
EUROGRAPHICS ’97 STAR – State of The Art Report

On the Computational Requirements of Virtual Reality
Systems

Frank Dévai

School of Computing & Mathematics, University of Ulster
Londonderry, BT48 7JL, UK

Abstract
The computational requirements of high-quality, real-time rendering exceeds the limits of generally available
computing power. However illumination effects, except shadows, are less noticeable on moving pictures. Shadows
can be produced with the same techniques used for visibility computations, therefore the basic requirements of
real-time rendering are transformations, pre-selection of the part of the scene to be displayed and visibility com-
putations. Transformations scale well, ie, their time requirement grows linearly with the input size. Pre-selection,
if implemented by the traditional way of polygon clipping, has a growing rate of NlogN in the worst case, where
N is the total number of edges in the scene. Visibility computations, exhibiting aquadratic growing rate, are the
bottleneck from a theoretical point of view. Threeapproaches are discussed to speed up visibility computations:
(i) reducing the expected running time to O(N logN) (ii) using approximation algorithms with O(NK) worst-case
time, where K is the linear resolution of the image, and (iii)applying parallel techniques leading to logarithmic
time in the worst-case. Though the growing rate of the time requirement of pre-selection is significantly slower
than that of visibility, it is demonstrated that pre-selection has to deal with a significantly higher amount of data
than visibility computations, as the average clipping volume is 1/27 of the volume of the model.

1. Introduction

Virtual reality (VR) is a new human-computer interface
paradigm to create the effect of a three-dimensional envi-
ronment in which the user directly interacts with virtual ob-
jects. Animmersive virtual environmentallows human par-
ticipants to engage their perceptual skills in solving prob-
lems47; 83. Immersive systems require special equipment, eg,
a head-mounted display.Desktop, or non-immersivesystems
use a normal visual display unit that displays the image of
the environment. The user interacts with input devices, such
as a data glove or a three-dimensional mouse.

Despite recent advances in computer-graphics hardware,
complex virtual environments cannot be displayed with a
sufficiently high frame rate because of limitations in the
available rendering performance. The necessary frame rate
is around 25 frames/sec, though some researchers would tol-
erate lower rates. With frame rates less than 20 frames/sec
scenes appear as a series of separate frames, and even frame
rates between 20 an 60 frames sec may produce ghosting ef-
fects, ie, multiple images of the same object47 Another im-

pediment islag, the delay between performing an action and
seeing the result of that action. Lag is critical when trying to
achieve immersion86.

In spite of the shortcomings of contemporary VR sys-
tems, a wide range of application areas are reported in the
literature: flight71 and driving5 simulation, scientific visu-
alisation9, medicine4; 44, walk-through and fly-through of
complex environments28; 48; 88; 89, lighting-design28 and even
performance analysis of parallel computer systems70. Cobb
et al 14 examined the feasibility of VR as a tool for the UK
manufacturing industry. Education and training is another
area with vast potential: students can fly through landscapes
for a geography lesson, or travel down blood vessels in an
anatomy class78.

Spectacular applications are a training model for the re-
pair mission of the Hubble Space Telescope and the recon-
struction of the Dresden Frauenkirche. Shortly after NASA
launched the Hubble Space Telescope in 1990, astronomers
discovered flaws in its optical system. A preparation and
the crew training for a repair and maintenance mission be-

c
 The Eurographics Association 1997. Published by Blackwell Publishers, 108 Cowley
Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA 02148, USA.

Dévai / Computational Requirements of VR Systems

came a major NASA project. More than 100 members of the
ground-support flight team were trained in immersive virtual
environments, and the repair mission was successfully com-
pleted in December 199356. The Dresden Frauenkirche was
destroyed when the city was bombed by the Allied forces in
1945. During the reconstruction of the church a model was
created from the original building plans. A software pack-
age developed at the IBM T. J. Watson Research Center was
used to view and walk through the model using both immer-
sive and non-immersive technologies48.

Another potentially spectacular application area istele-
sensation, a sort of a three-dimensional photography, when
a scene from a remote location, eg, from nature or from a
museum, is transmitted to a viewer. Then the scene is re-
generated at the viewer’s location, who can enter the scene,
walk around there, and touch the objects found there82.

Though VR is based on traditional computer-graphics
technology, some new techniques developed specifically for
VR also emerged recently. One of these techniques isobject
pre-selectionor culling, when simple mechanisms are used
to reject most of the objects. As a result, only a very small
portion of the model has to go through the time-consuming
process of visibility computations. Actually the concept is
well known in computer graphics as clipping, but consider-
ing the huge amount of input data, some preprocessing is
justified. Yagel and Ray88 report on such a culling mecha-
nism based on regular space subdivision. Only objects in the
potentially visible set of cells are actually submitted to the
hidden object removal algorithm. Schaufler and Stürzlinger
73 propose a three-dimensional image cache.

Another group of new techniques arehierarchical
or level-of-detail algorithmsand object simplification
43; 47; 72; 80; 81. VR applications also increased the practical
significance of research on reducing thegrowing rateof vis-
ibility algorithms 19; 20; 21; 18; 58; 59 both in the worst case and
on the average. Though the conceptoutput-sensitive visibil-
ity algorithmshas been raised as early as the 1986 Computa-
tional Geometry conference20; 66 Sudarsky and Gotsman77

recently reported the application of output-sensitive visibil-
ity algorithms to dynamic scenes in VR.

On the hardware level graphics accelerators50; 51,
logic-enhanced memories36; 51; 60, texture mapping51 and
scaleable architectures27; 51; 60 are the new developments.
Coppenet al 17 describe a distributed frame buffer archi-
tecture, designed to achieve fast display updates in response
to dynamic transformations of graphical objects. As a matter
of fact, developing scaleable architectures are basically the
same concept as reducing the growing rate of algorithms.

Slater and Usoh76 propose an alternative viewing pipeline
simulatingperipheral visionin immersive virtual environ-
ments. Peripheral vision offers important cues for direction
of gaze and movement. Relatively few papers9; 47 deal with
the design and computational requirements of VR systems.

Development has traditionally been extensive in computer
graphics: bigger memories and faster processors are becom-
ing available due to increasingly faster electronic compo-
nents. However, there are two inherent difficulties with this
way of development. On one hand, this approach has already
been pushed almost as far as it will go: simply the speed of
light imposes a limit that cannot be surpassed by any elec-
tronic component. On the other hand, bigger memory ca-
pacity and computing power lead to bigger problems to be
solved and more functionality requirements.

Unfortunately the prevailing theoretical background for
three-dimensional computer graphics is inherently wrong.
Indeed, this theoretical background cannot even predict or
explain the performance of the most widely used hidden-
surface technique, the z-buffer algorithm. The running time
of the z-buffer algorithm is often claimed to be a linear func-
tion of the input size, or even constant29; 31; 32; 33; 65; 85. On
the other hand, Schmitt74 demonstrated how vertical and
horizontal rectangles can force any hidden-line or hidden-
surface algorithm to take at least quadratic time in the worst
case. (This result is wrongly attributed to Fiume30 by Foley
et al32; 33.) The quadratic lower bound can be demonstrated
even if the input is only one simple polyhedron20.

A constant running time, ie, a running time independent
of the size of the input is a nonsense, which is impossible to
achieve even with parallel processing. We will demonstrate
in section 5 that the hidden-line and hidden-surface prob-
lems cannot be solved in faster than logarithmic time under
a widely accepted parallel model of computation even if ar-
bitrarily many processors were available.

The false assumption of the constant running time of the
z-buffer algorithm is the result of a gross misunderstand-
ing of some speculations made more than 20 years ago by
Sutherland et al79. As the underestimated — and not exper-
imentally obtained — timing results were tabulated, authors
of textbooks took them as experimental data. It is regrettable
that new textbooks on computer graphics are usually based
on older ones, and not on research publications, therefore
practitioners, system designers and even researchers work
under the delusion that the z-buffer algorithm takes constant
time.

This paper offers a new theoretical background for the
real-time, realistic rendering of static scenes in general, and
for the computational requirements of virtual-reality and
CAD systems in particular. In section 2 first three funda-
mental computational problems of rendering of static scenes
are identified. These are transformations, clipping and visi-
bility computations. Then it is demonstrated that any trans-
formation can be performed in time proportional to the to-
tal numberN of the edges of the model, clipping in time
at most proportional toN logN, and that visibility computa-
tions need time at least proportional toN2 in the worst case.
Though for smallN the cost of visibility computations can
be negligible due to a small constant of proportionality im-

c
 The Eurographics Association 1997

Dévai / Computational Requirements of VR Systems

posed by a simple hidden-surface algorithm, asN increases
visibility computations are becoming a bottleneck. In sec-
tion 2.1 we demonstrate that the average clipping volume is
1/27 of the volume of the model, and section 2.1 that poly-
gon clipping can be solved in linear time if O(N logN) time
of preprocessing is allowed.

In section 3 a surprising fact is revealed that many hidden-
line and hidden-surface algorithms thought to be efficient
earlier actually take time proportional toN3 in the worst
case. Though the growing rate of the worst-case time is not
easy to reduce below the functionN2 logN for any practical
algorithm, the first approach reported here to deal with the
visibility bottleneck is a hidden-surface algorithm with an
expected running time proportional toN logN.

In section 4 the possibilities of the exploitation of the fi-
nite resolution of the rendered image are investigated. A new
analysis method is proposed that takes into account also the
linear resolutionK of the image. The traditional classifica-
tion of visibility computations as object-space and image-
space algorithms is challenged by distinguishing exact and
approximation algorithms. The z-buffer algorithm is demon-
strated to take time proportional toNK2 both in the worst
case and on the average. Then a second method is proposed
to speed up visibility computations by using an approxima-
tion algorithm generating a data structure in O(NK) time in
the worst case that can be displayed in O(K2) time.

In section 5 the application of parallel algorithms that take
O(logN) time in the worst case is proposed as a third ap-
proach. While it is well known that approximation meth-
ods such as the z-buffer, and ray tracing algorithms are rela-
tively easy to implement on parallel computers, the parallel
complexity of the exact hidden-line problem has been estab-
lished only recently22; 25. Though these results are based on
a theoretical model of parallel computation, the proposed al-
gorithms can also be executed on real parallel machines in
O(logd N) time, whered is a small positive constant depend-
ing on the particular machine.

A more practical approach with the technology available
in the foreseeable future is to assign a processor to each row
of picture elements of a raster-scan image, in order to com-
pute the image of that particular row27. Then the dominant
computational problem is the determination of the visibil-
ity of a planar set of line segments. In section 6 distributed-
memory parallel algorithms are considered. First a proof is
provided that the planar visibility problem in itself takes
Ω(nlogn) time even if the output is not required in a sorted
order. Then four new algorithms, including two Las-Vegas
type probability ones, are proposed and compared with five
existing algorithms. A computational complexity analysis is
provided in terms of time and space requirements for each al-
gorithm. None of the new algorithms require sorting, merg-
ing or advanced data structures such as priority queues or
segment trees. Segment trees are used only for the proof
of the upper bound on the deterministic algorithms, while

all four algorithms are based on elementary data structures,
hence amenable to hardware implementation.

In section 7 a method and a test-data generation algorithm
for the experimental performance evaluations of planar visi-
bility algorithms are proposed. Finally in section 8 the prac-
tical significance of the proposed theoretical background is
evaluated, and directions for further work are recommended.

2. Rendering three-dimensional scenes

For the description of three-dimensional objects polygon-
mesh models are most widely used47; 72; 84. These models
provide an exact description for objects modelled by poly-
hedra, and an approximation for objects with curved sur-
faces. A polygon-mesh model is a collection of simple poly-
gons possibly with holes, such that the polygons can inter-
sect only at their edges. In image synthesis the polygons can
be treated separately, and the model to be displayed is of-
ten called a scene. Therefore, we can assume that the scene
is a collection of pairwise disjoint simple polygons possibly
with holes. In a static scene the distance between any pair
of vertices is fixed, though the observer’s position, called the
viewpoint, is allowed to move.

In practice the viewpoint is fixed. To provide the illusion
of movement, the system should be able to change the posi-
tion and the dimensions of the model. For example, when the
observer is given the illusion of moving around an object, the
scene is rotated in the opposite direction. Theillusion of per-
spective is also required in many applications. All the above
functionality can be provided by the transformations of the
model.

In image synthesis usually a left-handed coordinate sys-
tem is used such that thex-axis points to the right, they-axis
upwards and thez-axis away from the observer. The perspec-
tive transformation moves the viewpoint to infinity, therefore
a viewpoint ofu= (0;0;�∞) can be assumed for the remain-
der of the image synthesis process.

The models of practical importance are usually very large,
and the system is required to render only a part of the model,
eg, a field of view in a virtual-reality environment. Similarly
in a CAD system the user most often concentrates only on
a detail, and the parts of the model falling outside the range
of the display device should be discarded. The above func-
tionality is achieved by a process called clipping in computer
graphics.

Finally the system should provide theillusion that objects
nearer to the observer may hide objects farther from the ob-
server. This functionality is provided by visibility computa-
tions. There is evidence that the human visual system recog-
nises solids by extracting edges in an image78. Indeed, line-
drawing images often used for visualisation of solids in CAD
systems, in addition to shaded, realistic images. Therefore
two types of visibility problems are distinguished.

c
 The Eurographics Association 1997

Dévai / Computational Requirements of VR Systems

Given a setS of pairwise disjoint, opaque and planar
simple polygons possibly with holes and with a total ofN
edges in three-dimensional space, and a viewpointu, u =
(0;0;�∞).

� If one wishes to find each intervalι of all the boundaries
of the polygons inS, such that all points ofι are visible
from u, this problem is called thehidden-line problem.

� If one is interested to find each regionρ of each polygon
in S, such that all points ofρ are visible fromu, then the
problem is referred to as thehidden-surface problem.

Sinceu= (0;0;�∞), a pointp, p= (xp;yp;zp), of S is visi-
ble if zp is smaller than thez-coordinate of any other point of
Salong the line through p parallel to thez-axis. In practice
we require somewhat less than stated above. As we wish to
generate a two-dimensional image, we need only a projec-
tion of the visible points onto aprojection planeπ.

Once the facilities for transformations, clipping and
visibility computations have been provided, any two-
dimensional image of a three-dimensional scene illuminated
from the viewpoint can be generated. Visibility computa-
tions can also be used for shadow calculations: the parts of
the scene are in shadow which are not visible from a given
light source. In a global illumination model, such as the ra-
diosity method40 all light interactions in the scene can be
determined in advance in a view-independent way. Theoret-
ically this would require the determination of the visibility
of the scene from every point of the scene. In practice an ap-
proximation is sufficient. Then a hidden-surface algorithm
can be used to determine what is visible form the viewpoint.
The result is photo-realistic images produced at the speed of
a hidden-surface algorithm.

Our purpose is the analysis of image synthesis algorithms
in a machine-independent way. Since polygon-mesh models
typically contain a total of 104–106 edges, ie, the size of the
input is large, the growing rate of time and space require-
ments is a good measure of efficiency. The following nota-
tion is used: Iff andgare functions of nonnegative variables
n;m, . . . , we say ‘f is O(g)’ if there are positive constantsc1
andc2 such that

f (n;m; :::)� c1g(n;m; :::)+c2

for all n;m, We say ‘f is Ω(g)’ if g is O(f), and ‘f is
Θ(g)’ if f is both O(g) andΩ(g).

Any transformation can be implemented by the multipli-
cation of each vector corresponding to a vertex of the scene
with a 4 by 4 matrix. This matrix multiplication requires 16
multiplications and 12 additions foreach one of the vertices.
The number of vertices is the same as the number of edges
for a set of polygons, and proportional to the number of
edges of a polygon-mesh model. All transformations can be
combined in a single transformation matrix, therefore trans-
formations takeΘ(N) time in the worst case. Clipping can
be reduced to the problem of determining the intersection of

a line segment with a set of polygons that can be solved in
O(N logN) time in the worst case24. In section 2.2 we will
demonstrate that clipping can also be done in linear time if
preprocessing is allowed.

Figure 1: A worst-case scene for visibility

To determine the time requirement of visibility computa-
tions consider two groups of triangles such that each triangle
in one group intersects every triangle in the other group as
shown in Figure 1. If the number of triangles isN=6 in each
group, the total number of edges isN, and the total number
of edge intersections is 2N=6 by 2N=6 which isN2=9 inter-
section points. Each intersection point is the endpoint of a
visible line segment which must be reported in the output of
any hidden-line algorithm. Also each intersection point is the
vertex of a visible region which must be reported in the out-
put of any hidden-surface algorithm. Therefore there exists
an input for any hidden-line or hidden-surface algorithm that
forces the algorithm to determine at leastN2=9 intersection
points forN edges. We can conclude thatΩ(N2) is a lower
bound for the visibility problem, ie, the time requirement
of any visibility algorithm grows at least as fast as theN2

function in the worst case. The time requirements of the vi-
sualisation of a polygon-mesh model with a total ofN edges
are summarised in Table 1.

function time requirement

transformations Θ(N)
clipping O(N logN)
visibility computations Ω(N2)

Table 1: Computational requirements for displaying 3D
scenes

One can argue that the constant factor obtained for visibil-
ity computations is very small compared to the constant for
the transformations. Note, however, that merely the number
of intersection points is counted for the visibility problem,
while the number of actual operations for the transforma-
tions.

For the sake of argument let us suppose that the calcula-
tion of one intersection point takes at least one time unit, eg,

c
 The Eurographics Association 1997

Dévai / Computational Requirements of VR Systems

the time of one multiplication. Allowing one time unit also
for an addition, 28N is an upper bound on the time require-
ment of transformations. The break-even point can be ob-
tained from the formula 28N= N2=9, which givesN = 252.
If N> 252, visibility calculations take more time than trans-
formations.

On one hand it should be noted, however, that we made
conservative estimates both on the lower bound for the vis-
ibility problem and on theupper bound for the transforma-
tion. On the other hand, our estimates apply to the time re-
quirements in the worst case. One could find a more efficient
algorithm for the average case. We follow this approach in
section 3.

2.1. The average clipping volume

With object pre-selection or culling it is assume that only
a small portion of the model has to go through the time-
consuming process of visibility computations. The question
how small this portion actually is naturally arises. In other
words, what is the size of the average clipping volume?

Two answer this question, first we determine the size and
the position of the average clipping window in two dimen-
sions. Though small windows are probably more often used
in practice, it will result in conservative estimates if we as-
sume that windows with all sizes and positions are equally
likely. We restrict ourselves to a modelM with sides parallel
to the coordinate axes.

Let M be a rectangle determined by the diagonal with the
endpoints(0;0) and (m;n), wherem;n > 0. Now we de-
termine the size and the location of the average window.
For simplicity let m andn be integers. All windows being
equally likely is the same as if the endpoints of their di-
agonals were chosen uniformly, independently at random
from M. Choosing a point uniformly at random fromM can
be done by choosing anx-coordinate uniformly at random
from the interval[0;m] and then choosing ay-coordinate uni-
formly at random from the interval[0;n] independently of
thex-coordinate.

For simplifying the presentation, consider only win-
dows with integer coordinates. Then thex-extents, thex-
coordinatesxL of the left-hand sides of the possible windows
and the appropriate number of windows can be given by the
following table.

x-extent xL number of windows
1 0;1;2; : : : ;m�1 m
2 0;1;2; : : : ;m�2 m�1
...

...
...

i 0;1;2; : : : ;m� i m� i+1
...

...
...

m�1 0;1 2
m 0 1

The total number of windows with differentx-coordinates is
the sum of the third column of the table:

m

∑
k=1

k=
m(m+1)

2
:

The possiblexL values for a window ofx-extent i are
0;1;2; : : : ;m� i. Let a be the average value ofxL. Then

a =
2

m(m+1)

m

∑
i=1

m�i

∑
j=0

j =
2

m(m+1)

m

∑
i=1

(m� i+1)
m� i

2

=
1

m(m+1)

m

∑
i=1

�
(m� i)2+m� i

�
:

∑m
i=1(m� i)2 can be rewritten as∑m�1

i=1 i2, and it can be
demonstrated by mathematical induction that∑n

i=1 i2 =
n(n+1)(2n+1)=6, hence we obtain

a =
1

m(m+1)

�
(m�1)m(2(m�1)+1)

6
+

m(m�1)
2

�

=
(m�1)(2m�1)+3(m�1)

6(m+1)
=

m2�1
3(m+1)

=
m�1

3
:

As m increases,a approachesm=3. We can make a simi-
lar argument for they-dimension, then it follows that the
bottom-left corner of the average window approaches the
point(m=3;n=3) if mandn get large.

Now letc andd respectively be thex- andy-dimensions of
the average window. There arem� i+1 windows ofx-extent
i with differentx-coordinates, therefore

c=
2

m(m+1)

m

∑
i=1

(m� i+1)i:

The sum can be rewritten as follows.
m

∑
i=1

(m� i+1)i =m
m

∑
i=1

i�
m

∑
i=1

i2+
m

∑
i=1

i = (m+1)
m

∑
i=1

i�
m

∑
i=1

i2:

Substituting∑m
i=1 i = m(m+1)=2 and

∑m
i=1 i2 = m(m+1)(2m+1)=6, we obtain

c =
2

m(m+1)

�
m(m+1)2

2
�

m(m+1)(2m+1)
6

�

= m+1�
2m+1

3
=

m+2
3

:

With a similar reasoning ford we can conclude that the
size of the average window approachesm=3 byn=3 if the di-
mensionsm andn of the model get large. Our derivations
generalise in three dimensions with the important conse-
quence that the average clipping volume is 1/27 of the vol-
ume of the model, assuming that all clipping volumes are
equally likely.

2.2. Polygon clipping

As we have already mentioned, polygon clipping can be
solved in O(N logN) time in the worst case, whereN is the

c
 The Eurographics Association 1997

Dévai / Computational Requirements of VR Systems

total number of edges in the scene. In this section we will
demonstrate that it can also be done in linear time if some
preprocessing is allowed26.

The intersection of an arbitrary polygon with any face of
the clipping volume can be obtained by determining the in-
tersection of a line segment and a polygon. Indeed, if we
project the polygon into a plane perpendicular to the face of
the clipping volume, then it is sufficient to determine the in-
tersection of the image of the polygon with the image of the
face of the clipping volume — which is a line segment. Then
the intersection points of the edges of the image of the poly-
gon are projected back to the original polygon to obtain the
intersection points of its edges with the face of the clipping
volume.

A related problem we are going to solve is called theline-
polygon classification(LPC) problem, and it can be formu-
lated as follows. Given a line segmentL and a polygonP
with N edges in the plane, find their intersection. The result
is a classification of the points ofL in three subsets, such as
LinP containing the points ofL lying in the interior ofP, the
subsetLonPof the points ofL lying on the boundary ofP and
finally a subsetLoutP lying outsideP.

We begin with some definitions, and introduce the no-
tion of ordinary polygons.A path is a sequence of points
p1; p2; : : : ; pn, and line segmentsp1; p2, p2; p3, : : : ; pn�1; pn
connecting the appropriate point pairs. If the last point of the
path is the same as its first point, the path is called aclosed
path.

A polygonis a subsetP of the plane, such thatP does
not contain a half-line, and the boundary ofP is a finite set
of closed paths. The points defining the closed paths on the
boundary ofP are called theverticesof P, and the line seg-
ments of the closed paths connecting the vertices ofP are
called theedgesof P.

A polygonP is anordinary polygonif P is a connected
subset of the plane, the closed paths defining the boundary
of Pare disjoint, and no non-consecutive edges of any closed
path intersect.

If P is an ordinary polygon, then each of its vertices is
shared by exactly two edges. The subdivision of the plane
induced by the boundary ofP may have some regions which
do not contain a half-line, but do not belong toP. Such a
region is called ahole.

An ordinary polygon can be described by the set of closed
paths defining its boundary. Each closed path can be given
by the sequence of its vertices. One of the closed paths will
describe theouter boundaryof the polygon, and the remain-
ing ones (if any) will specify holes. We will adopt the con-
vention that the vertices of the outer boundary are given in
counter-clockwise order, and the vertices of a hole in clock-
wise order. Then theinterior of an ordinary polygon will
always lie to the left as its boundary is traversed.

An ordinary polygon which is a simply connected subset
of the plane is called asimple polygon. A polygonP is said to
beconvexif any line segment connecting two points insideP
is itself entirely insideP. There is a hierarchy strictly ordered
by the subset relation

convex� simple � ordinary polygons,

that is, the class of ordinary polygons include all convex
polygons, all simple polygons, and all simple polygons with
holes. Now we will prove a lower bound.

Lemma 1 Ω(N logN) is a lower bound on worst-case time
for determining the intersection of a line segment and an or-
dinary polygon withN edges, assuming the algebraic tree
model of computation.

Proof: We will demonstrate that any algorithm that deter-
mines the intersection of a line segment and an ordinary
polygon with N edges can decide theε-closeness prob-
lem by using O(N) additional algebraic operations. Theε-
closeness problem is as follows. GivenN+1 real numbers
r1; r2; : : : ; rN andε > 0, decide if any pairri andr j are at a
distance less thanε from each other, i.e., there arei and j,
1� i; j �N, such thati 6= j andjri � r j j< ε.

Let A be an arbitrary LPC algorithm, and letx1;x2; : : : ;xN
be a set ofN real numbers such that

jxi �xj j � ε for all i 6= j;1� i; j �N:

We construct an ordinary polygonP with boundaries
((a;�ε), (b;�ε), (b;ε), (a;ε)) and((xi;0), (xi +δ;δ), (xi +
δ;�δ)), as shown in Figure 1, wherea = minfxig� ε and
b= maxfxig+ ε for 1� i �N, andδ, 0< δ < ε, is an arbi-
trarily small real number.

Let a candidate line segmentL be defined by the endpoints
(a�1;0) and(b+1;0). Then the setLinP returned byA will
containN+1 line segments of length� ε�δ.

Now letδ approach zero, and let

x1;x2; : : : ;xN

be an instance of theε-closeness problem. ClassifyL with
respect toP using algorithmA. Then if any interval inLinP
has a length less thanε, return a YES, otherwise a NO answer
for theε-closeness problem.

The ε-closeness problem takesΩ(N logN) time in the
worst case, assuming the algebraic tree model of computa-
tion 6. Let TA (N) be the running time of algorithmA. There
exists a positive constantc such that the construction ofP
and the examination of the intervals inLinP together can be
done in at mostcN algebraic operations, therefore

TA(N)+cN= Ω(N logN)

from which the lemma follows.2

First we describe a preprocessing algorithm that converts
polygonP into aplanar straight-line graph G. G will contain

c
 The Eurographics Association 1997

Dévai / Computational Requirements of VR Systems

(a;�ε) (b;�ε)

(b;ε)(a;ε)

(a�1;0) (b+1;0)
��

@@
xi

(xi +δ;�δ)

(xi +δ;δ)

��

@@
xj

(xj +δ;�δ)

(xj +δ;δ)

Figure 2: Theε-closeness problem is reducible to the LPC problem

all vertices ofP, and some additional vertices and edges. For
simplifying the presentation, we will assume that all vertices
of P have distinctx- andy-coordinates, and the half-lineh
(to be specified later) containingL does not go through any
vertices ofG. From here it follows that no edge ofP will
be vertical or horizontal, andLonP is a set of measure zero.
Without the above restrictions algorithms longer in detail but
not in asymptotic time can be given.

We say that two edgese and f of P arecomparable at
abscissaξ if the vertical linex = ξ intersects bothe and f .
Then the relationabove atξ can be defined as follows:e is
abovef atξ if eand f are comparable atξ, and the intersec-
tion of e with the linex= ξ has an ordinate greater than the
ordinate of the intersection off with the linex= ξ. Note that
the relation above atξ is a linear order on the set of edges
intersected by the same vertical line. We will use an abstract
data type, called alinearly ordered set, T, to maintain the
order of edges. An important technical detail, as we will see
later, that the edges inT are represented by the equation of
the line containing the particular edge.

Let vi ; 1 � i � N; be the set of vertices ofP, and let
a = minfxig; b = maxfxig; c = minfyig andd = maxfyig;
wherexi andyi are thex- andy-coordinates of vertexvi . Let
vt = (xt;yt) andvb = (xb;yb) respectively denote the top and
bottom extreme vertices ofP, i.e., yt = d andyb = c. Ac-
cording to our first assumption, the verticesvt andvb are
unique. We will introduce four new vertices inG, such as
v3N+1 = (a� 1;c), v3N+2 = (b+ 1;c), v3N+3 = (a� 1;d)
andv3N+4 = (b+ 1;d). (See Figure 2.) Once the prepara-
tion of G has been finished, we will remove these vertices
together with the edges incident on them. At each vertex of
G we imagine a line parallel to they-axis, and call the edges
incident with the vertex and left to the imaginary line thein-
coming edgesand those right to the line theoutgoing edges.
Then the preprocessing algorithm can be stated as follows.

1. Let G be P initially. Add verticesv3N+1; : : : ;v3N+4 to
G together with the edgesv3N+1;vb, vb;v3N+2, v3N+3;vt
andvt ;v3N+4, and initialiseT with edgesv3N+1;vb and
v3N+3;vt . Sort the vertices ofP by their x-coordinate in

increasing order, and initialise twoN-element arrays TOP

and BOTTOM.
2. Examine the verticesvi of P in turn from left to right.

a. Delete fromT the incoming edges ofG incident onvi ,
and insert inT the outgoing edges ofG incident onvi .

b. Let v2i andv3i respectively be the intersection points
of the vertical line throughvi with the edgevj ;vk
abovevi in T and with the edgevl ;vm belowvi in T,
where 1� j;k; l ;m� 3N+4.
Add verticesv2i andv3i and edgesvi ;v2i andvi ;v3i to
G, and replace edgevj ;vk by edgesvj ;v2i andv2i;vk,
and edgevl ;vm by edgesvl ;v3i andv3i ;vm.
Whenever a horizontal edgevj ;vt or vt ;vk is replaced,
write thex-coordinatex2i of v2i in the next element of
the array TOP, and whenever a horizontal edgevl ;vb
or vb;vm is replaced, write thex-coordinatex3i of v3i
in the next element of the array BOTTOM.

3. Remove verticesv3N+1 to v3N+4 from G together with
the edges incident on them.

The faces ofG will be trapezoids which may degenerate into
triangles. An example is given in Figure 2.G is shown after
step 2 of the above algorithm. The edges ofG which are also
edges ofPor contained by the edges ofPare shown in heavy
lines.

Although some of the edges ofP may be replaced by
Θ(N) edges inG, we can demonstrate thatG has asymp-
totically the same size asP.

Lemma 2The planar subdivisionG has at most 3N vertices
and at most 5N edges.

Proof: Initially G will have the same number of vertices and
edges asP, i.e., N vertices andN edges. At each vertexvi
of P, 1� i � N, we introduce at most two new vertices in
step 2.b of the above algorithm. The four extra vertices in-
troduced in step 1 will be removed in step 3, therefore the
total number of vertices ofG is at most 3N. Similarly, at
each vertexvi we introduce at most two new edges, and re-
place each of at most two existing edges ofG by two new
edges. Therefore, the total number of edges ofG is at most
5N. 2

c
 The Eurographics Association 1997

Dévai / Computational Requirements of VR Systems

�
�
�
��
HHHH

((((

(((((
�
�
�
�
�
�
�
�
PP

PP
PP

PP
PP

PP
PP!!!!!!!!!!!!!!!!!!

c
c
c
c
c
c
c
c
c
c
cc

�
�
�
�
�
�
�
�

�
�
�
�
�
PPPP

�
�

�
��PP

PP

v3N+1 v3N+2vb

v3N+3 v3N+4vt

Figure 3: The preprocessing of an ordinary polygon

The linearly ordered setT can be realised by a balanced
tree 1; 2 such that the leaf nodes of the tree are labelled by
line equations, and are also threaded by a doubly linked
list. Then the operationsinsert and deletecan be imple-
mented in O(logN) time, whileaboveandbelowin constant
time. Thus step 2.a takes O(N logN) time, and step 2.b O(N)
time. Step 1, including the sorting, can be implemented in
O(N logN) time, and step 3 takes constant time, therefore
we obtain the following upper bound on the preprocessing
time.

Lemma 3 An ordinary polygon withN edges can be con-
verted into a planar subdivision withΘ(N) trapezoidal faces
in O(N logN) time in the worst case.

The planar subdivisionG can be represented by doubly
linked adjacency lists. Then any half-line can be classified
with respect toG, and thereforeP, by a linear-time incre-
mental algorithm. This algorithm traverses the boundary of
each trapezoid intersected by the half-line in turn. LetR
be the rectangle defined by the four coordinate pairs(a;c),
(b;c), (b;d) and(a;d), and letp andq be the endpoints of
L, and finally leth be the half-line starting fromp and con-
tainingL. The equation ofh in the parametric form is

r = p+(q� p)t for 0� t � ∞;

wherer is an arbitrary point ofh, andt is a scalar parameter.
ThenL can be classified with respect toP as follows.

1. If L\R= /0, L andP must be disjoint, the algorithm ter-
minates.

2. Otherwise ifh has one intersection point with the bound-
ary ofR, let s be the intersection point. Ifh has two inter-
section points, rename the intersection point nearer top
asp, and lets be the other intersection point.

3. Find the trapezoidZ that h entering at points. If s is on
a vertical side ofR, this means the selection of one of

two edges, and ifs is on a horizontal side ofR, find Z by
binary searching the arrays TOP or BOTTOM.

4. Starting froms, traverse the boundary ofZ to find the
intersection pointw wherep;s leavesZ if such aw exists.

5. Repeat this procedure from step 4 by renamingw assun-
til an intersection pointw cannot be found, orw coincides
with p.

The algorithm requires only elementary data structures, such
as lists and arrays. We obtain the intersection points ofL
with the edges ofG in decreasing order of the values of the
parametert, and consider only the intersection points where
the edge ofG is also an edge ofP or contained by an edge
of P. Then we can prove the following result.

Theorem 1The intersection of a line segment and an ordi-
nary polygon withN edges can be determined in O(N) time,
assumingΘ(N logN) preprocessing time is allowed.

Proof: According to Lemma 3,G can be prepared in
O(N logN) time in the worst case. The first two steps of the
classification algorithm take constant time, and step 3 can be
executed in O(logN) time in the worst case. In step 4 and
step 5 we traverse any edge ofG at most two times. Accord-
ing to Lemma 2,G has at most 5N edges, which results in an
O(N) bound for the classification algorithm, and from here
the theorem follows.2

Since all the operations of the above algorithms are avail-
able in the algebraic tree model of computation, considering
Lemma 1, we obtain a tight bound on the complexity of the
LPC problem.

Corollary 1 The line-polygon classification problem for an
ordinary polygon withN edges takesΘ(N logN) time in the
worst case, and this time cannot be reduced in the algebraic
tree model of computation.

c
 The Eurographics Association 1997

Dévai / Computational Requirements of VR Systems

Given two ordinary polygonsP and Q with m and n
vertices, respectively. Their intersectionP\Q can be con-
structed as follows. Letai , 1� i � m, be the set of edges of
P, and letainQ

i be the set of closed intervals along whichai
is contained by polygonQ. Let we denote byAinQ the part
of the boundary ofP contained byQ, and byBinP the part
of the boundary ofQ contained byP. Then the boundary of
P\Q is the union ofAinQ andBinP. We use the following
algorithm.

1. Prepare the trapezoidal decomposition ofQ. For each
edgeai of P, find ainQ

i by using the line-polygon inter-

section algorithm proposed here. Then setAinQ=
S

i a
inQ
i ,

for 1� i �m.
2. FindBinP analogously.
3. ObtainP\Q as the polygon whose boundary isAinQ[

BinP.

Now, we can prove a tight bound on the complexity of the
polygon intersection problem.

Theorem 2 Determining the intersection of an ordinary
polygon of m edges with another ordinary polygon ofn
edges takesΘ(mlogm+mn+nlogn) time in the worst case,
and this cannot be further improved in the algebraic tree
model of computation.

Proof: The set of intervalsainQ
i for all 1 � i � m can be

found in O(mn) time, after preprocessingQ in O(nlogn)
time. Therefore, step 1 takes O(mn+ nlogn) time. Simi-
larly, step 2 takes O(mn+mlogm) time. ThenP\Q can
be specified with the enumeration of its boundary by alter-
nately traversing the edges ofAinQ andBinP according to the
orientation ofP andQ. Therefore step 3 takes O(mn) time,
and the whole algorithm O(mlogm+mn+nlogn) time. An
Ω(mlogm+ nlogn) lower bound follows from Lemma 1,
and anΩ(mn) bound from the fact that the intersection of a
simplem-gon with a simplen-gon may havemnvertices69.
2

Note thatP\Q may be disconnected, and therefore not
necessarily an ordinary polygon. OnceAinQ and BinP has
been determined,P[Q, P�Q andQ�P can also be de-
termined by traversing edges in O(mn) additional time.

For clipping a set of three-dimensional polygons, as we
have already seen, we have to solve the following problem.
Given a line segmentL and a set ofM possibly non-disjoint
ordinary polygonsP1, P2, . . . ,PM with a total ofN edges in
the plane. Find the set of (possibly non-disjoint) intervals of
L corresponding to the intersection ofL with all Pi , 1� i �
M.

After the preprocessing of each polygon in trapezoids as
given above, the set of intervals can be found in O(N) time.
For the preprocessing O(N logN) total time will be suffi-
cient. Indeed, letn1, n2, . . . ,nM be respectively the number
of edges ofP1, P2, . . . , PM . Then∑i ni = N, and for each
polygonPi there exists a positive constantc such that the

preprocessing ofPi can be obtained in timec(ni logni). Since
logni � logN for anyni , the total preprocessing time for the
set ofM polygons is

c
M

∑
i=1

(ni logni)� c(logN)
M

∑
i=1

ni = cNlogN:

Hence we can conclude that the polygon-clipping problem
can be solved in linear time if O(N logN) time of prepro-
cessing is allowed.

3. Improving the expected running time

Even if one can find all intersections in O(N2) time, it is
not sufficient to determine visibility. Most of the algorithms
proposed in theliterature34; 37; 45; 46; 57 divide edges into line
segments at the intersection points, then test each line seg-
ment for visibility againsteach polygon. As we have seen
earlier, the total number of intersection points — and there-
fore the total number of line segments — isΩ(N2) in the
worst case.

If the input polygons form the faces of a collection of sim-
ple polyhedra, it can be demonstrated that the total number
of polygons is at leastN=3. Indeed, letm be the total num-
ber of polyhedra. Then for each polyhedronpi ;1� i � m,
Euler’s polyhedron theorem

vi + fi = ei +2 (1)

holds, wherevi, fi andei, respectively, are the number of
vertices, faces and edges of polyhedronpi. It follows from
1 that fi > ei � vi for eachpi , then for the total number of
faces,∑ fi , one can write

m

∑
i=1

fi >
m

∑
i=1

ei �
m

∑
i=1

vi = N�
m

∑
i=1

vi (2)

where∑ei is the total number of edges, and∑vi is the to-
tal number of vertices. There must be at least three edges
emanating from each vertex, and each edge is incident on
exactly two vertices, therefore∑vi � 2N=3. Then it follows
from 2 that∑ fi >N=3. TestingΩ(N2) line segments against
N=3 faces takesΩ(N3) time. It is also possible to demon-
strate, however, thatΘ(N3) time is sufficient for the above-
mentioned algorithms in the worst case.

For an improvement it should be noted that any visibility
algorithm has to determine the union ofΘ(N) hidden in-
tervals onΘ(N) edges in the worst case. SinceΩ(N logN)
is a lower bound for determining the union ofN intervals
69, it appears that the best one can hope to achieve is a
Θ(N2 logN) worst-case time. Though it has been demon-
strated thatΘ(N2) worst-case time can actually be attained
both for the hidden-line20 and for the hidden-surface prob-
lem 59 it is not easy to reduce belowΘ(N2 logN) for any
practical algorithm.

Our worst-case lower bound is based on the fact that there

c
 The Eurographics Association 1997

Dévai / Computational Requirements of VR Systems

can beΩ(N2) intersection points. Then the question natu-
rally arises whether a better algorithm exists for the cases
when there are a smaller number of intersections. Indeed, the
algorithm given below takes O((N+ k) logN) time, where
k, k < 0 < N(N�1)=2, is the total number of intersection
points.

The following observations are used21. If all polygons are
projected into the viewing planeπ, the edges of the polygons
induce a planar subdivisionG of π. To avoid confusion, the
vertices, edges and faces ofG will be referred to as nodes,
arcs and regions respectively. When moving from one region
into a neighbouring region by crossing an arc ofG, one ei-
ther enters the projection of a polygonP or leave the projec-
tion of a polygonQ. Within each region ofG the polygons
can be ordered according to their distance from the observer
even if the polygons cyclically overlap. The ordering can be
maintained by a priority queue, and the algorithm, called the
priority-queue method, is stated as follows.

1. Determine the planar subdivisionG of the projection
planeπ induced by the images of theN edges in the input.

2. Visit all regions ofG systematically by moving from one
region into a neighbouring region by crossing an arc of
G. If the projection of a polygonP is entered, insertP
in a priority queueH, and if the projection of a polygon
Q is left, deleteQ from H. The polygon corresponding
to the minimum element ofH will be visible within the
currently visited region.

Step (1) can be implemented in O((N+k) logN) time7; 10; 64.
While traversing the regions ofG, one has to account at most
one insertion and at most one deletion for each crossing of
an arc ofG. Both an insertion and a deletion can be done
in O(logN) time 2; 52; 75 and the number of arcs is O(N +
k), therefore step (2), and also the whole algorithm, can be
implemented in O((N+k) logN) time.

Having an upper bound on the running time as a func-
tion of k, we can now prove that if the expected number of
intersections is O(N), the expected running time of the al-
gorithm is O(N logN), regardless of the underlying proba-
bility distribution of the input data. Indeed, let E{k} be the
expected number of intersection points, and lett(N) be the
expected running time of the algorithm. An upper bound on
the running timeT(N) of the algorithm can be expressed
asc(N+ k) logN for somec> 0. Now, assume that E{k} =
O(N). Then

t(N) = EfT(N)g� Efc(N+k) logNg

= cNlogN+c(logN)Efkg

= O(N logN);

which was to be demonstrated. Note that no assumption on
the distribution of the input data was made, the only require-
ment is that the expected number of edge intersections is
O(N).

4. Approximation algorithms

A widely used classification of visibility algorithms distin-
guishes two main classes: object-space and image-space al-
gorithms 32; 33; 65; 79. Object-space algorithms are supposed
to make calculations on the three-dimensional scene, while
image-space algorithms on the two-dimensional image. (Fo-
ley et al32 use a slightly different terminology: image- and
object-precision algorithms, actually with the same mean-
ing.) Image-space algorithms are also supposed to exploit
the finite resolution of the image, while object-space algo-
rithms are assumed to be independent of the display device.

This classification, however, is inappropriate in some re-
spects. First, as visibility can only be decided by the com-
parison ofz-coordinates, it is not possible to perform all cal-
culations in image space. Thus, there is no pure image-space
algorithm. Second, performing any possible amount of cal-
culations in image space does not necessarily mean the ex-
ploitation of the finite resolution of the image.

The algorithm presented in section 3 does most of its cal-
culations in image space (finding edge intersections, deter-
mining and traversing the subdivision ofπ) but the resolu-
tion of the image is not even mentioned. We propose a more
appropriate classification.

An algorithm is called anexact algorithmif it determines
each visible point of the scene, and maps them onto the pro-
jection planeπ. Then the algorithm in section 3 should be
classified as an exact algorithm. Another class of algorithms,
calledapproximation algorithms, as opposed to exact algo-
rithms, determine and map onto the projection plane only
a subset of the visible points of the scene. In other words,
these algorithms compute approximations to the visible set
of points.

In raster displays picture elements, calledpixelsfor short,
of ε by ε size are used to approximate the exact image. As
the aspect ratio of images is usually constant, we can assume
without loss of generality that the number of pixels,K = 1=ε,
is the same in both the horizontal and vertical directions.

The visibility algorithms traditionally classified as image-
space algorithms are actually approximation algorithms in
most of the cases. The dominant visibility algorithms in use
nowadays are z-buffer scan-line algorithms and ray casting
41. It easy to see that the z-buffer and the ray casting meth-
ods takeΘ(K2N) time in the worst case. It is also not hard
to demonstrate that the expected running time of the z-buffer
algorithm is stillΘ(K2N), eg, for a set of orthogonal rectan-
gles, assuming that the coordinates of their vertices are taken
uniformly, independently at random from a rectangular par-
allelepiped. Indeed, if one chooses two points uniformly, in-
dependently at random from a unit square in the plane, the
expected value of the area of the orthogonal rectangle deter-
mined by the two points is 1/9.

Assuming just as many pixels as edges, ie,K2 =N, would
suggest that accepting an approximation does not pay: exact

c
 The Eurographics Association 1997

Dévai / Computational Requirements of VR Systems

algorithms, eg, Goodrich’s algorithm38, are asymptotically
faster. Perhaps using a hierarchical approach that can com-
pare more than one pixel at a time to each polygon would
result in a faster algorithm. Warnock developed an algorithm
that uses the observation that pixels within large areas of the
image are coherent in the sense that they represent a sin-
gle polygon65; 32. However, it has been demonstrated24 that
Warnock’s algorithm also takesΘ(K2N) time in the worst
case. Greene et al41 describe a heuristic method similar to
Warnock’s algorithm, and report that a hierarchical approach
can be faster in practice than the ordinary z-buffer algorithm.
In the remainder of this section we demonstrate that hierar-
chical data structures, called z-trees, can be used to develop
approximation algorithms with running times of sublinear
functions of the total number of pixels.

A scan-line variant of the z-buffer algorithm takesΘ(KN)
time, while the scan-line variant of the z-tree method takes
O(N logK +K) time in the worst case. A z-tree for a two-
dimensional problem is a binary tree, where the root node
represents the whole scan line ofK pixels, the left son of
the root the pixels numbered from 1 tob(K+1)=2c, and the
right son the pixels numbered fromb(K+1)=2c + 1 toK. In
general, if a node represents pixels froml to r , its left son
will represent those froml to b(r + l)=2c, and its right son
from b(r + l)=2c + 1 to r .

Associated with each nonterminal nodeV is a vertical
line L such that the pixels represented by the left son ofV
are to the left ofL, and those represented by the right son
of V are to the right ofL. There are also associated with
each node two integersz1 andz2. The line segmentB de-
termined by points(l ;z1) and(r;z2) is called theblockerof
V. In Figure 4 a z-tree representation of a line segment is
given: blockers assigned to leaves denoted by solid squares
generate the original segment.

The introduction of blockers allows for the representation
of all the N line segments in the scan plane by a single z-
tree. If several blockers occur with the same node, then only
the nearest to the viewpoint is retained. AssumingK pixels,
a binary z-tree has at mostK leaf nodes andK�1 internal
nodes, regardless of the number of line segments inserted in
the tree. That is, the information for the invisible parts of the
segments is lost.

The z-tree conversion of a line segment can be accom-
plished recursively as follows. LetV be the root node of the
tree initially.

(1) If the current line segmentX is totally hidden by the
blockerB of nodeV, then discardX and return.

(2) Otherwise ifB is totally hidden byX, substituteX for B,
and return.

(3) If nodeV is not a leaf, then

(3.1) if the right endpoint ofX is to the left of the vertical
line L assigned toV, execute the algorithm on the left

Figure 4: A z-tree representation of a line segment

subtree, and if the left endpoint ofX is to the right of
L, execute the algorithm on the right subtree ofV;

(3.2) otherwise splitX is by L, and execute the algorithm
on both the left and the right subtrees ofV.

A binary z-tree forN line segments andK pixels can be built
in O(N logK) time, and takes O(K) space in the worst case
23. The visibility of the scan line can be obtained by a pre-
order traversal1 of the z-tree. LetV be initially the rootnode
of the tree, and letF be a background segment which is far-
ther from the viewpointu than any other segment in the scan
plane. Then a preorder traversal of a binary z-tree can be
done recursively as follows.

(1) Visit nodeV. If F is nearer tou than the blockerB of V,
substitute the appropriate part ofF for B.

(2) Let F be the blocker ofV obtained in step (1). Visit in
preorder the subtree with rootV1, then the subtree with
rootV2, whereV1 andV2 are the left and right sons ofV
respectively.

The above algorithm takes O(K) time, which is asymptoti-
cally the same as the output time of a z-buffer. Therefore, the
scan line variant of the z-tree method takes O(N logK +K)
time in the worst case. A three-dimensional generalisation
of the z-tree method generates a hierarchical data structure
in O(NK) time that can be displayed in O(K2) time 23.

5. Parallel complexity

Distinguishing exact and approximation methods is also im-
portant when considering parallel solutions to the visibil-
ity problem. Most parallel approaches recommended until
recently are based on the z-buffer36; 61 or ray-tracing49; 68

methods that classify as approximation algorithms. With
these methods usually a processor is assigned to each pixel.
In general, by using approximation methods the visibility
problem can be divided conveniently among as many pro-
cessors as are available.

It is more difficult to find solutions to the exact hidden-
line and hidden-surface problems. The most widely accepted
theoretical models of parallel computation are the variants
of the Parallel Random Access Machine(PRAM) model.

c
 The Eurographics Association 1997

Dévai / Computational Requirements of VR Systems

The PRAM model is a collection of random access ma-
chines and a global memory. All the processors have access
to the global memory, and run synchronously. The global
memory accesses are assumed to take unit time. The vari-
ants of the PRAM model handle concurrent reads and writes
to the global memory cells differently. The major variants
are the exclusive read, exclusive write (EREW), concurrent
read, exclusive write (CREW) and concurrent read, concur-
rent write (CRCW) models. The most often used variant is
the CREW PRAM model. In this model any number of pro-
cessors can read a given global memory cell at once, but at
most one processor is allowed to write into a given mem-
ory cell in one step. If more than one attempts to write, the
computation is invalid.

The generally accepted definition for the fast solvability
of a problem by parallel algorithms is if it can be solved in
time polynomial in logN by using a number of processors
polynomial inN, whereN is the problem size. This class of
problems is commonly referred to asN C . One reason why
N C is broadly accepted as the class of problems amenable
to parallelization is that this class remains the same whether
it is defined in terms of any variant of the PRAM model, or
in terms of any other reasonable model, eg, uniform circuits.
To convert one model to another, a slow-down or speed-up
of a factor of logN emerges. The advantage ofN C is that
it allows us to ignore the factors of logN that separate the
various models.

It has been demonstrated that the exact hidden-line prob-
lem can be solved inΘ(logN) time in the worst case withN2

processors, and that theΘ(logN) time cannot be further im-
proved in the CREW PRAM model, even if arbitrarily many
processors are available22. We prove the same result for the
EREW model25. The EREW model is the variant of PRAM
closest to real machines.

First we propose a parallel algorithm for determining the
union of a set of intervals, and then we use this algorithm to
develop a parallel hidden-line algorithm. No parallel algo-
rithm is known in the literature for the interval-union prob-
lem, though it has been demonstrated22 that the hidden-line
problem can be solved inΘ(logN) time with N2 processors
under the CREW model. The parallel hidden-line algorithm
proposed earlier22 uses a parallel sorting algorithm as a pre-
processing step, and parallel sorting seems to be a promis-
ing starting point also for the interval-union problem. We
can use an optimal EREW parallel sorting algorithm pro-
posed by Cole15. Unfortunately, the hidden-line problem is
significantly more difficult than sorting, and the earlier paral-
lel hidden-line algorithm22 relies heavily on concurrent-read
operations.

In section 5.1 we introduce the problem of union of point
sets. In particular, if the point sets areN intervals of the real
line, we demonstrate that the complexity of the problem is
Θ(N logN) under the algebraic tree model of computation.
Then we present a parallel algorithm that takes O(logN)

time andN processors. The product of time and processor
number is equal to the sequential complexity of the problem,
therefore the algorithm achieves a perfect speedup.

In section 5.2 the parallel interval-union algorithm is used
to develop an algorithm for hidden-line elimination. The
hidden-line algorithm takes O(logN) time with N2 pro-
cessors, and therefore achieves a linear speedup on the
O(N2 logN) worst-case time of the best known practicable
sequential algorithms.

5.1. The interval-union problem

In a wide range of application areas such as computer-aided
design, geographic information systems, data processing and
computer graphics we are often required to find theunion of
point sets: Given a collectionR1;R2; :::;RN of N point sets,
determine the setSdefined byR1[R2[:::[RN. In partic-
ular, the hidden-line problem requires the determination of
a subset of a line segmentL contained by a collection of
point setsR1;R2; :::;Rk. More precisely, ifL is the image of
an edge, andR1;R2; :::;Rk are images of polygons lying be-
tween the edge and an observer in three-dimensional space,
then the visible subsetV of L to be displayed is

V = L�fR1[R2[:::[Rkg (3)

where R1;R2; :::;Rk are also polygons. Surprisingly, the
computation of equation 3 according to the definition would
be both excessive and insufficient at the same time. It is in-
sufficient, because a particular polygonRi , 1� i � k, may
cover L along some intervals, but may not cover it along
some other intervals, eg, ifRi is a simple polygon with holes.
On the other hand, the computation of equation 3 is exces-
sive, sinceR1[R2[::: [Rk is not required; what we only
need is the union of the hidden intervals ofL.

Then theinterval-union problem, as a special case of the
problem of the union of point sets, can be formulated as fol-
lows: Given a list of 2N real numbers representing the end-
points ofN intervals, compute the union of these intervals.

Fredman and Weide35 have established the complexity of
a similar problem, ie, themeasureof the union of a set of in-
tervals, under the linear decision tree model of computation.
It is relatively straightforward to establish the complexity of
the interval-union problem under a more general model of
computation, called thealgebraic tree6 by demonstrating
that any algorithm that can find the union ofN intervals can
also decide the element distinctness problem. Theelement
distinctness problemis stated as follows69. Given N real
numbers,x1;x2; :::;xN , decide if all are different (ie, there
are noi and j, 1� i; j �N, such thati 6= j andxi = xj).

Indeed, givenx1;x2; :::;xN as an input for the element dis-
tinctness problem, form the intervals[xi ;xi];1� i � N, and
find their union. If the number of output intervals is exactly
N, the numbersx1;x2; :::;xN were all different, and the an-
swer is ‘yes’ to the element distinctness problem, otherwise

c
 The Eurographics Association 1997

Dévai / Computational Requirements of VR Systems

‘no’. From here it follows that theΩ(N logN) lower bound
for the element distinctness problem is also a lower bound
for determining the union ofN intervals.

To devise an optimal algorithm which we will attempt to
parallelize, we only need a counterc, initialisedc = 0. For
simplifying the presentation we assume that all the endpoints
of the input intervals are disjoint. First we sort the endpoints
of the intervals in increasing order, relabel them such that
x1;x2; :::;x2N is the sorted sequence. Then we scan that se-
quence starting withx1, and incrementc by 1 if xi ;1� i �
2N, is a left endpoint, decrementc by 1 if xi is a right end-
point of an input interval. Wheneverc = 1, we recordxi as
the left endpoint of an output interval, and wheneverc = 0,
we recordxi as the right endpoint of an output interval.

It is not hard to demonstrate that wheneverc= 1, xi must
be the left endpoint, and ifc = 0, xi must be the right end-
point of an input interval. Also ifxi is the left endpoint of
an input interval andc> 1, or if xi is the right endpoint of
an input interval andc> 0, xi must be overlapped by one or
more intervals. The running time of the above algorithm is
dominated by the sorting step, therefore we can summarise
our results as follows.

Lemma 4 The complexity of determining the union ofN
intervals of the real line isΘ(N logN) in the worst case, as-
suming the algebraic tree model of computation.

Though the proposed algorithm is quite simple, there are two
difficulties with its parallelization. First, scanning the sorted
list is inherently sequential. Second, even if we know the
endpoints of the output intervals, it is not easy to store them
in the memory parallely. We will use a linked list such that
the elements of the list are stored in an array with mappings
pred andsucc, wherepred provides the element preceding
a given element, andsuccprovides the element subsequent
to a given element in the list. Then overlapped endpoints are
simply removed from the list.

We apply an efficient technique proposed by Kruskalet
al 54. The parallel prefix problemis to compute all initial
prefixesx1;x1�x2; :::;x1�x2�:::�xN of N itemsx1;x2; :::;xN ,
where� is an associative binary operation. By the solution
of the parallel prefix problem we not only can assign the
values of the counterc to the endpoints of the intervals, but
also can attach ranks 1;2; :::;N to the elements of a linked
list, eg, 1 to the first, 2 to the second element etc, and the
elements can be placed in an array by simply using the rank
of each element as its index. Then the parallel interval-union
algorithm is stated as follows.

(1) Sort the endpoints of the intervals in increasing order,
relabel them, and prepare a doubly-linked listD such
thatx1;x2; :::;x2N is the sorted sequence,pred(xi) = xi�1,
succ(xi) = xi+1, 2 � i � 2N� 1, pred(x1) = nil and
succ(x2N) = nil ;

(2) Assign weightswi to xi , 1� i � 2N, such that ifxi is a

left endpoint, thenwi = 1, and ifxi is a right endpoint,
thenwi =�1;

(3) Compute the parallel prefix sum

ci = w1+w2+ :::+wi

for all xi , 1� i � 2N;
(4) for all xj , j = 1;3; :::;2N�1, do in parallel

if ((xj is a left endpointand cj > 1) or
(xj is a right endpointand cj > 0)) then

removexj from the doubly linked listD
endif

endfor;
(5) Repeat step (4) for allxj , j = 2;4; :::;2N, in parallel;
(6) Rank the doubly linked listD, and write the endpoints of

theM �N output intervals parallely into 2M consecutive
cells of the global memory.

The correctness of the above algorithm is based on the same
observations as we made for the sequential algorithm, there-
fore we can state the following.

Theorem 3The union ofN intervals of the real line can be
computed in O(logN) time in the worst case by usingN pro-
cessors, assuming the EREW PRAM model of computation.

Proof: Step (1) can be implemented in O(logN) time by us-
ing N processors under the EREW model15. Step (3) and
therefore step (6) take O(logN) time andN= logN proces-
sors assuming the EREW model54. Steps (2), (4) and (5)
take constant time andN processors. There are no memory
conflicts in step (2), and we can avoid memory conflicts by
examining and, if necessary, removing first the odd elements
of D in step (4), then the even elements in step (5). Therefore
the whole algorithm can be implemented in O(logN) time in
the worst case by usingN processors, assuming the EREW
PRAM model of parallel computation.2

5.2. Hidden-line elimination

As we said earlier, the input to a hidden-line algorithm is a
set S of pairwise disjoint ordinary polygons (simple poly-
gons possibly with holes). LetN be the total number of
edges, and letu be a viewpoint,u = (0;0;�∞). We will
adopt the convention that the vertices of the outer bound-
ary of a polygon are given in counter-clockwise order, and
the vertices of a hole in clockwise order. Then the interior
of a polygon will always lie to the left as its boundary is
traversed.

If we wish to achieve a sublinear running time, it follows
from the sequential complexity of the problem that we need
Ω(N) processors, which may have memory conflicts while
processing theN edges of the input. Therefore, we have to
make copies of the input first if we assume an EREW model.
We can make use of the following observation.

Lemma 5The content of any cell of the shared memory can
be copied into any block ofN consecutive cells in O(logN)
time by usingN= logN EREW PRAM processors.

c
 The Eurographics Association 1997

Dévai / Computational Requirements of VR Systems

Let ei be the image of edgeei in the projection plane, and
let li be the straight line containingei , 1� i � N. We can
assume without loss of generality that li coincides with the
x-axis of the coordinate system. Then a parallel hidden-line
algorithm can be formulated as follows.

(1) MakeN copies of the description of each edgeei , 1� i �
N, in N consecutive blocks of memory cells.

(2) for all edgeei , 1� i � N, do in parallel

(2.1) Find the intersection pointsxj of li with all ej , 1� j �
N, j 6= i, such thatej is nearer to the observer thanei
at the intersection pointxj .

(2.2) Letaj andbj be the endpoints ofej , 1� j �N; j 6= i,
and letej be oriented fromaj to bj . If aj is aboveli ,
labelxj as a left, otherwise as a right endpoint.

(2.3) Letxl be a point ofli to the left of the leftmostxj , let
xr be a point ofli to the right of the rightmostxj , xa be
the left endpoint ofei , andxb be the right endpoint of
ei . Labelxl andxb as left,xa, andxr as right endpoints.

(2.4) Determine the union of the intervals specified by the
endpointsxl , xa, xb, xr andxj , 1� j �N; j 6= i.

(2.5) Insertxa andxb into the listL obtained as a result of
step (2.4). If the insertion ofxa fails, ie,xa is already in
L, then the interval [xa, succ(xa)) is a visible segment
of ei , otherwise else [xa, succ(xa)] is a hidden inter-
val of ei . Similarly, if the insertion ofxb fails, then the
interval (pred(xb), xb] is a visible segment ofei , other-
wise [pred(xb), xb] is a hidden interval ofei . Discard
the elements ofL left to xa and those right toxb.

end

Using the notation of the algorithm, it is relatively straight-
forward to demonstrate the following.

Lemma 6 If two consecutive elementsxj and xk, j 6= a,
k 6= b, of L are a left and a right endpoint respectively, then
[xj ,xk] is a hidden interval. Otherwise ifxj is a right, andxk
is a left endpoint, then (xj ,xk) is a visible segment ofei .

Then we can state the main result of this section.

Theorem 4 The hidden-line problem for a set of pairwise
disjoint polygons with a total ofN edges can be solved in
O(logN) parallel time and O(N2) space by usingN2 pro-
cessors, assuming the EREW PRAM model of parallel com-
putation.Θ(logN) time is the best possible under both the
EREW and the CREW models with arbitrarily many proces-
sors.

Proof: Step (1) of the above algorithm can be implemented
in O(logN) time by usingN2= logN processors according
to Lemma 5. Steps (2.1) and (2.2) take constant time andN
processors (or O(logN) time andN= logN processors). Step
(2.3) takes O(logN) time andN= logN processors. Accord-
ing to Theorem 3 step (2.4) can be computed in O(logN)
time in the worst case by usingN processors. In step (2.5)
xa andxb can be inserted inL in O(logN) serial time, dis-
carding the elements ofL left to xa and those right toxb

take O(logN) time andN= logN processors by rankingL.
Therefore step (2) of the above algorithm can be executed
in O(logN) time for a single edge by usingN processors.
Using N2 processors, the algorithm can be executed forN
edges within the same time under the EREW model.

It follows from the definition of visibility that finding the
maximum ofN integers is constant-time reducible to the hid-
den line problem by usingN processors. Cook and Dwork16

have given anΩ(logN) lower bound for finding the maxi-
mum ofN integers allowing infinitely many processors of a
CREW PRAM model. From here the theorem follows.2

While the proposed hidden-line algorithm is optimal in
a stronger sense, ie, its running time cannot be further im-
proved, an interesting question arises: wouldN2= logN pro-
cessors be sufficient to maintain O(logN) time? The proof of
the O(N2) sequential complexity of the hidden-line problem
20 is based on an optimal algorithm for the arrangement ofN
lines in the plane. Recently Goodrich39 proposed an optimal
parallel algorithm for constructing line arrangements. Com-
bining Goodrich’s result with the techniques presented here
and in 20 the question can be answered affirmatively. The
resulting algorithm, however, is significantly more compli-
cated than the one presented here.

The theoretical significance of the above results is
the demonstration that the exact hidden-line problem is
amenable to parallelization. The practical consequence is
that the exact hidden-line problem can be solved on real ma-
chines in O(logd N) time, whered is a small positive con-
stant depending on the particular machine.

6. Distributed-memory parallel algorithms

Unfortunately, the a global shared memory required by the
PRAM models is not feasible in practice. A practical ap-
proach with the technology available in the foreseeable fu-
ture is to assign a processor to each row of picture elements
of a raster-scan image, in order to compute the image of that
particular row27. Then the dominant computational problem
is the determination of the visibility of a planar set of line
segments.

Given a pointu and a setSof n opaque line segments in
the plane, the planar visibility problem requires to find the
line segments or part of the line segments inSvisible fromu.
Recall that in computer graphics the(x;z) Cartesian coordi-
nate system andu= (0;�∞) are assumed, the visible image
is projected into thex-axis, and the algorithms for the solu-
tion of the problem are referred to asscan-line algorithms
32; 65.

An early algorithm, which takesΘ(n2) time in the worst
case, was given by Watkins32; 65. In practice thez-buffer al-
gorithm— an approximation method — is often used, where
the image is divided intor equal picture elements. The visi-
bility of each picture element is approximated by the visibil-
ity of a sample point, usually taken at the middle of the pixel.

c
 The Eurographics Association 1997

Dévai / Computational Requirements of VR Systems

A linear array of sizer , called the z-buffer, is maintained.
Each element of the array is used to record thez-coordinate
of the input line segment nearest tou along the line through
the sample point. Then the algorithm simply subdivides the
projection of each input line segments into pixels, and up-
dates the appropriate elements of the z-buffer inΘ(nr) time
in the worst case.

The z-buffer algorithm is easy to implement in hardware
60; 51, and the speed of that system is difficult to surpass if
there are few overlapping surfaces in the scene. However, in
virtual-reality applications the depth of the scene increases;
there are multiple overlapping surfaces, and the speed of the
z-buffer algorithm quickly deteriorates. One of the objec-
tives of this section is to provide alternatives to the z-buffer
algorithm.

If the output for the exact solution is required in a sorted
order, it is easy to provide anΩ(nlogn) lower bound by
demonstrating that sorting is reducible to the planar visibility
problem3. However, this is the time requirement for sorting
the output, which is not inherently required. In section 6.1 a
proof is provided that the planar visibility problem in itself
takesΩ(nlogn) time even if the output is not required in a
sorted order.

6.1. Lower bound

We demonstrate that anΩ(nlogn) lower bound applies to
the exact solution of the planar visibility problem even if
the output is not required in a sorted order. In particular, we
prove that any algorithm that determines the visibility ofn
line segments in the plane can be used to solve the element
distinctness problem by using O(n) additional operations.

Let us suppose that given an inputx1;x2; :::;xn for the ele-
ment distinctness problem69, and we are allowed to use any
algorithm for determining the visibility of a planar set of line
segments. Letu = (a;b) be the observer’s position with ar-
bitrary a andb < 0. Associate with eachxi , 1� i � n, the
closed line segment[(x0i ; i);(x

0

i ; i)], where(x0i ; i) is the inter-
section point of a ray fromu through(xi ;0)with the horizon-
tal linez= i. This set of line segments can be constructed in
O(n) operations, andxi = xj holds for 1� i; j � n andi 6= j
if and only if one of the points(x0i ; i) and(x0j ; j) is hidden the
other, as shown in Figure 5. Then the element distinctness
problem can be decided as follows: If the number of visi-
ble segments returned by the visibility algorithm is exactly
n, the input numbersx1;x2; :::;xn were distinct, otherwise
not. Ω(nlogn) is a lower bound for the element distinct-
ness problem, eg, in the algebraic tree model69. It follows
thatΩ(nlogn) is a lower bound also for the planar visibility
problem in any computational model whereΩ(nlogn) is a
lower bound for the element distinctness problem.

The binary-partition-tree method62 can solve the visi-
bility problem in O(nlogn) expected time after some pre-
processing. Thepriority-queue method, proposed earlier by

z

x = x

u

i

x ,j(

j

’

(x ,i)’

x

j

i

j

i

)

Figure 5: Element distinctness is reducible to planar visibil-
ity

the author19, solves the problem in O(nlogn) worst-case
time without the need for preprocessing by using a plane-
sweep method and maintaining a priority queue of line seg-
ments. Another algorithm, based on a divide-and conquer
approach and called themergemethod also achieves the op-
timal O(nlogn) worst-case time3.

Early scan-line algorithms8; 87 take Θ(n2) time in the
worst case19, and attempt to exploit coherence32; 65 which is
no longer possible in a parallel environment, where adjacent
scan lines may be processed by different processors. Both
the priority-queue19 and the merge3 methods takeΘ(nlogn)
time in the worst case, ie, these methods are best possible in
terms of worst-case time, but use sorting, and merging of
visible sets of line segments, therefore less appropriate for
hardware implementation. The next two sections offer four
simple but efficient scan-line algorithms. First two hierar-
chical methods based on subdivision techniques, then two
simple probabilistic algorithms are proposed.

6.2. Hierarchical methods

A scan-line algorithm can be developed by using the ideas
proposed by Warnock for determining the visibility of a set
of polygons in three-dimensional space32; 65. An interval of
thex-axis containing the image of the input set will be called
thewindow. Warnock’s basic idea is to attempt to display the
image if it is simple, otherwise subdivide the window until
the image is simple enough. Each input line segmentt can
be classified according to the relation of its imageτ to the
current windowW as follows:

� containedby the window, ie,τ �W, where ‘�’ denotes
the proper subset relation,

� totally overlappingthe window, ie,W � τ,
� disjoint from the window, ie,τ\W = /0 and
� intersectingthe window, ie,τ\W 6= /0^W 6� τ^ τ 6�W.

c
 The Eurographics Association 1997

Dévai / Computational Requirements of VR Systems

Let Sbe the set of input line segments, andb a background
line segment. InitiallyW represents the scan line consisting
of r pixels. Then a setT is constructed such thatT contains
all line segments to be processed in the current window. An
image is regarded to be simple if only the background seg-
ment is visible, ie,T = /0, or each element ofT is hidden by
a single line segment. If the image is not simple,W is sub-
divided into two equal sub-windows, and the procedure is
applied recursively to processT in both sub-windows. The
planar visibility algorithm based Warnock’s ideas is formally
stated as Figure 6.

With reference to the notation of Figure 6, it should be
noted thatT will always be empty when windowW is equal
to a pixel, as the image of each segment inT will overlap
W, and will be put on listB. Therefore the termination of the
algorithm can be assured by testing ifT is empty.

The recursive subdivision of the scan-line can be repre-
sented by a binary tree ofr leaf nodes andr � 1 internal
nodes, both the internal and the leaf nodes corresponding
to a window. Then the total number of windows is 2r � 1.
There are O(n) operations in any window, therefore an upper
bound on the worst-case time of the planar Warnock method
is O(nr). As a copy of each element of the input set may be
made in each window, the same O(nr) upper bound applies
to its space requirement in the worst case.

The actual time and space requirements must be better,
since short line segments will not be processed in all win-
dows, and on the other hand if there are several long line
segments, all but one will become hidden and removed from
T at a certain level of subdivision. To be able to give sharper
bounds we develop another algorithm.

The planar Warnock method does not subdivide the setS
of line segments, only the window, therefore each line seg-
ment should be tested against another sub-window at the
same level, even if the line segment is already outside that
sub-window. These extra tests are avoided by the second al-
gorithm we propose, called thesubdivision method, which is
similar to the Warnock method, except that the setS is al-
ways subdivided according to the window boundaries. The
subdivision method is presented as Figure 7.

Note that, thoughS is subdivided intoS1 andS2 with the
subdivision method, the line segments overlapping the win-
dow boundary are not subdivided for efficiency reasons; a
copy of these line segments appears both inS1 andS2. How-
ever, for an upper bound on the running time of the subdi-
vision method we can assume that all the line segments are
subdivided at the window boundaries. The crucial observa-
tion is that the windows, where a particular line segmentt is
processed, correspond to the external and internal nodes of a
segment tree representing the line segmentt. Hence any line
segmentt could be represented by less than 2log2 r standard
intervals of a segment tree69, though with the subdivision
methodt is represented by at most that many copies of itself.

From here it follows that an upper bound on the worst-case
time is O(nlogr).

An input set can be created such that each segment is
processed inΘ(logr) sub-windows, therefore the worst-case
time requirement isΘ(nlogr). For similar considerations the
worst-case space requirement is alsoΘ(nlogr). The slightly
more sophisticatedz-tree method23 reduces the space re-
quirement toΘ(n+ r) while retaining theΘ(nlogr) worst-
case time bound.

Now let us return to the analysis of the planar Warnock
method. First we observe that both methods make the same
window subdivisions. Indeed, if a windowW is subdivided
by the subdivision method because of a line segmentt, ie,
τ\W 6= /0 andW 6� τ, the same windowW will also be sub-
divided by the Warnock method.

Now the difference between the two methods is in the ter-
mination of the processing of the line segments. With the
subdivision method the processing of any line segmentt can
be terminated in two ways: eithert is discarded as hidden by
another line segment, ort is displayed as a background. With
the Warnock method there is also a third way:t is discarded
as disjoint from the window. While the first two types of ter-
mination can happen several times to the same line segment,
ie, the parts of the same line segment will become hidden in
different windows, and also several parts of a line segment
can be displayed as a background. The third type of termi-
nation, however, can only happen once to each line segment;
when it becomes disjoint to a windowW, and it will never
again be considered in the sub-windows ofW. Thus the pro-
cessing of the line segments terminates by only O(n) addi-
tional operations, therefore the Warnock method must take
Θ(nlogr) time and space in the worst case.

6.3. Probabilistic Algorithms

We propose two probabilistic algorithms with the advan-
tages of simplicity and good expected running time. The first
method, calledrandom, is stated as follows. If the input set
S of line segments is empty, display the backgroundb and
return. Otherwise choose a line segmentt at random. Dis-
card all line segments and parts of line segments hidden by
t. Subdivide the remaining line segments if necessary along
the vertical lines through the endpoints oft. Let S1, S2 and
S3 be the set of line segments left and right tot and in front
of t, respectively. Apply the procedure recursively forS1, S2
andS3, with the backgroundb for S1 andS2, and uset as the
background forS3.

The second algorithm, called thetrapezoid method, ran-
domly selectsk or jSj, whichever is the smaller, line seg-
ments, wherek is a constant, andjSj is the number of line
segments in the input setS. Then the algorithm chooses a
segmenta with the largest area trapezoidT (a) formed bya,
the backgroundband the vertical lines through the endpoints
of a. All line segments and parts of line segments hidden by

c
 The Eurographics Association 1997

Dévai / Computational Requirements of VR Systems

Warnock(S;W;b)
initialise B andT as empty lists of line segments;
for each segmentt 2 Sdo

let τ be the projection oft into thex-axis;
if τ\W 6= /0 then

if W � τ then copyt to list B elsecopyt to list T endif
endif

endfor;
if B 6= /0 then

find a2 B as the segment nearest tou;
for each segmentt 2 T do

if t is hidden bya then removet from T endif
endfor;
substitutea for b, and discard listB

endif;
if T = /0 then displayb in W
else

subdivideW into two sub-windowsW1 andW2 of equal size;
Warnock(T;W1;b); Warnock(T;W2;b)

endif
end

Figure 6: The two-dimensional variant of Warnock’s method

subdiv(S;W;b)
initialise B as an empty list of line segments;
for each segmentt 2 Sdo

let τ be the projection oft into thex-axis;
if W � τ then relocatet from S to list B endif

endfor;
if B 6= /0 then

find a2 B as the segment nearest tou;
for each segmentt 2 Sdo

if t is hidden bya then removet from Sendif
endfor;
substitutea for b, and discard listB

endif;
if S= /0 then displayb in W
else

subdivideW into two sub-windowsW1 andW2 of equal size;
subdivideS into S1 = ft 2 Sj τ\W1 6= /0g andS2 = ft 2 Sj τ\W2 6= /0g;
subdiv(S1;W1;b); subdiv(S2;W2;b)

endif
end

Figure 7: The subdivision method

a are discarded. In other words, the part of the scene within
T (a) is removed. LetS1, S2 andS3 be as with the random
method, and the procedure is applied recursively forS1, S2
andS3. The trapezoid method is stated formally as Figure 8.
The best value ofk is determined experimentally.

The random and the trapezoid methods never give wrong
results, but may exhibit different running times if applied

twice for the same input. Recall that this type of algorithms
are classified as Las-Vegas algorithms.

For establishing an upper bound on the worst-case run-
ning time of the random and the trapezoid methods, consider
a setSof n line segments with non-overlapping images. If al-
ways the leftmost or the rightmost line segment is selected
for partitioningSinto subsets, the running time isΩ(n2). On

c
 The Eurographics Association 1997

Dévai / Computational Requirements of VR Systems

trapezoid(S;W;b)
if S= /0 then displayb in W
else

for min(k; jSj) line segments chosen at random fromSdo
find segmenta with the maximum-area trapezoidT (a);

endfor;
subdivideW into sub-windowsW1, W2 andW3 such thatW1 is to the left,
W2 is to right ofT (a), andW3 is the projection ofa into thex-axis;
for each segmentt 2 S�fag do

let τ be the projection oft into thex-axis;
if τ is to the left ofW3 then put t into S1
else ifτ is to the right ofW3 then put t into S2 endif
else

cut off the part oft visible inW1 (W2) if any, and put it intoS1 (S2);
if t is in front of a then put t into S3 endif

endif
endfor;
trapezoid(S1;W1;b1); trapezoid(S2;W2;b2); trapezoid(S3;W3;a)

endif
end

Figure 8: The trapezoid method

the other hand, both methods compare at mostn line seg-
ments in at most 2n� 1 vertical strips, which takes O(n2)
time, therefore their worst-case time requirement isΘ(n2).
There can be at leastn=2 line segments broken into at least
n=2 parts in the worst case, but there are at mostn parts in
any of the 2n�1 vertical strips. This gives aΘ(n2) bound
on the space requirement in the worst case.

method time space
z-buffer32; 65 Θ(nr) Θ(n+ r)
Watkins32; 65 Θ(n2) Θ(n)
priority-queue19 Θ(nlogn) Θ(n)
merge3 Θ(nlogn) Θ(n)
z-tree23 Θ(nlogr) Θ(n+ r)
Warnock Θ(nlogr) Θ(nlogr)
recursive subdivision Θ(nlogr) Θ(nlogr)
random Θ(n2) Θ(n2)
trapezoid Θ(n2) Θ(n2)

Table 2: Worst-case time and space requirements of scan-
line algorithms

Table 2 summarises the scan-line methods investigated,
together with the worst-case time and space requirements of
the particular method, wheren is the number of line seg-
ments andr is the number of pixels in the scan line. The
average running time can be significantly better for some
of the algorithms, and indeed, expected-time analyses of
probabilistic algorithms attracted much attention recently
11; 12; 13; 62; 63. Asymptotic analysis, however, cannot take into
consideration constant factors, which can also be different in
different environments.

Constant factors can be determined from time measure-
ments in the actual machine environment where the al-
gorithms are to be used. Kremer-Patard53 used manually
generated input to compare some algorithms including the
priority-queue method19. Another possibility is to extract
the input data from real three-dimensional models. Consid-
ering the number of possible algorithms together with their
variants, the number of time measurements required for con-
clusive results would be too high, and this method would be
too expensive and time consuming. Since the input to a scan-
line algorithm is only a planar set of line segments, more
efficient test-data generation methods can be developed.

7. Experimental Performance Evaluation

As some algorithms exploit the fact that the input produced
by a solid modeler results in a set of non-intersecting line
segments, a test-data generation method is required to pro-
duce a set of non-intersecting random line segments in the
plane. The first idea that would probably spring to mind is to
divide anr by r square intom rows andmcolumns such that
m=

p
r, and then choose the endpoints of a line segment at

random from each square. This would be a naive approach,
however, as it would result in a very sparse scene, ie, rela-
tively short line segments with a lot of empty space among
them.

It can be demonstrated that the average distance of two
points chosen uniformly and independently at random from
the [0,1] interval is 1/3. Therefore, in the one-dimensional
case, we would obtain a set of line segments with an aver-
age length of gaps of twice the average length of the line

c
 The Eurographics Association 1997

Dévai / Computational Requirements of VR Systems

segments. Practical scenes are more dense. The reader is en-
couraged to look at Figure 10 before reading any further, and
have a guess how the set of line segments was generated.

The technique we propose is based on a channel-
assignment algorithm42 and can be used to generatex-
coordinates of the line segments from arbitrary probability
distributions. First thex-coordinates of the left and right end-
points of the line segments are generated, which determine
an interval for each line segment. Then we find a minimal
partition of this set of intervals into subsets of intervals such
that no subset contains overlapping intervals. The subsets
will be calledchannels, and each channel will correspond
to a horizontal band within anr by r rectangle. As thex-
intervals corresponding to the line segments are pairwise dis-
joint within a channel, we can assign arbitraryz-coordinates
to the line segments within the same channel. The algorithm
is given in Figure 9, and a sample output in Figure 10.

Step 1 of the algorithm requires 2n random numbers, and
takes O(n) time. Step 2, dominated by the sorting, can be
implemented in O(nlogn) time. Finally step 3 requires 2n
random numbers and O(n) time. Therefore the proposed
method takes, in total, 4n random numbers and O(nlogn)
time in the worst case to generate 4n coordinates for a set of
n non-intersecting random line segments.

If i < j, the leftmostx-coordinate in channelj cannot be
less than the leftmostx-coordinate in channeli. Therefore
the top left corner of ther by r rectangle may appear empty.
This problem can be eliminated by a random permutation of
the channels before step 3. A C-language implementation of
the method has been incorporated in a testbed for the perfor-
mance evaluation of scan-line algorithms.

8. Conclusions

The computational requirements of CAD and virtual-reality
systems are often underestimated, and this is the main reason
for the inadequate usability and performance of these sys-
tems. We have demonstrated that, contrary to the prevailing
theoretical background, visibility computations are a bottle-
neck. Most polygon-based, exact algorithms recommended
by the literature haveΘ(N3) worst-case time, and also their
expected running time isΘ(N2) even if the total number of
edge intersections isΘ(N). If the expected number of inter-
sections is O(N), the expected running time of the algorithm
we recommended is O(N logN), regardless of the underlying
probability distribution of the input data.

We have also demonstrated that most approximation algo-
rithms, including the z-buffer algorithm, takeΘ(K2N) time
in the worst case, which is actually the same as the time re-
quirement of a brute-force method. We recommended the
use of hierarchical data structures, called z-trees, that can
reduce the worst-case time of approximation algorithms to
Θ(KN). With a typical resolution ofK = 1024, this is a
promising approach.

Figure 10: Non-intersecting random line segments

The third possibility to speed up visibility computations
is parallel processing. Approximation algorithms are inher-
ently appropriate for parallel implementation, but using inef-
ficient algorithms, the power of parallel machines is merely
absorbed by compensating the poor performance of the algo-
rithm. The most promising directions for future research are
in the applications of approximation and parallel techniques.

Contemporary VR research is driven by applications. Un-
fortunately, some of the promises of VR applications hyped
by the media are unrealistic. These circumstances may do
harm to both research and industry. For example, artificial-
intelligence research suffered when it failed to live up the
hyped promises. Therefore it is very important that VR ap-
plications deliver at least the realistic promises, and a solid
theoretical background is definitely helpful for this purpose.

References

1. Aho, A. V., Hopcroft, J. E. and Ullman, J. D.De-
sign and Analysis of Computer Algorithms, Addison-
Wesley, Reading, Mass. 1975.

2. Aho, A. V., Hopcroft, J. E. and Ullman, J. D.Data
Structures and Algorithms.Addison-Wesley, Reading,
Mass. 1983.

3. Atallah, M. J., Cole R., Goodrich M. T. Cascading
divide-and-conquer — a technique for designing par-
allel algorithms.SIAM Journal on Computing18,3
(1989) 499–532.

c
 The Eurographics Association 1997

Dévai / Computational Requirements of VR Systems

1) Generate pairs ofx-coordinates(ai ;bi), 1� i � n, for n line segments;
2) Sort the 2n x-coordinatesfxjg= faig[fbig in non-decreasing order, such that

x1;x2; :::;xi ; :::;x2n is the sorted sequence; Initialize a stack as empty;
for 1� i � 2n do

if xi is the left endpoint of a line segments then
if the stack is emptythen

allocate a new channelc
else

get a free channelc from the stack
endif;
put segments into channelc

else
push the channel containing the segment with the right
endpointxi into the stack as a free channel

endif
endfor;

3) Generate pairs ofz-coordinates for each line segment within each channel.

Figure 9: Test data generation

4. Balch, D. C., Tichenor, J. M. Telemedicine expanding
the scope of health-care information.Journal of the
American Medical Informatics Association4,1 (1997)
1–5.

5. Bayarri, S., Fernandez, M., Perez, M. Virtual reality for
driving simulation.Communications of the ACM39,5
(1996) 72–76.

6. Ben-Or, M. Lower bounds for algebraic computation
trees. Proc.15th ACM Annual Symp. on Theory of Com-
puting(Apr. 1983) 80–86.

7. Bentley, J. L., Ottmann, T. Algorithms for reporting and
counting geometric intersections.IEEE Trans. Comput.
C-28 (Sep. 1979) 643–647.

8. Bouknight, W. J. A procedure for generation of three-
dimensional half-toned computer graphics presenta-
tions.Comm. ACM13,9 (Sep. 1970) 527–536.

9. Bryson, S. Virtual reality in scientific visualization.
Communications of the ACM39,5 (1996) 62–71.

10. Chazelle, B., Edelsbrunner H. An optimal algorithm for
intersecting line segments in the plane.Journal of the
Association for Computing Machinery39,1 (Jan. 1992)
1–54.

11. Clarkson, K. L., Shor, P. W. Applications of random
sampling in computational geometry II.Discrete and
Computational Geometry4,1 1989, 387–421.

12. Clarkson, K. L. Randomized geometric algorithms.
Computers and Euclidean Geometry1992.

13. Clarkson, K. L., Cole, R., Tarjan, R. E. Randomized
parallel algorithms for trapezoidal diagrams.Int. J.
Comp. Geom. and Applications1992, 117–133.

14. Cobb, S. V. G., Dcruz, M. D., Wilson, J. R. Integrated
manufacture — a role for virtual-reality.International
Journal of Industrial Ergonomics16,4–6 (1995) 411–
425.

15. Cole, R. Parallel merge sort.SIAM J. Computing17,4
(Aug. 1988) 770–785.

16. Cook, S., Dwork, C. Bounds on the time for parallel
RAMs to compute simple functions. Proc.14th ACM
Symp. on Theory of Computing, San Francisco, Cali-
fornia, (May, 1982) 231–233.

17. Coppen, D., Hawes, D., Slater, M., Davison, A. Dis-
tributed frame buffer for rapid dynamic changes to 3D
scenes.Computers & Graphics19,2 (1995) 247–250.

18. de Berg, M. Ray shooting, depth orders and hidden-
surface removal.Lecture Notes in Computer Science
703, Springer Verlag, Berlin, 1993, 201 pp.

19. Dévai, F. Complexity of two-dimensional visibility
computations. Proc.3rd European Conference on
CAD/CAM and Computer Graphics, Paris, France, Feb.
1984, MICAD’84 Vol. 3, 827–841.

20. Dévai, F. Quadratic bounds for hidden-line elimination.
Proc. Second Annual ACM Symposium on Computa-
tional Geometry, Yorktown Heights, New York, USA,
June 2–4, 1986, 269–275.

21. Dévai, F. An intersection-sensitive hidden-surface al-
gorithm. Proc. EUROGRAPHICS’87,Maréchal, G. (Ed.)
Amsterdam, the Netherlands (Aug. 24–28, 1987) 495–
502.

22. Dévai, F. An O(logN) parallel time exact hidden-line
algorithm. In: Kuijk, A. A. M., Strasser, W. (Eds)

c
 The Eurographics Association 1997

Dévai / Computational Requirements of VR Systems

Advances in Graphics Hardware II, Springer-Verlag,
Berlin, Germany, 1988, 65–73.

23. Dévai, F. Approximation algorithms for high-resol-
ution display. Proc.PIXIM’88, 1st International Con-
ference on Computer Graphics in Paris, Péroche, B.
(Ed) France, Oct. 24–28, 1988, 121–130.

24. Dévai, F.Computational Geometry and Image Synthe-
sis. Lecture notes for Course 2, PIXIM’89, 2nd Inter-
national Conference on Computer Graphics in Paris,
France, Sept. 25–29, 1989, 88 pp.

25. Dévai, F. An optimal parallel algorithm for the visuali-
sation of solid models. In:Applications of Supercom-
puters in Engineering III, Elsevier Applied Science,
London, 1993, 199–210.

26. Dévai, F. On the complexity of some geometric inter-
section problems.Journal of Computing and Informa-
tion 1,1 (May 1995) 333–352.

27. Dévai, F. Scan-line methods for parallel rendering.
In: Chen, M., Townsend, P., Vince J. A. (Eds)High-
Performance Computing for Computer Graphics and
Visualisation. Springer Verlag, London, 1996, 88–98.

28. Dobashi, Y., Kaneda, K., Nakatani, H., Yamashita, H.,
Nishita, T. A quick rendering method using basis func-
tions for interactive lighting-design.Computer Graph-
ics Forum14,3 (1995) c229.

29. Firebaugh, M. W.Computer Graphics. Tools for Vi-
sualization. Wm. C. Brown Publishers, Oxford, UK,
1993, 547 pp.

30. Fiume, E. L.The Mathematical Structure of Raster
Graphics. Academic Press, San Diego, 1989.

31. Foley, J. D., van Dam, A.Fundamentals of Interactive
Computer Graphics.Addison-Wesley, Reading, Mass.,
1982. 664 pp.

32. Foley, J. D., van Dam, A., Feiner, S. K., Hughes, J.
F. Computer Graphics: Principles and Practice. (Sec-
ond Edition) Addison-Wesley, Reading, Mass., 1990.
1174 pp.

33. Foley, J. D. et al.Introduction to Computer Graphics.
Addison-Wesley, Reading, Mass., 1994, 557 pp

34. Franklin, W. R. A linear time exact hidden surface al-
gorithm.Computer Graphics14,3 (1980) 117–123.

35. Fredman, M. L., Weide, B. On the complexity of com-
puting the measure of[[ai ;bi]. Comm. ACM21,7 (July
1978) 540–544.

36. Fuchs, H. et al. Pixel-planes 5: A heterogeneous mul-
tiprocessor graphics system using processor enhanced
memories. Proc. SIGGRAPH89, 79–88.

37. Galimberti, R. Montanari, U. An algorithm for hidden-
line elimination.Comm. ACM12,4 (Apr. 1969) 206–
211.

38. Goodrich, M. T. A polygonal approach to hidden-
line and hidden-surface elimination.CVGIP: Graphi-
cal Models and Image Processing54,1 (Jan. 1992) 1–
12.

39. Goodrich, M. T. Constructing arrangements optimally
in parallel. Discrete & Computational Geometry9,4
(1993) 371–385.

40. Greenberg, D. P.Global Illumination: The Radiosity
Approach.Lecture notes for Course 14, PIXIM’89,
2nd International Conference on Computer Graphics in
Paris, France, Sept. 25–29, 1989, 56 pp.

41. Greene, N., Kass, M., Miller, G. Hierarchical z-buffer
visibility. Proc. SIGGRAPH 93, Anaheim, California,
August 1993, 231–238.

42. Gupta, U. I., Lee, D. T., Leung, J. Y.-T. An opti-
mal solution for the channel-assignmentproblem.IEEE
Trans. Comput. C-28,11 (1979) 807–810.

43. He, T. S., Hong, L. C., Kaufman, A., Varshney, A.,
Wang, S. Voxel based object simplification. Proc.Vi-
sualization’95 (1995) 296–303.

44. Higgins, G. A., Meglan, D. A., Raju, R., Merril, J.
R., Merril, G. L. Teleos(TM): Development of a soft-
ware toolkit for authoring virtual medical environ-
ments.Presence — Teleoperators and Virtual Environ-
ments6,2 (1997) 241–252.

45. Hornung, C. An approach to a calculation-minimized
hidden line algorithm.Comput. & Graphics6,3 (1982)
121–126.

46. Hornung, C. A method for solving the visibility prob-
lem. IEEE Comput. Graphics & Appl.4,7 (July 1984)
26–33.

47. Hubbold, R., Murta, A. West, A. Howard, T. Design
issues for virtual reality systems. In: Göbel, M. (Ed)
Virtual Environments’95, Springer Verlag, Wien, 1995,
224–235.

48. Jalili, R., Kirchner, P. D., Montoya, J., Duncan, S.,
Genevriez, L., Lipscomb, J. S., Wolfe, R. H., Codella,
C. F. A visit to the Dresden Frauenkirche.Presence —
Teleoperators and Virtual Environments5,1 (1995) 87–
94.

49. Kedem, G., Ellis, J. L. The raycasting machine. Proc.
1984 Int. Conf. on Computer Design, October 1984,
533–538.

50. Knittel, G. A scalable architecture for volume render-
ing. Computers & Graphics19,5 (1995) 653–665.

51. Knittel, G., Schilling, A., Strasser, W. GRAMMY: High
performance graphics using graphics memories. In:

c
 The Eurographics Association 1997

Dévai / Computational Requirements of VR Systems

Chen, M., Townsend, P., Vince J. A. (Eds)High-
Performance Computing for Computer Graphics and
Visualisation. Springer Verlag, London, 1996, 33–48.

52. Knuth, D. E.The Art of Computer Programming, Vol.
3: Sorting and Searching. Addison-Wesley, Reading,
Mass., 1973.

53. Kremer-Patard, G. Evaluation d’algorithmes de calcul
de la visibilité d’un ensemble de segments du plan.Re-
vue de CFAO et d’Infographie3,3 (1988) 39–57.

54. Kruskal, C. P., Rudolph, L., Snir, M. Efficient parallel
algorithms for graph problems.Algorithmica5 (1990)
43–64.

55. Laszlo, M. J.Computational Geometry and Computer
Graphics in C++. Prentice Hall, Upper Saddle River,
USA, 1996, 266 pp.

56. Loftin, R. B., Kenney, P. J. Training the Hubble Space
Telescope flight team.IEEE Comput. Graphics & Appl.
15,5 (1995) 31–37.

57. Loutrel, P. P. A solution to the hidden-line problem for
computer drawn polyhedra.IEEE Trans. Comp.C–19,3
(Mar. 1970) 205–213.

58. Márton, G.Investigation of the Average Complexity of
Ray-Tracing Algorithms.Ph.D Thesis, Budapest, 1995
(In Hungarian).

59. McKenna, M. Worst-case optimal hidden-surface re-
moval.ACM Transactions on Graphics6,1 (Jan. 1987)
19–28.

60. Molnar, S., Eyles, J., and Poulton, J. PixelFlow: High-
speed rendering using image composition.Computer
Graphics26,2 (Proc. SIGGRAPH 92, July 1992) 231–
240.

61. Molnar, S., Cox, M., Ellsworth, D., Fuchs, H. A sort-
ing classification of parallel rendering.IEEE Comput.
Graphics & Appl. 14,4 (1994) 23–32.

62. Motwani, R., Raghavan, P.Randomized Algorithms.
Cambridge University Press, Cambridge, UK, 1995,
476 pp.

63. Mulmuley, K. An efficient algorithm for hidden sur-
face removal 2.J. Computer and System Sciences49,3
(1994) 427–453.

64. Myers, E. W. An O(E logE + I) expected time al-
gorithm for the planar segment intersection problem.
SIAM J. Comput.14,3 (Aug. 1985) 625–637.

65. Newman, W. M., Sproull, R. F.Principles of Interac-
tive Computer Graphics. (Second Edition) McGraw-
Hill Kogakusha Ltd, Tokyo, Japan, 1979, 541 pp.

66. O’Rourke, J. The computational geometry column.
Computer Graphics20,5 (1986) 232–234.

67. O’Rourke, J.Computational Geometry in C. Cam-
bridge University Press, Cambridge, UK, 1994, 368 pp.

68. Pili, P. A parallel raycast algorithm of CSG models
on CM2.International J. Modern Physics C-physics &
Computers4,1 (1993) 29–40.

69. Preparata, F. P., Shamos, M. I.Computational Geom-
etry. An Introduction.Springer-Verlag, Berlin, 1985,
390 pp.

70. Reed, D. A, Shields, K. A, Scullin, W. H, Tavera, L. F,
Elford, C. L. Virtual-reality and parallel systems perfor-
mance analysis.IEEE Computer28,11 (1995) 57–67.

71. Rimmek, K. Flight simulation, an advanced application
of virtual-reality.IFIP Transactions A — Computer Sci-
ence and Technology53 (1994) 171–176.

72. Schaufler, G., Stürzlinger, W. Generating multiple lev-
els of detail from polygonal geometry models. In: Gö-
bel, M. (Ed)Virtual Environments’95, Springer Verlag,
Wien, 1995, 33–41.

73. Schaufler, G., Stürzlinger, W. A 3-dimensional im-
age cache for virtual-reality Computer Graphics Forum
15,3 (1996) c227.

74. Schmitt, A. Time and spacebounds for hidden line and
hidden surface algorithms. Proc. EUROGRAPHICS’81,
Darmstadt, Germany, (Sep. 1981) 43–56.

75. Sedgewick, R.Algorithms in C++. Addison-Wesley,
Reading, Mass., 1992, 658 pp.

76. Slater, M., Usoh, M. Simulating peripheral vision in
immersive virtual environments.Computers & Graph-
ics 17,6 (1993) 643–653.

77. Sudarsky, O., Gotsman, C. Output-sensitive visibility
algorithms for dynamic scenes with applications to
virtual-reality. Computer Graphics Forum15,3 (1996)
c249–c258.

78. Sutcliffe, A. G. Human-Computer Interface Design.
Macmillan Press Ltd,1988, Second edition 1955, 326
pp.

79. Sutherland, I. E., Sproull, R. F., Schumaker, R. A.
A characterization of ten hidden-surface algorithms.
Computing Surveys6,1 (March 1974) 1–55.

80. Teller, S. J., Sequin, C. H. Visibility preprocessing for
interactive walktroughs. Proc. SIGGRAPH 91, 1991,
61–69.

81. Teller, S. J., Hanrahan, P. Global visibility algorithms
for illumination computations. Proc. SIGGRAPH 93,
Anaheim, California, 1993, 239–246.

82. Terashima, N. Telesensation — distributed interactive
virtual reality — overview and prospects.IFIP Trans-
actions A — Computer Science and Technology51,
(1994) 49–59.

c
 The Eurographics Association 1997

Dévai / Computational Requirements of VR Systems

83. Usoh, M., Slater, M. An exploration of immersive vir-
tual environments.Endeavour19,1 (1995) 34–38.

84. Watt, A. Fundamentals of Three-Dimensional Com-
puter Graphics. Addison-Wesley, Wokingham, UK,
1989.

85. Watt, A., Watt, M.Advanced Animation and Render-
ing Techniques. Theory and Practice. Addison-Wesley,
Wokingham, England, 1992, 455 pp.

86. Wloka, M. M. Lag in multiprocessor virtual-reality.
Presence — Teleoperators and Virtual Environments
4,1 (1995) 50–63.

87. Wylie, C., Romney, G. W., Evans, D. C., Erdahl, A. C.
Halftone perspective drawings by computer. Proc.Fall
Joint Computer Conference 1967, Thompson Books,
Washington DC, 1967, 49–58.

88. Yagel, R., Ray, W. Visibility computation for efficient
walkthrough of complex environments.Presence —
Teleoperators and Virtual Environments5,1 (1995) 45–
60.

89. Zobel, R. W. The representation of experience in archi-
tectural design.Presence — Teleoperators and Virtual
Environments4,3 (1995) 254–266.

c
 The Eurographics Association 1997

