
EUROGRAPHICS 2003 / R. Boulic and V. del Sol Slides & Video

DStrips: Dynamic Triangle Strips for Real-Time Mesh
Simplification and Rendering
Category: Scientific Research

Michael Shafae and Renato Pajarola

Computer Graphics Lab
Department of Information & Computer Science

University of California, Irvine
mshafae@ics.uci.edu, pajarola@acm.org

1. Motivation

Multiresolution modelling techniques are important to cope
with the increasingly complex polygonal models available
today such as high-resolution isosurfaces, large terrains, and
complex digitized shapes10. Large triangle meshes are diffi-
cult to render at interactive frame rates due to the large num-
ber of vertices to be processed by the graphics hardware.
Level-of-detail (LOD) based visualization techniques7 al-
low rendering the same object using triangle meshes of vari-
able complexity. Thus, the number of processed vertices is
adjusted according to the object’s relative position and im-
portance in the rendered scene. Many mesh simplification
and multiresolution triangulation methods5, 8, 4, 11, 12 have
been developed to create different LODs, sequence of LOD-
meshes, and hierarchical triangulations for LOD based ren-
dering. Although reducing the amount of geometry sent to
the graphics pipeline elicits a performance gain, a further op-
timization can be achieved by the use of optimized rendering
primitives, such as triangle strips.

Triangle strips have been used extensively for static mesh
representations since their widespread availability through
tools such as the classictomesh.cprogram1, Stripe6 and the
more recent NVidia NVTriStrip tools3 2. However, using
such triangle strip representations and generation techniques
is not practical for a multiresolution triangle mesh. The prob-
lem of representing the stripped mesh and maintaining the
coherency of the triangle strips is compounded when used
with LOD-meshes. In view-dependent meshing methods the
underlying mesh is in a constant state of flux between view
positions. This poses a significant hurdle to surmount for
current triangle strip generation techniques for two core rea-
sons. First, triangle strip generation techniques tend to re-
quire too much CPU time and memory space to be practical
for interactive view-dependent triangle mesh visualization.
Secondly, most triangle strip generation techniques focus on

Figure 1: Example of dynamically generated triangle strips
of a view-dependently simplified LOD-mesh. Individual tri-
angle strips are pseudo-colored for better distinction (15548
triangles represented by 3432 triangle strips).

producing optimized strips, but not managing the strips in
light of continuous changes to the mesh. That is, for each
new view position a new stripification must be computed.
Our approach, on the other hand, manages triangle strips in
such a way that reconstructing the entire stripification never
has to be done. Instead, it either grows triangle strips, shrinks
triangle strips, or recomputes triangle strips only for small
patches when necessary.

In this short paper and video,DStrips is presented.
DStrips is a simple yet effective triangle strip generation al-
gorithm and data structure for real-time triangle strip genera-
tion, representation, and rendering of LOD-meshes. The im-

c© The Eurographics Association and Blackwell Publishers 2003. Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA
02148, USA.

http://www.eg.org
http://diglib.eg.org


Shafae and Pajarola / DStrips

plementation presented in this paper is built on a LOD-mesh
using progressive edge collapse and vertex split operations9

based on a half-edge representation of the triangle mesh con-
nectivity 13. However, DStrips is not tightly coupled to any
one particular LOD-mesh. DStrips is easily adapted to any
LOD-mesh so long as the mesh provides a mapping from an
edge to its associated faces and vice-versa. Also, the edges
of a face must maintain a consistent ordering and orientation
in the LOD-mesh. Figure 1 presents an example screenshot
of pseudo-colored triangle strips of a view-dependently sim-
plified LOD-mesh that were generated by DStrips.

2. Production Process

The video was produced by capturing the running sample
implementation of DStrips on an Microsoft Windows PC.
The PC was configured with a Pentium 4 2.8 GHz processor,
512 MB of main memory and an ATI Radeon 9700 graph-
ics board. While the application was running on the PC, the
video output was redirected to video capture hardware on an
Apple Macintosh. The DStrips application was scripted and
a series of short video captures were collected.

3. Innovative Aspects

The main contributions of our approach are:

• A simple triangle strip data structure based on maintaining
the orientation of a face in relationship to the previous face
in the strip.
• Augmenting the underlying LOD-mesh with triangle strip

savvy edge collapse and vertex split operations.
• An efficient partial triangle strip destruction and re-

stripping algorithm.

Unlike other LOD-mesh with some sort of triangle strip-
ping support, DStrips does not merely shorten the ini-
tially computed triangle strips. Rather, DStrips dynamically
shrinks, grows, merges and partially recomputes strips. Ta-
ble 1 briefly compares other approaches which couple trian-
gle strips with an LOD-mesh.

Name Algorithm Stripification Strip Management
Dstrips Online Dynamic Shorten, Grow,

Merge, Partial Re-Strip
Tunneling Online Dynamic Repair & Merge

(Tunneling Operation)
Stripe Offline Static Not Applicable

Skip Strips Pre-Process Static Resize
(Stripe) Pre-Computed Strips

Mulltiresolution Pre-Process Static Resize
4 Strips Pre-Computed Strips

Table 1: A comparison of triangle stripification techniques. Note
that a clear distinction can be drawn between the techniques which
dynamically manage the triangle strips and those which shorten pre-
computed triangle strips.

To illustrate the novelty of our approach, experiments
were performed on a Sun Microsystems Ultra 60 worksta-
tion with dual 450MHz UltraSparc II CPUs and an Expert3D

graphics card. Table 2 shows the sizes of the different mod-
els we used for testing DStrips.

Model Faces Vertices
happy 100,000 49,794
horse 96,966 48,485
phone 165,963 83044

Table 2: Size of the models used in the experiment.

Table 3 shows the average number of faces, LOD-updates
and triangle strips encountered each frame. The time to per-
form the edge collapse and vertex split updates each frame
is also recorded here since it is independent of the render-
ing mode. The average number of triangle strips per frame is
given for the three stripping configurations: adjacency strip-
ping, greedy stripping allowing swap operations and greedy
stripping without swap operations (strictly left-right). One
can see from Table 3 that adjacency stripping generates
fewer strips than greedy stripping, in particular if strict left-
right alternation is enforced.

Model #4 # Updates Upd. Time # Strips
ADJ GS GNS

happy 54784 358 3ms 7006 8127 12143
horse 39584 519 4ms 5008 5428 7808
phone 60291 498 5ms 7272 7904 11382

Table 3: Per frame average numbers of rendered triangles, LOD-
mesh updates, and time to perform mesh updates. The average num-
ber of triangle strips is divided into adjacency stripping (ADJ) as
well as greedy stripping with swap (GS) and without swap opera-
tions (GNS).

Table 4 presents rendering performance tests of DStrips.
Note that DStrip’s overall display time is the sum of strip-
ping and rendering (immediate or vertex array mode). It is
clear from Table 4 that DStrips can maintain a good stripi-
fication without any overhead introduced compared to stan-
dard rendering. In fact, in the basic immediate mode render-
ing DStrips is able to dynamically maintain triangle strips
and render them in less time than a standard indexed triangle
mesh rendering requires for the same LOD-mesh. The im-
provements are in the range of 5% to 20%. If vertex arrays
are used to represent the triangle strips, further significant
rendering improvements can be seen. Note that DStrips ef-
ficiently allows bookkeeping of vertex arrays which cannot
easily be done in a standard LOD-mesh framework.

Model Indexed Stripping Immediate Vertex Arrays
ADJ GS GNS ADJ GS GNS ADJ GS GNS

happy 97 11 10 9 68 68 77 41 41 48
horse 64 13 12 12 44 45 50 29 28 34
phone 104 21 20 19 79 77 83 44 45 54

Table 4: Rendering and stripping times given in milliseconds and
averaged per frame, with and without DStrips. Compared to stan-
dard rendering (Indexed), DStrips overall display time is the sum of
stripping and rendering. For DStrips, plain immediate mode render-
ing time is reported as well as using vertex arrays.

c© The Eurographics Association and Blackwell Publishers 2003.



Shafae and Pajarola / DStrips

Figure 2: Phone model simplified for the given view-frustum
(transparent yellow pyramid).

Figure 3: The happy model simplified to 34936 triangles repre-
sented by 6945 triangle strips.

Figures 2 and 3 show some dynamic triangle stripping ex-
amples as achieved by DStrip. Figure 2 shows a given view-
frustum as transparent yellow pyramid and the phone model
view-dependently simplified according to that view-frustum.
Figure 3 shows the same view of the happy model once with
pseudo colored triangle strips and once using smooth shad-
ing.

4. End User Applications

DStrips, a simple and efficient method to dynamically gener-
ate triangle strips for real-time level-of-detail (LOD) mesh-
ing and rendering. Built on top of a widely used LOD-
mesh framework using a half-edge data structure based hi-

erarchical multiresolution triangulation framework, DStrips
has shown efficient data structures and algorithms to com-
pute a mesh stripification and to manage it dynamically
through strip grow and shrink operations, strip savvy mesh
updates, and partial re-stripping of the LOD-mesh. The ap-
proach taken in DStrips can be readily adapted for use with
computer graphics applications that deal with large poly-
gon models that need to be visualized in real-time. DStrips
provides a way to trade some memory space for organizing
what often is left as a soup of triangles into orderly trian-
gle strips. Example applications where DStrips’ techniques
can be aplied are GIS applications and CAD/CAM applica-
tions. Compared to other methods, DStrips uses a simpler
and more compact data structure, is easily extended to in-
corporate application specific details, and can be adapted to
other LOD-mesh frameworks.

References

1. K. Akeley, P. Haeberli, and D. Burns. The tomesh.c pro-
gram. Technical Report SGI Developer’s Toolbox CD, Silicon
Graphics, 1990.

2. Curtis Beeson and Joe Demer. Nvtristrip v1.1. Soft-
ware available via Internet web site., November 2000.
<http://developer.nvidia.com/view.asp?IO=nvtristrip_v1_1>.

3. Curtis Beeson and Joe Demer. Nvtristrip, library ver-
sion. Software available via Internet web site., January 2002.
<http://developer.nvidia.com/view.asp?IO=nvtristrip_library>.

4. Paolo Cignoni, Claudio Montani, and Roberto Scopigno. A
comparison of mesh simplification algorithms.Computers &
Graphics, 22(1):37–54, 1998.

5. Leila De Floriani and Enrico Puppo. Hierarchical triangulation
for multiresolution surface description.ACM Transactions on
Graphics, 14(4):363–411, 1995.

6. F. Evans, S. Skiena, and A. Varshney. Optimizing triangle
strips for fast rendering. InProceedings IEEE Visualization
96, pages 319–326. Computer Society Press, 1996.

7. T. Funkhouser and C. Sequin. Adaptive display algorithm for
interactive frame rates during visualization of complex virtual
environments. InProceedings SIGGRAPH 93, pages 247–254.
ACM SIGGRAPH, 1993.

8. Paul S. Heckbert and Michael Garland. Survey of polygo-
nal surface simplification algorithms. SIGGRAPH 97 Course
Notes 25, 1997.

9. Hugues Hoppe. Progressive meshes. InProceedings SIG-
GRAPH 96, pages 99–108. ACM SIGGRAPH, 1996.

10. Marc Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiewicz,
David Koller, Lucas Pereira, Matt Ginzton, Sean Anderson,
James Davis, Jeremy Ginsberg, Jonathan Shade, and Duane
Fulk. The digital michelangelo project: 3d scanning of large
statues. InProceedings SIGGRAPH 2000, pages 131–144.
ACM SIGGRAPH, 2000.

11. Peter Lindstrom and Greg Turk. Evaluation of memoryless
simplification. IEEE Transactions on Visualization and Com-
puter Graphics, 5(2):98–115, April-June 1999.

c© The Eurographics Association and Blackwell Publishers 2003.



Shafae and Pajarola / DStrips

12. David P. Luebke. A developer’s survey of polygonal simplifi-
cation algorithms.IEEE Computer Graphics & Applications,
21(3):24–35, May/June 2001.

13. Kevin Weiler. Edge-based data structures for solid modeling
in curved-surface environments.IEEE Computer Graphics &
Applications, 5(1):21–40, January 1985.

c© The Eurographics Association and Blackwell Publishers 2003.


	Motivation
	Production Process
	Innovative Aspects
	End User Applications

