EUROGRAPHICS 2010 / Helwig Hauser and Erik Reinhard STAR — State of The Art Report

State of the Art in Procedural Noise Functions

A.Lagad? S.Lefebvré® R.Cook T.DeRosé G.Drettakié D.S.Ebert J.P.Lewi§ K.Perlin’ M. Zwicker®

Katholieke Universiteit Leuven ?REVES/INRIA Sophia-Antipolis 3ALICE/INRIA Nancy Grand-Est / Loria
“4pixar Animation Studios °Purdue University ®Weta Digital New York University 8University of Bern

Abstract

Procedural noise functions are widely used in Computer Graphics, from off-line rendering in movie production to
interactive video games. The ability to add complex and intricate details at low memory and authoring cost is one
of its main attractions. This state-of-the-art report is motivated by the inherent importance of noise in graphics,
the widespread use of noise in industry, and the fact that many recent research developments justify the need for an
up-to-date survey. Our goal is to provide both a valuable entry point into the field of procedural noise functions, as
well as a comprehensive view of the field to the informed reader. In this report, we cover procedural noise functions
in all their aspects. We outline recent advances in research on this topic, discussing and comparing recent and
well established methods. We first formally define procedural noise functions based on stochastic processes and
then classify and review existing procedural noise functions. We discuss how procedural noise functions are used
for modeling and how they are applied on surfaces. We then introduce analysis tools and apply them to evaluate
and compare the major approaches to noise generation. We finally identify several directions for future work.

Keywords: procedural noise function, noise, stochastic process, procedural, Perlin noise, wavelet noise,

anisotropic noise, sparse convolution noise, Gabor noise, spot noise, surface noise, solid noise, anti-aliasing,
filtering, stochastic modeling, procedural texture, procedural modeling, solid texture, texture synthesis, spectral
analysis, power spectrum estimation

Categories and Subject Descriptofsccording to ACM CCS) 1.3.3 [Computer Graphics]: Picture/Image
Generation—I1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Color, shading, shadowing,
and texture

1. Introduction Procedural noise has many advantages: it is typically very
fast to evaluate, often allowing evaluation of complex and
intricate patterns on-the-fly, and it has a very low memory
footprint, making it an ideal candidate for compactly gener-
ating complex visual detail. In addition, with a suitable set of
parameters, procedural noise can be used to easily generate a
large number of different patterns. Finally, procedural noise
is often randomly accessible, so that it can be evaluated inde-
pendently at every point in constant time. This last property
has always been a great advantage, but takes on even higher
significance with the advent of massively parallel GPU’s and
multi-core CPU systems.

Efficiently adding rich visual detail to synthetic images has
always been one of the major challenges in computer graph-
ics. Procedural noise is one of the most successful funda-
mental tools used to generate such detail. Ever since the first
image of the marble vase, presented by K. PeffirrBj

(see figurel), “Perlin noise” has seen widespread use both
in research and in industry. Noise has been used for a diverse
and extensive range of purposes in procedural texturing, in-
cluding clouds, waves, tornadoes, rocket trails, heat ripples,
incidental motion of animated characters, and so on. It is
widely used both in film production and video games, andis The most recent survey on noise is in the book of Ebert et
currently implemented in every major 3D computer graph- al. [EMP*02]. Since then there have been a multitude of re-
ics software package, such as Autodesk 3ds Max and Maya, cent research results in the domain, such@®(5 BHNO7,
Blender, Pixar's RenderMa®), etc. GZDO08 LLDDO09a], as well as many others. In this sur-

(© The Eurographics Association 2010.

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org

Figure 1: Perlin noise. (a) Perlin's famous noise function,
the first procedural noise function. (Figure fronPgr03,
©ACM, 2002.) (b) Perlin's famous marble vase, one of the
first procedural textures created using Perlin noise. (Figure
from [Per83, ©ACM, 1985.)

vey we provide a unified view of both previous techniques
(e.g., Per85Pea85Lew89 PH89 vW91, Wor96, Per02),
and this more recent work. We also believe that recent trends

A. Lagae et al. / State of the Artin Procedural Noise Functions

2. Definition of procedural noise function

In this section, we defingrocedural noise functignby
defining noise both intuitively (section2.1) and formally
(section2.2), and by defining the adjectiy@ocedural(sec-
tion 2.3).

2.1. Intuitive definition of noise

Noise is “the random number generator of computer graph-
ics”. It is a random and unstructured pattern, and is useful
wherever there is a need for a source of extensive detail
that is nevertheless lacking in evident structure. Random pat-
terns are often described in the frequency domain. Whereas
in the spatial domain, a signal is determined by specifying
the value for every location in space, in the frequency do-
main, a signal is determined by specifying the amplitude and
phase for every frequency. However, for unstructured pat-
terns, the phase is random and does not contribute useful in-
formation. Therefore, noise is often described by its power
spectrum, which specifies the magnitude (squared) of each
frequency and ignores the phase. This bears some similarity
with how a chord in music is described by a set of simultane-
ously sounding notes, each with a specific frequency. A high
value of a specific frequency in the power spectrum corre-
sponds to a high contribution of the correspondfagture
sizein the spatial domain. Noise is completely characterized
by its power spectrum, as explained in sectih@. Many

in hardware justify the need to take a fresh look at procedu- tasks involving noise can be Qescribed as manipulations of
ral noise. Since 1985, compute speed has increased muchth® power spectrum of the noise, or spectral control. For ex-
faster than memory bandwidth. In a sense, we can now con- @mple, modeling a noise corresponds to shaping its power

sider that “cycles are free”, in reference to the fact that most SPectrum, and filtering a noise corresponds to damping fre-

programs in today’s architectures spend a large amount of duencies in the power spectrum that are too high.

their time waiting for cache misses and other kinds of mem-

ory access. A direct consequence is that CPU-intensive al-

gorithms are becoming more and more attractive; this is one

Perlin and Hoffert PH89 gave the following definition:
noise is an approximation to white noise band-limited to a
single octaveWhite noise contains all frequencies in equal

of the main reasons that procedural methods are regaining mixture and with random phase, so it provides the raw ma-

popularity. Periodic critical re-examination of previous and
recent methods is thus very important.

In this state-of-the-art report, we attempt to provide such a
critical look at procedural noise methods. To provide a well-
founded view of the field, we start with both an intuitive def-
inition of noise and a formal definition based on stochastic
processes in sectio® In this section we also define pro-
cedural techniques and the different tradeoffs implied. We
then provide a high-level review and classification of exist-
ing procedural noise functions in secti@8nThe following
two sections examine the important issues of modeling de-
tails with noise (sectiod), and that of defining noise on a
suface and how to perform filtering (secti@). An impor-
tant part of any survey is to analyze the strengths and weak-
nesses of the various available methods (sedijoand to
provide a comparison of the different tradeoffs offered by
each approach, which we present in secfiokVe conclude
in section8, providing directions we find interesting for fu-
ture work.

terial to generate unstructured signals with any combination
of frequencies. A band-limited power spectrum is non-zero
only within a specific range of frequencies. It thus can be
used as a basis in the frequency domain, i.e. a “spectral ba-
sis”, to shape a specific desired power spectrum for modeling
or filtering.

2.2. Formal definition of noise

A more formal definition of noise will be useful in compar-
ing and analyzing different noise constructions. We will first
recall several definitions from random processes (see for ex-
ample Papoulis and PillaP[P02) and Fourier analysis (see
for example Bracewellgra99).

For a discrete-valued random process- N(x), the nth
order probability density function (pdf)
fn(Y1,Y2, - YniXe, Xz, Xn)

=P(N(x1) =y1,N(x2) =V¥2,...,N(xn) =yn) (1)

(© The Eurographics Association 2010.

A. Lagae et al. / State of the Artin Procedural Noise Functions 3

is the simultaneous probability that the noise takes on partic- is the convolution of the pdf of the individual random vari-
ular valuesyy atn specified locationsy. The first order pdf ables Bra99, the resulting pdf rapidly approaches Gaussian
is commonly referred to as the amplitude distribution or the form.

signal histogram. Using the preceding definitions, we take the following as

Thenth order momentare weighted averages of the cor- a definition of noise:

respondingnth order pdfs. The first-order moment is the L .
A noise is a stationary and normal random pro-

mean,) ;
cess. Control of the power spectrum is provided,
E[N(X)] :/ny(y)dy @ either directly, or through the summation of a
number of independent scaled instances of (typi-
The second order moment is the expected product of the cally band-limited) noise.

noise at two locations and is termed the autocorrelation or
autocovariance (some authors define the autocovariance asy,
the autocorrelation of the signal with the mean removed):

Note that existing noise functions were not designed with
s definition in mind; rather, this definition summarizes the
properties of most existing noise functions.

E[N(x1)N(x2)] :/ yay2 fn(y1, Y2 X1, %) dyrdys (3) In summary, noise is specified through its autocorrelation
function, or equivalently the power spectrum. Controlling a
noise using these statistical functions is appropriate, since
their shape is unique and specifies the character of the noise,
whereas values of the noise itself vary randomly. The choice
of the second-order moments is perhaps a “sweet spot”.
These statistics provide a significant amount of control and
have a well developed mathematical theory. Although mod-
E[N(x1)N(x2)] = R(|x1 — X2|) (4) eling a highly structured texture by successively reproducing
further higher order statistics is possible, the exercise may
The autocorrelation evaluated at zero is simply the standard resemble constructing a square wave by Fourier summation

A stationaryrandom function is one whose statistics are in-
variant to a shift in the origin of the coordinate system, and a
random function issotropicif its statistics are also invariant

to rotation of the coordinate system. For a stationary random
function the autocorrelation reduces to a function of a single
variable,

T . 2
definition of varianceR(0) = E[(N(-) — E[N(-)])“]. Impor- — alternate approaches to the goal should be considered. It
tantly, the power spectrum of the noise is the Fourier trans- s also known that humans have difficulty distinguishing im-
form of the autocorrelation function of the noise. ages that differ only in their higher order statistidsip2.

Most existing noise functions model or approximately While both the autocorrelation and power spectrum repre-
model only the first- and second- order moments, rather S€Nt the second-order moments, the power spectrum is the

than attempting to model the fufith order pdf. In this re- genfa_rally chose_n r_epresentation, perhaps because it is both
spect noise functions are distinguished from texture synthe- familiar and easily interpreted.

sis algorithms (see, for example, Wei et aL[KT09]) that In this survey noise algorithms will generally be described
closely reproduce example textures and thus necessarily re-for the two-dimensional case. Generalizations to 1D, 3D and
produce their statistics. It can be seen that even the second-4p straightforward. The problem of defining noise at the sur-
order pdf requires a lot of information to specify and ma- face of a 3D object (solid noise and surface noise) requires
nipulate. For example specifying an arbitrary second-order more care as discussed in section

pdf for a 2D noise over a 4x4 neighborhod®{N(1,1) =

Y11,N(1,2) =y12,--- \N(2,1) = Yp1,- - ,N(4,4) = yaa) in-

volves 256° numbers if the values are quantized to eight 2.3. Definition of procedural noise

bits. However, most noise functions have pdfs that are jointly
normal (Gaussian). In this case thté order pdf is fully and
uniquely determined by only the first- and second-order mo-
ments, so control of the noise requires specifying only the
desired mean and autocorrelation function or power spec-
trum.

The adjectiveproceduralis used in computer science to dis-
tinguish entities that are described by program code rather
than by data structures. Procedural techniques are code seg-
ments or algorithms that specify some characteristic of a
computer-generated model or effect. For example, the pro-
cedural marble texture in figufeuses algorithms and math-
Most noises have an approximately Gaussian intensity ematical functions instead of a digital photograph to define
distribution, but for different reasons. For example, for the color values. We thus definepaocedural noise func-
noises based on frequency filtering this is because convo- tion as a procedural technique for simulating and evaluating
lution implies Gaussianitygra99 17], and for sparse con- hoise.
volution noises, this is because high density shot noise im-
plies GaussianityFap71. More generally, noise algorithms
typically involve a weighted sum of independent pseudo-
random values. Since the pdf of a sum of random variables e A procedural noise function is extremetypmpact nor-

The advantages offroceduralnoise function are the fol-
lowing:

(© The Eurographics Association 2010.

4 A. Lagae et al. / State of the Artin Procedural Noise Functions

madly requiring a few kilobytes of space compared to interpolation. The pseudo-random gradient is given by hash-
megabytes for noise images and volumes. ing the lattice point and using the result to choose a gra-

e A procedural noise function is inherentlgontinuous, dient. Lattice points are hashed by successive application
multi-resolution and not based on discretely sampled of a pseudo-random permutation to the coordinates to de-
data A procedural noise function can produce noise at correlate the indices into the array of pseudo-random unit-
any resolution desired, from an overview to extremely length gradient vectors. The set of gradients consists of the
close inspection at high resolution. 12 vectors defined by the directions from the center of a cube

e A procedural noise function inon-periodig filling the to its edges. The interpolant is a quintic polynomial, which
entirety of two-, three- to n-dimensional space. In other ensures a continuous noise derivative.

words, it is unlimited in extent and can cover an arbitrary Since its introduction more than two decades ago, Perlin

large area without seams and unwanted repetition. RO
9 b noise has found wide use in graphics. Perlin noise is fast

* A procedural noise function }parametrlzed So It can . and simple, and has continued to be the workhorse of the
generate a class of related noise patterns rather than being,

limited to one fixed noise pattern. The parameters control industry.
the power spectrum of the noise, which characterizes the
noise pattern.

e A procedural noise function imndomly accessiblét can Several variations, improvements, extensions and imple-
be evaluated in a constant time, regardless of the location mentations of lattice gradient noises and Perlin noise have
of the point of evaluation, and regardless of previous eval- been presented.
uations. This random accessibility and independent point
evaluation make noise functions well suited to harness the Terminology Ebert et al. EMP*02] presented several in-
power of multi-pipe GPU’s and multicore CPU’s. stances of lattice gradient noises and a corresponding ter-

minology. Lattice noisesare defined as a noise functions

based on the integer latticéalue noisesgradient noisesind
value-gradient noiseare defined as noise functions based
on values, gradients or bothattice convolution noiseare
defined as a noise functions based on convolution. We col-

For more information on procedural techniques, see Ebert lectively call these noiselgttice gradient noises, since the

et at. EMP*02], on which this discussion is based. most well known noise in this category, Perlin noise, is a
lattice gradient noise.

3.1.2. Other lattice gradient noises

These advantages are oplgtentialadvantages. They are
not necessarily guaranteed, but should be considered as as
pirations that result in the most useful procedural noise func-
tions.

3. Overview of procedural noise functions Other lattices Several authors presented noise functions
based on other lattices than the integer lattice. Wyvill and
Novins [WN99] presented a lattice convolution noise, based
on a more densely and evenly packed grid, inspired by

In this section, we give a detailed overview of procedural
noise functions. We classify noise functions into three cate-
gories: lattice gradient noises (sectiBri), explicit noises . . .
(section 3.2) and sparse convolution noises (secti®). sphere packing. Olano et aDHH"0Z] presentedsimplex

For each of these categories, we discuss a few representa-nOISe a Eerlln-llke noise baged on a s'mP'eX g“d', T.hese
tive noise functions in detail, and give an overview of related other I_attlce_s '°W_9f computatlonal complexity and eliminate
noise functions. We also discuss several related methods thatundeSIred directional artifacts.

do not qualify as noise functions (sectidm). . . .
qualify (& Physically-based simulations Several authors presented

noise functions for physically based-simulations. Perlin and
3.1. Lattice gradient noises Neyret PNO] presentedlow noise a Perlin-like noise func-

)))))) tion for generating time-varying flow textures with swirling
Lattice _gradlent noisegenerate noise py mterpqlatlng O and advection. Bridson et aBHNO7] presentedturl noise
convolving random values and/or gradients defined at the 5 perjin-like noise function for generating time-varying
points of the integer lattice. The representative example of jncompressible turbulent velocity fields. For more details
lattice gradient noises is Perlin noise. about noise in physically-based simulations, see Bridson et

al. [BHNO7].

3.1.1. Perlin noise
Better gradient noise Kensler et al. KKS08] presented
better gradient noisethree mutually orthogonal improve-
ments to Perlin noise. A modified hash function combined

Pealin noise determines noise at a point in space by com- with a separate gradient table improves axial decorrelation.
puting a pseudo-random gradient at each of the eight nearestA different reconstruction kernel improves band-limitation.
vertices on the integer cubic lattice and then doing a splined A projection method improves the quality of noise on 2D

In 1985, Perlin introduceBerlin noise his famous procedu-
ral noise function Per85Per032.

(© The Eurographics Association 2010.

A. Lagae et al. / State of the Artin Procedural Noise Functions

sufaces using solid noise. Note that these improvements ap-
ply to several lattice gradient noises.

Hardware implementations Several authors presented
hardware implementations of Perlin-like noise functions.
Hart et al. [HCK99 presented a VLSI hardware implemen-
tation of Perlin noise. Both HartHar0J and Olano Pla03
presented a GPU implementation of Perlin noise. Since
2003, noiseis an integral part of the OpenGL Shading Lan-
guage (GLSL) [Ros0b6 Spjut et al. EKB09Y presented a
CMOS hardware implementation of better gradient noise.

3.2. Explicit noises

Explicit noisegyenerate noise in an explicit manner in a pre-
process and store it. Explicit noises are not procedural noise
functions in the strict sense, but are very relevant neverthe-
less, which is why we cover them here. Two representative
examples of explicit noises are wavelet noise anigotropic
noise

3.2.1. Wavelet noise

In 2005, Cook and DeRose introduceslavelet noise
[CD0Y. Cook and DeRose observed that Perlin noise is
prone to problems with aliasing and detail loss, because it is
only weakly band-limited, and introduced a new noise func-
tion that is almost perfectly band-limited.

In a preprocess, a tile of noise coefficiehtds created.
These coefficients represent the nolégx) as a quadratic
B-spline surface. This is done by creating an im&gdled
with random noise, downsamplirigto create the half-size
imageR', upsamplingR' to a full size imageR'", and sub-
tractingR'! from the originalR to createN. This is illus-
trated in figure2. The tile of noise coefficient is thus cre-
ated by takingR and removing the part that is representable
at half-size. What is left is the part thatnst representable
at half-size, i.e., the band-limited part. The filters used in

Figure 2: Wavelet noise generation. (a) Image R of random
noise. (b) Half-size image'R(c) Half-resolution image R .

(d) Noise band image N- R— R, (Figure from [CD03,
©ACM, 2005.)

3.2.2. Anisotropic noise

In 2008, Goldberg et al. introducednisotropic noisé
[GzD0og 3 Goldberg et al. observed that existing noise
functions only support isotropic filtering, which involves a
tradeoff between aliasing artifacts and loss of detail, and
presented a new noise function that supports high-quality
anisotropic filtering.

The main idea ofanisotropic noises to generate noise
textures by tiling the frequency domain into oriented sub-
bands. Anisotropic noise bands are not only narrowly band-
limited in scale, but they also have a preferred orientation.
The construction ofanisotropic noiseis based on steer-

the downsampling and upsampling steps are obtained using gpje filters BF95PS0Q that partition the frequency domain.

wavelet analysis and correspond to the analysis and refine-

ment coefficients of the uniform quadratic B-spline basis
function. The extension to more dimensions is straightfor-
ward.

During runtime, once the coefficients have been deter-
mined, a value oN(x) for a givenx can be computed using
any evaluation method for quadratic B-splines. A small pre-
computed volume of noise coefficients is used and space is
tiled with that volume.

Cook and DeRose also identified for the first time that
sampling a 3D noise function at a 2D surface will not result
in a band-limited texture, even if the 3D function is perfectly
band-limited. This is discussed in more detail in section

(© The Eurographics Association 2010.

They provide a number of properties that are crucial for
noise generation. First, each filter defines a subband that is
tightly localized in scale and orientation. Second, the filters
implement an invertible transform. This implies that one can
exactly recover a signal from its decomposition into sub-
bands. Finally, the filters are steerable in orientation. This
essentially means that a linear interpolation of the filters can
generate a filter with the exact same profile, but at an inter-
mediate orientation. This is useful because it avoids inter-

T When referring to the method, we will emphasiaaisotropic
noise

f see Lagae et alLgDO09] for errata and clarifications.

6 A. Lagae et al. / State of the Artin Procedural Noise Functions

1. Uniform white noise 3.2.3. Other explicit noises

Two important categories of explicit noise are stochastic
subdivision and Fourier spectral synthesis.

Stochastic subdivision Stochastic subdivisiomas intro-

. duced by Fournier et alFFC834, who presented the mid-

2. Frequency domain decomposition point displacement method, a stochastic subdivision algo-
rithm to generate natural irregular fractal-like objects and
phenomena, such as terrain. Lewis [LewBéw87] pre-
sented generalized stochastic subdivisijoa generalization

of the work of Fournier et al. to arbitrary autocorrelation
functions.

Fourier spectral synthesis Fourier spectral synthesigen-
erates a noise with a specific power spectrum by fil-
tering white noise in the frequency domain (see, for
example, Bracewell Bra99). Fourier spectral synthesis
was introduced in computer graphics by AnjyAr{88],
Saupe [Sau88 and Voss J/0s8g, who used it to generate
random fractals to simulate natural phenomena. The math-
ematical texturing function of GardneGar84 can also be

seen as Fourier spectral synthesis. Fourier spectral synthe-
sis is often used in methods for explicit noises, for example
by van Wijk [vW91] for spot noisg(see sectior3.3.2, and
Figure 3: Anisotropic noise generation. lllustration of spec- by Goldberg et al. §ZD0g for anisotropic noiseFourier

tral noise generation. The frequency domain decomposition spectral synthesis can also be useful to generate reference
has three orientations. Three oriented subbands at the same solutions for noise functions for which the expected power
scale and their corresponding spatial domain images are spectrum is known.

shown, which are stored as textures. (Figure fradZP09,
(©ACM, 2008.)

3. Inverse transform

3.3. Sparse convolution noises

Sparse convolution noisggenerate noise as the sum of ran-
domly positioned and weighted kernels. Three representa-
tive examples of are sparse convolution noise, spot noise and

polation artifacts when linearly blending the subbands for Gabor noise.

appropriate noise filtering.

In an off-line process, noise tiles are synthesized and 3.3.1. Sparse convolution noise
stored as discussed above. Each oriented subband image i
packed into one channel of a 32-bit RGBA image, yielding
four orientations per texture. Typically, using four or eight
bands, i.e., one or two textures, leads to a good trade-off be-
tween storage, rendering speed, and image quality. Note that
noise subbands are precomputed at a single scale only. All The construction of sparse convolution noise is simple: an
other scales are generated on the fly by simply scaling the arbitrary kernek is convolved with a Poisson process noise
precomputed textures. Ys

Tn a series of papers between 1984 and 1989, Lewis intro-
ducedsparse convolution noisg.ew84, Lew86, Lew89, a
framework for noise functions that offers direct spectral con-
trol.

During rendering, a pixel shader computes the final noise N(x,y) = //V(UN) k(x—u,y — V) dudv (5)
value simply as a weighted sum of noise subbands at each
pixel. By computing appropriate weighted combinations of The Poisson process consists of impulses of uncorrelated in-
the oriented subbands at each location, any desired fre- tensityay situated at random independently chosen locations
quency spectrum on the surface can be approximated. (X, Vi)

Goldberg et al. usednisotropic noiseto obtain surface y(x,y) = Zak5(x_xk7y—)’k) (6)
noise by 2D texture mapping and compensating for para-
metric distortion, and for anisotropic analytic filtering. This The Poisson process is “sparse” rather than being defined
is discussed in more detail in sectibn at every pixel or point in space, hence the name “sparse

(© The Eurographics Association 2010.

A. Lagae et al. / State of the Artin Procedural Noise Functions 7

convolution”. This use of the sparse impulse noise allows
some computational efficiency as the convolution is effec-
tively splatting the amplitude-scaled kernel only at the loca-

tions (X, Yk)-

In order to evaluate the noise at a particular point it is nec-
essary to splat only the kernels that overlap that point. This
is accelerated by introducing a virtual grid where the size of
a grid cell is equal to the radius of the kernel. The evaluation
then considers only the kernels centered in the cell contain-
ing the point and those in the neighboring cells. The coordi-
nates of the cell are also used to to seed a random numberFigure 4: Sparse convolution noise. Lower left: windowed
generator for generating the Poisson impulses located in that sample from an image of hair. Right: approximate “hair”
cell. More details and improved schemes for this step are texture created using 2D sparse convolution using this ker-
given by Worley Wor96] and Lagae et al.L|LDD093]. Al- nel.
though Lewis Lew89 describes several optimizations such
ascaching the constructed Poisson impulses under the as-

sumption of coherent access, the sparse convolution noise is .) .
somewhat slower than a Sing|e octave of Perlin noise. ful texture SyntheSIS methods in the last decade prOVIdes a

better approach to this problem and clarifies that “noise” al-

~ Since the power spectrum of the output of a convolution 4qrithms are most appropriate for the random phase case.
is the product of the inputsBfa99, and the power spec-

trum of the Poisson impulse process is constant, the power ~While sparse convolution provided an approach to direct
spectrum of the sparse convolution noise is simply a scaled Spectral control, it did not make any recommendation on
version of that of the kernel. Direct control of the desired Whichkernel to use. In the light of recent work we see that
power Spectrum is thus obtained S|mp|y by Choosing a ker- the ImpIICIt Suggestion of aIIOWing any kernel is in fact not
nel having that spectrum. For example, a noise sharing the as useful as choosing the right kernel.

power spectrum of a sample texture can be constructed by

using a weighted sample of the texture as a kernel (see fig- 3.3.2. Spot noise

ure4). (Note that the windowing operation slightly blurs the In 1991, van Wijk introducedpot noisgvW91], a method

spectrum as discussed in the signal processing and filter de-t te stochastic text for the visualiati f |

sign literature). A kernel with an arbitrary power spectrum 0 generate stochastic textures for the visualization ot scalar

can be constructed with the following steps: 1) generate a and vector fields over surfaces. Spot noise can be seen as an
explicit form of sparse convolution noise, computed by scan-

white random noise, 2) transform it to the frequency domain . - .
(since the transform of a white noise is also white, step 1 can conversion of the spots or by Fourier spectral synthesis (see
' section3.2.3. Although spot noise is both an explicit noise

in fact be skipped), 3) filter the transformed noise with the . o
aswell as a sparse convolution noise, it is more relevant to

desired spectral profile, 4) transform to the spatial domain, luti . hich is wh ith
5) multiply by a spatial window to produce the kernel (again Sparse convolution noises, which Is why we cover it here.

considering standard window design issues). van Wijk discusses the relation between the spot and the
texture in detail. van Wijk hinted at several important con-
cepts which were only later introduced in the context of
noise. For example, texture mapping on parametric surfaces,
texture synthesis over curved surfaces as an alternative to
solid noise, and local control by variation of the spot.

ik,

This generality in the choice of the kernel is not with-
out problems however. The construction just mentioned typi-
cally results in kernels that do not monotonically decay away
from the origin. Unless the density of the Poisson impulse
process is high, “valleys” in the kernel are become visible as
structures in the synthesized noise. While this may be desir-
able for some purposes, it is objectionable in other situations 3-3-3. Gabor noise
and it violates the definition of noise as a “structureless” con- |, 2009, Lagae et al. introduce@abor noise[LLDD09a,

struct. Gabor noise (see secti8r8.3 avoids this problem || ppogh, LLD09]. Lagae et al. further developed the
while still providing spectral control. framework of sparse convolution noise by introducing the
Another way of looking at the issue is in terms of phase. Gabor kernel.

As the density of the Poisson process is increased, the phase The Gabor kernel in the spatial domaipjs the multipli-
structure resulting from features in the kernel is increasingly cation of a circular Gaussian and a 2D cosine,
randomized, whereas the power spectrum of the kernel is a2 (24)

preserved. At a range of intermediate density values it is g(xy) =Ke cos{2mFy (xcosuwp +ysinwo)], (7)
possible to directly synthesize noises with some textural fea- whereK anda are the magnitude and inverse width of the
tures, as shown in figuré However, the advent of success- Gaussian, anBy andwy the frequency and orientation of the

(© The Eurographics Association 2010.

8 A. Lagae et al. / State of the Artin Procedural Noise Functions

cosine (see figurg(a-d)). The Gabor kernel in the frequency
domain, G, is a pair of circular Gaussians,

G(fx fy) =
K

Eem{—ag[(fxiFoCOSwo)z‘i-(fyiFoSinwo)z]}7 ®)

where the Gaussians are located at the frequency with polar
coordinategFo, tp), andais the width of the Gaussians (see
figure 5(e-f)).

Gabor noise is a sparse convolution noise with as kernel
the Gabor kernel,

N(xy) = wig(Ki,ai, Foi, 00i; X=X,y = Vi), ©)
I

where{w;} are the random weightg,is the Gabor kernel,
and{(x,y;)} are the random positions. Depending on how ()
the parametergKi}, {a}, {Fo;i} and {wy;} vary for dif-
ferent kernels, different kinds of Gabor noise are obtained.
When the parameters are fixed, the power spectrum of the
noise is that of the Gabor kernel, and an anisotropic band- i
limited noise is obtained, wheta,, Fy anda control the ori- g;g:l):)or kernel, 3D plot. (Figure from. L. DD09d, ©ACM,
entation, frequency and bandwidth of the noise. When the)

parameters are varied, the power spectrum of the noise isg
that of the Gabor kernel integrated over the parameters. For
example, wher{uy; } is uniformly distributed ovef0, 2m),

an isotropic band-limited noise is obtained, whEgeanda
control the frequency and bandwidth of the noise. Lagae et
al. use graphical user interface widgets to specify the power
spectrum of the noise by specifying how the parameters vary
(see figurep).

®

Figure 5: The Gabor kernel used in Gabor noise. (a) Gaus-
sian. (b) Cosine. (c) Gabor kernel. (d) Gabor kernel, 3D plot.
(e) Fourier transform of Gabor kernel. (f) Fourier transform

Lagae et al. used Gabor noise for setup-free surface noise
and analytic anisotropic filtering of noise. This is discussed
in more detail in sectioB.

3.3.4. Other sparse convolution noises
. . . Figure 6: Gabor noise. Several Gabor noise patterns. The
Several extensions and implementations of sparse convolu-top row shows the Gabor noise patterns, the bottom row
tion noises have been presented. shows the corresponding widgets. (Figure frdm[pD094,
(©ACM, 2009.)
Shaped point processesLewis [Lew86 presentedshaped
point processes, one of the works which would eventually
lead to sparse convolution noise. This work hinted at several
important concepts that would only later be fully developed. 3-4. Related methods

For example, a bandpass kernel resembling the Gabor kernelgeyeral methods have been presented that are not procedural

(as in Gabor noise), filtering of noise (see sectynand noise functions but are nevertheless highly related to pro-

spatially varying noise (as in Lagae et alL[D09]). cedural noise functions. Two important categories of such
methods are texture basis functions and object distribution

GPU implementations Sparse convolution noise can be functions.

implemented on the GPU using splatting (point rendering,

scan conversion) or procedurally (using a shader). Frisvad Texture basis functions Texture basis functiorare defined

and Wyvill [FWO07] presented a GPU implementation based as functions to generate patterns that can be used as a ba-

on point rendering of sparse convolution noise with a cubic sis for generating textures. The most well known texture ba-

kernel. Lagae et al [LLDDO9aresented a procedural GPU sis function is probably the one of Worley. Worley/prog

implementation of Gabor noise. presented aellular texture basis functigna texture basis

(© The Eurographics Association 2010.

A. Lagae et al. / State of the Artin Procedural Noise Functions 9

[|

|
IIIII Figure 8: Procedural texture creation. The marble vase (left)
_Il I.l- is obtained from two components: A color map repeated

along the x direction in space (middle), perturbed by a solid
Figure 7: Spectral control with wavelet noise. 2D noise pat- noise (right). The final color is obtained agCr N(x,y,2))
terns with 12 bands with a Gaussian distribution, and 8 \where C is the 1D color map, N the noise ang,x, the
bands with a white distribution. The blue bars are the band surface point coordinates. (Figure based on.pPD094,
weights. These weights can be exposed to the user. (Figure ©ACM, 2009.)
from [CDOY, ©ACM, 2005.)

))) overview of the most useful approaches to generate terrains,
function based on distances to feature points randomly scat- shapes and textures from noise and procedures.

tered in space, which is good for creating textures such

as flagstone-like tiled areas, organic crusty skin, crumpled In this section we describe spectral control of noise (sec-

paper, ice, rock, mountain ranges, and craters. The imple- tion 4.1), direct editing of noise values (sectien2), and

mentation of Worley's cellular texture basis function is very ~noise by example (sectiof3).

similar to that of sparse convolution noise. There are sev-

eral c_)ther methods that could also qualify as a texture basis 4.1. Spectral control of noise

functions, for example the method presented by Tzeng and

Wei [TWO8] for parallel white noise generation onthe GPU. As explained in sectioB.1, noise patterns are best described
in terms of frequency content, through their power spectrum.

Object distribution functions We defineobject distribu- Controlling a noise pattern through its spectrum requires

tion functionsas functions to generate patterns that con- some training, but is convenient once the link between the

sist of objects distributed over a background. Lefebvre spectrum and the visual aspect of the noise is understood.

and Neyret [NO3] presentegattern-based procedural tex-

tures a method to generate procedural textures composed

of randomly distributed objects on the GPU. Lagae and

Dutré [LDO05] presented procedural object functiora tex-

ture basis function for objects distributed according to a

Poisson disk distribution, which is good for creating tex-

tures such as polka dots. The tile-based methods used inthis We would like to note that in previous work the term

method [ag0q are also useful in the context of procedural band-limitedis often used where the terband-passvould

noise functions, for example for noise tileSI[P0O5, YLO8]. be more appropriate. Note thaband-limitedpower spec-

trum is zero beyond a specific frequency, whileband-

passpower spectrum is zero outside of a frequency interval

(see, for example, BracewelBfa99 or Papoulis and Pil-

Creating visually rich and interesting content from noise is lai [PP03). In the preceding sections we uband-limited

not an easy task, essentially because the random nature offor consistency with previous work, but in the following sec-

noise makes it difficult to control and predict the result. In tions we will use the appropriate term.

addition, noise is often only the first component in a long

chain of operations to achieve the end result. Most systems Weighted sum of band-pass noisesMost procedural noise

for modeling with noise are based on the concept of block functions directly produce band-pass noises. Each noise

shadersAW90], in which a texture is described as a network band corresponds to an elementary random pattern, with a

of modules. frequency content limited to a specific range. Note that bands

at different frequencies are easily obtained by scaling an ini-

tial band-pass noise.

We describe next the most common approaches for spec-
tral noise control. The first approach consists of summing
weighted layers of band-limited noise. The second approach
discusses the specific case of sparse convolution noises,
which are controlled through the choice of kernel.

4. Modeling with procedural noise functions

We mainly focus on the design of the noise patterns them-
selves, and refer the reader to the bdakturing & Mod-
eling: A Procedural ApproacjEMP*02] for an in-depth The very reason for which procedural noise functions are

(© The Eurographics Association 2010.

10 A. Lagae et al. / State of the Art

in Procedural Noise Functions

designed to produce band-pass noises is to let complex pat- 4.2. Editing noise values

terns be defined by adding several bands of noise. Each band
is multiplied by a weight controlling its contribution to the
final result. This idea was introduced by Perlfef83. The
final pattern is obtained as:

> wi N(2'x) (10)

I
whereN is a band-pass noise function andis the weight
of bandi. Successive noise layers have a principal frequency
related by a factor of two, which is why they are often called
octaves Perlin initially described a noise with/ T spectral
content with weights computed ag2l. However, in a typ-
ical noise modeling tool the weights are directly exposed to
the user, as shown in figuile The spectrum of the resulting
noise pattern is obtained as the weighted sum of the band
spectra.

Noise bands that are band-pass have little overlap in the
frequency domain and can be seen apectral basisdefin-
ing a space of noise patterns. Note however that in the basis
analogy, only positive weights are effective. More specifi-
cally, it is not possible to cancel energy from a frequency
band because the noise has random phase. Thus, a resultin
noise spectrum that contains no energy at some frequencies
can only be produced if the primitive noise function is band-
pass rather than merely band-limited.

Note that the weights do not have to remain constant
in space: By using different weights in different loca-
tions one can generate patterns smoothly transitioning be-
tween different aspects. This fact is exploited by Gold-
berg et al. 5ZD0§ to cancel mapping distortions and dy-
namically adapt the noise to viewing conditions (see sec-
tions5.1and5.2).

Sparse convolution noises Sparse convolution noises are
controlled through the choice of the kernel, since the noise
has the spectrum of the kernel (see sect®®.1). This
choice may vary spatially so as to obtain different appear-
ances in different areas\[V91].

Sparse convolution noises can produce band-pass noises
with the appropriate kernel. They are thus compatible with
the approach of summing noise bands. However, they can
also be used tdirectly generate a noise with a specific spec-
trum, provided that a kernel having this particular spectrum
is available. This is the case for sparse convolution noise,
which directly produces a noise with the desired spectrum
as illustrated in figurd 2, (b). Gabor noisel|LDD09a] uses
a kernel which can itself be controlled through a number
of parameters. These are described through widgets directly
manipulated by the user. These parameters give direct con-
trol over the spectrum generated by the noise, without hav-
ing to change the kernel. Noise can evolve from anisotropic

4

In addition to spectral control, other techniques investigate
how to control the noise values in the spatial domain. This
is challenging to achieve without destroying the properties
of the noise. Lewis l[ew87 generated a noise in a mul-

tiresolution coarse-to-fine scheme, with the fine scale val-

ues condition on previously specified values at the coarse
scale. However, some of the coarse scale values can be di-
rectly specified by the user as shown irefv87, figure 5].
Yoon et al. YLCO04, YLO8] let the user directly specify a
few values of a noise field. New random numbers are gen-
erated ensuring that the user constraints are satisfield
that the noise keeps its properties (value distribution, non-
periodicity, band-pass).

4.3. Noise by example

To avoid manual noise design, several authors have focused
on finding parameters from an image. This is, however, an
extremely challenging problem. To the best of our knowl-
edge no satisfactory solution exists for the general case of
rocedural noises as defined in sectirit is important to

ote that neighborhood based texture synthesis approaches
as surveyed by Wei et aMWLKTO09] do not fall in this cat-
egory. Consequently, this is also an exciting area of further
research.

Several interesting solutions exist for sub-classes of tex-
tures. Ghazanfarpour and Dischler [GD@%press the noise
asa sum of sine waves, similarly to Gardn&dr89. They
sdect the set of sine waves from an example image, by
thresholding the magnitude of its Fourier transform. This 2D
function can then be extended to define a solid (3D) noise.
The method is further refined in subsequent w@bp6g|, to
suypport different aspects along different directions of a solid
noise. In PG97], the authors focus on geometric textures.
They analyze 1D noise profiles and automatically generate
procedures for them. These are then extended to 2D and 3D.
The analysis step identifies main frequencies but also per-
forms histogram matching between the example and the gen-
erated noise. These spectral approaches work best when the
textures contain strong periodicities, with clearly identified
features in the power spectrum. Lagae etlafl[D09] auto-
matically compute weights of a sum of band-pass isotropic
noise octaves, so as to produce an image closely resem-
bling an example. The method produces results close to early
by-example texture synthesis approacheB$5], with the
crucial difference that the result is a procedure and can be
efficiently point-sampled. Nevertheless, this approach can-
not faithfully reproduce structured or anisotropic patterns.
In contrast, Galerne et alG[GM09Y randomize the phase
spectrum of a given texture to obtain a homogeneous and
featureless noise having the same power spectrum.

band-pass patterns to more elaborate patterns, as illustrated Other approaches focus on setting the parameters of ex-

in figure®6.

isting procedural shaders from an example image: The goal

(© The Eurographics Association 2010.

A. Lagae et al. / State of the Artin Procedural Noise Functions 11

is to make the shader produce an image resembling the ex-
ample as closely as possible. While these techniques do not|
primarily target noise patterns, they could be useful to au-
tomatically select parameters of a noise function. Bourque
and Dudek BD04] aim at a more generic approach, search-

by sampling the parameter space of many shaders. Qin et:
al. [QY02] similarly optimize shader parameters using a ge-
netic algorithm.

5. Procedural noise functions on surfaces

Noise in Computer Graphics is especially useful to add vi-
sual details in renderings, through texturing. A texture ob-
tained from a noise pattern inherits all its advantages: Non-
periodicity, low memory cost, resolution and efficient ran-
dom access.

In this section, we discuss how noise patterns are typically
mapped on surfaces (sectiéril) as well as the challenges)) o .
this creates for anti-aliased rendering (sectiad). Flgure 9.: An|§otrop|§: fllte.rlng anpl con.wpensatlo.n for para-

metric distortions withanisotropic noise(a) Anisotropic

Usmg noise to texture surfaces introduces two dif‘ferent, noiseleads to h|gher image qua“ty Compared to isotropic
albeit closely related, challenges. A first difficulty is to find filtering, as shown by the difference between close-ups. (b)
an appropriate mapping of the noise to the surface, while Anisotropic noisecompensates for parametric distortions to
preserving the properties of the noise (frequency content, enforce a uniform noise aspect along the surface, as shown
continuity). A second difficulty is to adapt the noise to the py the difference between close-ups. (Figure frGZD04,
viewing conditions. Indeed, a noise with high frequency ©ACM, 2008.)
quickly produces disturbing aliasing artifacts when mapped
onto a surface seen at an angle or in the distance.

by updating, in every pixel, the weights of the summed noise
bands so as to approximate the pre-distorted spectrum. This
There are three methods for obtaining noise on a sur- can be performed efficiently from a shader running on the
face: mapping a 2D noise onto the surface using a planar GPU. This approach, however, only recovers from distor-
parametrization, sampling a solid noise, or defining a noise tions and cannot hide the seams. Note that this idea was also
directly on the surface. We refer to this latter casswatace suggested in the work of van Wijk§v91, figure 11 and 12].
noise Note that a surface noise should retain the properties
it exhibits in 2D —i.e. it should remain visually similar to its ~ Sampling a solid noise Noise can be applied onto surfaces
2D equivalent even if mapped onto a complex curved sur- by sampling a 3D noise function at every surface point. All
face. noise functions are easily generalized to 3D and higher di-
mensions. Explicit noises, however, quickly induce a large
Mapping a 2D noise 2D noise can be mapped onto sur- memory cost since they rely on pre-computed tables. The
faces through planar parametrization, exactly like regular idea of sampling a 3D noise on surfaces was introduced by
texture maps. However, this can introduce distortions and Perlin [Per83 and PeachyRea8% This is often referred to
seams, breaking important properties of the noise such asas solid texturing The approach, which popularized proce-
uniform frequency content, continuity and whether the noise dural textures, has several advantages: It is simple, memory
is band-pass. consumption remains low, and the object appears as if carved
out of a block of matter, an effect difficult to achieve other-
wise. For a complete overview of solid texturing please refer
to Dischler and Ghazanfarpour [DG01

5.1. Noise on surfaces

Goldberg et al. §ZD0g compensate for mapping distor-
tions by locally adapting the noise content (see fi@u)).
This is a form of dynamic spectral control (see sectod),
where the weights of the noise bands are driven to compen- Cook and DeRoseDO05 observed that sampling a solid
sate for the distortions. The local distortion as well as its band-pass noise along a surface does not result in a band-
impact on the noise spectrum is estimated at every pixel. A pass noise on the surface. This is a consequence of the slice-
noise with inversely pre-distorted frequency content is gen- projection theoremBra99 Mal93], which states that slicing
erated so as to appear uniform along the surface. This is donein one domain corresponds to projection or integration in the

(© The Eurographics Association 2010.

12 A. Lagae et al. / State of the Artin Procedural Noise Functions

Figure 10: Difference in aspect of solid noise and surface
noise. Straw hat textured with both a solid noise (left) and
a surface noise (right)Left: The straw orientation is fixed

in space, resulting in stretch on the side of the HRight:
The straw orientation flows around the surface, producing
the appropriate effect. There are no texture coordinates in
both cases. (Figure fronLL.DD094g, ©ACM, 2009.)

Figure 11: Anisotropic filtering with Gabor noiseTop: Un-
filtered noise mapped on a tilted plane. The noise pattern
is incorrect in the distance due to aliasinliddle, from

) . . left to right: The power spectrum of the unfiltered noise,
other domain. Evaluating a 3D noise along a surface corre- the filter for pixels in the red circle area, the power spec-

sponds to slicing. Therefore, the power spectrum of the noise trum of the filtered noise for these pixels. This last spec-
on the surface is given by integrating the band-pass power ., is simply the product, in the frequency domain, of the
§pectrum of the solid noise. However, this power spgctrum filter and the noise power spectruBottom: Same noise

is not band-pass anymore. Cook and DeRose additionally ;v ,roerly filtered. Aliasing is entirely removed. (Figure
observed that the slice-projection theorem also provides a from [LLDDO09d], ©ACM, 2009.)

solution to this problem. Integrating a solid noise perpen-

dicular to the surface corresponds to projection. Therefore,

the power spectrum of the noise on the surface is given by

slicing the band-pass power spectrum of the solid noise This

power spectrum is still band-pass. This provides a general 52 Filtering noise on surfaces

method for obtaining a band-pass noise on a surface froma) _ _ _
band-pass solid noise. An important consideration when mapping noise on surfaces

is filtering of the frequency content when objects are seen at
fini ise direcil h ; | | . an angle or from a distance. This is crucial for rendering
Defining noise directly on the surface A last alternative quality: Super-sampling is generally only necessary at geo-

Is to define a noise directly on a surface, so that its features metric edges because textures are filtered, for instance using
flow along the curvatures and naturally adapt to topology MIP-mapping. A major drawback of procedural textures is

ch_anges. This is_ difficult in general, but sparse convolution that such filtered lookups may not be available, requiring
noises enable this approach: By Iogally splatt!ng kernels the the use of super-sampling on the entire image. Since tex-
noise appears along the surface \(vnthout ha"'”‘%' to rgsort 1 tures contain very fine details, and are seen from very close
a global planar mapping. These ideas were hinted in ear- to far away, super-sampling will often not be able to solve
lier work [Cha07 5:2] and further devgloped by ITagae e the problem entirely at reasonable cost. It is thus crucial to
al. [LLDDOQ9a). In this latter work, the.n0|se patternis proce- provide filtered sampling of procedural textures.

durally generated along a surface without any preprocessing

such as computing a surface parameterization. At any eval- In appendixA, we provide the necessary background to
uation point, only the 3D point coordinates and the surface understand filtering of signals mapped to surfaces. Although
normal are necessary to evaluate the 2D noise. For the casefiltering is typically seen as a convolution in the spatial do-
of anisotropic (oriented) textures, a direction field must also main, it can also be interpreted as a multiplication in the fre-
be provided to indicate the orientation of the texture. Several quency domain. More specifically, the spectrum of the fil-
methods are available for the design of such fields (see, for tered noise is given by the multiplication of the spectrum of
example, Fischer et alFEDHO07). the unfiltered noise and the spectrum of the filter in texture

did) d surf . d giff isual space. The filter in texture space varies in each screen pixel
Sdi textur.mg and surface noise produce di erent vVisual gince it is view-dependent. Figude illustrates these con-
effects: The first creates the unique feeling that the object is cepts

sculpted out of solid matter, while the second lets anisotropic

textures 'flow’ around the object. This is important when We first describe how noise can be filtered (sectichl),
texturing, for instance, objects made out of fibers (straw bas- ard then discuss filtering of texture patterns obtained by ap-
ket, woven cloth, etc.). FigurgQ illustrates this idea. plying transformations to noise values (secttoB.?.

(© The Eurographics Association 2010.

A. Lagae et al. / State of the Artin Procedural Noise Functions

5.2.1. Filtering noise

The key idea of filtering noise is to exploit the spectral con-
trol offered by the noise in order to directly generate noise
with the filtered power spectrum, rather than explicitly filter-

ing unfiltered noise.

When noise patterns are obtained as a weighted sum
of band-pass noises, a first approach is to cancel the con-
tribution of bands whose frequency is too high. This ap-
proach is often referred to d®quency clampingNRS83.

This works best if the noise is narrowly band-pass (i.e. the
ring in the spectrum has to be thin and well defined). Per-
lin noise [Per83 is only weakly band-pass, making fre-
quency clamping difficult to tune. Cook and DeRose allevi-
ate this issue by providing a noise with better defined band-
limits [CDO05.

Both of these noises, however, are isotropic and the
clamping cannot account for the anisotropy of the filter. On
tilted surfaces one must compromise between over-blurring
or residual aliasing. Goldberg et aGZDO08§ obtain higher
quality filtering since their pre-computed noise bands are
oriented: Each band corresponds to a noise pattern with lim-
ited frequency content along a given orientation (see fig-
ure 3). By adapting the weights of the oriented bands with
respect to the anisotropic filter, the noise content adapts to
non-uniform perspective distortions (see figar@)).

Lagae et al. [LLDDO9jexploit a unique property of their
noise: The noise is obtained as a sum of Gabor kernels. Each
Gabor kernel corresponds to a Gaussian in the frequency do-
main. It is possible to filter each individual kernel by com-
puting the product, in the frequency domain, between the

13

progressively introduce blur in the transition areas. How-
ever, when only filtering the noise, the transitions will re-
main sharp due to the subsequent thresholding.

While this problem remains unsolved in the general case,
several approaches provide good approximations when the
operations applied to the noise can be summarized in a 1D
color table The final color is obtained aS(N(u)) where
N(u) is the noise value at andC the color table.

Rhoades et alRTB*92] filter the color tableC rather than
the noise function. They return the average color over a small
interval [N(u) — 8,N(u) + 9]. This is conveniently evaluated
using MIP-mapping on the 1D color table. The size of the
intervald is computed from the filter size and the maximum
gradient ofC with respect tou. Hart et al. [HCK99 fur-
ther refine this approach using the local noise gradient (most
noises are differentiable, either through finite differencing
or analytically). While this works well in many cases, one
source of error is that the noise value and gradient are eval-
uated on the unfiltered noise. Lagae et BLIPD09q] rely
on a similar mechanism. They achieve accurate filtering by
estimating the noise value rang&om the loss in noise vari-
ance due to filtering. This is only possible because an ana-
Iytical expression of the noise variance is available.

Several authors have investigated more general methods
for filtering procedural textures. Heidrich et al. [HS$88e-
sented a method to obtain an average value of a procedural
shader with an error bound over a finite area using affine
arithmetic. Olano et al. [OKSQ®resented a method for au-
tomatic shader level-of-detail using an automatic system for
shader simplification.

Gabor Gaussian and the filter Gaussian. Since Gaussians are

closed under multiplication, the product is a third Gaussian.
This new Gaussian can be interpreted as a filtered Gabor ker-
nel. The parameters of this new kernel are used instead of
those of the original, unfiltered kernel. This directly gener-
ates a noise with a filtered spectrum. Contrary to previous
methods exploiting a discretization of the spectrum in dis-
tinct bands, this approach allows analytical filtering.

5.2.2. Filtering noise-based procedural textures

Noise patterns are rarely used directly to produce textures.
Patterns are generated by applying several functions to the
noise, such as absolute values or sine waves. In addition, the
noise is often colored by remapping its values to a piece-
wise linear color rampEMP*02]. Figure8 illustrates how a
marble texture is built from a solid noise.

Since most of these additional operations are non-linear,
starting from a filtered noise value does not guarantee that
the resulting texture is also filtered. While this approxima-
tion is acceptable when the function applied to the noise is
very smooth, proper filtering is in general necessary. For
example, consider a black and white pattern obtained by
thresholding the noise. A correctly filtered version should

(© The Eurographics Association 2010.

6. Analysis of procedural noise functions

In this section, we give a detailed analysis of procedural
noise functions. We introduce analysis tools (sectof)
ard present analysis results (sect@g).

6.1. Analysis tools

Motivated by our definition of noise as a stationary and nor-
mal stochastic process, we introduce analysis tools for es-
timating the power spectrum and the amplitude distribution
of a noise function. The estimated statistics of a noise func-
tion can provide insight into the noise function, also in the
case when the expected statistics are known. For example,
differences in expected and estimated statistics might reveal
implementation problems.

Power spectrum We estimate the power spectrum of a
noise function using Bartlett’s method of averaging peri-
odograms Bar7g. The periodogram is a simple estimator
for the power spectrum, defined as the magnitude squared
of the Fourier transformAVTF02 13.4]. However, the pe-
riodogram is very noisy. This is because the periodogram

14 A. Lagae et al. / State of the Artin Procedural Noise Functions

is a white noise process with as mean the power spec- be band-pass. Perlin noise has a slightly different aspect, be-
trum [PP02 12.2]. Averaging periodograms of different in- cause the noise is zero at every integer lattice point, and be-
stances of noise results in a less noisy estimate for the power cause of an undesired axis-aligned anisotropy. Wavelet noise
spectrum of a noise function. We inspect both the power has a very subtle different aspect, because of an undesired
spectrum estimate as well as the periodogram, since aver-axis-aligned anisotropy.

aging periodograms averages out noise but can also aver-
age out features. We radially average the power spectrum
of isotropic noise function, since the power spectrum of
an isotropic noise function is radially symmetric. Note that
these methods are also used for power spectrum estimation
of Poisson disk distributiondJli88, LD08].

In row 2, we show the amplitude distribution of the noise
functions. All noise functions except Perlin noise have an
approximately Gaussian amplitude distribution. The ampli-
tude distribution of Perlin noise contains undesired artifacts,
because of the limited number of random gradient vectors,
and because the noise is zero at every integer lattice point.

Amplitude distribution We estimate the amplitude distri- In row 3, 4 and 5, we show the periodogram, the power
bution of a noise function using a histogram of noise values. spectrum estimate, and the radially averaged power spec-
We plot a Gaussian function with the expected variance, in trum of the noise functions. All noise functions except Perlin
case this is known for the noise function, or with the esti- noise and sparse convolution noise are approximately band-
mated variance, as a reference. pass. Perlin noise is only weakly band-pass, which might

lead to problems with aliasing and detail lo€£J05. Sparse
Other analysis tools Yoon et al. [YLC04YLO8] presented convolution noise is not designed to be band-pass. The hori-
several other analysis tools for measuring the quality of a zontal features in the periodogram of Perlin noise are caused
noise within an optimization procedure. Yoon et al. used a by an undesired correlation in the hash functi&§08.
Chi-square goodness-of-fit test is used to measure the qual-The axis-aligned square feature in the power spectrum of
ity of the amplitude distribution of the noise, a test based on wavelet noise is caused by the separable B-spline [¢.D05
autocorrelation to detect periodicity in the noise, and a band- Both features indicate an undesired axis-aligned anisotropy
pass test to measure how band-pass the noise is. The bandin the noise. Note that the horizontal features in the peri-
pass test is inspired by wavelet noisej05], and is based odogram of Perlin noise are much less visible in the power
onthe difference between the noise and a down-up-sampled spectrum, which is an example of a case where averaging
version of the noise. However, for our purpose, these analy- periodograms can also average our features.

sis tools are subsumed by the ones above. We conclude from our analysis that the noise functions are

often very different in terms of visual aspect, power spec-
6.2. Analysis results trum and amplitude distribution. However, as we will show
in section?, every noise function represents a specific trade-
We have analyzed Perlin noise (as presented in [Rer02 off petween a set of features, and this analysis only takes into
see section3.1.]), sparse convolution noise (as presented account a small part of this set of features.
in [Lew89, see sectiorB.3.1), wavelet noise (as presented
in [CDO0Y, see sectioR.2.1), anisotropic nois€as presented
in [GZDO0§, see sectiod.2.2), better gradient noise (as pre- 7. Comparison of procedural noise functions
sented in KKSO0g], see sectiorB.1.2 and Gabor noise (as

presented inl[LDD04], see sectio.3.3. In this section, we give a detailed comparison of procedural

noise functions, based on the previous sections.

The parameters of the noise functions were selected to
produce a noise with a principal frequency of32 for the
spatial domain and /% for the frequency domain. Note that
both domains require different parameters for optimal visi-
bility. The spatial domain images were tone-mapped by lin-
early mapping a range of three standard deviations to inten-
sity, and the frequency domain images by linearly mapping
the expected maximum of the power spectrum to an inten-
sity value of 80%. 100 periodograms were used to compute
the power spectrum estimate.

We compare the same noise functions as the ones we have
analyzed in sectios. We present the results of our com-
paison in tablel. It is important to note that several devel-
opments presented in later methods are also applicable to
earlier methods. For example, several developments in bet-
ter gradient noise and Gabor noise are applicable to Perlin
noise and sparse convolution noise respectively. In the table,
we compare the methods as presented in the cited works,
while in the discussion, we generalize.

In part (a) of the table, we compare to which degree the
noise functions adhere to the definition of procedural noise
In row 1, we show the noise generated by the noise func- function (see sectio.3). Storage requirements and peri-

tions. Wavelet noiseanisotropic noise, better gradient noise odicity are generally linked. Explicit noises have high stor-
and Gabor noise have a very similar aspect. Sparse convolu-age requirements, while other noises have low storage re-
tion noise has a different aspect, because itis not designed toquirements. Several authors presented methods to improve

We present the results of our analysis in figlige

(© The Eurographics Association 2010.

@ b

©)

()

® |

A. Lagae et al. / State of the Artin Procedural Noise Functions 15

|

ET R TAR b2]
L RETRR A 5
B Sy

"
A

-
L)

4y S
o 4)::'
Y ” ¥ > ?.

3
A

-) 19
-
a,

i‘;
[r ¥

S s PP
.r\'..ﬁ,’.l

@|

(a) Perlin noise.

Figure 12: Analysis of procedural noise functions. (a) Perlin noise. (b) Sparse convolution noise. (c) Wavelet noise. (d)
Anisotropic noise. (e) Better gradient noise. (f) Gabor noise. (1) Noise. (2) Amplitude distribution. (3) Periodogram. (4) Power
spectrum estimate. (5) Radially averaged power spectrum estimate. (Figure badddxind9a, ©ACM, 2009.)

storage requirements and periodicity, for example, noise tions that support band-pass solid noise can support band-
tiles [CDO5, YL08, Lag09 and long-period hash functions pass surface noise.
[LDOE6]. Sparse convolution noises can are non-periodic and

L . In part (d) of the table, we summarize the noise func-
have minimal storage requirements.

tions in terms of filtering (see secti&@). All noise functions

]) _that are band-pass can support isotropic filtering, while only
In part (b) of the table, we compare the noise functions in pgise functions that support anisotropic noise can support

terms of modeling (see sectiéh Band-pass noise functions apisotropic filtering.

adhieve spectral control using a weighted sum of noise oc-

taves, while sparse convolution noises achieve spectral con- N part () of the table, we summarize the analysis of the
trol using the kernel. noise functions (see secti@). Perlin noise does not have

a Gaussian amplitude distribution and is only weakly band-
pass. Sparse convolution noises are band-pass when the ker-

In part (c) of the table, we compare the noise functions in ;
nel is band-pass.

terms of noise on surfaces (see seciprill noise functions
generalize to arbitrary dimensions, and can therefore support In part (f) of the table, we compare the noise functions in
solid noise, although the high storage requirements of ex- terms of speed. In our experience, sparse convolution noises,
plicit noises can be problematic for solid noise. Sparse con- wavelet noise and better gradient noise are generally slower
volution noises can support surface noise, and all noise func- than Perlin noise, whilanisotropic noises generally faster.

(© The Eurographics Association 2010.

16 A. Lagae et al. / State of the Artin Procedural Noise Functions

Note that this is a subjective comparison. Sparse convolu- the power spectrum would bridge the gap between noise and
tion noises offer a speed versus quality tradeoff, but remain stochastic texture. This is illustrated by Lewisjv86 fig-
slower for acceptable quality levels. ure 6] and by Lagae et alLLDDQ9a, figure 7]. Finer con-

trol over the power spectrum is an interesting direction for
future work; it is particularly important for the development
of noise-by-example methods.

We conclude from our comparison that every noise func-
tion represents a specific trade-off between a set of features,
and that the noise function that is best suited for a specific

application depends heavily on the requirements of that par-]])
ticular application. Non-Gaussian and non-stationary stochastic processes

In section 2, we have defined noise as a stationary
] ard Gaussian stochastic process. Generalizing this defi-
8. Conclusion nition directly suggests two ways to extend noise: non-

In this state-of-the-art report we have provided a critical Stationary and non-Gaussian stochastic processes. Non-
view on procedural noise methods, including recent soly- Stationary stochastic processes correspond to spatially vary-
tions developed in the last eight years. We started by pro- N9 noise. Lewis [ew8{ already hinted at spatially varying
viding a well-founded definition of noise, with a theoreti- ~ SParse convolution noise, van Wijk/{v91] used spatially

cal grounding in stochastic processes. These definitions al- V&Ying Spot noise for visualizing scalar fields, and Lagae et
lowed us to provide a unified classification of the most im- al- [LLDO9] recently explored spatially varying Gabor noise.
portant procedural noise solutions, providing the reader with However, all the above solutions have limitations. Develop-

a coherent view of the field. In particular, we have classi- "9 &general and efficient solution allowing spatial variation
fied procedural noise solutions into lattice gradient, explicit ©f all noise parameters is an interesting direction for future
and sparse convolution noises. We underline the importance fesearch. Non-Gaussian stochastic processes correspond to
of spectral control when modeling patterns and visual de- More general random patterns. This could bridge the gap
tail with noise. In many cases, noise is applied to surfaces: between noise and non-stochastic texture, or between noise
we have distinguished the different ways to do this, notably and parametric texture synthesi\NT96PS0. Although

via mapping of 2D noise, solid noise and local kernel splat- S0Me authors have investigated no_n-Gaussmn processes, for
ting. Several important issues arise when applying noise to €xample, Lewis llew8§, Gagalowicz and Ma GM83],
surfaces, most of which have been treated in recent work. &, more recently, ChainaisCha07, research into non-

In particular, these relate to filtering of noise, as well as the G&ssian noise is very limited. The development of non-
procedural textures based on noise. Gaussian noise would provide a powerful tool to model

) ~much richer patterns. It is however unclear whether such an
We have used the power spectrum and amplitude distribu- approach is the most effective way to obtain such results.

tion to analyze procedural noises. This analysis helps explain |n addition, developing general solutions for non-Gaussian
some of the difference between noises and, in some cases thenpise requires substantial future research.

differences in the resulting visual aspect. We also provided

a comparison of the various noises, based on the featuresUnderstanding and controlling phase In section2 we
that each solution provides. These include storage require-
ments, the way the power spectrum is controlled, whether
anisotropic noise is provided, how each noise can be applied
to surfaces and consequent filtering solutions, and of course
speed of computation. The conclusion of this comparison is
that each solution presents a different tradeoff. Each appli-
cation needs to determine the relevant importance of each
feature to determine which noise is most appropriate for the
problem at hand.

also noted that a noise is fully specified by its power spec-
trum, but has random phase. This characterization suggests
that the distinction between a stochastic texture and a struc-
tured texture or pattern is manifested in the non-random
phase of the latter. Identifying and controlling useful infor-
mation in the phase might be another approach to bridging
the gap between stochastic and structured textures. This is
an unexplored topic.

Faster noise and benchmarking noise Since the intro-
8.1. Future work duction of Perlin noise more than two decades ago, mak-
ing noise faster continues to be important, especially for
industrial applications. This is perhaps best illustrated by
the famous quote’90% of 3D rendering time is spent in
shading, and much of that time is spent computing Perlin
noise™. In section7, we have not performed an extensive

We next discuss several challenging directions for future
work.

Fine-grained control over the power spectrum In sec-
tion 2, we have explained that noise is completely character-
ized by its power spectrum, and in sectiénwe have dis-
cussed several methods for controlling the power spectrum
of noise. However, these methods only offer coarse-grained § Eric Enderton, Industrial Light & Magic, personal communica-
control over the power spectrum. Fine-grained control over tion, 1994.

(© The Eurographics Association 2010.

A. Lagae et al. / State of the Artin Procedural Noise Functions 17

Perlin sparse convo- wavelet anisotropic better gra- Gabor
noise lution noise noise noise dient noise noise
[Per03 [Lew89 [CDOg [GZD0g [KKS08] [LLDDO094]
category lattice gradient sparse convo. explicit explicit lattice gradient sparse convo.
(a) definition — procedural
storage requiremenits O(N) 0o(1) O(N9) O(N%) O(dN) o(1)
contin, no discrete data v v v v v
non-periodié v v
parameters weights kernel weights weights (aniso.) weights kernel param.
(b) modeling — spectral control
spectral control weight. sum kernel weight. sum weight. sum (aniso.) weight. sum kernel param.
anisotropic noise v v
(c) surfaces — noise on surfaces
sdid noise v v v v v
surface noise v v v v
setup-free surface noise v v v
(d) surfaces — filtering
isotropic filtering v v v
anisotropic filtering v v
(e) analysis
band-pass power spectrum v v v v
Gaussian amplitude distribution v v v v v
(f) comparison — speed
speed 0 - - + - -
quality/speed tradeoff v v

1 storage requirements are expressed in function of the pétiadd the number of dimensions

2 non-periodicity does not take into account the inherent periodicity of computer calculations
3 parameters that are required for spectral control

4 speed is expressed relative to the speed of Perlin noise

Table 1: Comparison of procedural noise functions. Comparison of Perlin noise, sparse convolution noise, wavelet noise,
anisotropic noisebetter gradient noise and Gabor noise. See sectifor a correct interpretation of this comparison. (Table
based on [LLDD09% (©ACM, 2009.)

benchmark to compare the speed of different noise func- Acknowledgments
tions. This is mainly because of the practical issues involved
such as coding optimized implementations for different ar-
chitectures (CPU, GPU). However, such a benchmark would
be interesting. As mentioned in the introduction, the relative
cost of computation and memory access has changed signif-
icantly over time, to the point where current program exe-
cution times are often dominated by memory access. This is References

one reason for the renewed interest in procedural noise, i.e.,[Anj88] ANJvo K.: A simple spectral approach to stochastic

’ We would like to thank the anonymous reviewers and lan
Jermyn. Ares Lagae is a Postdoctoral Fellow of the Re-
search Foundation - Flanders (FWO), and acknowledges
K.U.Leuven CREA funding (CREA/08/017).

; ; ; modeling for natural objects. IBurographics '88: Proceedings
the hope of exchanging bandwidth for computation. of the European Graphics Conference and Exhibit{@988),
pp. 285-296.
[AW90] ABRAM G. D., WHITTED T.: Building block shaders.
Better authoring tools In section4 we have mentioned In Computer Graphics (Proceedings of ACM SIGGRAPH 90)

same authoring tools for noise. However, the work done in ~ (1990) vol- 24, pp. 283-288.

i ; ; ; ; i in [Bar78] BARTLETT M. S.: An Introduction to Stochastic Pro-
graphical user interfaces for noise, in noise editing, and in cesses: With Special Reference to Methods and Applications

noise by example is very limited. 3rd ed. Cambridge University Press, 1978.

[BD04] BOURQUEE., DUDEK G.: Procedural texture matching
and transformation. Computer Graphics Forum 23 (2004),

Filtering procedural textures based on noise In section5 461-468.
HNO7] BRIDSON R., HOURIHAM J., NORDENSTAM M.:

WPT have discussed f!ltermg of prc_)c_:edural textures_based on Curl-noise for procedural fluid flow. ACM Transactions on
naise. Although solutions for specific cases are available, the Graphics 26 3 (2007), 46:1-46:8.

general problem of filtering of procedural textures based on |gra99] BracEWELL R. N.: The Fourier Transform and its Ap-
noise is still unsolved. plications 3rd ed. McGraw-Hill, 1999.

(© The Eurographics Association 2010.

18

[CDO5] Cook R. L., DEROSET.: Wavelet noise. ACM Trans-
actions on Graphics 243 (2005), 803—-811.

[Cha07] @HAINAIS P.: Infinitely divisible cascades to model the
statistics of natural image$EEE Transactions on Pattern Anal-
ysis and Machine Intelligence 292 (2007), 2105-2119.

[DG97] DISCHLERJ.-M., GHAZANFARPOURD.: A procedural
description of geometric textures by spectral and spatial analysis
of profiles. Computer Graphics Forum 18 (1997), 1997.

[DGO1] DISCHLERJ. M., GHAZANFARPOURD.: A survey of
3d texturing. Computers and Graphics 2% (2001), 135-151.

[EMP*02] EBERTD. S., MUSGRAVEF. K., PEACHEYD., PER-
LIN K., WORLEY S.: Texturing and Modeling: A Procedural
Approach 3rd ed. Morgan Kaufmann Publishers, Inc., 2002.

[FFC82] FOURNIERA., FUSSELLD., CARPENTERL.: Com-
puter rendering of stochastic model€ommunications of the
ACM 25 6 (1982), 371-384.

[FSDHO7] HSHER M., SCHRODER P., DESBRUN M., HOPPE
H.: Design of tangent vector fieldACM Transactions on Graph-
ics 26 3 (2007), 56:1-56:9.

[FWO07] FrisvaD J. R., WyviLL G.: Fast high-quality noise.
In Proceedings of the 5th international conference on Computer
graphics and interactive techniques in Australia and Southeast
Asia(2007), pp. 243-248.

[Gar84] GARDNERG. Y.: Simulation of natural scenes using tex-
tured quadric surfaces. l@omputer Graphics (Proceedings of
ACM SIGGRAPH 84)1984), vol. 18, pp. 11-20.

[Gar85] GARDNERG. Y.: Visual simulation of cloudsComputer
Graphics (Proceedings of ACM SIGGRAPH 85), B9(1985),
297-304.

[GD95] GHAZANFARPOURD., DISCHLERJ.-M.: Spectral anal-
ysis for automatic 3-d texture generati@@omputers and Graph-
ics 19 3 (1995), 413-422.

[GD96] GHAZANFARPOURD., DISCHLERJ.-M.: Generation of
3d texture using multiple 2d models analys@omputer Graph-
ics Forum 153 (1996), 311-323.

[GGMO09] GALERNEB., GOUSSEAUY., MORELJ.-M.:Random
Phase Textures: Theory and Synthedisch. Rep. 24, Centre de
Mathématiques et de Leurs Applications, 2009.

[GM85] GacALowicz A., MA S. D.: Model driven synthesis
of natural textures for 3-d scenes. Hurographics '85: Pro-
ceedings of the European Graphics Conference and Exhibition
(1985), pp. 91-108.

[GZD08] GOLDBERG A., ZWICKER M., DURAND F.:
Anisotropic noise. ACM Transactions on Graphics 273
(2008), 54:1-54:8.

[Har01] HAaRTJ. C.: Perlin noise pixel shaders.Pnmoceedings of
the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics
hardware(2001), pp. 87-94.

[HB95]
analysis/synthesis.
(1995), pp. 229-238.

[HCK99] HARTJ. C., &RR N., KAMEYA M.: Antialiased pa-
rameterized solid texturing simplified for consumer-level hard-
ware implementation. InProceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics hardware
(1999), pp. 45-53.

[Hec89] HeckBERTP. S.:Fundamentals of Texture Mapping and
Image Warping Master’s thesis, 1989.

[HSS98] HEIDRICH W., SLUSALLEK P., SIDEL H.-P.: Sam-
pling procedural shaders using affine arithmef#&M Transac-
tions in Graphics 173 (1998), 158-176.

[Jul62] JuLESZzB.: Visual pattern discriminationEEE Transac-
tions on Information Theory 8.962), 84-92.

HEEGERD. J., BERGENJ. R.: Pyramid-based texture
IRroceedings of ACM SIGGRAPH 1995

A. Lagae et al. / State of the Artin Procedural Noise Functions

[KKS08] KENSLERA., KNOLL A., SHIRLEY P.:Better Gradient
Noise Tech. Rep. UUSCI-2008-001, SCI Institute, University of
Utah, 2008.

[Lag09] LAGAE A.: Wang Tiles in Computer Graphic$/organ
& Claypool Publishers, 2009.

[LDO5] LAGAE A., DUTRE P.: A procedural object distribution
function. ACM Transactions on Graphics 24 (2005), 1442—
1461.

[LD06] LAGAE A., DUTRE P.: Long-period hash functions for
procedural texturing. INision, Modeling, and Visualization 2006
(2006), pp. 225-228.

[LDO8] LAGAE A., DUTRE P.: A comparison of methods for
generating Poisson disk distributior@omputer Graphics Forum
27,1 (2008), 114-129.

[Lew84] Lewis J. P.: Texture synthesis for digital painting.
In Computer Graphics (Proceedings of ACM SIGGRAPH 84)
(1984), vol. 18, pp. 245-252.

[Lew86] LEwisJ. P.: Methods for stochastic spectral synthesis.
In Proceedings on Graphics Interface '86/Vision Interface '86
(1986), pp. 173-179.

[Lew87] LEewisJ. P.: Generalized stochastic subdivisigkCM
Transactions on Graphics, @ (1987), 167-190.

[Lew89] Lewis J. P.: Algorithms for solid noise synthesis.
In Computer Graphics (Proceedings of ACM SIGGRAPH 89)
(1989), vol. 23, pp. 263-270.

[LLDO9] L AGAE A., LEFEBVRES., DUTRE P.: Improving Ga-
bor Noise Report CW 569, Department of Computer Science,
K.U.Leuven, 2009.

[LLDD09a] LAGAE A., LEFEBVRES., DRETTAKISG., DUTRE
P.: Procedural noise using sparse Gabor convolutid&CM
Transactions on Graphics 28 (2009), 54:1-54:10.

[LLDD0O9b] LAGAEA., LEFEBVRES., DRETTAKISG., DUTRE
P.:Procedural Noise using Sparse Gabor Convolution - Auxiliary
Material. Report CW 545, Department of Computer Science,
K.U.Leuven, 2009.

[LNO3] LEFEBVRES., NEYRETF.: Pattern based procedural tex-
tures. InProceedings of the 2003 symposium on Interactive 3D
graphics(2003), pp. 203-212.

[LVLDO9] L AGAE A., VANGORPP., LENAERTST., DUTRE P.:
Isotropic Stochastic Procedural Textures by Exampleeport
CW 546, Department of Computer Science, K.U.Leuven, 2009.

[LZD09] LAGAE A., ZWICKER M., DUTRE P.: On Anisotropic
Noise Report CW 547, Department of Computer Science,
K.U.Leuven, 2009.

[Mal93] MALzBENDER T.: Fourier volume rendering. ACM
Transactions on Graphics 13 (1993), 233-250.

[NRS82] NORTON A., RockwooD A. P., XoLMOsKI P. T.:
Clamping: A method of antialiasing textured surfaces by band-
width limiting in object space. I€omputer Graphics (Proceed-
ings of ACM SIGGRAPH 821982), vol. 16, pp. 1-8.

[OHH*02] OLANO M., HART J. C., HEIDRICHW., MARK B.,
PERLIN K.: Real-time shading languages. SIGGRAPH 2002
Course 36, 2002.

[OKS03] OLANO M., KUEHNE B., SIMMONS M.: Auto-
matic shader level of detail. IRroceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware
(2003), pp. 7-14.

[Ola05] OLANO M.: Modified noise for evaluation on
graphics hardware. InProceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware
(2005), pp. 105-110.

[Pap71] RpPouLISA.: High density shot noise and Gaussianity.
Journal of Applied Probability 81 (1971), 118-127.

(© The Eurographics Association 2010.

A. Lagae et al. / State of the Artin Procedural Noise Functions 19

[Pea85] HRAcHY D. R.: Solid texturing of complex surfaces.
In Computer Graphics (Proceedings of ACM SIGGRAPH 85)
(1985), vol. 19, pp. 279-286.

[Per85] ReRLINK.: Animage synthesizer. IBomputer Graphics
(Proceedings of ACM SIGGRAPH 88)985), vol. 19, pp. 287-
296.

[Per02] FReRLIN K.: Improving noise. InProceedings of ACM
SIGGRAPH 20022002), pp. 681-682.

[PH89] PeRLINK., HOFFERTE. M.: Hypertexture. IrComputer
Graphics (Proceedings of ACM SIGGRAPH 89989), vol. 23,
pp. 253-262.

[PNO1] PerRLIN K., NEYRET F.: Flow noise. InACM SIG-
GRAPH Technical Sketches and Applicati¢2801), p. 187.

[PNNT96] PORTILLA J., NAavARRO R., NESTARES O.,
TABERNERO A.: Texture synthesis-by-analysis method based
on a multiscale early-vision modelOptical Engineering 358
(1996), 2403-2417.

[PP0O2] RPOULISA., PiLLAI U.: Probability, Random Variables
and Stochastic Processesd ed. McGraw-Hill, 2002.

[PS00] PORTILLA J., SMONCELLI E. P.: A parametric texture
model based on joint statistics of complex wavelet coefficients.
International Journal of Computer Vision 40 (2000), 49-70.

[PVTFO02] PRESSW. H., VETTERLING W. T., TEUKOLSKY
S. A., LANNERY B. P.: Numerical Recipes in C++: the art of
scientific computing2nd ed. Cambridge University Press, 2002.

[QY02] QIN X., YANG Y.-H.: Estimating parameters for proce-
dural texturing by genetic algorithmsGraphical Models 641
(2002), 19-39.

[Ros06] RosT R. J.: OpenGL Shading Languagend ed.
Addison-Wesley, 2006.

[RTB*92] RHOADESJ., TURK G., BELL A., STATE A., NEU-
MANN U., VARSHNEY A.: Real-time procedural textures. In
Proceedings of the 1992 symposium on Interactive 3D graphics
(1992), pp. 95-100.

[Sau88] SwPE D.: The Science of Fractal Images. Springer-
Verlag New York, Inc., 1988, ch. Algorithms for random fractals,
pp. 71-113.

[SF95] S9MONCELLI E. P., REEMANW. T.: The steerable pyra-
mid: A flexible architecture for multi-scale derivative computa-
tion. In Proceedings of the 1995 International Conference on
Image Processinl995), p. 3444.

[SKB09] SpiuTJ. B., KENSLER A. E., BRUNVAND E. L.:
Hardware-accelerated gradient noise for graphicsPrbiceed-
ings of the 19th ACM Great Lakes symposium on 2809),
pp. 457-462.

[TWO08] TzeENG S., WEeI L.-Y.: Parallel white noise genera-
tion on a GPU via cryptographic hash. Rroceedings of the
2008 symposium on Interactive 3D graphics and ga(2668),
pp. 79-87.

[Uli88] ULICHNEY R.: Dithering with blue noiseProceedings
of the IEEE 761 (1988), 56-79.

[Vos88] VossR. F.: The Science of Fractal ImagesSpringer-
Verlag New York, Inc., 1988, ch. Fractals in nature: from charac-
terization to simulation, pp. 21-70.

[WW91] vaN Wik J. J.: Spot noise texture synthesis for data
visualization. InComputer Graphics (Proceedings of ACM SIG-
GRAPH 91)(1991), vol. 25, pp. 309-318.

[WLKT09] WEIL.-Y., LEFEBVRES., KWATRA V., TURK G.:
State of the art in example-based texture synthesiEQr2009 -
State of the Art Repor{2009), pp. 93-117.

[WN99] WyviLL G., NovINs K.: Filtered noise and the fourth
dimension. INACM SIGGRAPH 99 Conference abstracts and
applications(1999), p. 242.

[Wor96] WOoRLEY S.: A cellular texture basis function. Pro-
ceedings of ACM SIGGRAPH 199896), pp. 291-294.

(© The Eurographics Association 2010.

[YLO8] YooNJ.-C., LEe|.-K.: Stable and controllable noise.
Graphical Models 705 (2008), 105-115.

[YLCO4] YooNJ.-C., LEE I.-K., CHOI J.-J.: Editing noise.
Computer Animation and Virtual Worlds 18-4 (2004), 277—
287.

Appendix A: Background on texture filtering

This section explains the basic concepts for filtering signals
mapped to surfaces. We describe here the general approach,
which applies both to bitmap textures, procedural textures
or any other signal applied to a surface. The intent is only to
introduce the basics concepts needed for Se&iarPlease
refer to Heckbert [Hec8For an excellent in-depth introduc-

tion to texture filtering.

The filter to be applied to the texture varies in each screen
pixel, as it depends on the viewing condition. In screen
space, each pixel is typically modeled as a small Gaussian
filter (but this could be any other filter). The color of the
pixel should be obtained as the integral of the filter multi-
plied by the visible portion of the texture. In other words,
this evaluates at the pixel the convolution between the filter
and the projected texture. To simplify computations, the fil-
ter is back-projected in the texture domain through the view
transformation and through the mapping used to apply the
texture onto the visible surface. This results in a distorted
Gaussian in the texture domain (see figlig

More precisely, the filter for pixelx,y) in image space is
the Gaussian:

1 efiz(szryz)’
0v/2n
where o is the width of the Gaussian in pixels (typically

o = 1.0). The corresponding filter in the texture space is the
Gaussian

_ 1 — L J*IT.Jfl[uv]T
Fa ") = ——e 22V 12
(i) = s SNGE)
whereJ is a local affine approximation (Jacobian) of the
mapping from image to texture coordinates. It is easily esti-
mated in every pixel using the screen space derivatives of the
texture coordinates (rasterization) or ray differentials (ray-

f(xy) = (11)

tracing):
du du
kN1 @
dx dy

Note that this Gaussian filter remains a Gaussian in the spec-
tral domain. The correspondinfgequency domaitilter is
the Gaussian:

E (JT [fu fV]T) _ e72ﬂ202[fu fv]JJT[fu fV]T (14)

We thus can easily relate the filter to the spectrum of the
texture. A properly filtered texture will have for spectrum the

multiplication between its unfiltered spectrum and the filter
spectrum. This follows from the convolution theorem: The

spatial domain convolution simply becomes a multiplication

in the spectral domain.

