can state the following.

Theorem 3The union ofN intervals of the real line can be
computed in @ogN) time in the worst case by usimgpro-
cessors, assuming the EREW PRAM model of computation.

Proof: Step (1) can be implemented i(logN) time by us-

ing N processors under the EREW model Step (3) and
therefore step (6) take (@gN) time andN/logN proces-
sors assuming the EREW modél Steps (2), (4) and (5)
take constant time and processors. There are no memory
conflicts in step (2), and we can avoid memory conflicts by
examining and, if necessary, removing first the odd elements
of D in step (4), then the even elements in step (5). Therefore
the whole algorithm can be implemented ifi@N) time in

the worst case by usinyg processors, assuming the EREW
PRAM model of parallel computationl

to a given elementin the list. Then overlapped endpoints are 5.2. Hidden-line elimination

simply removed from the list.

We apply an efficient technique proposed by Kruséal
al 54, The parallel prefix problemis to compute all initial
prefixesxi, X1 0X2,...,X1 0Xg 0...oXN Of N itemsxg, X2, ..., XN,
whereo is an associative binary operation. By the solution
of the parallel prefix problem we not only can assign the
values of the countarto the endpoints of the intervals, but
also can attach ranks 2, ...,N to the elements of a linked

As we said earlier, the input to a hidden-line algorithm is a
set S of pairwise disjoint ordinary polygons (simple poly-
gons possibly with holes). La¥l be the total number of
edges, and leti be a viewpoint,u = (0,0, —). We will
adopt the convention that the vertices of the outer bound-
ary of a polygon are given in counter-clockwise order, and
the vertices of a hole in clockwise order. Then the interior
of a polygon will always lie to the left as its boundary is

list, eg, 1 to the first, 2 to the second element etc, and the traversed.

elements can be placed in an array by simply using the rank

If we wish to achieve a sublinear running time, it follows

of each element as its index. Then the parallel interval-union o the sequential complexity of the problem that we need

algorithm is stated as follows.

(1) Sort the endpoints of the intervals in increasing order,
relabel them, and prepare a doubly-linked Xtsuch
thatxy,x2, ..., Xon Is the sorted sequeng@ed X) = Xi—1,
sucex) = Xi4+1, 2< i < 2N —1, predx;) = nil and
sucdxgn) = nil;

(2) Assign weightswy; to x;, 1 <i < 2N, such that ifx; is a

© The Eurographics Association 1997

Q(N) processors, which may have memory conflicts while
processing th&l edges of the input. Therefore, we have to

make copies of the input first if we assume an EREW model.
We can make use of the following observation.

Lemma 5The content of any cell of the shared memory can
be copied into any block dfl consecutive cells in QogN)
time by usingN/logN EREW PRAM processors.

Dévai / Computational Requirements of VR Systems

Let g be the image of edge in the projection plane, and
let |; be the straight line containing, 1 <i < N. We can
assume without loss of gendita that |; coincides with the
x-axis of the coordinate system. Then a parallel hidden-line
algorithm can be formulated as follows.

(1) MakeN copies of the description of each edgel < i <
N, in N consecutive blocks of memory cells.
(2) forall edges, 1<i<N,doin parallel

(2.1) Find the intersection pointg of lj with all gj, 1 < j <
N, j #1i, such that; is nearer to the observer than
at the intersection poing;.

(2.2) Letaj andbj be the endpoints afj, 1< j <N; j #l,
and letej be oriented frorma; to bj. If a; is abovel;,
labelx; as a left, otherwise as a right endpoint.

(2.3) Letx be a point oflj to the left of the leftmosk;, let
Xr be a point of; to the right of the rightmost;, x5 be
the left endpoint 0f;, andx, be the right endpoint of
g. Labelx andx, as left,x5, andx; as right endpoints.

(2.4) Determine the union of the intervals specified by the
endpointsq, Xa, X, Xr andxj, 1< j <N; j#i.

(2.5) Insertxy andxg into the listL obtained as a result of
step (2.4). If the insertion o, fails, ie,x; is already in
L, then the intervalys, sucdxy)) is a visible segment
of g, otherwise elsex, succxy)] is a hidden inter-
val of g. Similarly, if the insertion ok, fails, then the
interval pred(Xy), Xp] is a visible segment &, other-
wise [pred(Xp), Xp] is a hidden interval o&. Discard
the elements df left to X5 and those right tag,.

end

Using the notation of the algorithm, it is relatively straight-
forward to demonstrate the following.

Lemma 6 If two consecutive elements; and X, | # a,

k # b, of L are a left and a right endpoint respectively, then
[Xj.x¢] is a hidden interval. Otherwise ¥ is a right, andk

is a left endpoint, therx{,x) is a visible segment o .

Then we can state the main result of this section.

Theorem 4 The hidden-line problem for a set of pairwise
disjoint polygons with a total oN edges can be solved in
O(logN) parallel time and @N?) space by using\? pro-
cessors, assuming the EREW PRAM model of parallel com-
putation.©(logN) time is the best possible under both the
EREW and the CREW models with arbitrarily many proces-
sors.

Proof: Step (1) of the above algorithm can be implemented
in O(logN) time by usingN?/logN processors according
to Lemma 5. Steps (2.1) and (2.2) take constant timeNand
processors (or GogN) time andN/logN processors). Step
(2.3) takes QlogN) time andN/logN processors. Accord-
ing to Theorem 3 step (2.4) can be computed iflo@N)
time in the worst case by using processors. In step (2.5)
Xa andxy can be inserted ik in O(logN) serial time, dis-
carding the elements df left to x5 and those right to,

take QlogN) time andN/logN processors by ranking.
Therefore step (2) of the above algorithm can be executed
in O(logN) time for a single edge by usiny processors.
Using N2 processors, the algorithm can be executedNor
edges within the same time under the EREW model.

It follows from the definition of visibility that finding the
maximum ofN integers is constant-time reducible to the hid-
den line problem by usinly processors. Cook and Dwokk
have given ar2(logN) lower bound for finding the maxi-
mum ofN integers allowing infinitely many processors of a
CREW PRAM model. From here the theorem follows.

While the proposed hidden-line algorithm is optimal in
a stronger sense, ie, its running time cannot be further im-
proved, an interesting question arises: woNfy logN pro-
cessors be sufficient to maintairfl@gN) time? The proof of
the Q'N?) sequential complexity of the hidden-line problem
20 is based on an optimal algorithm for the arrangemeiM of
lines in the plane. Recently Goodrigthproposed an optimal
parallel algorithm for constructing line arrangements. Com-
bining Goodrich’s result with the techniques presented here
and in20 the question can be answered affirmatively. The
resulting algorithm, however, is significantly more compli-
cated than the one presented here.

The theoretical significance of the above results is
the demonstration that the exact hidden-line problem is
amenable to parallelization. The practical consequence is
that the exact hidden-line problem can be solved on real ma-
chines in Qlog?N) time, whered is a small positive con-
stant depending on the particular machine.

6. Distributed-memory parallel algorithms

Unfortunately, the a global shared memory required by the
PRAM models is not feasible in practice. A practical ap-
proach with the technology available in the foreseeable fu-
ture is to assign a processor to each row of picture elements
of a raster-scan image, in order to compute the image of that
particular ron?”. Then the dominant computational problem

is the determination of the visibility of a planar set of line
segments.

Given a pointu and a se& of n opaque line segments in
the plane, the planar visibility problem requires to find the
line segments or part of the line segmentSirisible fromu.
Recall that in computer graphics tfve z) Cartesian coordi-
nate system and= (0, —) are assumed, the visible image
is projected into the-axis, and the algorithms for the solu-

tion of the problem are referred to asan-line algorithms
32,65

An early algorithm, which take®(n?) time in the worst
case, was given by Watkirgs 5. In practice thez-buffer al-
gorithm— an approximation method — is often used, where
the image is divided into equal picture elements. The visi-
bility of each picture elementis approximated by the visibil-
ity of a sample point, usually taken at the middle of the pixel.

© The Eurographics Association 1997

Dévai / Computational Requirements of VR Systems

A linear array of size, called the z-buffer, is maintained.
Each element of the array is used to recordzieeordinate

of the input line segment nearestit@long the line through
the sample point. Then the algorithm simply subdivides the
projection of each input line segments into pixels, and up-
dates the appropriate elements of the z-buffé®inr) time

in the worst case.

The z-buffer algorithm is easy to implement in hardware
6051 and the speed of that system is difficult to surpass if
there are few overlapping surfaces in the scene. However, in
virtual-reality applications the depth of the scene increases;
there are multiple overlapping sades, and the speed of the
z-buffer algorithm quickly deteriorates. One of the objec-
tives of this section is to provide alternatives to the z-buffer
algorithm.

If the output for the exact solution is required in a sorted
order, it is easy to provide a@(nlogn) lower bound by
demonstrating that sorting is reducible to the planar visibility
problem3. However, this is the time requirement for sorting
the output, which is not inherently required. In section 6.1 a
proof is provided that the planar visibility problem in itself
takesQ(nlogn) time even if the output is not required in a
sorted order.

6.1. Lower bound

We demonstrate that a@(nlogn) lower bound applies to
the exact solution of the planar visibility problem even if
the output is not required in a sorted order. In particular, we
prove that any algorithm that determines the visibilitynof

(41)

I
[~

(%44)

)

u

/

Xj = Xj

Figure 5: Element distinctness is reducible to planar visibil-
ity

the author!9, solves the problem in @logn) worst-case
time without the need for preprocessing by using a plane-
sweep method and maintaining a priority queue of line seg-
ments. Another algorithm, based on a divide-and conquer
approach and called threergemethod also achieves the op-
timal O(nlogn) worst-case timé.

Early scan-line algorithm8 87 take ©(n?) time in the
worst casé?, and attempt to exploit coheren&e> which is
no longer possible in a parallel environment, where adjacent
scan lines may be processed by different processors. Both
the priority-queué?® and the mergémethods tak@®(nlogn)

line segments in the plane can be used to solve the elementtime in the worst case, ie, these methods are best possible in

distinctness problem by using(@) additional operations.

Let us suppose that given an inpatxo, ..., X, for the ele-
ment distinctness probleff, and we are allowed to use any
algorithm for determining the visibility of a planar set of line
segments. Let = (a,b) be the observer's position with ar-
bitrary a andb < 0. Associate with eack, 1 <i < n, the
closed line segmeritx,i), (x,i)], where(x,i) is the inter-
section point of a ray frora through(x;, 0) with the horizon-
tal linez=1. This set of line segments can be constructed in
O(n) operations, ang = x; holds for 1<i, j < nandi # |
if and only if one of the pointgx;,i) and(xj, j) is hidden the
other, as shown in Figure 5. Then the element distinctness
problem can be decided as follows: If the number of visi-
ble segments returned by the visibility algorithm is exactly
n, the input numbers, Xy, ...,Xy were distinct, otherwise
not. Q(nlogn) is a lower bound for the element distinct-
ness problem, eg, in the algebraic tree mdééelt follows
thatQ(nlogn) is a lower bound also for the planar viity
problem in any computational model whe®¢nlogn) is a
lower bound for the element distinctness problem.

The binary-partition-tree metho# can solve the visi-
bility problem in Q(nlogn) expected time after some pre-
processing. Theriority-queue methodoroposed earlier by

© The Eurographics Association 1997

terms of worst-case time, but use sorting, and merging of
visible sets of line segments, therefore less appropriate for
hardware implementation. The next two sections offer four
simple but efficient scan-line algorithms. First two hierar-
chical methods based on subdivision techniques, then two
simple probabilistic algorithms aregposed.

6.2. Hierarchical methods

A scan-line algorithm can be developed by using the ideas
proposed by Warnock for determining the vitip of a set

of polygons in three-dimensional spaéés. An interval of
thex-axis containing the image of the input set will be called
thewindow Warnock’s basic idea is to attempt to display the
image if it is simple, otherwise subdivide the window until
the image is simple enough. Each input line segnhexain

be classified according to the relation of its imag® the
current windoww as follows:

e containedby the window, iet C W, where C’ denotes
the proper subset relation,

¢ totally overlappinghe window, ieW C 1,

¢ disjointfrom the window, iex "W = 0 and

¢ intersectinghe window, ieTNW #O0AW Z TAT ¢ W.

Dévai / Computational Requirements of VR Systems

Let Sbe the set of input line segments, amd background
line segment. Initiallyw represents the scan line consisting
of r pixels. Then a s€l is constructed such thatcontains

all line segments to be processed in the current window. An
image is regarded to be simple if only the background seg-
ment is visible, ieT = 0, or each element df is hidden by

a single line segment. If the image is not simpléjs sub-
divided into two equal sub-windows, and the procedure is
applied recursively to procedsin both sub-windows. The
planar visibility algorithm based Warnock's ideas is formally
stated as Figure 6.

With reference to the notation of Figure 6, it should be
noted thafl will always be empty when window is equal
to a pixel, as the image of each segmenTinill overlap
W, and will be put on lisB. Therefore the termination of the
algorithm can be assured by testind@'ifs empty.

The recursive subdivision of the scan-line can be repre-
sented by a binary tree ofleaf nodes and — 1 internal

From here it follows that an upper bound on the worst-case
time is Q(nlogr).

An input set can be created such that each segment is
processed i®(logr) sub-windows, therefore the worst-case
time requirementi®(nlogr). For similar considerations the
worst-case space requirement is aalogr). The slightly
more sophisticated-tree method? reduces the space re-
quirement to®@(n+r) while retaining thed(nlogr) worst-
case time bound.

Now let us return to the analysis of the planar Warnock
method. First we observe that both methods make the same
window subdivisions. Indeed, if a window is subdivided
by the subdivision method because of a line segrheiet
TNW #£ 0 andW ¢ T, the same windowV will also be sub-
divided by the Warnock method.

Now the difference between the two methods is in the ter-
mination of the processing of the line segments. With the
subdivision method the processing of any line segrheah

nodes, both the internal and the leaf nodes corresponding e terminated in two ways: eitheis discarded as hidden by

to a window. Then the total number of windows is-21.
There are @n) operations in any window, therefore an upper

another line segment, bis displayed as a background. With
the Warnock method there is also a third waig discarded

bound on the worst-case time of the planar Warnock method 5 disjoint from the window. While the first two types of ter-

is O(nr). As a copy of each element of the input set may be
made in each window, the samén®) upper bound applies
to its space requirement in the worst case.

The actual time and space requirements must be bette
since short line segments will not be processed in all win-
dows, and on the other hand if there are several long line
segments, all but one will become hidden and removed from
T at a certain level of subdivision. To be able to give sharper
bounds we develop another algorithm.

The planar Warnock method does not subdivide th&set
of line segments, only the window, therefore each line seg-

ment should be tested against another sub-window at the

mination can happen several times to the same line segment,
ie, the parts of the same line segment will become hidden in
different windows, and also several parts of a line segment

r can be displayed as a background. The third type of termi-

nation, however, can only happen once to each line segment;
when it becomes disjoint to a winddw, and it will never
again be considered in the sub-window¥fThus the pro-
cessing of the line segments terminates by on{p)Gddi-
tional operations, therefore the Warnock method must take
O(nlogr) time and space in the worst case.

6.3. Probabilistic Algorithms

same level, even if the line segment is already outside that We propose two probdistic algorithms with the advan-

sub-window. These extra tests are avoided by the second al-

gorithm we propose, called tiseibdivision methqdvhich is
similar to the Warnock method, except that the Sét al-
ways subdivided according to the window boundaries. The
subdivision method is presented as Figure 7.

Note that, thougl®is subdivided intd5; andS, with the
subdivision method, the line segments overlapping the win-
dow boundary are not subdivided for efficiency reasons; a
copy of these line segments appears botg iandS,. How-
ever, for an upper bound on the running time of the subdi-

vision method we can assume that all the line segments are

subdivided at the window boundaries. The crucial observa-
tion is that the windows, where a particular line segnést

tages of simplicity and good expected running time. The first
method, calledandom is stated as follows. If the input set

S of line segments is empty, display the backgrobrahd
return. Otherwise choose a line segmeat random. Dis-
card all line segments and parts of line segments hidden by
t. Subdivide the remaining line segments if necessary along
the vertical lines through the endpointstofet S, S and

S be the set of line segments left and right @nd in front

oft, respectively. Apply the procedure recursively &r S
andSs, with the backgrount for S; andS,, and usé as the
background foiSs.

The second algorithm, called thepezoid methodran-
domly selectsk or |S], whichever is the smaller, line seg-

processed, correspond to the external and internal nodes of aments, where is a constant, an{§ is the number of line

segment tree representing the line segmerénce any line
segment could be represented by less than 2logtandard
intervals of a segment tre®, though with the subdivision
method is represented by at most that many copies of itself.

segments in the input s& Then the algorithm chooses a
segmena with the largest area trapezoid a) formed bya,

the backgrount) and the vertical lines through the endpoints
of a. All line segments and parts of line segments hidden by

© The Eurographics Association 1997

Dévai / Computational Requirements of VR Systems

WarnockSW,b)
initialise B andT as empty lists of line segments;
for each segmente Sdo
let T be the projection df into thex-axis;
if TNW # 0then
if W C 1 then copyt to list B elsecopyt to list T endif
endif
endfor;
if B# 0then
find a € B as the segment nearestto
for each segmentc T do
if t is hidden bya then removet from T endif
endfor;
substitutea for b, and discard lisB
endif;
if T = 0thendisplaybin W
else
subdivideWw into two sub-window$Vy andW, of equal size;
WarnocKT,W,b); WarnockKT,Wa,b)
endif
end

Figure 6: The two-dimensional variant of Warnock’s method

subdi(S W, b)

initialise B as an empty list of line segments;

for each segmente Sdo
let T be the projection df into thex-axis;
if W C 1 then relocatet from Sto list B endif

endfor;

if B# 0then
find a € B as the segment nearestto
for each segmente Sdo

if t is hidden bya then removet from Sendif

endfor;
substitutea for b, and discard lisB

endif;

if S= 0thendisplaybin W

else
subdivideWw into two sub-window$Vy andW, of equal size;
subdivideSinto S = {t € S| TN"Wy #0} andS = {t e S|TNWL #£ 0}
subdiv(S;, Wi, b); subdiv(S;,Ws,b)

endif

end

Figure 7: The subdivision method

a are discarded. In other words, the part of the scene within twice for the same input. Recall that this type of algorithms

T (a) is removed. Le§;, S andS; be as with the random are classified as Las-Vegas algorithms.

method, and the procedure is applied recursivelySiorS, o

andSs. The trapezoid method is stated formally as Figure 8. FOr establishing an upper bound on the worst-case run-

The best value ok is determined experimentally. ning time qf the random an_d the trapezoid r_nethods, consider

a setSof nline segments with non-overlapping images. If al-

The random and the trapezoid methods never give wrong ways the leftmost or the rightmost line segment is selected

results, but may exhibit different running times if applied for partitioningSinto subsets, the running time@(n?). On

© The Eurographics Association 1997

Dévai / Computational Requirements of VR Systems

trapezoidS, W, b)
if S= 0thendisplaybin W
else
for min(k, |S) line segments chosen at random fr&mo
find segmena with the maximum-area trapezold(a);
endfor;
subdivideW into sub-windowd\y, Wo andW; such that\ is to the left,
W is to right of T (a), andWs is the projection o& into thex-axis;
for each segmeiite S— {a} do
let T be the projection df into thex-axis;
if Tis to the left o5 then putt into §
else ift is to the right o4 then putt into S endif
else
cut off the part ot visible inWy (W) if any, and put it intoS; (S);
if t is in front of a then putt into Sz endif

endif
endfor;
trapezoidS;, Wi, by); trapezoid$S;, W, by); trapezoidSs,Ws,a)
endif
end
Figure 8: The trapezoid method
the other hand, both methods compare at nmogte seg- Constant factors can be determined from time measure-
ments in at mosti2— 1 vertical strips, which takes @?) ments in the actual machine environment where the al-
time, therefore their worst-case time requiremer®{s?). gorithms are to be used. Kremer-Pat&fdused manually
There can be at leasf'2 line segments broken into at least generated input to compare some algorithms including the
n/2 parts in the worst case, but there are at nmgsarts in priority-queue method®. Another possibility is to extract
any of the 21— 1 vertical strips. This gives &(n?) bound the input data from real three-dimensional models. Consid-
on the space requirement in the worst case. ering the number of possible algorithms together with their
variants, the number of time measurements required for con-
method time space clusive results would be too high, and this method would be
z-buffers2 65 o(nr) o(n+r) too expensive and time consuming. Since the input to a scan-
Watkins32 65 o(n?) o(n) line algorithm is only a planar set of line segments, more
priority-queue'® ©(nlogn) ©(n) efficient test-data generation methods can be developed.
merge3 O(nlogn) O(n)
z-tree?3 O(nlogr) O(n+r)
Warnock O(nlogr) ©(nlogr) 7. Experimental Performance Evaluation
:gﬁgfr'::e subdivision gng)’gr) ggzéc))gr) As some algorithms exploit_the fact that the_ input pr_oduc_:ed
. 2 2 by a solid modeler results in a set of non-intersecting line
trapezoid O(n%) O(n%)

segments, a test-data generation method is required to pro-
Table 2: Worst-case time and space requirements of scan- duce a set of non-intersecting random line segments in the
line algorithms plane. The first idea that would probably spring to mind is to
divide anr by r square intanrows andn columns such that
m= /r, and then choose the endpoints of a line segment at
random from each square. This would be a naive approach,
however, as it would result in a very sparse scene, ie, rela-
tively short line segments with a lot of empty space among
them.

Table 2 summarises the scan-line methods investigated,
together with the worst-case time and space requirements of
the particular method, whene is the number of line seg-
ments and is the number of pixels in the scan line. The
average running time can be significantly better for some
of the algorithms, and indeed, expected-time analyses of It can be demonstrated that the average distance of two
probabilistic algorithms attracted much attenti@cently points chosen uniformly and independently at random from
11,12,13,62, 63, Asymptotic analysis, however, cannottake into the [0,1] interval is 1/3. Therefore, in the one-dimensional
consideration constant factors, which can also be differentin case, we would obtain a set of line segments with an aver-
different environments. age length of gaps of twice the average length of the line

© The Eurographics Association 1997

Dévai / Computational Requirements of VR Systems

segments. Practical scenes are more dense. The reader is er
couraged to look at Figure 10 before reading any further, and

have a guess how the set of line segments was generated. - __—
The technique we propose is based on a channel- y / —_

assignment algorithn#2 and can be used to generate // \ / \/

coordinates of the line segments from arbitrary probability / \/ /

distributions. First the-coordinates of the left and right end- / -~ s ~_ \

points of the line segments are generated, which determine \ ~

an interval for each line segment. Then we find a minimal
partition of this set of intervals into subsets of intervals such
that no subset contains overlapping intervals. The subsets /
will be calledchannelsand each channel will correspond
to a horizontal band within an by r rectangle. As thex-
intervals corresponding to the line segments are pairwise dis-
joint within a channel, we can assign arbitrargoordinates

to the line segments within the same channel. The algorithm —~ \
is given in Figure 9, and a sample output in Figure 10.

Step 1 of the algorithm requiresi2andom numbers, and
takes @n) time. Step 2, dominated by the sorting, can be
implemented in @nlogn) time. Finally step 3 requiresn2
random numbers and (@) time. Therefore the proposed
method takes, in total,drandom numbers and(@logn)
time in the worst case to generateebordinates for a set of
n non-intersecting random line segments.

—

Figure 10: Non-intersecting random line segments

If i < j, the leftmostx-coordinate in channglcannot be The third possibility to speed up visibility computations
less than the leftmost-coordinate in channél Therefore is parallel processing. Approximation algorithms are inher-
the top left corner of the by r rectangle may appear empty. ently appropriate for parallel implementation, but using inef-
This problem can be eliminated by a random permutation of ficient algorithms, the power of parallel machines is merely
the channels before step 3. A C-language implementation of absorbed by compensating the poor performance of the algo-
the method has been incorporated in a testbed for the perfor-rithm. The most promising directions for future research are

mance evaluation of scan-line algorithms. in the applications of approximation and parallel techniques.

Contemporary VR research is driven by applications. Un-
fortunately, some of the promises of VR applications hyped

The computational requirements of CAD and virtual-reality by the media are unrealistic. These circumstances may do
systems are often underestimated, and this is the main reasor!2'm to both research and industry. For example, artificial-
for the inadequate usability and performance of these sys- intelligence research suffered when it failed to live up the
tems. We have demonstrated that, contrary to the prevailing hyPed promises. Therefore it is very important that VR ap-
theoretical background, visitty computations are a bottle- ~ Plications deliver at least the realistic promises, and a solid
neck. Most polygon-based, exact algorithms recommended theoretical background is definitely helpful for this purpose.
by the literature hav@®(N®) worst-case time, and also their
expected running time i®(N?) even if the total number of
edge intersections ®(N). If the expected number of inter-
sections is @N), the expected running time of the algorithm
we recommended is@® logN), regardless of the underlying
probability distribution of theriput data.

8. Conclusions

References

Aho, A. V., Hopcroft, J. E. and Ullman, J. De-
sign and Analysis of Computer Algorithm&ddison-
Wesley, Reading, Mass. 1975.

We have also demonstrated that most approximation algo- Aho, A. V., Hopcroft, J. E. and Uliman, J. Mata

rithms, including the z-buffer algorithm, tal@K2N) time
in the worst case, which is actually the same as the time re-
quirement of a brute-force method. We recommended the

use of hierarchical data structures, called z-trees, that can3.

reduce the worst-case time of approximation algorithms to
O(KN). With a typical resolution oK = 1024, this is a
promising approach.

© The Eurographics Association 1997

Structures and Algorithmg\ddison-Wesley, Reading,
Mass. 1983.

Atallah, M. J., Cole R., Goodrich M. T. Cascading
divide-and-conquer — a technique for designing par-
allel algorithms.SIAM Journal on Computind 8,3
(1989) 499-532.

Dévai / Computational Requirements of VR Systems

1) Generate pairs ofcoordinatesa;,b;), 1 <i < n, for nline segments;
2) Sortthe 2 x-coordinategx; } = {&} U {b;j} in non-decreasing order, such that
X1,X2,...,Xi,...,Xon IS the sorted sequence; Initialize a stack as empty;

for 1<i<2ndo
if X is the left endpoint of a line segmesithen
if the stack is emptthen
allocate a new channel
else
get a free channelfrom the stack
endif;
put segmensinto channet
else

push the channel containing the segment with the right

endpointx; into the stack as a free channel
endif
endfor;

3) Generate pairs agfcoordinates for each line segment within each channel.

10.

11.

12.

13.

Figure 9: Test data generation

Balch, D. C., Tichenor, J. M. Telemedicine expanding 14. Cobb, S. V. G., Dcruz, M. D., Wilson, J. R. Integrated

the scope of health-care informatiodournal of the
American Medical Informatics Associatidinl (1997)
1-5.

Bayarri, S., Fernandez, M., Perez, M. Virtual reality for
driving simulation.Communications of the ACI&9,5
(1996) 72-76.

Ben-Or, M. Lower bounds for algebraic computation
trees. Procl5th ACM Annual Symp. on Theory of Com-
puting (Apr. 1983) 80-86.

Bentley, J. L., Ottmann, T. Algorithms for reporting and
counting geometric intersectiodEEE Trans. Comput.
C-28(Sep. 1979) 643-647.

Bouknight, W. J. A procedure for generation of three-
dimensional half-toned computer graphics presenta-
tions.Comm. ACML3,9 (Sep. 1970) 527-536.

Bryson, S. Virtual reality in scientific visualization.
Communications of the ACBB,5 (1996) 62—71.

Chazelle, B., Edelsbrunner H. An optimal algorithm for
intersecting line segments in the pladeurnal of the
Association for Computing Machine®®,1 (Jan. 1992)
1-54.

Clarkson, K. L., Shor, P. W. Applications of random
sampling in computational geometry Riscrete and
Computational Geometd;1 1989, 387-421.

Clarkson, K. L. Randomized geometric algorithms.
Computers and Euclidean Geome1§92.

Clarkson, K. L., Cole, R., Tarjan, R. E. Randomized
parallel algorithms for trapezoidal diagramist. J.
Comp. Geom. and Applicatiod992, 117-133.

18.

[

21.

22.

9.

manufacture — a role for virtual-realitynternational
Journal of Industrial Ergonomic$6,4—6 (1995) 411—
425.

Cole, R. Parallel merge so8IAM J. Computing.7,4
(Aug. 1988) 770-785.

Cook, S., Dwork, C. Bounds on the time for parallel
RAMs to compute simple functions. Prot4th ACM
Symp. on Theory of Computin§an Francisco, Cali-
fornia, (May, 1982) 231-233.

. Coppen, D., Hawes, D., Slater, M., Davison, A. Dis-

tributed frame buffer for rapid dynamic changes to 3D
scenesComputers & Graphic49,2 (1995) 247-250.

de Berg, M. Ray shooting, depth orders and hidden-
surface removalLecture Notes in Computer Science
703 Springer Verlag, Berlin, 1993, 201 pp.

Dévai, F. Complexity of two-dimensional visibility
computations. Proc3rd European Conference on
CAD/CAM and Computer GraphigcBaris, France, Feb.
1984, MICAD’84 \ol. 3, 827-841.

Dévai, F. Quadratic bounds for hidden-line elimination.
Proc. Second Annual ACM Symposium on Computa-
tional GeometryYorktown Heights, New York, USA,
June 2—-4, 1986, 269-275.

Dévai, F. An intersection-sensitive hidden-surface al-
gorithm. Proc. BROGRAPHICS87, Maréchal, G. (Ed.)
Amsterdam, the Netherlands (Aug. 24-28, 1987) 495—
502.

Dévai, F. An QlogN) parallel time exact hidden-line
algorithm. In: Kuijk, A. A. M., Strasser, W. (Eds)

© The Eurographics Association 1997

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Dévai / Computational Requirements of VR Systems

Advances in Graphics Hardware, IBpringer-Verlag, 37.

Berlin, Germany, 1988, 65—73.

Dévai, F. Approximation algorithms for high-resol-

ution display. ProcPIXIM'88, 1st International Con- 38

ference on Computer Graphics in ParBéroche, B.
(Ed) France, Oct. 24-28, 1988, 121-130.

Dévai, FComputational Geometry and Image Synthe-
sis Lecture notes for Course 2, PIXIM'89, 2nd Inter-
national Conference on Computer Graphics in Paris,
France, Sept. 25-29, 1989, 88 pp.

w

40.

Dévai, F. An optimal parallel algorithm for the visuali-
sation of solid models. InApplications of Supercom-
puters in Engineering Il Elsevier Applied Science,

London, 1993, 199-210.

41.

Dévai, F. On the complexity of some geometric inter-
section problemslournal of Computing and Informa-
tion 1,1 (May 1995) 333-352.

Dévai, F. Scan-line methods for parallel rendering.
In: Chen, M., Townsend, P., Vince J. A. (Edd)gh-

Performance Computing for Computer Graphics and 43

Visualisation Springer Verlag, London, 1996, 88—98.

Dobashi, Y., Kaneda, K., Nakatani, H., Yamashita, H.,

Nishita, T. A quick rendering method using basis func- 44,

tions for interactive lighting-desigitComputer Graph-
ics Forum14,3 (1995) c229.

Firebaugh, M. WComputer Graphics. Tools for Vi-
sualization Wm. C. Brown Publishers, Oxford, UK,

1993, 547 pp. 45.

Fiume, E. L.The Mathematical Structure of Raster
Graphics Academic Press, San Diego, 1989.

46.

Foley, J. D., van Dam, Azundamentals of Interactive
Computer GraphicsAddison-Wesley, Reading, Mass.,
1982. 664 pp.

Foley, J. D., van Dam, A., Feiner, S. K., Hughes, J.
F. Computer Graphics: Principles and Practic(Sec-
ond Edition) Addison-Wesley, Reading, Mass., 1990.

1174 pp. 48.

Foley, J. D. et alintroduction to Computer Graphics
Addison-Wesley, Reading, Mass., 1994, 557 pp

Franklin, W. R. A linear time exact hidden surface al-
gorithm.Computer Graphic44,3 (1980) 117-123.

Fredman, M. L., Weide, B. On the complexity of com-
puting the measure affa;, b;]. Comm. ACM21,7 (July

1978) 540-544. 50.

Fuchs, H. et al. Pixel-planes 5: A heterogeneous mul-

tiprocessor graphics system using processor enhanceds1.

memories. Proc. SGRAPH89, 79-88.

© The Eurographics Association 1997

9.

42.

47.

Galimberti, R. Montanari, U. An algorithm for hidden-
line elimination.Comm. ACM124 (Apr. 1969) 206—
211.

Goodrich, M. T. A polygonal approach to hidden-
line and hidden-surface eliminatio@VGIP: Graphi-
cal Models and Image Processibg,1 (Jan. 1992) 1-
12.

Goodrich, M. T. Constructing arrangements optimally
in parallel. Discrete & Computational Geomet§,4
(1993) 371-385.

Greenberg, D. RGlobal lllumination: The Radiosity
Approach.Lecture notes for Course 14, PIXIM'89,
2nd International Conference on Computer Graphics in
Paris, France, Sept. 25-29, 1989, 56 pp.

Greene, N., Kass, M., Miller, G. Hierarchical z-buffer
visibility. Proc. SGGRAPH 93, Anaheim, California,
August 1993, 231-238.

Gupta, U. I, Lee, D. T., Leung, J. Y.-T. An opti-
mal solution for the channel-assignment probl&eEE
Trans. ComputC-28,11 (1979) 807-810.

He, T. S., Hong, L. C., Kaufman, A., Varshney, A.,
Wang, S. Voxel based object simplification. Prdf.
sualizatior95 (1995) 296-303.

Higgins, G. A., Meglan, D. A., Raju, R., Merril, J.
R., Merril, G. L. Teleos(TM): Development of a soft-
ware toolkit for authoring virtual medical environ-
ments.Presence — Teleoperators and Virtual Environ-
ments5,2 (1997) 241-252.

Hornung, C. An approach to a calculation-minimized
hidden line algorithmComput. & Graphic$,3 (1982)
121-126.

Hornung, C. A method for solving the vidity prob-
lem. IEEE Comput. Graphics & App#,7 (July 1984)
26-33.

Hubbold, R., Murta, A. West, A. Howard, T. Design
issues for virtual reality systems. In: Gobel, M. (Ed)
Virtual Environment&5, Springer Verlag, Wien, 1995,
224-235.

Jalili, R., Kirchner, P. D., Montoya, J., Duncan, S.,
Genevriez, L., Lipscomb, J. S., Wolfe, R. H., Codella,
C. F. A visit to the Dresden FrauenkirchHeresence —
Teleoperators and Virtual Environmergd (1995) 87—
94.

Kedem, G., Ellis, J. L. The raycasting machine. Proc.
1984 Int. Conf. on Computer Desigf@ctober 1984,
533-538.

Knittel, G. A scalable architecture for volume render-
ing. Computers & Graphic49,5 (1995) 653—-665.

Knittel, G., Schilling, A., Strasser, W.RamMMmY : High
performance graphics using graphics memories. In:

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Dévai / Computational Requirements of VR Systems

Chen, M., Townsend, P., Vince J. A. (Edbligh- 67.
Performance Computing for Computer Graphics and
Visualisation Springer Verlag, London, 1996, 33-48. 68

Knuth, D. E.The Art of Computer Programminyol.
3: Sorting and SearchingAddison-Wesley, Reading,
Mass., 1973.

Kremer-Patard, G. Evaluation d’algorithmes de calcul
de la visibilité d'un ensemble de segments du pRex
vue de CFAO et d’'Infographig,3 (1988) 39-57.

70.
Kruskal, C. P., Rudolph, L., Snir, M. Efficient parallel
algorithms for graph problemglgorithmica5 (1990)
43-64. 71.

Laszlo, M. JComputational Geometry and Computer
Graphics in C++. Prentice Hall, Upper Saddle River,
USA, 1996, 266 pp.

Loftin, R. B., Kenney, P. J. Training the Hubble Space
Telescope flight teantEEE Comput. Graphics & Appl.
15,5 (1995) 31-37.

Loutrel, P. P. A solution to the hidden-line problem for
computer drawn polyhedrdEEEE Trans. CompC—-193
(Mar. 1970) 205-213.

Marton, G.Investigation of the Average Complexity of
Ray-Tracing AlgorithmsPh.D Thesis, Budapest, 1995
(In Hungarian).

75.

McKenna, M. Worst-case optimal hidden-surface re-
moval. ACM Transactions on Graphi&1 (Jan. 1987)
19-28.

Molnar, S., Eyles, J., and Poulton, J. PixelFlow: High-
speed rendering using image compositi@omputer
Graphics26,2 (Proc. $6GRAPH 92, July 1992) 231—
240.

Molnar, S., Cox, M., Ellsworth, D., Fuchs, H. A sort-
ing classification of parallel renderintEEE Comput.

Graphics & Appl 14,4 (1994) 23-32. 78.

Motwani, R., Raghavan, lRRandomized Algorithms.
Cambridge University Press, Cambridge, UK, 1995,

476 pp. 79.

Mulmuley, K. An efficient algorithm for hidden sur-
face removal 2J. Computer and System Sciend6s3
(1994) 427-453.

Myers, E. W. An QEIlogE + 1) expected time al-
gorithm for the planar segment intersection problem.
SIAM J. Computl4,3 (Aug. 1985) 625-637.

Newman, W. M., Sproull, R. FRrinciples of Interac-
tive Computer Graphics(Second Edition) McGraw-
Hill Kogakusha Ltd, Tokyo, Japan, 1979, 541 pp.

O'Rourke, J. The computational geometry column.
Computer Graphic20,5 (1986) 232—-234.

69.

72.

76.

80.

O'Rourke, J.Computational Geometry in .CCam-
bridge University Press, Cambridge, UK, 1994, 368 pp.

Pili, P. A parallel raycast algorithm of CSG models
on CM2.International J. Modern Physics C-physics &
Computerg,1 (1993) 29-40.

Preparata, F. P., Shamos, MClomputational Geom-
etry. An Introduction.Springer-Verlag, Berlin, 1985,
390 pp.

Reed, D. A, Shields, K. A, Scullin, W. H, Tavera, L. F,
Elford, C. L. Virtual-reality and parallel systems perfor-
mance analysisEEE Compute8,11 (1995) 57-67.

Rimmek, K. Flight simulation, an advanced application
of virtual-reality.IFIP Transactions A— Computer Sci-
ence and Technolod®B (1994) 171-176.

Schaufler, G., Stlrzlinger, W. Generating multiple lev-
els of detail from polygonal geometry models. In: Go-
bel, M. (Ed)Virtual Environment&5, Springer Verlag,
Wien, 1995, 33-41.

Schaufler, G., Stirzlinger, W. A 3-dimensional im-
age cache for virtual-rdity Computer Graphics Forum
15,3 (1996) c227.

Schmitt, A. Time and spat®unds for hidden line and
hidden surface algorithms. ProcUROGRAPHICS81,
Darmstadt, Germany, (Sep. 1981) 43-56.

Sedgewick, RAlgorithms in C++ Addison-Wesley,
Reading, Mass., 1992, 658 pp.

Slater, M., Usoh, M. Simulating peripheral vision in
immersive virtual environment€omputers & Graph-
ics 17,6 (1993) 643—653.

Sudarsky, O., Gotsman, C. Output-sensitive visibility
algorithms for dynamic scenes with applications to
virtual-reality. Computer Graphics Forurh5,3 (1996)
€c249—c258.

Sutcliffe, A. G.Human-Computer Interface Design
Macmillan Press Ltd1988, Second etibn 1955, 326
pp.

Sutherland, I. E., Sproull, R. F., Schumaker, R. A.
A characterization of ten hidden-surface algorithms.
Computing Surveyg1 (March 1974) 1-55.

Teller, S. J., Sequin, C. H. Visibility preprocessing for
interactive walktroughs. Proc.I8&GRAPH 91, 1991,
61-69.

. Teller, S. J., Hanrahan, P. Global visibility algorithms

for illumination computations. Proc.I8GRAPH 93,
Anaheim, California, 1993, 239-246.

. Terashima, N. Telesensation — distributed interactive

virtual reality — overview and prospect&IP Trans-
actions A — Computer Science and Technolbgy
(1994) 49-59.

© The Eurographics Association 1997

Dévai / Computational Requirements of VR Systems

83. Usoh, M., Slater, M. An exploration of immersive vir-
tual environment€Endeavourl9,1 (1995) 34-38.

84. Watt, A. Fundamentals of Three-Dimensional Com-
puter Graphics Addison-Wesley, Wokingham, UK,
1989.

85. Watt, A., Watt, M.Advanced Animation and Render-
ing Techniques. Theory and Practidgddison-Wesley,
Wokingham, England, 1992, 455 pp.

86. WIloka, M. M. Lag in multiprocessor virtual-reality.
Presence — Teleoperators and Virtual Environments
4,1 (1995) 50-63.

87. Wylie, C., Romney, G. W., Evans, D. C., Erdahl, A. C.
Halftone perspective drawings by computer. Pieal
Joint Computer Conference 1967hompson Books,
Washington DC, 1967, 49-58.

88. Yagel, R., Ray, W. Visibility computation for efficient
walkthrough of complex environment®resence —
Teleoperators and Virtual Environmergd (1995) 45—
60.

89. Zobel, R. W. The representation of experience in archi-
tectural designPresence — Teleoperators and Virtual
Environments4,3 (1995) 254—-266.

© The Eurographics Association 1997

