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Abstract
Color mapping or color transfer methods aim to recolor a given image or video by deriving a mapping between
that image and another image serving as a reference. This class of methods has received considerable attention
in recent years, both in academic literature and in industrial applications. Methods for recoloring images have
often appeared under the labels of color correction, color transfer or color balancing, to name a few, but their
goal is always the same: mapping the colors of one image to another. In this report, we present a comprehensive
overview of these methods and offer a classification of current solutions depending not only on their algorithmic
formulation but also their range of applications. We discuss the relative merit of each class of techniques through
examples and show how color mapping solutions can and have been applied to a diverse range of problems.

Categories and Subject Descriptors (according to ACM CCS): I.4.8 [IMAGE PROCESSING AND COMPUTER
VISION]: Scene Analysis—Color

1. Introduction

Color is an integral part of our visual world and one of the
main features of images used in art, photography and visu-
alization for relaying information, or conveying a specific
mood. By modifying the colors in an image, it is possible to
alter the overall emotion of a scene, to simulate different il-
lumination conditions or to achieve different stylistic effects.

In many cases, color manipulation may also be necessary
to reduce differences between images for further processing.
When stitching a panorama for instance, consecutive images
may have slight color variations, hindering the stitching pro-
cess. Similarly, differences between individual camera sen-
sors may lead to small changes across a stereo pair that could
affect viewer comfort. In another scenario, when processing
video content, color edits applied to one frame often need to
be replicated to subsequent frames of a sequence.

Both in creative and in more practical scenarios such as
these, editing the color content of images requires skilled
and extensive user input, while the tools available to non-
expert users tend to not offer adequate control.

Color mapping or color transfer is a class of techniques
that aims to provide a simple way of achieving complex
color changes in images by allowing the color palette and
possibly other properties of an image to be altered using
a second image as a reference, as shown in Figure 1 (note
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Figure 1: Color mapping methods at a high level can be
described as a function that maps the colors of a reference
image to the input.

that the terms color transfer and color mapping are used in-
terchangeably throughout this report). The user can select a
reference image whose colors are preferred and modify the
original image such that it acquires the palette of that refer-
ence.

Color mapping has received a lot of attention within the
computer graphics, computer vision and image processing
communities in recent years, both because of its concep-
tual simplicity and the wide variety of solutions that it can
employ. Applications of color mapping vary from making
the appearance of renderings more realistic, to tonemapping
and panorama stitching, with examples even within security
and medical imaging. Yet, it is not clear which methods are
best suited for which purposes or even what can really be
achieved with this class of solutions. Despite the large num-
ber of available methods, there are still open and interesting
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research questions and challenges in this area that could help
color mapping or color transfer solutions reach their full po-
tential.

In this state of the art report, we aim to provide a compre-
hensive review of color mapping methods and their applica-
tions. The objectives of this report are twofold: first, we aim
to categorize existing color mapping techniques according to
their algorithmic formulation. Second, we discuss the main
application areas where color transfer has been employed
and analyze the suitability of different methods in the con-
text of different applications.

1.1. Goals and Challenges

At a high level, the goal of color transfer solutions is always
the same, namely to change the colors of a given input image
to match those of a reference. Yet, very different solutions
have emerged depending on the type of input expected or
the specific requirements of each application.

If the two images contain similar scenes, or even the same
scene captured under different conditions, a desired mapping
is conceptually easy to define: matching objects and regions
between images should obtain the same colors. For example,
multiple-view camera grids might have color differences due
to a lack of color calibration or due to the use of automatic
camera settings [CMC10, DN09]. These can be corrected by
transferring the colors of one image to the other(s). Simi-
larly, images intended for panorama stitching may be cap-
tured with varying camera settings, leading to exposure or
color differences [BL07]. Although in these examples the
differences between image pairs are likely to be small, it is
the quantity of data that necessitates the use of color map-
ping rather than manual adjustments here.

If a more general mapping is our goal, such as for in-
stance transferring the color palette of a particular painting
of a given artist to another image, an almost infinite space
of solutions is available, many of which could be considered
successful. Unlike the first case, where the goal is to achieve
color consistency between similar views, the objective here
is to transfer the overall color palette from one image to
another. For instance, the style of a particular film may be
transferred to other content [BSPP13, XADR13] or a photo-
graph may be used to improve the appearance of rendered
content [RAGS01].

In either of the above scenarios, color transfer methods
take the same general form. Once the input and reference
images are selected, color correspondences are determined
between them, defining a mapping between colors in the tar-
get image and the selected reference. The mapping is then
used to modify the input image.

In the specific case that images have semantic similarities,
it is possible to determine exact feature correspondences be-
tween objects that are present in both images. To that end,

correspondences by geometric local features are often lever-
aged in those cases [DN09, HSGL11, FST12].

On the other hand, if the source and reference
images depict different scenes, automatic feature cor-
respondences are not attainable, and therefore user-
assisted [LLW04, WHCM08] or statistically determined
[XM06, PR11] correspondences may be used. In the for-
mer case, the user can indicate region correspondences using
strokes [LLW04, WHCM08, AP10] or swatches [RAGS01].
Alternatively, a mapping may be determined directly in the
color distributions with no specific considerations of image
structure [XM06, PKD07, PR11] or a form of pixel cluster-
ing or segmentation may be employed to provide an initial
grouping of “like for like” pixels [ICOL05, WYW∗10].

Color correspondences between images typically only
determine how a subset of the image colors should
be transformed. The second challenge in color mapping
is how to model the complete transformation from the
input to the reference palette. Simpler changes, such
as remapping of the illumination or overall intensity
changes can be achieved through simpler, linear models
[RAGS01, TGTC02], whereas more complex changes are
likely to require non-linear models [HSGL11].

Although more complex models are able to encode larger
changes in color palette between the reference and input im-
ages, they also risk creating inconsistencies or discontinu-
ities in the processed image. If the gradient in a smoothly
changing region is for instance increased, banding arte-
facts may appear [XM09]. To avoid this, regularization con-
straints may be imposed on the transfer [HSGL11] or image
regions may be selected based on a soft segmentation that
avoids strong boundaries [WYW∗10].

Most color transfer algorithms take as input two images,
one exemplar and one image to be modified according to
the exemplar. Sometimes it may be possible to find an im-
age that is already transformed in a desirable manner. It is
then possible to apply machine learning techniques to en-
code the transform, and subsequently apply the same trans-
form to other images [HJO∗01]. Although this is a generally
applicable technique, suitable not only for color but also for
other image modalities such as texture, in most applications
discussed in this paper exemplars are easy to find, but trans-
form pairs are more difficult to come by.

A final challenge related to color transfer, which is per-
haps separate from the algorithmic considerations discussed
so far, is that of evaluating color transfer results. Because of
the under-constrained nature of this problem and therefore
the wide range of plausible solutions given a pair of input
images, a quantitative assessment of a color transfer result is
a difficult task. This important issue is discussed in depth in
Section 4, while algorithmic considerations are explored in
the following section.
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Figure 2: A broad classification of color transfer approaches. Geometry-based methods are discussed in Section 2.1, statistics-
based algorithms are presented in Section 2.2 and user-assisted approaches are introduced in Section 2.3.

2. Classification of Color Mapping Methods

Here, we provide an overview and categorization of color
mapping methods. The color mapping problem can be ap-
proached from widely different perspectives that stem from
computer vision, image processing or computer graphics,
leading to very different goals and requirements along with
matching algorithmic solutions. We find that most color
transfer algorithms broadly fit into one of three categories,
namely geometry-based, statistical as well as user-assisted
methods (see Figure 2). These are discussed in the following
sections.

2.1. Geometry-based Methods

Although a precise definition is elusive, in some sense many
color transfer methods aim to match the appearance between
images. For some applications such as image stitching and
stereo capture, this could be sets of images that were taken
of the same scene. In this case, the transfer of aspects of
color rendition from one image to another can be facilitated
by searching for corresponding features that are depicted in
both images. By actively finding correspondences between
pairs of images, the color transfer algorithm can better en-
sure that features that occur in both images end up having
the same colors.

2.1.1. Sparse Correspondence

To determine which features occur in multiple images,
feature detection methods can be successfully employed
[Lin98]. These include often-used algorithms such as Scale-
Invariant Feature Transform (SIFT) [Low04] and Speeded-
Up Robust Features (SURF) [BTVG06]. Such feature de-
tection methods are applied to both input images, leading
to two sets of feature vectors. Features from both sets can

then be matched to each other to find a set of candidate cor-
respondences [BL97]. This candidate set can be refined by
applying the Random Sample Consensus (RANSAC) algo-
rithm [FB81], effectively rejecting outliers. Many variants to
this basic structure are of course possible. Further, taking the
colors directly from the matched feature points may lead to
issues with robustness. Instead, it may be beneficial to con-
sider neighborhoods around each feature point to derive the
transfer function [FST12].

Once features are detected and a correspondence is de-
termined, color differences can be compensated. For in-
stance, Yamamoto et al. use SIFT to calculate spatial cor-
respondences [YYF∗07, YO08a] and subsequently apply a
Gaussian convolution kernel to the images to detect corre-
sponding colors. The use of blur kernels (or other forms
of windowing [OHSG12]) improves robustness for instance
against noise pollution. Corresponding colors are then en-
capsulated into look-up tables that are subsequently applied
to the target frames. This and similar techniques [TISK10]
could be applied to each of the three color channels indepen-
dently. An example application where this technique could
be used is multi-view video coding [YKK∗07].

Alternatively, sparse spatial correspondences have equiva-
lent color correspondences in a given color space. Such color
correspondences can be seen as spanning a vector field, for
instance in the CIELab color space [OHSG12]. As this vec-
tor field will be sparse, a denser but still smooth vector field
can be derived to guide color transfers for colors that are
not close to the ones for which an exact transform is de-
fined. To create a dense vector field in color space, each
color correspondence vector in the sparse field is interpo-
lated using radial basis function interpolation. It was found
that normalized Shepard basis functions are better suited for
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this task than Gaussian or inverse quadratic basis functions
[OHSG12].

2.1.2. Region-based Correspondence

Rather than rely on point-wise feature correspondences, it
is possible to apply a color transfer method after match-
ing regions in images, possibly improving the robustness
of the results. To this end, the image is first segmented
[WSW10, SJYC07], for instance with a mean-shift based
image segmentation technique [CM02], followed by feature
detection using an optical-flow based algorithm [WSW10].

Alternatively, the images can be decomposed using quad-
trees [KMHO09]. A consistency measure is defined in terms
of color. If a node in the quad-tree is deemed inconsistent,
it is recursively split. Testing corresponding nodes in the
quad-trees belonging to each image allows the definition of
a consistent region-based set of mappings. Each pair of cor-
responding regions has its own mapping, which is effected
by histogram matching. To reduce the number of such map-
pings, similar mappings are clustered [HTF01]. Finally, the
quad-tree decomposition gives rise to blocky artefacts after
the mapping, which requires an additional refinement pro-
cess.

This method can handle differences in illumination, but
assumes that the viewpoint is identical between the two im-
ages [KMHO09]. In case both the viewpoints and the illu-
mination differ, the method can be augmented with feature
detection using SIFT/RANSAC, as discussed above.

2.1.3. Dense Correspondence

The methods discussed so far in this section, each compute
either sparse correspondences or region-based correspon-
dence. Such approaches thus help to control the computa-
tional load. However, sparse feature matching does make the
implicit assumption that the geometric differences between
two images are relatively small, and that the transform be-
tween the two images is rigid.

However, the differences between images could be due
to objects or humans moving and deforming. The view-
points of two images of the same scene could also be sig-
nificantly different, for instance in applications whereby im-
ages in photo collections are to be made more consistent
[HSGL11, HSGL13]. Such cases are less well served by
color transfer based on sparse feature matching.

This has given rise to techniques that compute dense cor-
respondences. A well-known algorithm to compute dense
approximate nearest neighbor correspondences is the Patch-
Match algorithm [BSFG09]. This algorithm has been ex-
tended to include n nearest neighbors, search across different
scales and rotations, and to match with the aid of arbitrary
descriptors and distances. This algorithm is known as the
Generalized PatchMatch algorithm [BSGF10].

In turn, this algorithm was extended to deal with tonal

differences across the images for which correspondences
are sought [HSGL11]. Typically, dense correspondences are
found only for parts of the images. These correspondences
can be used to define a global parametric transfer curve for
each of the three color channels (in RGB space, in this case).
Such a global transfer function ensures that colors in the in-
put image that do not have a counterpart in the reference
image, can still be adjusted in a meaningful and coherent
manner.

In addition, a matrix with a single degree of freedom is
used to scale colors relative to gray. This captures satura-
tion changes between images that cannot be accounted for
by having three independent parametric curves. This matrix
has the form: s−wr wg wb

wr s−wg wb
wr wg s−wb

 (1)

Here, optimization is used to find the scale factor s that
best models the corresponding chroma values. This opti-
mization can be repeated for two common estimates of gray:
(wr,wg,wb) = (0.333,0.333,0.333) and (wr,wg,wb) =
(0.299,0.587,0.114), the latter stemming from YUV color
space.

With this approach, dense correspondences enable a more
precise transfer of color than sparse correspondences (ob-
tained with SIFT), as shown in Figure 3.

The method was recently extended to deal with multiple
photographs such as collections of images of a single event
[HSGL13]. In this case, a possibly large number of pho-
tographs need to be made consistent. This problem can be
tackled by super-imposing a graph structure on the set of
images. Images that have content in common will then be
connected in the graph, whereas disjunct images will be con-
nected via multiple vertices. This allows adjustments to one
image to be propagated across the graph to affect nearby im-
ages more than images further along the graph. Once again,
parametric curves can be used to carry out the transfer of
color between images.

For rigid scenes and significant overlap between two
views of the same scene, dense correspondences can also
be computed by estimating global disparity. For instance,
assuming that the two views form a stereo image pair, the
global disparity can be calculated by first transforming both
images into rank transform space [ZW94]. The rank trans-
form is computed by considering a window around each
pixel, and calculating the number of pixels within this win-
dow that have a value less than the value of the center pixel.
The result is then used in an optimization that determines the
optimal offset between the two rank transformed images:

argmind ∑
x

∑
y
|ri(x,y)− rr(x+d,y)| (2)

where ri and rr are the input and reference images, respec-
tively [CMC10]. This procedure defines how and where the
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Figure 3: Input and reference images (top row) are pro-
cessed with HaCohen’s color transfer algorithm [HSGL11]
using dense correspondences (bottom left) as well as sparse
correspondences computed using SIFT features (bottom
right). Images used with the kind permission from the au-
thors [HSGL11].

two frames overlap, leading to dense correspondences be-
tween the two frames. Block-based methods can also be used
to determine the disparity between two views [DN09]

2.2. Transferring Statistical Properties

When direct correspondences between image features are
not available, statistical properties are often used to define a
mapping between the two input images. Statistical descrip-
tors have been used extensively in visual computing as they
provide a compact means of describing tendencies in images
or image classes [PRC13].

Color information in images is typically encoded using
three numbers per pixel, representing a point within a 3-
dimensional color space. By reshaping the color distribution
of the input image such that it approaches that of the refer-
ence, the colors can be transferred between the two images.
To simplify the transfer process, statistical properties that de-
scribe this distribution can be used as a proxy instead.

In most imaging applications and indeed in our visual sys-
tem [RKAJ08], images are encoded using RGB-like color
spaces, where, broadly speaking, each channel encodes the
amount of each primary present within a given color. Infor-
mation encoded in the three channels is highly correlated,
though; effectively changes in one channel affect the values
in the other channels. Although this property is necessary for
human vision to allow us to perceive color [WS00], it also
means that manipulations of the color content of images in
such a color space may have unpredictable effects.

Fortunately, the space used for manipulating the color
content of images need not be the same as the color space
spanned by human photoreceptors. In fact, the same color
can be described in infinitely many ways by changing the set
of primaries that it is defined upon. Mathematically, this can
be achieved through a transformation that takes a given color
from one set of coordinates to another. By shifting, scaling,
and rotating the axes defining a color space, a different space
can be constructed to achieve different goals [RKAJ08].

In the context of color transfer, the correlation be-
tween the channels of the RGB space is of course highly
undesirable. By choosing a less correlated color space,
many statistical-based methods can map colors between im-
ages by considering each channel separately, and therefore
converting a potentially complex 3D problem into three
separate 1D transfers [RAGS01, GD05], [XM06, SA07],
[AK07, XM09], [PR10, PR11]. In these methods, the selec-
tion of color space plays a crucial role [RPer], as discussed
in Section 2.2.2.

2.2.1. Per-Channel Transfer

One of the earliest color transfer techniques takes advantage
of the decorrelation property of a perceptually-based color
space known as lαβ [RCC98] and transfers simple statistical
moments (mean and standard deviation) between each chan-
nel of the two images. An example result is shown in Fig-
ure 5. To achieve this, the values of each channel of the input
image It are shifted to a zero mean by subtracting the mean
of the input from each pixel. They are then scaled by the ratio
of standard deviations of both images such that they acquire
that of the reference image, and finally, they are shifted to
the mean of the reference by adding its mean instead of the
input mean that was originally subtracted:

Io =
σr

σi
(Ii−µi)+µr (3)

Here, the subscripts i, r, and o correspond to the input, ref-
erence and output images and µ and σ are their respective
means and standard deviations. Note that this process is ap-
plied on each channel of the image separately after convert-
ing to the lαβ color space.

Despite its simplicity, this technique can be successful for
a wide range of images, but the quality of the results relies
on careful selection of the reference image. Additionally, be-
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cause the lαβ color space is constructed so that it decorre-
lates natural images (i.e. forest scenes, grass etc.), it cannot
be guaranteed to successfully decorrelate other scene types.

The latter limitation can be overcome by comput-
ing a decorrelated color space for the given input im-
ages [GD05, XM06, AK07] using principal component
analysis (PCA), and apply color transfer in the resulting
color space. In the method by Reinhard et al. discussed pre-
viously, colors are transferred from the reference to the in-
put image by first rotating the image data to lαβ, followed
by a translation and scaling using the input image statistics,
which removes the input color characteristics. The same pro-
cess is then repeated in reverse to apply the statistics of the
reference. Xiao and Ma follow a similar process but replace
the rotation to lαβ transformation to the axes defined by the
principal components of each image [XM06]. Formally, this
can be expressed as a series of affine matrix transformations:

Io = TrRrSrSiRiTiIi, (4)

where T , R and S represent translation, rotation and scaling
matrices for the input and reference images accordingly.

In both of these methods, it is possible to achieve in-
creased control by using swatches that define specific map-
pings as will be discussed in Section 2.3.2. However, in the
methods discussed so far, the transfer of colors between the
two images relies on simple, global statistics. Such statistics
can provide useful information about overall tendencies in
a distribution but more information and ideally higher-order
analyses are necessary to capture more subtle variations in
images.

A more faithful representation can be achieved by consid-
ering the full distribution of values in each channel. Com-
monly, histograms are employed as a compact means of de-
scribing a probability distribution. or a given image I, we
define its histogram H with B bins of width V as follows:

H = {(h(1),v(1)), ...,(h(B),v(B))} (5)

B =

⌈
max(I)−min(I)

V

⌉
(6)

h(i) =
N

∑
p=1

P(I(p), i), i ∈ [1,B] (7)

v(i) = min(I)+(i−1)V (8)

P(I(p), i) =

 i =
⌊

I(p)−min(I)
V

+1
⌋

0 otherwise
(9)

The shape of the input histogram Hi can be matched to
that of the reference Hr using a process known as histogram
equalization or more generally, histogram matching. First,
the cumulative histograms of the source and target are com-

Source Target Result

a
b
L

Figure 4: Pixel values in the input image are modified such
that the histogram of each channel matches that of the refer-
ence image, changing the image appearance of the input to
approach that of the reference. In this case the color map-
ping is done in the CIE Lab color space.

puted:

Ci(i) =
B

∑
i=1

hi(i) (10)

Cr(i) =
B

∑
i=1

hr(i) (11)

after which the input image can be matched to the reference
according to the two cumulative histograms:

I0(p) = vr

(
C−1

r

(
Cs

(
I(p)−min(I)+1

V

)))
(12)

Here, a cumulative histogram C is defined as a function map-
ping a bin index to a cumulative count. The inverse function
C−1 acts as a reverse lookup on the histogram, returning the
bin index (and therefore the intensity value) corresponding
to a given count. This process can be easily extended to a
color image by repeating the histogram matching process for
each of the three channels to achieve a result as shown in
Figure 4.

Using this process, the transformed image will acquire ex-
actly the same distribution as the selected reference and will
therefore have the same colors. However, the resulting image
may be too harsh as the transfer can amplify artifacts that
were previously invisible, indicating that higher-order prop-
erties of the image may need to be matched or preserved
to achieve a successful result. Based on this observation, a
wealth of color transfer methods have been developed, each
relying on a different set of statistical properties of the im-
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Input Image

Reference Image Reinhard et al. 2001 Pitie et al. 2005 Xiao and Ma 2009

Pouli et al. 2010, 50% TransferPouli et al. 2010, 25% TransferPouli et al. 2010, 15% Transfer

Figure 5: A comparison of three global, statistical color mapping methods.

ages to transfer the color palette between them without oth-
erwise affecting the appearance of the image.

Since a full histogram transfer is likely to be too
rigid, one possibility is to only partially match the two
histograms by taking advantage of their local struc-
ture [SA07, PR11, PR10]. One recent solution achieves that
by considering features of the histograms in different scales.
An example result from this method is shown in Fig-
ure 5. By matching only coarse features of the histogram,
a progressive match can be achieved between the two im-
ages [PR11, PR10], transferring only large scale color vari-
ations without forcing the exact distribution of the reference
image.

This leads to an interesting observation: such an approach
is possible because nearby pixels in images tend to be sim-
ilar. This is a recurring property of natural scenes [PRC13]
and obviates the need for using segmentation in order to de-
termine corresponding groupings of pixels for color transfer,
as will be discussed in Section 2.2.4.

Alternatively, to ensure that the histogram matching pro-
cess does not introduce artefacts in the image, the transfer
can be constrained by aiming to preserve the gradient dis-
tribution of the input [XM09] (see Fig 5 for an example re-
sult) or a combination of the input image colors and geom-
etry [PPC11]. In the method by Xiao and Ma [XM09], the
transfer between the two images can be naturally expressed
as an optimization that minimizes the difference between the
color histogram of the output and the reference, while keep-
ing the gradient distribution of the output as close as pos-
sible to that of the input. Although this is a conceptually
simple modification to histogram matching, it leads to vi-
sually smoother results. However, as the gradient constraint
is global and carries no spatial information, in extreme cases

(such as when transferring between high dynamic range im-
ages), it can over-smooth results.

2.2.2. Color Spaces

Statistics-based color transfer algorithms either treat pixel
data as a single 3D point cloud in a 3D color space. Color
transfer is then a reshaping of this 3D point cloud to statis-
tically match the point cloud of an example image. Several
algorithms take a simpler route by mapping pixel values one
color channel at a time. Of course, if a mapping is carried out
for each channel separately, then the choice of color chan-
nels, i.e. the choice of color space, becomes very important.

The argumentation as to what constitutes a good color
space for this type of problem is as follows [RPer]. Natu-
ral image statistics is the study of statistical regularities in
images, and usually aims to help understand how the hu-
man visual system operates [HHH09, PCR10, PRC13]. Hu-
man vision has evolved in the presence of a natural environ-
ment, and is therefore likely to be specialized to observe and
understand natural images.

This was tested by Ruderman et al. [RCC98] who con-
verted a set of spectral natural images to LMS cones space,
a color space that resembles the responses of the L, M and
S cones in the human retina. This image ensemble was then
subjected to Principal Component Analysis (PCA), show-
ing that the three principal components obtained closely
correspond to the opponent color channels found in the
retina [RCC98]. As PCA yields components that are maxi-
mally decorrelated, the retina appears to decorrelate its in-
put. While formally PCA only decorrelates, it was found
that transforming natural images in this manner, the result-
ing color space (called Lαβ) yields channels that are close to
independent.

As Lαβ is a non-standard color space [RCC98], we give
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the transformation from XYZ here. The first step is to trans-
form to LMS cone space: L

M
S

=

 0.3897 0.6890 −0.0787
−0.2298 1.1834 0.0464

0.0000 0.0000 1.0000

 X
Y
Z


(13)

The LMS values are then logarithmically compressed to re-
duce skew in the data before applying the linear transform to
Lαβ:

 L
α

β

=


1√
3

1√
3

1√
3

1√
6

1√
6
− 2√

6
1√
2
− 1√

2
0


 logL

logM
logS

 (14)

This color space is characterised by a luminance channel L
and two opponent color channels α and β, which encode
yellow-blue and red-green chromaticities.

Of course, if the three color channels of an image
can be made (near-) independent, then image processing
can take place in each of the three channels indepen-
dently [RAGS01]. The success of this approach, however,
depends strongly on the choice of color space. A better
decorrelation between the channels tends to yield a better
visual quality of the results. See Figure 6 for an example.

Although Lαβ has been adopted as the space
of choice for many color transfer algorithms
[RAGS01, GH03],[Toe03, YC04],[LJYS05, XZZY05],
[WHH06, LWCO∗07],[ZWJS07, XM09, XZL09], related
spaces such as CIELAB are also used [CUS04, WHCM08],
[PR10, PR11]. Other color spaces implicated in color
transfer are CIE LCh∗ [NN05], YCbCr [KM07], Yuv
[LLW04, WZJ∗07], as well as color appearance models
[MS03]. On the other hand, several authors suggest to
compute a dedicated color space for each transfer, based on
PCA [KMS98, AK04, Kot05, XM06, AK07].

To determine the relative merit of each color space, a
study was performed [RPer], comparing the visual quality
obtained with different color spaces using the same color
transfer algorithms. Although the details of this study are
beyond the scope of this report, the main conclusion is non-
trivial. Their finding is that the best results are obtained when
the CIELAB color space is used with illuminant E. This pro-
duces on average better results that all other spaces that were
tested. Notably, although both CIELAB and Lαβ are color
opponent spaces, CIELAB outperforms Lαβ. Surprisingly,
CIELAB with illuminant E also outperforms the use of per-
ensemble color spaces, derived with principal components
analysis. As such, this color space was recommended for use
in statistics-based color transfer algorithms that apply trans-
forms to each color channel independently.

2.2.3. Color Transfer as a 3D Problem

As we have seen, color spaces describe a 3-dimensional
space. Pixels in an image are in that case given as a triplet,
denoting a point within that space. In our discussion so far,
we have focused only on techniques that manipulate each
of the image channels independently. Although this descrip-
tion of color provides the obvious advantage of simplifying
a potentially complex 3D problem to a set of three 1D prob-
lems, it cannot capture all subtleties in the color distribution
of images.

To maintain local color information and interrelations, the
3D color distribution of the two images needs to be treated as
a whole; this is done so that the input 3D distribution will be
reshaped to match or approximate that of the reference. Un-
fortunately, translating processes such as histogram match-
ing or histogram reshaping to more than one dimension
is not straightforward and either requires an optimization-
based solution or a way to simplify the problem to fewer
dimensions.

In the latter case, it is possible to match the 3-
dimensional probability distributions describing the two im-
ages through an iterative match of 1D projections. This
can be achieved by repeatedly selecting random 1D projec-
tions [PKD05, PKD07], or by projecting onto known color
properties such as hue, lightness and chroma [NN05].

In the method by Pitie et al., at each iteration step the 3D
distributions of the input and reference images are rotated
using a random 3D rotation matrix and projected to the axes
of their new coordinate system [PKD05, PKD07]. Each 1D
projection of the input is then matched to that of the refer-
ence and the data is transformed back to its original coordi-
nate system. This process is repeated with different rotations
until convergence occurs [PKD05, PKD07]. An example re-
sult and the effect of an increasing number of iterations can
be seen in Figure 7.

2.2.4. Segmentation and Clustering

In the methods discussed so far in this section, the color dis-
tribution of the image is considered independently of the im-
age structure. Although these methods are simpler algorith-
mically, the choice of image used as reference can define the
quality and success of the result. If the reference image is too
different in structure to the input, global methods such as the
ones discussed, cannot guarantee that the color mapping will
be successful.

To improve the coherence of color mapping results, the
input and reference images can be segmented into regions,
allowing for a local mapping between regions to be de-
fined. Although it is possible to directly segment the im-
age pixels using a binary segmentation, possibly in multiple
scales [GH03], most methods opt for a fuzzy segmentation.

Such a softer segmentation can be achieved by determin-
ing dominant colors in the image and extracting segments
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Figure 6: Decorrelation properties of color spaces. The top row shows pixel values for pairs of channels in an RGB color
space, taken from the image at the top left. The bottom row shows the same pixels plotted in pairs of channels from the Lαβ

space instead. Values in channel in RGB spaces tend to be good predictors of other channels, resulting in an almost diagonal
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Figure 7: An example result by Pitie et al. [PKD05]. The
color distribution of the input image is iteratively reshaped
to match that of the reference. The distributions at different
iterations are shown for red versus green channels.

for each of them. Yoo et al. [YPCL13] use the mean-shift al-
gorithm [CM02] to that end, and rely on a simple statistical
transfer [RAGS01] to transfer colors between corresponding
regions.

More commonly, a soft segmentation according to dom-
inant colors in the image is achieved by applying Gaussian
Mixture Models (GMM), probabilistic models that aim to
describe a given distribution using a mixture of Gaussian
distributions [Rey09]. A pixel (x,y) is assigned a probability
Pi(x,y) of belonging to a given Gaussian distribution i ∈M,

computed as:

Pi(x,y) =
exp(− (I(x,y)−µi)

2

2σ2
i

)

∑
M
j=1 exp(− (I(x,y)−µ j)2

2σ2
j

)
(15)

where, µi and σi are the mean and standard deviation of the
ith gaussian distribution respectively.

To segment an image into M regions, a set of M Gaus-
sian distributions may be fitted using an optimization pro-
cedure known as Expectation Minimization (EM) [DLR77].
Once GMMs are determined for the input and reference im-
age, a mapping can be constructed between the segmented
regions. Typically, luminance information in each segment
can be used to guide the color mapping [XZZY05].

To smooth the color mapping result, the EM procedure
can be modified to allow a given pixel to fit within more than
one GMM, resulting in more seamless transitions between
adjacent regions [TJT05, TJT07]. As this method relies on a
mapping being available between all regions of the two im-
ages, multiple references may be used to ensure that all input
regions are assigned a corresponding reference [XZL09].

Instead of clustering images based on their content,
segmentation can be guided according to more gen-
eral color categories. Several studies within color vi-
sion and perception have determined that colors can be
divided into a small number of almost universal cat-
egories [Ber69, Hei72, UB87]. In the context of color
transfer, color categorization can be used to both seg-
ment images into coherent regions but also to deter-
mine correspondences between the input and reference im-
ages [CUS04, CSUN06, CSN07b].
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In a similar vein, rather than using another image, it is pos-
sible to use a simple color palette as a reference [WYW∗10].
In that case, no spatial information is available in order to
guide how colors should be mapped. To determine a map-
ping between regions in the input and the colors in the given
palette, Wang et al. analyzed a collection of images to estab-
lish typical mappings between colors and textures or types of
objects (e.g. grass, sky etc.). By segmenting the input image
and assigning an object class to each region, an appropriate
range of colors could be selected from the given palette.

Alternatively, image content analysis may be used to
extract semantically meaningful regions from the im-
age [WDK∗13]. Recent image analysis methods can auto-
matically segment images according to the 3D structure of
the depicted scene [HEH05, HEH07], while saliency analy-
sis can determine which parts of the image are likely to be
important and which serve as background [FWT∗11]. Us-
ing this information, Wu et al. transfer colors between se-
mantically similar regions (e.g. sky to sky, ground to ground
etc.) [WDK∗13].

2.3. User-assisted solutions

If the structure and content of the input image is too dif-
ferent from that of the reference or example image, many
automatic methods will fail to find a successful mapping,
requiring user input to guide the source and reference cor-
respondences. Beyond the goal of achieving better results,
user assistance is also necessary additional reasons. Previ-
ously mentioned classes of color mapping do not take into
account semantic aspects: i.e., pixels associated with spe-
cific types of objects such as “sky", “grass" or “face", have a
restricted range of plausible colors.

To incorporate user control into color mapping meth-
ods, one possibility is for the user to manually define layer
mask [COSG∗06, PR11] or strokes [WHCM08] for preserv-
ing regions from any color mapping. On the other hand,
manual user interaction may be used to define region corre-
spondences between images or videos [OHSG12, WAM02].
In addition, it may be the case that the user input itself
serves as a rough reference or initialization for color map-
ping through colored scribbles [LLW04] and colored re-
gions [SVS∗10].

2.3.1. Stroke-based Approaches

A mapping between images can be defined by a user through
a set of strokes that can be painted onto the input and refer-
ence images. Wen et al. for instance define correspondences
between images, as well as regions that should not be ad-
justed, in this way [WHCM08]. Similarily, Cohen-Or et al.
allow human interaction for avoiding color harmonization
of tricky regions or for ensuring that similar regions are
grouped together [COSG∗06].

Although some approaches do not explicitly deal with

Ground truth Input and strokes Levin et al. 2004

Figure 8: An example result using the stroke-based coloriza-
tion method of Levin et al. [LLW04]. A greyscale image is
supplemented with user-provided strokes (middle), which are
propagated to create a colorized result (right). The ground
truth is shown on the left.

color mapping they are closely related from a color modeling
perspective. For example, Lischinski et al. [LFUS06] allow
users to select manual image regions to perform local tonal
adjustment. They apply different properties to strokes and
brushes to better cope with their problem: luminance brush
covers all pixels having a similar luminance than the anno-
tated brush stroke, over-exposure brush represent all over-
exposed pixels enclosed by a manual stroke-based region. In
the same vein, An et al. [AP08] use a similar idea by prop-
agating manual tonal adjustment toward spatially-close re-
gions of similar appearance. Later, they extended the method
to color transfer problem [AP10].

Instead of transferring colors from another image, strokes
can also be used more directly to define the actual color that
a region should obtain. The pioneering work of Levin et al.
[LLW04] introduced the notion of strokes in the process of
adding color to greyscale images, known as the colorization
problem (discussed in detail in Section 3.1). Stroke-based
approaches provide an easy manual way for efficiently guid-
ing the mapping or for initializing the appearance of regions.
The main idea behind such methods is to spatially diffuse
information from the user provided stroke to the rest of the
image.

To achieve that, once strokes are placed by the user, the
algorithm by Levin et al. [LLW04] propagates the defined
colors to the remainder of the image. The guiding premise is
that neighboring pixels with similar luminance should also
obtain similar colors, while nearby pixels whose luminance
is different are likely to have different colors. This relation
can be expressed through a weighting function known as the
affinity function that assigns weights to neighboring pixels
according to their luminance differences.

2.3.2. Swatch-based Approaches

This kind of approach is more related to the issues of finding
correspondences between target and reference. Welsh et al.
[WAM02] pointed out the issues related to region correspon-
dences in the context of grayscale colorization. Mapping col-
ors based on luminance statistics or structures is a restrictive
assumption that makes the problem difficult. Consequently,
they first introduced the swatch approach for guaranteeing
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color mapping of critical regions. Thus, they applied color
transfer or color mapping from the swatched region of col-
orized pictures to the corresponding one in the greyscale tar-
get. Then, instead of searching for texture/luminance cor-
respondences between the target and the reference pictures,
they restrict the search area to the target pictures, consider-
ing an internal picture correspondence is more probable than
an external one.

While Farbman et al. and Li et al. employed local
diffusion of annotation through diffusion map [FFL10]
and radial basis function interpolation in a feature space
[LJH10, OHSG12] used rather a global approach for color
balancing in formulating the problem as a global color space
transformation independent from the image color space. Re-
cently, Xu et al. [XYJ13] improved the required level of re-
quested sample edits and applied their framework to differ-
ent applications where manual editing is inescapable.

3. Applications

Color mapping methods first appeared as a means to improve
the appearance of rendered content [RAGS01], but the flex-
ibility of the general idea soon gave rise to a variety of other
applications where automatic but guided color manipulation
was necessary. The following sections discuss the main ap-
plication areas where color mapping has been used.

3.1. Image Colorization

In the scenarios discussed so far, there is an implicit assump-
tion that the target and reference content have the same di-
mensionality. However, many practical applications require
the colorization of greyscale images or videos. In these
cases, the input image to be colorized has by nature no color
on it and therefore carries less information to guide the map-
ping of colors from the reference image; nevertheless it is not
necessarily a gray-scale picture (meaning a natural image or
a pattern), it could be any graphical creation [LRFH13] or
a sketch, a cartoon with only delimited regions and without
any luminance information [SVS∗10].

Colorization of greyscale content is a process that has
received attention early on in the history of image pro-
cessing. The earliest computer-aided colorization method
was developed by Markle in the 1980s and relied on a
user for identifying regions where motion occurred between
frames [Mar84]. More recently, automatic methods have
been proposed to colorize greyscale content, either using
a color image as a reference [WAM02, ICOL05, CHS08]
or simple color palettes [LRFH13]. Alternatively, coloriza-
tion can be controlled stroke-based user input [LLW04].
Although colorization methods follow similar principles to
color-to-color mapping solutions discussed in Section 2,
they merit their own discussion as they require additional
strategies to deal with the difference in dimensionality be-
tween the input and reference images.

3.1.1. Exemplar-based Colorization

One of the earliest solutions to automatically colorize im-
ages was introduced by Welsh et al. [WAM02]. Similar
to many of the color mapping methods discussed in Sec-
tion 2.2, to determine a mapping between regions (and there-
fore colors) of the reference image and those of the input
Welsh et al. rely on statistical information in the images.
Their method operates in the decorrelated Lαβ color space
and selects a reference color according to the similarity of
the luminance distribution in a small neighborhood around
each pixel. To improve spatial coherence of colorized results,
Bugeau and Ta propose to use a Total Variation regulariza-
tion after the colorization step [BT12].

Although this approach can lead to successful coloriza-
tion results with a carefully chosen reference image, it of-
ten fails when the scene content and composition are not
well matched. To improve on some of these limitations,
Irony et al. [ICOL05] focused on the spatial aspect to im-
prove its consistency in the colorization process. Given a
grayscale image to colorize, they first determine for each
pixel which example segment it should learn its color from.
This is done automatically using a robust supervised clas-
sification scheme that analyzes the low-level feature space
defined by small neighborhoods of pixels in the example im-
age. Next, each pixel is assigned a color from the appropri-
ate region using a neighborhood matching metric, combined
with spatial filtering for improved spatial coherence. Each
color assignment is associated with a confidence value, and
pixels with a sufficiently high confidence level are provided
as “micro-scribbles" to the optimization-based colorization
algorithm of Levin et al. [LLW04], which produces the final
complete colorization of the image.

Later, Charpiat et al. [CHS08] colorized greyscale im-
ages automatically without any manual intervention. Their
method deals directly with multimodality (meaning that the
same object may have different colors depending on the im-
age, context etc.) and estimate, for each pixel of the image
to be colored, the probability distribution of all possible col-
ors, instead of choosing the most probable color at the lo-
cal level. They also predict the expected variation of color
at each pixel, thus defining a non uniform spatial coherency
criterion. Then, they use graph cuts to maximize the proba-
bility of the whole colored image at the global level. They
work in the CIELab color space in order to approximate the
human perception of distances between colors, and use ma-
chine learning tools to extract as much information as possi-
ble from a dataset of colored examples.

Recently, Bugeau et al. [BTP13] proposed a variational
framework to address the colorization problem which al-
lows them to simultaneously solve the candidate selection
and color regularization problems through a variational en-
ergy minimization. Their approach avoids the arbitrary pre-
selection of a single candidate for each pixel. To achieve
that, they design an energy minimization process that au-
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tomatically select the best color for each pixel from a set of
candidates, while ensuring the spatial coherency of the re-
construction, as it enforces neighbor pixels to have similar
colors in the final result.

In all methods discussed so far, the selection of a reference
image or images still rests upon the user. If the user selects
an unsuitable image as a reference for the colorization, the
result may not be plausible. To resolve this issue as well as
to remove the need for user-provided input, several methods
automatically select one or more reference images. Viera et
al. [VdNJ∗07] rely on content-based image retrieval meth-
ods to find a suitable reference image, which can be then
used to colorize the greyscale input. To select an appropriate
reference automatically they explore several image descrip-
tors such as luminance, gradients and multi-scale analysis.

Taking this concept further, Liu et al. [LWQ∗08] find
multiple appropriate images online by attempting to regis-
ter parts of each exemplar with the input. Once a set of
references is selected, intrinsic images are computed from
them using the method of Weiss [Wei01]. Intrinsic image
decomposition separates illumination from reflectance and
therefore allows the colorization method to consider the true
color of each surface. As this method relies on registration of
the input and the selected references, only images of known
monuments are considered, restricting the applicability of
their technique.

The idea of finding reference images from online sources
is extended by Chia et al. [CZG∗11], removing the strict re-
liance on feature correspondences. Although the main con-
tribution of their method lies on the automatic selection of
candidate images, the colorization process is also updated to
rely on super-pixel based feature correspondences, allowing
for a more flexible colorization.

If the goal of the colorization is to propagate user-selected
colors from one frame to others in an animation sequence of
video, as would be the case when converting greyscale video
to color, it is possible to use geometric and structural cues
to guide the color mapping process [SBŽ04]. In that case,
rather than aim to find corresponding regions based on sta-
tistical properties, a much more direct registration between
frames can be performed.

3.1.2. Stroke-based Approaches

This class of approaches takes advantage of strokes or scrib-
bles that are manually provided by a user. Typically in such
methods, the user draws simple lines on the image(s) to ei-
ther define correspondences between the input and reference
or to initialize the colorization process. The number of re-
quired scribbles is variable and depends on the efficiency of
the considered methods and the expected performance, how-
ever an active research area within stroke-based colorization
has been that of minimizing the amount of user input re-
quired.

Unlike the exemplar-based methods that start from the
large variety of color present in a reference image, the color
of the scribbles are the input information for the coloriza-
tion problem in this case. Even though scribbles provide
less information, such as texture or luminance statistics, they
ensure locally and spatially the right color correspondence.
The pioneering work of Levin et al. [LLW04], presented in
Section 2.3, showed how color from scribbles can be prop-
agated to the rest of the pixels though an optimization pro-
cess. Figure 8 shows an example result using this method.
This method was later refined to consider edges [HTC∗05]
and gradients in the image [LLD07] more explicitly, reduc-
ing potential bleeding artifacts across edges.

Yatziv and Chapiro [YS06] introduced a computation-
ally simple, yet effective, approach for colorization. Their
method is based on a reduced set of chrominance scrib-
bles defined by a user. Based on the concepts of luminance-
weighted chrominance blending and fast intrinsic distance
computations, they substantially reduce the complexity and
computational cost of previously reported techniques. The
(geodesic) intrinsic distance gives a measurement of how
“flat" is the flattest curve between two points.

Luan et al. [LWCO∗07] were motivated to reduce the
amount of user interaction necessary to produce complex,
nuanced color images and to handle highly textured images
as well as non-adjacent regions of similar texture. To achieve
that, a user can draw strokes indicating regions that (roughly)
share the same color, which are used to automatically seg-
ment the image. Further user input serves to define a color
for a few pixels within each region, which is finally propa-
gated to the rest of the segment through a piecewise-linear
interpolation within regions and a soft blending at region
boundaries.

In most stroke-based methods, the user defined strokes
are propagated to the remainder of the image according to
luminance information. Although this information can cor-
rectly determine continuous regions in natural images, this
is not the case in manga (japanese cartoons), where regions
often have distinctive patterns and textures to indicate shad-
ing, material or motion. Qu et al [QWH06] rely on a sta-
tistical approach to define representative features describing
each region. Using these features, strokes can be propagated
according to texture and pattern similarity in addition to lu-
minance information, allowing for successful colorization of
highly textured manga images.

3.1.3. Palette-based Approaches

This category of algorithms uses a set of colors (usually
manually defined by a user) as an input to the coloriza-
tion process, with no further spatial constraints (unlike
stroke/scribble approaches). Sauvaget et al. [SVS∗10] de-
sign a solution to colorize empty or pre-filled sketches. Their
solution relies on Itten’s theory regarding color harmony
combination to determine how colors should be distributed.
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Itten’s contrast models global picture harmony regarding the
proportion of “basic" colors [Itt61]. The optimal color pro-
portion is adjusted depending on the considered numbers of
colors used in the image.

In the same vein, Lin et al [LRFH13] recently proposed
a method for the automatic colorization of patterns accord-
ing to a probabilistically selected color palette. Their ap-
proach to pattern coloring is data-driven: given a dataset
of example colored patterns from the online community
COLOURlovers, they learn distributions of color properties
such as saturation, lightness, and contrast for individual re-
gions and for adjacent regions. They predict these distri-
butions using discriminative spatial features of the pattern,
such as the size and shape of different regions. Finally, they
use the predicted distributions together with the color com-
patibility model by O’Donovan et al. [OAH11] to score the
quality of pattern colorings. They introduce three types of
scoring and show how functions for unary, pairwise, and
global scoring can be combined into one unified model using
the framework of probabilistic factor graphs.

3.2. Artistic Color Mapping

Another family of methods within color image process-
ing that requires color mapping is the rendering of artis-
tic effects. In color harmonization [COSG∗06, BUC∗13], a
subset of pixels is identified by means of harmony mod-
els as being out of the harmonious range of colors. Then,
a strategy for re-mapping such pixels in the harmonious
space is applied also involving segmentation algorithms. To
some extend, art and non-photo-realistic rendering in com-
puter graphics may be associated to color mapping tech-
niques [Her10]. The color mapping can be performed such
that it mimics the painting style of artists.

3.2.1. Color Harmonization

The concept of aesthetic ordering of colors and their sepa-
ration into primary and secondary colors was first proposed
by Goethe in his “Theory of Colors" [vGE40], where col-
ors where arranged according to their hue, forming the color
wheel shown in Figure 9a. More recently, Itten [Itt61], one
of the main proponents of the Bauhaus movement, devel-
oped the concept of the color wheel further by focusing on
relations between colors along the color wheel in order to
derive harmonic combinations of colors. He established a set
of templates determining relative positions within the color
wheel, which included one, two or multiple color combi-
nations, either adjacent or on opposite sides of the circle.
These harmony templates were further expanded by Mat-
suda [Mat95] and analyzed by Tokumaru et al. [TMI02].
Some color harmony template examples are shown in Fig-
ure 9b.

Several color harmonization algorithms
[COSG∗06, HT09, TMW10, BUC∗13] are based on

a. Goethe’s color 
wheel

b. Matsuda’s color harmony templates

Figure 9: Left: the original color wheel proposed by
Goethe [vGE40]. Right: The color harmony templates pro-
posed by Matsuda [Mat95].

this theory to recolor or recompose color within an image.
The first step consists of determining the harmonious
template type and its rotation angle that are the closest to
the original image by minimizing a cost function. Then, the
colors are transformed so that the colors outside harmonious
sectors are mapped inside a harmonious sector. Color
segmentation has been identified as a crucial pre-processing
before color mapping because visible artifacts can appear
when two close colors, eventually associated to the same
object, are mapped to two different sectors. Strategies
differ in terms of cost function for template selection, color
segmentation and color mapping.

A real-time color harmonization for video has been intro-
duced by Sawant et al. [SM08] where a histogram splitting
method is employed instead of a graph-cut approach to re-
duce computation cost. One dedicated template per group
of frames is determined to guarantee temporal consistency.
Tang et al. [TMW10] perform a foreground/background de-
tection for their dedicated video implementation and apply
the same template determination as Sawant et al. [SM08] for
a coherent group of frames.

Recently, new harmonic templates using unsupervised
machine learning on the Adobe Kuler database have been
proposed, consisting of hundreds of thousands color palettes
used for creative purposes [PM12]. To evaluate existing
models of color harmony and compatibility, O’Donovan et
al. [OAH11] analyze a large set of online color palettes both
from Adobe Kuler and COLOURlovers. Based on their anal-
ysis, they construct a model to predict the color compatibility
of a given set of colors.

3.2.2. Stylization

Non-photorealistic rendering (NPR) creates imagery that
mimics the style of artists. It deals mainly with the concepts
of line drawings, painting and cartoon illustration. Only the
two last mentioned techniques are relevant to our survey.
There is a real discussion on the plausibility of describing
an artist’s style or intent by a functional mapping such as
mentioned in [Her10]. The grail would be to computation-
ally capture the artist’s style and reproduce or color map it
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automatically on new images. Assuming that is possible to
computationally model creative intent to some extent, a sec-
ond dominant issue appears: how to objectively evaluate the
performances of such rendering [Her10]. The NPR field pro-
vides an interesting and challenging ground for the aesthetic
evaluation question. (see Section 4 for a discussion on eval-
uating color mapping results).

Pioneer work of Haeberli [Hae90] applied a painting style
to a color image by simply sampling a random set of points
and placing a brush strokes over them. Impressionist paint-
ing style is effectively performed in such simple way. Ren-
dering has been improved by setting the strokes orientation
to the normal of the image gradient [Lit97]. One step fur-
ther, Hertzmann [Her98] proposed by changing adequately
the painting parameters to mimic different painting style: im-
pressionist, expressionist, pointillist, “colorist wash".

Other algorithms approach cartoon illustration by per-
forming an effective line detection and drawing us-
ing bold edges and large regions of constant color
[DS02, KKD09, KLC09].

Previous solutions have been extended to video dimen-
sions leading to temporal issues related to consistency (flick-
ering artifacts) and computational time. Hertzmann and Per-
lin [HP00] were pioneer in fixing consistency issues when
painting video material. They apply painting effect only in
regions where the source video is changing. Image regions
with minimal changes, such as due to video noise, are also
left alone, using a simple difference masking technique. By
using optical flow, the painting surface flows and deforms to
follow the shape of the world. Hays and Essa [HE04] rather
focus on temporal consistency of brush strokes properties
that include motion information. All brush stroke properties
are temporally constrained to guarantee temporally coherent
non-photorealistic animations. Bousseau et al. [BNTS07]
worked on video water color effects. Their method involves
also optical flow for guaranteeing consistency to texture op-
erations and abstraction steps.

3.3. Video Color Mapping

It should come as no surprise that color mapping solutions
are frequently employed for video processing, for instance
as part of a larger system for video enhancement [BZS∗07].
A crucial step in post-production of movies is a process
known as color grading, where properties such as the lu-
minance, hue and saturation of each clip are manually ad-
justed to achieve the desired look and feel. This is often a
labor-intensive process as each scene and input source re-
quires adjustment both for visual effect and for consistency.
Using color mapping, it is possible to transfer the style of
specific sample frames or existing content to the rest of the
movie, however not all methods are suited for this scenario.

One of the main challenges faced when mapping colors to
a video is ensuring temporal consistency between frames. To

map the colors between two images or video frames, a cor-
respondence needs to be formed between the input and ref-
erence palette. In the case of video, the correspondence de-
termined for one frame will not necessarily hold for the next,
leading to temporal inconsistencies that might present them-
selves as flicker and sudden color or luminance changes. To
resolve this, special considerations are necessary to enforce
temporal coherence or to avoid temporal issues altogether.
This however introduces a trade-off between adaptivity to
changing content within the sequence and temporal stability,
leading to many different solutions.

At the simplest case, a global mapping can be determined
that is applied in the same way for each frame. For example,
the mapping for a given input and reference image pair can
be encoded in a look-up table and then applied to all subse-
quent frames in the same way. In the method by Hogervorst
et al. [HT08, HT10], the look-up table serves as a prede-
fined mapping between input and reference pixel values for
the purpose of colorizing night-vision imagery so that it ac-
quires a daytime appearance. Similarly, by learning a global
mapping expressed in terms of luminance, hue and satura-
tion changes from a collection of clips, particular styles can
be applied to a given video [XADR13].

A global mapping used for all frames of a sequence is a
simple solution of achieving temporal coherence and it also
offers the additional advantage of low computational com-
plexity for applying the mapping. However, it is not suitable
when the aim is to change the mapping over the duration
of the video sequence. More specifically, although a global
mapping could be used to when the reference is a still im-
age, different solutions are necessary when multiple refer-
ences are used [WHH06] or when mapping colors between
two videos [BSPP13]. In those cases, temporal smoothing is
necessary.

Wang and Huang extend the statistical color transfer
method by Reinhard et al. [RAGS01] to the temporal dimen-
sion and allow for multiple reference images to be used for
different parts of the sequence to vary the transferred ap-
pearance over time [WHH06]. The different reference im-
ages are assigned to specific key frames in the sequence, for
which the mapping can be determined according to the mean
and standard deviation of the input and reference images. To
ensure that the mapping is temporally coherent and that no
artifacts appear for intermediate frames, the color statistics
of the reference images can be interpolated using a linear or
non-linear curve, obtaining a mapping for each frame of the
sequence.

If the reference is a video sequence as well, it would
be possible to determine a more dense mapping between
frames. However, small temporal changes in the reference
may not correspond to the content of the input, leading to
artifacts. To resolve this issue, Bonneel et al. [BSPP13] opt
for selecting a number of representative frames that best de-
scribe the style of the reference video, which can be used to
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determine a per-frame mapping for each input frame. If this
mapping is applied naively, flickering can occur in parts of
the sequence where the mapping changes abruptly. Instead,
similar to Wang and Huang [WHH06], the per frame map-
ping can be smoothed by interpolating between key frames,
as they represent stable parts of the sequence.

This form of temporal smoothing can successfully re-
duce flickering artefacts, while allowing the color mapping
to change over the duration of the sequence. At the same
time, as the whole mapping needs to be pre-determined and
smoothed before applying, such a solution is not suitable for
online processing of video, as would be needed on the side
of the display.

An alternative solution is that of temporal smoothing us-
ing a sliding window in the temporal dimension. In Sec-
tion 2.2.4, methods relying on image segmentation to de-
termine correspondences were discussed. When extending
such methods to video, pixels belonging to the same object
may be clustered into different regions in subsequent frames,
which in turn may lead to flicker. In the color categorization
based solution by Chang et al. [CSN07b], the anisotropic fil-
tering step used to smoothly segment the image is extended
to the temporal dimension, by smoothing the color category
based segmentation across a few seconds.

Rather than map colors to those of a different video or im-
age, a reference frame can be selected from the input video
itself, serving as an ‘anchor’ for the remaining frames when
dealing with tonal fluctuations in videos due to automatic ad-
justment of camera settings [FL11]. In this case, subsequent
frames have much stronger correspondences since they are
likely to represent the same scene, allowing for color corre-
spondences to be determined using an approximate optical-
flow computed from the luminance channel, as discussed in
Section 2.1.

3.4. Stereoscopic Video Color Transfer

Stereoscopy (or stereo imaging) uses pairs of images/videos
captured with slightly different viewpoints, to reproduce a
sense of depth.

In human vision, various anomalies between imagery pre-
sented to the left and right eyes, including color differences,
can create binocular rivalry [Bla01] and affect visual com-
fort [KT04]. In image processing, when disparity or depth
is estimated from matching left and right views, color differ-
ences are used as a cost function and therefore should be zero
for corresponding semantic elements [SS02]. Likewise, the
calculation of feature correspondences could become more
robust if images are matched in color first [FST11].

Unfortunately the colors in stereo pairs are often not well
matched. In stereo video cameras, left and right frames are
captured by the same sensor. The polarization filters and mir-
rors — used to separate left and right views — introduce

color differences. Additional color differences are caused by
differences in optics (vignetting, color filters), sensor (sensi-
tivity, uniformity) and processing (white balance, color en-
coding, image enhancement).

Color characterization as well as color calibration of the
cameras involved in the capture can be used to prevent
color differences. Color characterization involves models
describing how light is transformed into the cameras’ RGB
signal. Color calibration aims to directly correct the RGB
signal with respect to a reference [IW05, KP07, KLL∗12].
This procedure requires the placement of a color checker
board in the scene. Its colors are acquired by the cameras
and these are used to compensate for color differences be-
tween them. Existing methods include offset/gain optimiza-
tion [JWV∗05], linear cross-channel color correction either
with respect to average colors [JWV∗05] or they can be
stated as a combined optimization problem [LDX10].

Although there are benefits to maintaining well calibrated
cameras, in practice, calibration will have to be repeated
with some regularity, for instance because camera settings
changes, lenses are swapped out, or simply because the
cameras are aging. As such, rather than prevent color mis-
matches, color transfer algorithms could be employed to cor-
rect for such mismatches without worrying about precise
camera calibration.

The nature of stereoscopic photography is that there is
significant overlap between the left and right frames. This
makes geometry-based color transfer particularly amenable
for this application [DN09] (see Section|2.1).

In image formation of stereoscopic images, color differ-
ences and disparity/depth are inherently linked. If spatially
corresponding points in the left and right images have a
significant color difference, then the likelihood that there
is a depth discontinuity at that position is high. As a con-
sequence, color differences and depth can be estimated in
a jointly using an iterative scheme [HLL13]. To enhance
depth estimation, color differences are then compensated it-
eratively using a linear model in a linearized chromaticity
space.

The design of color transfer algorithms for stereo pair cor-
rection can be aided by the presence of ground-truth im-
agery. A common method to evaluate the performance of
color mapping is to assess differences between a monoscopic
presentation of left view, right view and mapped right view
[WSW10]. Another way to evaluate color mapping in the
framework of stereoscopic imaging is to measure the impact
of color mapping on the quality disparity estimates. It was
found that color transfer can indeed facilitate the creation of
high quality disparity maps [WSW10, HLL13].

Commercially available tools for stereoscopic color map-
ping — mainly in post-production pipelines — include
RE:Match, Matchgrade in NUKEX, MatchLight IMS.
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3.5. Multi-View Video Coding

Multi-view video is concerned with capturing multiple video
streams of the same scene. It can be seen as an extention of
stereoscopic video, and therefore benefits from color transfer
in similar ways.

Multi-view video allows in post-processing new vir-
tual viewpoints to be derived [CSN07a]. Applications
of multi-view video include free-viewpoint television
[Tan04, TZMS04] and 3D TV [VMPX04]. The set of video
captures is called a multi-view video sequence or a dynamic
light field [FBK08]. Of course, if a large number of cameras
is used, then the amount of data produced is enormous, and
therefore efficient compression schemes are required.

Simulcast coding, whereby each video stream is encoded
separately, would be sub-optimal as it does not leverage any
redundancy that may exist between frames taken by different
cameras. A more efficient approach would be to exploit the
spatial correlations between frames that come from different
cameras (by means of disparity estimation, e.g. [SJYH10]).
However, as cameras are often calibrated differently, have
(slightly) different lenses, and are operated in different illu-
mination conditions, the efficiency of multi-view video cod-
ing can be improved by minimizing the differences between
video streams captured by these cameras.

It is possible to apply color transfer prior to the encoding
stage. This will minimize the color differences between im-
ages, and thus allow more efficient data compression. Tech-
niques for this include modeling spatio-temporal variation
[SJYH10], image segmentation [SJYC07], histogram-based
techniques [FBK08, CMC10], view interpolation prediction
[YYF∗07], feature matching [YYF∗07, YO08b] and global
matching to the average of all corresponding frames [DN09].

3.6. Image Stitching

Creating panoramas from a set of individual photographs is
known as image stitching. Typically, better panoramas can
be obtained if the colors of the input images are made more
consistent first [HS04, JT03, TGTC02, ADA∗04, BL07].
Related to this application area is photo-tourism, whereby
geotagged images are smoothly interpolated to visualize a
landmark that was photographed by potentially many dif-
ferent cameras [SSS06]. This application also benefits from
color consistency [SGSS08].

Figure 10 shows an example of image stitching performed
with and without color correction. In the simplest case, in or-
der to have a good overlap between input images, the view-
point change between input images is not very important
and, in order to avoid strong global or local color differences,
the illumination conditions are quite similar between input
images. In the worst case, many factors contribute to cre-
ate global and local color differences. Among these factors
we can mention vignetting, automatic camera settings (ex-
posure, white balance, etc.), camera device (optics, sensor,

Without color mapping With color mapping

Figure 10: Color mapping (in this case the method by
Faridul et al. [FST13]) can be used to remove color differ-
ences between overlapping images to improve the result of
stitching operations.

nonlinear processing [KLL∗12]), viewing conditions (view-
point, illumination, scene content), etc. For example, input
images may come from different camera devices and cap-
tured by different people at different times. In that case, most
of stitching methods cannot compensate these complex color
differences.

There are two ways to perform image stitching. One
way is to color correct input images, next to stitch result-
ing images. For example, the method proposed by Haco-
hen et al. [HSGL11] based on local set of dense correspon-
dences first performs colors correction next stitching. This
method is designed for input images depicting similar re-
gions acquired by different cameras and lenses, under non-
rigid transformations, under different lighting, and over dif-
ferent backgrounds. The two main drawbacks of this method
is that it requires dense correspondences and that it is not
robust to drastic color changes due to for example to illumi-
nant changes. In a recent survey, Xu et al. pointed out the
performance of color correction approaches for automatic
multi-view image and video stitching [XM10].

Alternatively, it is possible to first stitch images and per-
form the color correction step as a post-process. Different
color corrections methods can be used in this case, includ-
ing color mapping, color transfer or color balance. For ex-
ample, Wu et al. in [WDK∗13] proposed a progressive color
transfer method to preserve the visual coherence and the se-
mantic correspondence of regions of input images. On the
other hand, Qian et al. [QLZ13] proposed a manifold align-
ment method to perform color transfer by exploring mani-
fold structures of partially overlapped input images.

Most of image stitching methods are based on a global lu-
minance compensation followed by image blending. Other
methods use gain compensation along with local im-
age blending [BL07, Clo, NC01, UES01]. Others are based
on brightness transfer [KP07], mapping based color con-
stancy [TGTC02], or tensor voting to correct lumi-
nance [JT03]. The relevance of global gain compensation

c© The Eurographics Association 2014.

58



H. S. Faridul, T. Pouli, C. Chamaret, J. Stauder, A. Trémeau, E. Reinhard / A Survey of Color Mapping and its Applications

methods depends of the overlap between input images.
It can be performed either applied from the luminance
channel [NC01, UES01] or from the three color channels
[JT03, HS04, KP07, TGTC02].

In order to estimate and correct color differences between
input images, correspondences can be detected using either
a dense method or a sparse method, as discussed in Sec-
tion 2.1. Sparse methods are based on the computation of ge-
ometric features and on features matching between input im-
ages. The relevance of sparse methods depends of the over-
lap between input images (i.e. the number of feature points
common to input images) and of the relevance of the color
sampling used to model color differences (i.e. the number of
colors in input images for which there is no features match-
ing). One of the main challenges of sparse methods is gen-
erating confident color correspondences from unreliable fea-
ture correspondences.

Another way to correct colors is to model color distribu-
tions of input images by statistics, followed by compensation
of color differences between these distributions by statistic
transfer methods (see Section 2.2). Although these methods
can produce plausible results even when the input images are
very different, a robust mapping suitable for stitching cannot
be guaranteed.

To compensate color differences due to illuminant
changes before stitching, Tian et al. proposed in [TGTC02]
to correct colors by using computational color constancy.
Nevertheless, this approach has three drawbacks. First, the
scene illumination estimation requires several assumptions
about the scene that may not hold in case of image stitching.
Second, most of color constancy methods rely on simplify-
ing assumptions, such that the input images are acquired un-
der the same canonical illuminant. Third, color constancy
methods cannot compensate color differences due to cam-
era devices (sensors, optics, etc.), camera settings (white bal-
ance, exposures), or other nonlinear processing.

3.7. Image Fusion

Color transfer has found application in the general area
of image fusion. Image fusion is concerned with captur-
ing and representing images that were taken with camera
systems that operate on different wavelength ranges, with
applications in surveillance, face recognition, target track-
ing, concealed weapon detection, intelligence gathering and
the detection of abandoned packages and buried explosives
[TH12]. Civil applications include remote sensing, agricul-
ture, medicine and art analysis [BL06]. For instance, night-
time scenes can be captured with cameras that work in the
normal range of visible wavelengths (400–700 nm), in the
near-infrared range (700–900 nm) as well as the thermal
middle wavelength band (3–5 µm) infrared images [Toe03].

If a same night-time scene is captured with multiple types
of camera, then the results can be fused into a single false

color image that represents the disjunct information avail-
able in each wavelength regime. There are many ways in
which this information can be fused. Traditionally, these dif-
ferent captures would be shown as grey tones, which is dif-
ficult to interpret.

This has given rise to color image fusion, which allows a
significantly expanded range of different shades of color that
can be distinguished by human vision. In addition, relative
to monochrome images, fused color images can yield bet-
ter and more accurate reaction times, scene understanding,
scene recognition and object recognition [SH09, TH12].

It can be argued, however, that if the fusion process results
in imagery that is not only in color, but additional appears in
some sense natural, then it is possible to further increase sit-
uational awareness [TIWA97, Var98, GSFZ12] — an aspect
of image perception that is important in security and military
applications.

Visually plausible imagery can be created from a multi-
modal set of image captures with the aid of color transfer al-
gorithms [Toe03, TA05, HNZ07, LW07]. As noted, the pur-
pose is to create a false color image that appears natural.
The image will never be a true representation of the scene’s
content, as wavelengths outside the visible spectrum needs
to be merged into an image that can be observed by humans.
Nonetheless, color transfer can help create imagery with nat-
ural day-time qualities, which are therefore amenable to hu-
man interpretation.

A simple approach to achieve color transfer is to assign
the output of the aforementioned three cameras to the red,
green and blue channels of an RGB color space. This pro-
duces an unnatural looking false color image. However, this
can be adjusted by selecting an appropriate natural day-
time image and by applying a color transfer technique to
the false color image. The result will then be a significantly
more natural looking visualization of the input multi-modal
night-time image. Matching means and standard deviations
in Lαβ space has proven to be an appropriate approach
[Toe03, SJLL05, YXM∗12], a procedure previously applied
to conventional photographs [RAGS01]. With lower compu-
tational complexity, this approach has also been proposed in
the YUV color space [SWqLZ07].

This technique can be extended to a spatially varying al-
gorithm with the aid of segmentation [ZHHE05, ZDB12],
which is significantly more computationally expensive, but
it has been argued that the visual quality of the results is su-
perior [ZDB12].

Alternatively, this problem can be solved in real-time
[HT08], for instance with the aid of look-up tables [HT10],
and can even be applied in the context of augmented reality
[THvSD12]. For further information on color transfer in the
context of image fusion, see Toet and Hogervorst’s recent
paper [TH12].
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3.8. Augmented Reality

Augmented reality is concerned with superimposing com-
puter generated content onto live captured video and with
presenting the result in real-time to the observer. In this ap-
plication, the computer generated content will have been
rendered with certain illumination and into a specific color
space. At the same time, the camera will be capturing live
footage with its own illumination, using camera-specific set-
tings. To make the rendered imagery sit well with the cap-
tured footage, it will have to be adjusted.

Of course, it would be possible to simulate various as-
pects of the camera and apply the simulation to the rendered
imagery. This may include features such as radial distor-
tion, Gaussian blur, motion blur, Bayer sampling, as well as
firmware processing including sharpening, quantization and
various color transforms [KM10].

If only the color content is to be adjusted, then color trans-
fer techniques come into play. Here, the differences in color
spaces, illumination and possibly even a poor choice of ma-
terials in the rendered content, can be adjusted for. The sim-
plest technique arguably involves matching means and stan-
dard deviations in a suitably chosen decorrelated color space
[RAGS01], which was shown to produce plausible results in
the context of augmented reality [RAC∗04]. Polynomial re-
gression, followed by leaky integration to ensure temporal
stability is also applicable in this context [KTPW11].

Finally, for certain augmented reality applications, it may
be appropriate to use tracking of objects so that a sparse
set of color correspondences can be kept stable over time
[OHSG12]. In the CIELab color space, a dense field of cor-
respondences is then created by interpolating radial basis
functions. The result can be used to map colors between im-
ages, or in this case, between rendered content and captured
footage.

4. Color Mapping Evaluation

Most state of the art works on color mapping report only vi-
sual results. Interpretation of visual results is often not only
subjective, but also difficult to compare. Therefore, quantita-
tive evaluation of color mapping results remains a open and
important research problem.

Ideally, the results of a color mapping method can be as-
sessed through comparisons with a ground truth. In cases
where the pair of input images are similar in structure, it
is possible to produce image sets that provide a ground
truth [FST12, FST13] (see Figure 11). Further, quality met-
rics can be employed to compare the result with the original
input image [SDZL09, TD11].

In most color mapping scenarios, however, it is often
impossible to construct or capture a ground truth. In such
cases, it is possible to assess the mapped results using no-
reference quality metrics [XM09, OZC12] that consider as-
pects such as the color distribution, hue or gradients of

the images. Alternatively, user studies may be employed to
provide a quantitative assessment of the quality of the re-
sults [VdNJ∗07, XADR13].

4.1. Ground Truth Evaluation

In the case of stereo or multiple views, Faridul et al. [FST12]
provide a quantitative evaluation framework. Here, the idea
is to capture ground truth color along with the test images.
For example, let us consider a scene which can be acquired
under two different illumination conditions and from two
different viewpoints, e.g. simulating a stereo capture sce-
nario. To create a ground truth image for this scenario, it
is sufficient to capture an image with the same viewpoint as
the input image (i.e. the one to be recolored) but with the
same illumination as the reference. Now this ground truth
image represents what the input image should look like after
successful color mapping.

Instead of changing the illumination, the same principle
can be extended to model other causes of variation in color
between images. Faridul et al. [FST13] constructed a dataset
suitable for evaluating color mapping methods by captur-
ing ground truth sets for varying shutter speed and different
white balance settings. Although this type of controlled in-
put can be used to evaluate color mapping methods, ground
truth images can only be acquired when the input and refer-
ence images represent the same scene under different view-
points. It is therefore better suited for assessing methods
where overlap in the scene is desirable, such as discussed
in Section 2.1. Figure 11 shows some examples from the
dataset described in [FST13].

4.2. Evaluation Metrics

Perceptual metrics defined in CIELab color space such as
CIE ∆E00 [LCR01] can be used to evaluate the quality of
color mapping results when a ground truth is available. Ad-
ditionally, a recent work [ZDB12] comparing the colorizing
technique of multispectral images summarizes other CIELab
based metrics. Such metrics include: objective evaluation in-
dex [ZDB12], phase congruency [Kov99], gray relational
analysis [MTH05], gradient magnitude metric, image con-
trast metric.

On the other hand, PSNR is a popular performance evalu-
ation metric notably in the literature of multiple view coding.
Here, the idea is to report PSNR with and without color map-
ping. PSNR are often reported: separately [FBK08, DN09]
for Y , Cb, Cr; average PSNR of all color channels [YO08a];
Or, combination [XM10] of PSNR and SSIM [WBSS04].

4.3. Quality Assessment for Color Problems

Some solutions exist for the assessment of colored (im-
paired) pictures with respect to a reference (original) pic-
ture [SDZL09, TD11]. The reference picture has to match at
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Figure 11: Color variability can be introduced in a controlled manner by systematically varying capture properties such as
exposure time (top) and white point (middle), or scene aspects such as illumination (bottom), creating a dataset for assessing
color mapping methods [FST13].

a pixel level the impaired picture limiting the application of
such quality metric. On the other hand, no-reference qual-
ity metrics have a wider field of application, since they only
compute statistics on the impaired picture. Their efficiency
and accuracy is limited however in the context of assessing
color mapping results since they rely on low-level features.
Ouni et al. [OZC12] have proposed different color statistics
analysis, relying on properties such as the distribution of hue
histogram or the proportion and dispersion of the dominant
color, to derive a quality score.

Although quality assessment is an active research area
[AMMS08, HČA∗12, MDMS05], the particular problem of
no-reference color quality assessment has been largely un-
explored. One solution proposed in the context of color
mapping in particular measures mean squared error in the
color and gradient domain, comparing the resulting image
against the reference in terms of their color histogram, and
against the input in terms of gradients [XM09]. Although
this method offers a conceptually attractive solution, it can-
not determine whether the color mapping is plausible or
pleasing—it simply assesses whether it is close to the ref-
erence.

4.4. Evaluation through User Studies

One possibility for assessing the quality of a color map-
ping solution is simply to ask human observers. This is typ-
ically formalized as a user study or psychophysical experi-
ment [CW11]. For instance, Viera et al. [VdNJ∗07] proposed
colorization of images as well as a user study to demonstrate
the plausibility of their colorization algorithm. They con-
ducted the user studies by asking participants whether “this

image is colored in a 1) totally plausible, 2) mostly plausi-
ble, 3) mostly implausible or 4) totally implausible way”. In
a similar study evaluating an automatic method for applying
color styles to image and video content, participants were
asked to select the image better reflecting a particular style,
such as “happy” or “sad”.

5. Conclusions

Some images have a more interesting look and feel to it than
other images. Photographs may have more natural color dis-
tributions than some rendered content. This was the inspi-
ration that led to the development of early color transfer al-
gorithms. The idea was that an example-based post-process
could make a mundane image appear more interesting by
taking some color characteristics from an existing image.

This basic idea has since led to a proliferation of ever
more sophisticated techniques as well as an explosion of
applications that were found to benefit from example-based
processing. Some of the more surprising application areas
include interpretation of night vision imagery, correction of
stereo and multi-view video, image stitching, artistic tools.

Whenever color transfer is applied between images that
show overlap, including in stereo and image stitching appli-
cations, color transfer based on finding feature correspon-
dences are applicable. When images come from entirely dif-
ferent domains, then statistical techniques may be more ap-
propriate. In all cases, one of the main open problems is that
there is often no good ground truth available. Especially in
statistical transfers where the two input images are unrelated,
it is difficult to assess whether a result is good or not.

Nonetheless, many color transfer algorithms often pro-
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duce images that are intuitively plausible. As this is often
good enough, they find increasingly often employ, including
for movies and visual effects.
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