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Abstract
Advanced algorithms and efficient visualization techniques are of major importance in intra-operative imaging
and image-guided surgery. The surgical environment is characterized by a high information flow and fast deci-
sions, requiring efficient and intuitive presentation of complex medical data and precision in the visualization
results. Regions or organs that are classified as risk structures are in this context of particular interest. This paper
summarizes advanced algorithms for medical visualization with special focus on risk structures such as tumors,
vascular systems and white matter fiber tracts. Algorithms and techniques employed in intra-operative situations
or virtual and mixed reality simulations are discussed. Finally, the prototyping and software development process
of medical visualization algorithms is addressed.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object-Modeling I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism I.4.0 [Image Process-
ing and Computer Vision]: General J.3 [Computer Applications]: Life and Medical Science

1. Introduction

Surgical intervention planning and clinical diagnostic sys-
tems benefit from the large variety of imaging modalities
and visualization tools currently available. The Computed
Tomography (CT) technology is developing rapidly with so-
called dual source scanners already available and 256-row
detectors soon on the market. With these scanners one can,
for example, acquire high resolution image volumes cover-
ing the entire human heart with voxel sizes below 0.5 mm
in less than 100 ms. Magnetic Resonance Imaging (MRI)
scanners evolve at the same pace towards stronger magnetic
fields and improved hardware. Apart from being able to ac-
quire conventional high-resolution anatomical images with
excellent contrast between soft tissue types, the flexible MRI
technique is increasingly being used to depict functional in-
formation, such as cortical activation with functional MRI
and blood flow with phase-contrast MRI, as well as spe-
cialized anatomical information such as major white mat-
ter tracts using diffusion tensor imaging (DTI). The imaging
technology development has spawned a corresponding de-

velopment of algorithms for analyzing, visualizing and com-
bining the wealth of data produced, see Figure 1.

This state-of-the-art report summarizes advanced medi-
cal visualization and processing algorithms and puts them
into the clinical context, including intra-operative solutions,
image-guided surgery and virtual and augmented reality. The
visualization algorithms may be categorized based on their
input data (scalars, vectors, tensors):

Scalar Data

Volume rendering algorithms (Section 2.1) constitute the ba-
sis for visualizing raw 3D medical data. They offer overview
presentations of scalar volumetric data from CT or MR scans
without prior segmentation of specific regions or organs of
interest such as bones or vessels (Section 2.2). In the con-
text of volume rendering we consider the problem of inter-
active performance with very large medical data volumes as
well as the problem of finding an appropriate transfer func-
tion which maps the scalar data values to optical properties.
Moreover, the visualization of vascular systems from scalar
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Figure 1: Different visualization algorithms like volume rendering, maximum intensity projection, isosurface rendering and
diffusion tensor imaging techniques can be used to process the multimodal image data in a useful way.

data is considered, with a focus on modeling to convey shape
and topology.

Vector and Tensor Data

Vector data and tensor data are produced by phase-contrast
MRI [WEF∗99] and diffusion weighted MRI [BMB94].
Phase-contrast MRI measures blood flow and generates
3D+Time velocity vector fields that need to be visualized
in a judicious way. Diffusion weighted MRI measures wa-
ter diffusion and the data is commonly projected on a tensor
model for visualizing diffusion anisotropy. The anisotropy
reflects the underlying tissue structure, e.g., of the heart mus-
cle or white matter fiber tracts. Similar to the case of vascular
structures, the visualization should provide knowledge about
the location, properties, spatial distances, and functional re-
lationships between fibers.

In Section 2.3, a short introduction to diffusion tensor
MRI data will be presented. The techniques employed for
visualizing the complex tensor data, as well as current chal-
lenges, will be explained. These techniques range from sim-
plification to scalar information, glyph visualization and so-
called fiber tracking. In addition, we also review fiber clus-
tering methods that aim to extract structures with higher se-
mantic meaning than a fiber or a tensor.

Image-guided Surgery, Virtual and Augmented Reality

The major challenge here is to link the pre-operative data
sets with the patient on the operation table. To this end, we
consider registration techniques, passive optical tracking as

well as electromagnetic field tracking (Section 3.1). More-
over, intra-operative imaging techniques which re-scan the
patient in the operation room (Section 3.2), as well as virtual
and augmented reality methods that add context informa-
tion from the present situation, are reviewed (Section 3.3).
Collision detection algorithms are an essential component in
image-guided surgery and virtual reality applications. Such
algorithms are considered in Section 3.4.

Prototyping and Software Development

Finally, in Section 4 the needs and issues in the development
of medical visualization algorithms are addressed. We focus
on rapid prototyping software platforms which allow an evo-
lutionary software development where ideas and requests of
clinicians are easily integrated.

2. Visualization

2.1. Volume Rendering

Direct volume rendering (DVR) is the most common way of
depicting scalar volumetric data such as CT or MR scans in
their entirety, instead of extracting surfaces corresponding to
specific objects of interest (e.g., bones, vessels), or looking at
a collection of individual slice images, which is still common
in radiology.

The volume is thought of as a collection of particles
with certain physical properties that describe their interac-
tion with light, e.g., absorption, emission, and scattering of
light, which are subsumed in an optical model [Max95].

In order to obtain an image of the entire volume, the
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Figure 2: Examples of a semantic transfer function model for CT angiography, with the anatomical structures brain, soft tissue,
bone, and vasculature [RSKK06]. Transfer functions are not specified directly, but via structures’ names and visual attributes.

volume rendering integral corresponding to a chosen opti-
cal model is solved along viewing rays from the eye point
through pixels of the output image plane [EHK∗06]. This in-
tegral is usually solved via discretization, where individual
samples are taken, mapped to optical properties, and com-
bined in order to obtain an approximate result of sufficient
quality [EHK∗06], essentially performing Riemann integra-
tion.

In the medical context, interactive performance is cru-
cial, and the most common methods are CPU-based ray-
casting [GBKG04], using dedicated hardware such as the
VolumePro [PHK∗99], and exploiting GPUs (graphics pro-
cessing units) either with texture slicing [RSEB∗00], or
ray-casting, which has only become possible in recent
years [KW03,SSK∗05,KSS∗05]. Alternative approaches are
shear-warp [MH01] and splatting [NM05], which is espe-
cially suited to visualizing sparsely populated volumes such
as vasculature [VHHFG05].

A fundamental practical problem has always been the
significant size of medical volume data, which is usu-
ally tackled via bricking approaches [LHJ99, KMM∗01],
which can also be used in conjunction with single-pass
ray-casting in order to remove the per-brick setup over-
head [HSS∗05]. Recent GPU ray-casting implementations
employing bricking are able to render volumes with several
thousand slices [LWP∗06], which can also use an out-of-
core approach in order to avoid loading the entire volume
into CPU memory. A basic operation that most bricking ap-
proaches employ is culling bricks against the transfer func-
tion in order to determine fully transparent bricks that can be
neglected during rendering [GBKG04].

Current high-end GPUs are available with memory sizes
from 512MB to 2GB, which enables rendering relatively
large volumes even without bricking. However, further prac-
tical restrictions in addition to overall memory size are lim-
its of maximum texture dimension (number of texels/voxels
along each axis) and the ability to allocate huge 3D textures
in one piece, instead of allocating multiple smaller textures.
Both of these restrictions can be circumvented by bricking.

Naturally, when multiple imaging modalities and thus mul-
tiple volumes are visualized concurrently, memory require-
ments increase further, which can also be tackled with brick-
ing strategies [BHWB07].

Interactive volume rendering has been restricted to or-
thogonal projection for a long time. However, recent ad-
vances in GPU-based ray-casting easily allow for perspec-
tive projection, which is especially important in virtual
endoscopy [SHNB06]. In contrast to texture slicing, ray-
casting also increases flexibility, such as allowing adaptive
sampling rates [RGW∗03], and in general is much easier to
implement [EHK∗06].

Incorporating ray-casting into an application for surgery
planning and training allows one, for example, to change the
isovalue corresponding to the surface of the colon or a vessel
interactively for virtual endoscopy [NWF∗05], also display-
ing background objects on demand, or using full DVR for
the background [SHNB06].

A major issue in direct volume rendering is how scalar
data values are mapped to optical properties, which is com-
monly done via a global transfer function. Powerful transfer
function domains, i.e., the spaces in which they are spec-
ified, can be used in real-time volume rendering [KKH01,
KPI∗03]. However, specification of transfer functions is still
a major hurdle for physicians, who are often using presets
and easily overwhelmed by the complexity of transfer func-
tions and the time required to specify them, especially when
2D or higher-dimensional transfer functions are used.

Recent advances such as semantic transfer func-
tions [RSKK06, RBG07] can improve usability drastically,
which has the potential for significantly increasing the ac-
ceptance of volume rendering by medical doctors in the fu-
ture. Figure 2 shows visualizations generated using a seman-
tic transfer function model that completely hides the under-
lying 2D transfer function domain from the user.

Another important issue is how to handle reliability or,
vice versa, the uncertainty, that is inherent in visualiza-
tions. A recent approach in the context of medical appli-
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Figure 3: Planning of a right subfrontal approach for pi-
tuitary tumor resection [BHWB07]. (a) Skin incision. (b)
Operating microscope view. (c) Keyhole approach planning.
Single-pass ray-casting can combine multiple modalities in
real-time: MRI (skin and brain); CT (bone); MRA (vessels).

cations tackles this issue using probabilistic animation, in
order to visually convey the uncertainty in the classifica-
tion that results from applying a probabilisitic transfer func-
tion [LLPY07].

Both incorporating domain knowledge and domain-
specific conventions and metaphors, e.g., semantic ap-
proaches, as well as visualizing error and uncertainty have
been identified as important research challenges for the fu-
ture by the NIH-NSF Visualization Research Challenges Re-
port [JMM∗06].

If a transfer function alone does not suffice in order to
separate different objects (tissues, organs) of interest, seg-
mentation becomes necessary, which incorporates spatial in-
formation into the volume rendering process by specifying
which object each voxel belongs to. Segmentation informa-
tion can be used in real-time volume rendering to allow for
per-object transfer functions or rendering modes [HBH03],
and also provides a powerful basis for multi-volume render-
ing in which multiple modalities such as CT, MRI, fMRI,
and PET are combined on a per-object basis using per-
modality and per-object transfer functions [BHWB07]. Fig-
ure 3 shows three stages of an application for preoperative
planning of a neurosurgical keyhole approach.

Analogously to transfer function specification, visualiz-
ing the uncertainty in segmentation results allows to bet-
ter assess the risk involved in using the resulting visualiza-
tions [KVS∗05].

One possibility to circumvent both, transfer function
specification and segmentation, is to use opacity peel-
ing [RSK06], which removes occluding parts of the volume
in a view-dependent manner, which can also be modified to

exploit co-registered CT and MR volumes in order to im-
prove reliability when viewing the brain without segmenta-
tion [BHWB07].

2.2. Vessel Visualization

Understanding the branching pattern and topology of vas-
cular structures is crucial for therapy planning and the ac-
tual surgery in order to prevent healthy organs or organ re-
gions from being cut off from blood supply and drainage.
A 3D visualization that provides knowledge about the lo-
cation, properties, spatial distances, and functional relation-
ships of those vessels to other relevant anatomic structures
has been a frequent request by surgeons. While current ther-
apy planning software can provide most of this information,
an integrated visualization that enables the surgeon to make
reliable judgments without time-consuming, interactive in-
spections still remains an open request. During surgery, the
surgeon has even less time to analyze complex visualiza-
tions than at the planning stage. Ideally, such visualization
would therefore be static in a sense of facilitating frequent
look-ups of required information yet providing all necessary
morphological and spatial information in one single picture.
Such a picture could be printed, displayed on a monitor in-
side the operation theater, and eventually projected on the
very organ before dissection. The perception of spatial dis-
tances, however, becomes demanding when viewing a static,
monoscopic projection of a 3D visualization. This is espe-
cially true for complex vascular systems that may consist
of multiple interweaved tree-like structures such as the vas-
cular systems of the liver (portal vein, liver artery, hepatic
veins, and biliary duct). The effectiveness and lucidity of the
visualization highly depend on the accentuation of spatial
depth as well as the perceptive separation of important, indi-
vidual properties. To improve the communication of both as-
pects, the real-time vascular visualization methods presented
in this paper utilize and extend on illustrative rendering tech-
niques that provide functional realism [Fer01]. Illustrative
visualization methods not only allow us to emphasize or
omit properties, but also offer visualization techniques with
limited use of color. Due to varying absorption and reflec-
tion characteristics on organ surfaces, the perceived color
and brightness gradations resulting from a traditional shaded
projection on the organ are difficult to predict, thus making
them less suited for this purpose. Instead we propose the use
of texture as an alternative visual attribute. This allows us to
encode additional information, such as the local distance to
a tumor.

For the diagnosis of vascular diseases, 2D as well as con-
ventional 3D visualization techniques, such as direct volume
rendering, maximum intensity projection and isosurface ren-
dering, are employed. With these methods, the underlying
image data are faithfully represented [TKS∗04]. However,
artifacts due to inhomogeneity of contrast agent distribution
and aliasing problems due to the limited spatial resolution
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Figure 4: Examples of vascular illustrations enhancing perception of properties important in surgery. Left and right image:
Hatching indicates curvature and distances; middle image: Textures indicate distances to a generalized lesion (orange).

may hamper the interpretation of spatial relations. There-
fore, explicit surface reconstructions of vascular structures
are often preferred for surgical therapy planning and intra-
operative visualization, where the interpretation of vascular
connectivity and topology is more important than the visual-
ization of vascular diseases [BHH∗05].

The idea of model-based reconstruction has been intro-
duced by Gerig et al. [GKS∗93]. A variety of further recon-
struction methods have been developed which use the skele-
ton of a vascular tree and the local radius information as in-
put. Assuming a circular cross section, surfaces of vascular
trees are either explicitly constructed or implicitly created by
means of an implicit description. Among the explicit meth-
ods, graphics primitives such as cylinders [MMD96] and
truncated cones [HPSP01] are employed. A general problem
of these methods are discontinuities, which primarily occur
at branchings. The overcome such problems, smooth transi-
tions can be modeled by freeform surfaces [EDKS94]. The
most advanced explicit reconstruction technique is based on
subdivision surfaces [FWB04]. An initial base mesh is con-
structed along the vessel centerline. The base mesh consists
of quadrilateral patches and can be subdivided and refined
according to the Catmull- Clark scheme.

Implicit modeling is used in general to achieve smooth
and organic shapes. A special variant, convolution surfaces,
can be used to represent skeletal structures [BS91]. With
careful selection of a convolution filter, this concept allows
to faithfully represent the local diameter of vascular struc-
tures [OP05]. A comprehensive survey of methods for vessel
analysis and visualization is given in [BFC04].

Algorithms which aim at improving spatial perception,
particularly depth perception, and at communicating impor-
tant vascular properties by using and extending illustrative
visualization techniques have been proposed in [RHD∗06],
see Figure 4.

2.3. Diffusion Tensor Imaging

In the last decade the new imaging modality diffusion tensor
imaging (DTI) [BMB94] has generated new challenges and

a need for new developments in image analysis and visual-
ization [VZKL06].

resonance (MR) imaging modality that allows the mea-
surement of water diffusion in tissue. The water molecules
in tissue with an oriented structure, e.g., the white matter in
the brain, tend to diffuse along the structure. The diffusion
process is generally modeled by a Gaussian probability den-
sity function, or equivalently, it is described by a second or-
der tensor (i.e., a symmetric 3×3 matrix whose eigenvalues
are real and positive). It is assumed that the diffusion tensor
reflects the underlying tissue structure, for example, that the
main eigenvector points out the main orientation.

Applications

DTI was initially developed for visualizing white matter in
the brain but its use has later been extended to include for
example tumor dissection [HJ02, SDGH∗04] and investi-
gations of ischemic muscle tissue in the heart [HMM∗98,
HSV∗05, PVSH06]. Specifically, after infarction the fiber
structure of the heart muscle is remodeled to adapt to the
new conditions. Changes in the fiber structure can be mea-
sured with DTI, with the aim of understanding why the fiber
remodeling sometimes fails, leading to a collapse of the
heart. Yet another interesting application is the use of DTI
for preterm neonates or neonates who suffer from hypoxic
ischemia [PBV∗06]. Being able to detect possible damages
in the brain at an early stage yields the possibility to initi-
ate a therapy that ensures the best possible development of
the child. For all these applications, advanced visualization
plays a crucial role, since the raw DTI data acquired by the
MR scanner do not lend itself to visual inspection.

Visualizing the Tensors

The most common DTI visualization technique used in
clinical environments is based on a scalar valued func-
tion of the tensor, i.e., the information in the 6 indepen-
dent variables in the 3×3 symmetric tensor is reduced
to one scalar that represents some relevant characteris-
tic, mainly anisotropy (e.g., fractional anisotropy, relative
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(i) (ii) (iii) (iv)

Figure 5: Different visualizations of a healthy mouse heart data set with resolution 128x128x64: (i) superquadrics glyph in a
region of the heart using hue color coding of the helix angle (ii) limited length fiber tracks obtain with seeding in a radial line.
It shows the local helix form (iii) fiber tracking with region seeding. Fibers shown as tubes and color coded according to main
eigenvector. Cross sections showing hue color map of the fractional anisotropy (iv) fiber tracking with full volume seeding and
using illuminated streamlines

anisotropy) [BP96]. The resulting scalar data can be visu-
alized using common scalar field visualization techniques;
from 2D cutting plane color mappings to volume rendering
or even surface information that may reveal anatomically rel-
evant information [KWH00].

When visualizing intrinsic 6D data as scalars, information
is inevitably lost. In the case of diffusion tensors, diffusion
shape and orientation cannot be conveyed in maps of diffu-
sion anisotropy. Another group of techniques use glyph rep-
resentations to visualize the tensor data, see Figure 5(i). Sev-
eral glyph shapes have been used, i.e., ellipsoids, cuboids,
and superquadrics [Kin04]. These methods are able to show
the full tensor data without any information reduction. How-
ever, the clinical value of this visualization technique re-
mains an open question as a human may have difficulties
perceiving relevant information. Although techniques have
been proposed to improve the perception by optimizing the
placement of glyphs [KW06], cluttering is still a problem.

Fiber Tracking

Fiber tracking techniques aim at reconstructing the fibrous
tissue structure from the diffusion tensor information. The
advantage of these methods is that the result is analogous
to what the physicians or radiologists are expecting and an
extensive amount of research has therefore been focussed
on this reconstruction [BPP∗00, MZ02, WKL99]. The fiber
tracking techniques can be divided into three categories:

• Streamline tracking
• Geodesic tracking
• Probabilistic tracking

In the streamline algorithms, the tensor field is reduced to a
vector field consisting of the main eigenvectors of the ten-

sors. This vector field can then be visualized using common
techniques in flow visualization. An extension to stream-
lines are streamsurfaces, where a surface represented by
the two main eigenvectors is reconstructed in areas of pla-
nar anisotropy [ZDL03, VBP04]. The disadvantage of the
streamline methods is that they do not make full use of tensor
information and thresholds based on anisotropy indices are
required to define when the main eigenvector is valid. An-
other disadvantage is that the results are dependent on the
seeding strategy for the streamlines. Often the seeding re-
gions are defined manually by the user and therefore are bi-
ased. Furthermore, relevant information can be missed with
unfortunately chosen seed points.

The geodesic tracking methods define a new metric based
on the diffusion tensors [OHW02, PWKB02]. This metric is
generally based on the inverse of the diffusion tensor so that
two points are close two each other if a path of high diffusion
connecting the points exists. Tracking can then be performed
by calculating geodesic paths in this new metric. These ap-
proaches do not discard tensor information and they are for
this reason believed to be more robust. The main disadvan-
tage is the computational complexity and the fact that there
is always a geodesic between two points in the space. Hence,
to separate geodesics following the underlying fibrous struc-
ture from invalid ones, there is not only the need to define
seed points but also end points or connectivity measures.

The probabilistic tracking methods aim to visualizing the
uncertainty present in DTI data by incorporating models
of the acquisition process and noise [BBKW02, LAG∗06,
FFW06]. The uncertainty is assessed by tracking many pos-
sible paths originating from a single seed point and in this
process taking the tensor uncertainty into account. Based on
the tracked paths, maps of connectivity probabilities are pro-
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Figure 6: (i) Fiber tracts colored corresponding to their local direction. (ii) and (iii) The visualization of clustered fiber tracts
improves the perception and allows for a better interaction with the data, e.g., single bundles can be selected for quantification
processes (cc=corpus callosum, slf=superior longitudinal fasciculus, cb=cingulum bundle, ilf=inferior longitudinal fasciculus,
cst=cortico-spinal tract, fx=fornix, uf=uncinate fasciculus).

duced, see Figure 7. Such maps may be used to delineate risk
structures for pre-surgical planning.

Fiber Clustering

To avoid user-biased results or missing information due to
subjective streamline seeding, one strategy is to seed the
whole domain using 3D seeding strategies [VBP04]. How-
ever, the result is usually very cluttered and gives few in-
sights in the data (see Figure 6(i)), even if computer graph-
ics techniques are applied to improve the perception, see
Figure 5(iv) [PVSH06]. It has been proposed to improve
the interaction such that manual selection of the interest-
ing fiber structures is done in a intuitive and reproducible
way [ZDK∗01,ASM∗04,BBP∗05]. Although these methods
improve the inspection of the data, the resulting selections
remain biased by the user.

In practice, the interesting structures are not individual
fibers, which in any case are impossible to reconstruct since
the DTI resolution is much lower than the diameter of
the individual fibers. Instead, the interesting structures are
anatomical meaningful bundles that fibers form. Further-
more, it is interesting to compare individuals or groups of
individuals, e.g., patients and normal controls, and quantify
similarities and differences.

Fiber clustering algorithms [DGA03, BKP∗04, KBL∗07,
JHTW05, MMH∗05, OKS∗06, MVvW05] have been devel-
oped to group anatomically similar or related fibers into bun-
dles (see Figure 6(ii) and 6(iii)) . As no user interaction is
needed, undesirable bias is excluded. One of the main ques-
tions in several of this algorithms is when are two fibers con-
sidered to be similar or related forming a bundle. Different
distance/similarity measures between fibers can be defined
(e.g., Hausdorf distance, mean distance [MVvW05]). Fur-
thermore, there are a large bunch of clustering techniques

that can be used and this have several parameters that need
to be adjusted. One of the issues in this field is which of
these techniques or which combination of them would give
the best result. This is not a trivial questions and validation
is an active and important field of research in DTI. Moberts
et al. [MVvW05] did a first attempt to define a framework
where the clustering techniques can be validated.

A group of clustering algorithms map the high-
dimensional fiber data to a low dimensional feature space
from which an affinity matrix is calculated [BKP∗04]. In
these techniques, the similarity is assumed to appear from
the data itself. This calculation as well as the subsequent
clustering needs O(n2) time, which means the running time
is quadratic in the number of fibers. Especially if an auto-
matic clustering of all available fibers is needed, this high
running time is undesirable. The necessary adjustment of
several parameters of the feature space, which often influ-
ences the number and the constellation of clusters in an
unpredictable way, as well as the imprecise approxima-
tion by a feature space becomes obsolete by using a fiber
grid [KBL∗07] or voxel grid [JHTW05]. However, the ac-
tual clustering step remains in O(n2). The problem of an im-
precise approximation can also be solved by a B-spline rep-
resentation of fibers [MMH∗05] where an efficient match-
ing between B-splines can be performed [CHY95]. Alter-
natively, fibers can be represented very precisely and ef-
ficiently by parameterized polynomials defining the x-, y-,
and z-components of the fiber points individually [KSS∗08].
Based on that representation, a two-step clustering method
allows to determine clusters in linear time O(n) [KSS∗08].

The fiber clustering algorithms are initialized with the re-
sults of a fiber tracking algorithm and therefore there is a
transformation of the original data before the clustering is
taking place. Unfortunately, the clustering results are also
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Figure 7: Brain connectivity maps generated by tracking a
large number of traces from the points indicated by the ar-
rows. Such maps can be used to delineate risk structures, in
this case the Corpus Callosum in the brain. The white ar-
rows indicate the seed points used for starting the tracking
process.

depend on the fiber tracking technique used. To avoid this
dependency you might obtain the anatomical bundles by di-
rectly segmenting the tensor field. Some recent work have
shown the results of extending existing segmentation tech-
niques into tensor fields [ZMB∗03, JBH∗05, WV05]. Sim-
ilar to the clustering algorithms one of the main questions
is how do you decide when two tensors are similar or be-
long to the same region. This is a complex question since
it is not obvious in tensor fields what is the distance or
difference between to tensors. In literature, there are sev-
eral distance/similarity measures between tensors that have
been proposed [AGB99,AFPA06]. However, it is a challenge
to define the right measure for a given problem. Further-
more, current algorithms for tensor field segmentation are
very time consuming. Interactivity is however necessary to
be able to define and tune the segmentations.

As we mentioned, no much information can be extracted
directly from the DTI raw data. Therefore, it is very im-
portant that image analysis and visualization techniques that
help the understanding of this data are reliable. Validation
of the DTI algorithms reminds a big challenge, since there
is no trivial way to generate a ground truth and comparison
method for DTI data. Furthermore, presenting the DTI data
to a user in a comprehensive way where there is a balance
between data simplification and clarity of the visualization
remains an important issue. In a lot of applications physi-
cians or radiologists want to distinguish between healthy and
pathology, or evaluate changes on time, in an objective way.
Finding good quantitative non biased ways to evaluate dif-

ferences, as well as, visualization and navigation tools that
help identify these differences are also of major importance
for the clinical application of DTI.

3. Image-guided Surgery and Virtual Reality for
Medicine

One classic vision in surgery is to enable the surgeon with an
"x-ray view" that allows her/him to inspect interior regions
of the body that are hidden behind other organs. Virtual re-
ality – or actually augmented reality – techniques are ad-
dressing exactly that approach by enriching ("augmenting")
the traditional view on the patient with virtual information
of the hidden regions. Of particular interest are the regions
or organs that are classified as risk structures, like vascu-
lar structures (Section 2.2) or white matter fiber tracts (Sec-
tion 2.3), because they are vital and must not be damaged
during the surgical intervention, or because the organ is the
specific target of the intervention.

3.1. Image-guided Surgery

Information on these structures of interest can be acquired
by a pre-operative scan of the patient, typically done by a
CT or MRI scanner. While this is already common practice
in diagnosis and surgery planning (see Section 2.3), the ma-
jor issue here is how to connect the pre-operative dataset(s)
with the patient on the operation room (OR)-table. The basic
solution for that issue is to register the dataset to the patient,
or actually the OR-table to which the patient is fixed. This
process requires the association of landmarks visible in the
dataset and on the patient. While a minimum of four such
associations is needed, typically six or more associations are
established to improve accuracy and stability of the registra-
tion. Unfortunately, anatomical landmarks can vary signifi-
cantly and are sometimes very difficult and tedious to iden-
tify. Instead, artificial markers, fiducials - which are easy to
locate in the dataset and on the patient - are attached to the
patient before the pre-operative scan.

After establishing the geometric transformation between
the dataset and OR-table, the virtual data from the dataset
can be related to the patient, providing the patient is not
moved independently from the OR-table.

The position and orientation (or pose) of the OR-table is
measured on basis of a reference array – which is a defined,
identifiable object – that in turn is measured by a tracking
system. While a number of different techniques are avail-
able, passive optical tracking based on infrared light and
cameras is the currently most widely used technique. Here,
one (or more) infrared light sources emit infrared light that
is reflected by spherical markers of the reference array and
again captured by two cameras mounted in a fixed geometric
relationship. The position of that marker is then computed by
triangulating the information of the reflection of the marker
by both cameras. In order to compute also the orientation of
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Figure 8: Tracking of a surgical screw driver through an
instrument array.

the reference array, a minimum of three reflective markers in
a constant geometric relationship is needed. Since the cam-
eras always see only projections of the markers, the accuracy
of the computed position depends on the geometric arrange-
ment of the markers; the more linearly independent they are,
the better.

Similarly, tools (e.g., pointers. endoscopes, probes, etc.)
are tracked through another marker array (instrument array)
by the tracking system (see Figure 8). A different geomet-
ric configuration (number of markers, distance and angles
between the markers) allows the identification of the respec-
tive tool and - even more important - the differentiation from
the OR-table reference array.

Alternatively to optical infrared tracking, electro-
magnetic field tracking also becomes more popular recently.
While it has clear advantages, since it does not require a
fixed relationship between tooltip and reference markers and
also no optical visibility of the markers, it is subject of var-
ious electro-magnetic field measuring artifacts if ferromag-
netic or metal objects are introduced into the magnetic field.
For this reason, we will not further describe this approach
here, more details can be found in [PB07].

The combined system of marker/sensor arrays and track-
ing system is called in surgery intra-operative navigation
system and largely defines the field of image-guided surgery.

Unfortunately, a number of caveats come with this ap-
proach. First, the accuracy depends largely on the diligence
of the registration procedure. A sloppy registration will not
ensure a sufficient overlap between dataset and patient. Sec-
ond, several environmental factors may introduce measure-
ment inaccuracies which reduce the tracking quality. In par-
ticular optical infrared tracking is subject to scattered in-

Figure 9: Multimodal representation of cerebral ventricu-
lar system and local vascular architecture from two MRI
datasets, from an endoscopic point of view. The blue ellip-
soid shows the arterial Circle of Willis.

frared light from day light or physical deformations of the
camera array during warm-up. Finally, the whole procedure
builds on the assumption that the patient - or the actual tar-
get region of the patient - has not changed significantly since
the pre-operative scan, hence the four to six associations
are sufficient to describe the geometric relationship. If this
assumption is not sufficiently valid, the whole registration
procedure becomes dramatically more complex, because the
body changes induce deformations of the datasets, possibly
down to every voxel. Therefore, this situation requires elas-
tic (non-rigid) registration with computational costs that are
currently prohibitive for the surgical routine†. An overview
of different registration techniques (rigid and non-rigid), can
be found in [MV98].

3.2. Intra-operative Imaging

Alternatively to more advanced registration approaches,
intra-operative imaging re-scans the patient on the OR-table.
Any changes of the body with relevance to the scanning pro-
cess are capture, depending on the scanning device. A typi-
cal example is the brain shift [LHNE99], where changes of
pressure in the head after opening of the skull and of the dura
(the leather-like hard skin of the brain) lead to position and

† Next to the computational costs, elastic registration also gives
rise to questions how accurately the deformed dataset represents the
reality.
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Figure 10: Mixed reality display for a patient skull phantom. A virtual representation of a tumor (red) is augmented in the cam-
era image (left). The virtual representation of the instrument (yellow) is augmented taking into account occlusion information.
The occlusion information is correctly computed also for complex situations, where the cheek bone occludes the instrument
(right).

shape changes of the brain. The brain shift becomes even
stronger after the (surgical) removal of tissue (e.g., tumor
tissue) from the brain.

Note, however, that intra-operative scanning is a com-
plex issue and typically requires a compromise on either im-
age quality or costs. Intra-operative scanners are typically
more mobile than pre-operative scanners, which often leads
to simpler devices, and hence to a lower image quality. An
example for this situation are pre- and intra-operative CT
scanners. Intra-operative MRI scanners used to provide ac-
cess for the surgeons to the patient, hence the name Open
MR. Technical boundary conditions unfortunately allowed
only a less powerful magnetic field ("low field") which pro-
vided only a significantly lower image quality. Recently, full
field MRI scanners were introduced into the OR, provid-
ing an image quality comparable to regular pre-operative
scanner [NGvKF03]. Unfortunately, intra-operative full field
MRI requires numerous changes to the OR, rendering this
method as a quite expensive one.

A good compromise represents intra-operative ultra-
sound, where a tracked ultrasound probe acquires 2D or 3D
data in (near) real-time. Intra-operative ultrasound is well-
established and a cost efficient scanning methods. On the
downside, it has a significantly lower signal-to-noise ra-
tio than CT or MRI and is more difficult to interpret. In
many situations, however, it can be used as a valuable tool
[LEHS02, LTA∗05]. Other intra-operative scanning tech-
niques include x-ray, surface scanners, etc. Except for x-ray,
they are yet to be widely used or are still research prototypes.

3.3. Virtual and Mixed Reality

Virtual reality simulates the interaction with virtual objects,
which – as the name suggests – do not physically exist. Such
medical simulations allow to experience realistic patient sit-
uations without exposing patients to the risks inherent in
the learning process and is adaptable to situations involv-
ing widely varying clinical content [BWW∗07]. A specific
virtual reality application in medicine is virtual endoscopy,
where a virtual camera inspects body cavities in a represen-
tation acquired by a medical tomographic scanner. Since a
previous state-of-the-art-report focussed already on virtual
endoscopy [Bar05], we just direct the interested user to that
paper.

Augmented – or mixed – reality adds context informa-
tion from the reality, which is captured either by an optical
see-through display (e.g., a head-mounted display [BFH∗00]
or semi-transparent display [SSW02]), or by a video see-
through display (e.g., a camera [FNBF04]). The main task
is now to combine the virtual 3D objects and the 2D video
stream in a meaningful way (in the following, we limit our-
self to video see-through, but the issues and solutions are
similar for optical see-through). A survey on this discussion
can be found in [Azu97].

The first step is to calibrate the reality-capturing camera
with the virtuality representing dataset. Since the dataset is
already registered to the OR-table, we need to do the same
for the camera images from the video stream. Typically, a
specific pattern is captured by the camera to derive position
and orientation of that pattern [KB99]. If both are already
known – e.g., they have been registered to the OR-table –
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and if the camera itself is tracked by the navigation system
through a reference marker, we can close the transformation
loop and provide the transformation of the camera image
to the dataset, and hence provide an augmented represen-
tation [FNBF04]. Approaches in a less clinical, more tech-
nical environment are described for ultrasound guided nee-
dle biopsy in Bajura et al.’s and State et al.’s classic papers
[BFO92, SLH∗96]. Specific mixed reality systems for liver
surgery are discussed in [SSS∗03, LEH∗04, BBR∗03], and
mixed reality endoscopy systems in [DSGP00, BGF∗02].
An interactive, mixed reality system for the semiautomatic
transfer function design was suggested by del Río et al.
[dRFK∗05].

A different issue of augmented reality is known as the oc-
clusion problem. This problem is based on the 3D nature of
virtual objects and the lack of 3D information in the cam-
era video stream. Consequently, the 3D objects can only be
drawn over the camera video stream, resulting in the wrong
depth sorting of the 3D objects in the augmented stream.
If the virtual objects would move behind a real object rep-
resented by the camera stream, it would be still drawn on-
top of it, disturbing the immersion of the user. Different ap-
proaches have been proposed to address this problem. Fis-
cher et al. suggested to compute a shadow 3D representa-
tion of the occluding object that is only drawn in the z-
buffer, and hence occludes the virtual object [FBS04]. This
approach works well, if sufficient information is available
of the occluding object, for example if the occluding object
was scanned beforehand (e.g., a patient’s body part, see Fig-
ure 10). Other’s address the problem in case of static occlu-
sion [BWRT96,FHFG99] and dynamic occlusion with static
backgrounds [FNBF04].

3.4. Collision Detection

Collision detection is an essential component in image-
guided surgery as well as in virtual and mixed reality appli-
cations. In such environments, collisions among deformable
organs have to be detected and resolved. Furthermore, col-
lisions between surgical tools and deformable tissue have to
be processed. In the case of topological changes due to cut-
ting, self-collisions of tissue can occur and have to be han-
dled [TKH∗05]. As an interactive behavior of the surgery
simulation is essential, efficient algorithms for collision de-
tection are required.

There are several different approaches to the collision
detection process. Bounding volume hierarchies (BVHs)
have proven to be very efficient for rigid objects [Hub96,
PG95, GLM96, KHM∗98, Zac98, Zac02, AdBG∗01, vdB97,
LAM01, KGL∗98, EL01]. In addition, they are a very pow-
erful tool if dealing with reduced deformable models [JP04].

In contrast to the object-partitioning methods, space-
partitioning approaches are mainly used in case of deform-
ing objects as they are independent of changes in the object’s

Figure 11: Example application of collision detection (intes-
tine surgery simulation). The objects in this case are highly
deformable. Both self-collisions and collisions between dif-
ferent objects must be detected and handled. (Screenshot
courtesy L. Raghupathi, L. Grisoni, F. Faure, D. Marchall,
M.-P. Cani, C. Chaillou [RGF∗04].)

topology. For the partitioning, an octree [BT95, KSTK98], a
BSP tree [Mel00] or a voxel grid [Tur90, MPT99, GDO00,
ZY00] can be used.

For scenarios where deformable objects have to be tested
against rigid objects, e.g., between a surgical knife and a
liver, distance fields are a very elegant and simple solution
that also provides collision information like contact normals
or penetration depths [FL01,VSC01,SPG03,FSG03]. A dis-
tance field specifies the minimum distance to a surface for
all (discrete) points in the field. In the literature, different
data structures have been proposed for representing distance
fields, e.g., octrees, BSP trees, or uniform grids. The prob-
lem of uniform grids, the large memory consumption, can be
alleviated by a hierarchical data structure called adaptively
sampled distance fields [FPRJ00]. For the collision detection
problem, special attention to the continuity between differ-
ent levels of the tree has to be paid [BMF03].

Stochastic methods are very interesting for time-critical
scenarios. They offer the possibility to balance the quality
of the collision detection against computation time, e.g., by
selecting random pairs of colliding features as a guess of the
potentially intersecting regions [RCFC03]. To identify the
colliding regions when objects move or deform, temporal
as well as spatial coherence can be exploited [LC92]. This
stochastic approach, which was improved by [KNF04], can
be applied to several collision detection problems [GD02,
DDCB01]. [GD04] presented a Monte-Carlo based tech-
nique for collision detection. Samples are randomly gener-
ated on every object in order to discover interesting new re-
gions. Then, the objects are efficiently tested for collision
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Figure 12: Left: Module-based software development. Visualization algorithms are encapsulated by the green boxes. Right:
Lung visualization (Pulmo-3D) which has been developed on top of MeVisLab.

using a multiresolution layered shell representation, which
is locally fitted according to the distance of the objects.

Hardware-assisted approaches, especially full GPU im-
plementations, are a relatively novel technique. Their power,
increasing faster than Moore’s Law, and several new features
are very interesting architectures to utilize for the collision
detection [SF91, MOK95, LCN99, BW03, GZ03, GLM04]
and/or self-collision detection [BW02, GLM03].

All mentioned collision detection algorithms provide
some solutions for collision detection in medical applica-
tions. However, the most general, best-suited approach for
all situations does not exist. If collisions between rigid and
deformable objects have to be tested, as in the case of intra-
operative situations, distance fields may be very useful. In
applications where a real-time response is most important,
such as training simulations and other virtual reality applica-
tions, stochastic approaches or GPU-based implementations
could be preferable, which may incur some inaccuracy occa-
sionally. If accuracy is of the utmost importance, then BVH
based approaches are probably the most suitable choice.

Current challenges in collision detection are

• deformable objects (still), because it is notoriously diffi-
cult to find any acceleration data structures that can be
updated quickly enough to be of any benefit;

• theoretical results about the average running time of the
algorithms;

• stochastic collision detection is still an area that has re-
ceived very little attention; and,

• collision detection on the recent multi-core architectures,
such as the Cell processor or NVidia’s Tesla architecture.

4. Prototyping and Integrating Algorithms in Medical
Environments

Software development is associated with time and costs. In
clinical environments and for algorithm evaluation in re-
search settings, software that supports efficient visualization

of image data is required. However, the requirements dif-
fer in that clinical software should be easy to handle with
few parameters to tune, whereas the research setting re-
quires more elaborate testing scenarios. Furthermore, several
application-independent generic issues must be addressed,
such as data import and export of various medical image
format standards (e.g. DICOM), user-management, report-
ing and documentation functionality. A substantial amount
of development time must be invested to get these essen-
tial functions working. Nevertheless, new software systems
are often built and maintained from scratch. A so-called ap-
plication framework is a remedy that can be used to speed
up the development process. Such a framework provides a
reusable context that can be customized into specialized ap-
plications [FS97]. Ideally, components with common func-
tionality are quickly connected to create a new product or
prototype, while implementation details are encapsulated
and hidden from the application developer. In this way, the
development process is significantly shortened and the effort
can be concentrated on the special requirements.

Various application framework tools have been devel-
oped to assist the design of clinical applications. Software
platforms such as Analyze [RH90], SCIRun [JMPW04],
VisiQuest [Vis07], or the LONI Pipeline Processing Envi-
ronment [LON07] offer a rich set of algorithms for medi-
cal and scientific image analysis. Furthermore, image pro-
cessing and visualization libraries such as ITK [ISNC05],
VTK [SML97] and Open Inventor [Wer93] are available.
MeVisLab [RKHP06] is an extendable framework for the
development of software prototypes that focuses on medi-
cal applications for image-based diagnosis and therapy as
well as for clinical research, see Figure 12. It offers a graph-
ical programming interface where for example the function-
ality in ITK, VTK and Open Inventor is available as separate
modules.
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5. Conclusions

We have reviewed several algorithms for processing and vi-
sualizing medical image data, including scalar, vector and
tensor data, with the aim of supporting image-guided surgery
and mixed-reality simulations. The challenge when develop-
ing such algorithms is to extract relevant information and to
present it in perceptible way, preferably at interactive speed.
Recent advances in volume rendering techniques, like inter-
active rendering of perspective projections, GPU-based ray-
casting or semantic transfer functions, are able to handle the
current sizes of medical data volumes and to present them to
the clinician in an intuitive and useful way. However, inter-
active performance remains a problem.

Upcoming challenges include the visualization of multi-
valued data. For example, patients are frequently examined
with different medical imaging modalities and multi-modal
visualization techniques that merge relevant information are
for this reason an important research area. Moreover, vector
valued and tensor valued data are gaining importance in the
clinical environment. An example is the diffusion weighted
MRI modality for which visualization of glyphs, fiber track-
ing and clustering are some of the processing techniques
considered in this work.

In the context of vessel visualization, current challenges
include the generation of geometric models appropriate for
blood flow simulations. Preliminary results indicate that ex-
isting vessel visualization techniques may be adapted to
produce meshes with sufficient triangle quality [SNB∗08].
However, thorough investigations and comparisons with
other techniques are necessary to come up with a reliable
approach for visualizing vascular structures and simulating
blood flow. With the information obtained via simulations,
quantities such as wall shear stress which depend on mor-
phologic, functional and dynamic factors may be investi-
gated and visualized.

Finally, bringing the visualization algorithms from the re-
search lab into the clinic and operation room is not only an
engineering task. Intra-operative imaging data need to be
registered with pre-operative data, augmented- and mixed-
reality methods are still at their inception state and colli-
sion detection algorithms must be developed so that no bot-
tlenecks arise when utilizing them in mixed-reality simu-
lations. Rapid-prototyping and application frameworks are
essential to implementing robust and user-friendly medical
software and they facilitate the bridging between the clinical
and research environments.
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