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Figure 1: Transition between the Chameleon and the Eurographics Logo (skin→ E, bones→ G). Our algorithm redesign substantially
improves the performance over the original approach [FE17] on the CPU (17×,36×), with even larger speedups on the GPU (316×,511×).

Abstract

We present a GPU-targeted algorithm for the efficient direct computation of distances and interpolates between high-resolution
density distributions without requiring any kind of intermediate representation like features. It is based on a previously published
multi-core approach, and substantially improves its performance already on the same CPU hardware due to algorithmic
improvements. As we explicitly target a manycore-friendly algorithm design, we further achieve significant speedups by running
on a GPU. This paper quickly reviews the previous approach, and explicitly discusses the analysis of algorithmic characteristics
as well as hardware architectural considerations on which our redesign was based. We demonstrate the performance and results
of our technique by means of several transitions between volume data sets.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Line and
curve generation

1. Introduction and Motivation

Creating transitions between volumes has a long history in visu-
alization and computer graphics [GDCV98]. Most morphing or
warping approaches beyond cross-dissolving are feature-based, i.e.,
they require the manual or (semi-)automatic detection of control
points, skeletons [LGL95], landmarks [FSRR00], or template vol-
umes [RLNN11]. In scientific visualization, transformations of volu-
metric objects have been used to generate illustrative visualizations,
adhering to physically inspired constraints [CSC10]. However, in
this work, we focus on generating expressive distances and interpo-
lates between pairs of volumes (i.e., high-resolution density distribu-
tions), which is a crucial building block for numerous applications
in computer vision, computer graphics, and visualization.

In this paper, we discuss our GPU-targeted algorithm design for
the efficient direct computation of distances and interpolates be-
tween high-resolution density distributions without requiring any
kind of intermediate representation like features. We particularly
focus on our changes – and their rationale – to improve the multicore
approach by Frey and Ertl [FE17] to a manycore design that yields a
massive improvement in refinement performance (cf. Fig. 1 (right)).

Conceptually, the approach is based on the earth mover’s distance
(EMD, also known as the Wasserstein metric), and determines the
minimum cost of turning one distribution into the other. The EMD is
popular in computer vision to quantify distances between color his-
tograms, e.g., for image retrieval [RTG00]. For rendering, Bonneel
et al. [BvdPPH11] decompose distributions (like BRDFs, environ-
ment maps, stipple patterns, etc.) into radial basis functions, and
then apply partial transport that independently considers different
frequency bands. For scientific visualization, Tong et al. [TLS12]
compute the distance between data sets via different metrics for the
temporal reduction of volume data sets (cf. [FE17] for a detailed
overview). These applications only consider distributions consisting
of a comparably small number of elements due to the high cost
involved. The EMD basically involves a transportation problem that
is typically solved via linear programming (e.g., via the the cost-
scaling push-relabel algorithm [GT86, Goo15]). These approaches
cannot deal with high-resolution volumes due to their high (cubic)
complexity, and approximations only yield unsatisfactory results for
many visualization and graphics applications (e.g., due to unfitting
heuristics [RV58] or required regularization [SdGP∗15]). Frey and
Ertl [FE17] recently presented an approach addressing this issue.
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Algorithm 1 Overview on the volume transformation approach.

1: procedure VOLTRANS . (Sec. 2)
2: create initial assignment . directly from [FE17]
3: while termination criterion not met do . directly from [FE17]
4: generate exchange plan . (Sec. 2c [FE17], Sec. 3b [new])
5: execute exchange plan . (Sec. 2c [FE17], Sec. 3c [new])

6: create intermediate volumes, if required . directly from [FE17]

This paper identifies potentials for improvement in the original
approach, and accounts for them via a redesign for more efficiency
as well as the additional support of manycore devices. First, we
motivate the problem and review the general concept behind the
progressive approach by Frey and Ertl [FE17] (Sec. 2). We then
discuss our changes (and their rationale) to improve its performance
and device portability (Sec. 3). Finally, we compare our improved
version to the original approach at the example of different data sets
(Sec. 4), and conclude our work in Sec. 5.

2. Parallel Volume-to-Volume Transformation

We now describe the underlying problem (a), and outline the basic
approach to solve it (b). We then discuss the original implementation
of performance-critical steps by Frey and Ertl [FE17] (c).

(a) Problem Description. The transformation between two vol-
umes is directly computed on the basis of their (3D) density distribu-
tions. These distributions can either be taken directly via their (den-
sity) values, or may undergo a transfer function mapping (R→ R)
first. In the following, we assume that they are represented by sets
of discrete (sample) points A and Ω (i.e., as they typically stem from
CT scans, simulations, etc.). Arbitrary (continuous) data could be
used via resampling. We denote samples α ∈ A as source samples,
and samples ω ∈Ω as target samples. Each sample has an attached
position p(·) and positive mass m(·). For now, we assume a bal-
anced problem (∑α∈A m(α) = ∑ω∈Ω m(ω)). We then determine a
weighted mapping F : A→M Ω from A to Ω. The associated cost of
such an assignment F is determined based on the Euclidean distance
d(α,ω) = |p(α)− p(ω)| between samples:

γ(F) = ∑
α∈A

∑
ω∈F(α)

mα→ω ·d(α,ω)2, (1)

with mα→ω denoting the respective weight (or mass) associated with
an individual assignment. The goal is to determine a mapping F that
yields the minimum for γ(·).While F is used to generate transitions
between volumes, γ(F) quantifies the distance between them.

(b) Approach Outline. We now outline the basic structure of the
approach by Frey and Ertl [FE17] – which we also use in our refined
technique — in Alg. 1. First, an initial assignment F is computed
(Line 2, this includes balancing the problem, cf. [FE17] for details).
The algorithm then iteratively refines the assignment F of source
samples α to target samples ω in two phases (Lines 3–5). First,
an exchange plan is generated that consists of mutually exclusive
subsets of A (Line 4). Then this plan is executed, determining if and
which target nodes to actually exchange, and eventually carrying out
the transfer (Line 5). Creating non-overlapping lists of α ∈ A during
planning is beneficial for the parallelization of the exchange part, as
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Figure 2: (a) Considering random pairs as exchange sequences,
and plotting all of them as well as only the successful ones (i.e.,
resulting in an exchange) w.r.t. mutual distances. (b) The distribution
of successful sequences shifts during the course of refinement.

no two source elements α0,α1 ∈ A are considered more than once
at the same time. Multiple refinement iterations of planning and
exchange are carried out, until some kind of termination criterion is
reached (like a time or γ limit, Line 3). Finally, intermediate volumes
are generated from assignment F (Line 6).

(c) Original Planning & Exchange [FE17]. The performance-
critical parts of the approach are (1) to identify promising exchange
sequences, and (2) to evaluate and carry out respective exchanges
if they are beneficial. Exchange sequences consist of a cyclic list
of source elements α in which each αi passes one assigned target
element ω to its successor αi+1 and for this receives one target
element from its predecessor αi−1. These exchanges are only carried
out if they decrease γ(F). To identify such sequences, Frey and
Ertl [FE17] iterate over a shuffled list of all source elements A and
attempt to find promising sequences in a greedy fashion. In the
process, they maintain an open sequence C, and for each currently
considered α ∈ A they distinguish between three cases: (1) close
C with α to become a new exchange sequence (if an exchange
potentially improves γ for S = {Ci, . . . ,C|C|−1,α}), (2) extend C
with α (if an exchange is beneficial when neglecting the cyclic wrap-
around, i.e, αn−1→α0), or (3) discard α (else). To approximate this
efficiently, bounding boxes are used that contain all target elements
ω assigned to a source element α. With this, the difference of the
maximally possible distance of source element α0 to its own box
bbox(α0) and the minimally possible distance of α1 to bbox(α0)
gives an upper bound for improvement ∆γ when transferring a mass
element m(ω) from α0 to α1. Eventually, a random value is used
between the minimally and maximally possible distance to avoid
always stopping early for eventually unsuccessful short sequences
of length l = n when longer ones l > n are actually needed.

A closer investigation shows that, despite the significant effort
invested into planning, only few sequences actually lead to an ex-
change. Additionally, while the exchange procedure exhibits a high
degree of parallelism by design, planning is inherently sequential.
While Frey and Ertl [FE17] work around this issue by creating
multiple plans in parallel, this is only feasible for low degrees of
parallelism (i.e., a couple of threads), and there is still the downside
of plans degrading in utility if other plans were processed in the
meantime. Below, we aim to address these issues by improving the
efficiency in general, with a particular focus on many-core devices.
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Algorithm 2 Our new planning approach (Alg. 1, Line 4).

1: . alternately use mα and mω, log of previous computations l
2: procedure GENERATEEXCHANGEPLAN(m, l) . m ∈ {mα,mω}
3: c← adaptive_distributionR(lm) . randomly choose cell size
4: for all α ∈ A do
5: if m = mα then . use position of source
6: p← P(α)
7: else . (m = mω) use position of target
8: p← P(random_selection(F(α)))

9: K(α)← hilbert(p/c)+uniform_distribution(0,1)
10: A← sort(A,K) . using THRUST for CPU, CUB for GPU
11: P← segment(A,n) . partition A into sequences of size n

3. Improved Refinement: Planning & Exchange

The planning step is both the most costly as well as the most critical
part for the refinement rate of the progressive volume transformation
approach. In this section, we first analyze the original planning
approach to identify potentials for improvement (a). On this basis,
we then discuss our new approach, that both improves the generated
exchange sequences and runs efficiently on manycore devices (b).
While we focus on these adjustments in the planning step, they also
induce changes to the exchange part of the approach (c).

(a) Exchange Analysis. A crucial part of the approach is the
identification of source elements that form a promising sequence for
a potential exchange. As a basis for our redesign, we conducted an
analysis to see which groups of source elements actually exchange
target elements (Fig. 2a). For this, we randomly select source ele-
ments for an exchange (in the discussion in the following, we limit
ourselves to pairs, but the same applies to larger group sizes as well
according to our analysis). We then consider the distances d(α0,α1)
between source elements α0 and α1 and distances d(ω0,ω1) be-
tween the respective target elements ω0 ∈ F(α0) and ω1 ∈ F(α1).
It can be seen that, over a whole refinement run, mutual distance ap-
pears to be a good indicator of whether a group actually exchanges
elements, and we explicitly consider the following two cases in our
algorithm redesign: (1) the position of the two sources P(α0) and
P(α1) is close, or (2) the position of the two targets P(ω0 ∈ F(α0))
and P(ω1 ∈ F(α1)) is close. We can also see that the range of ben-
eficial exchange sequences shifts during the course of refinement
(Fig. 2b), and we explicitly account for that as well.

(b) Planning: Distance-Based Partitioning. In contrast to the
original approach that explicitly creates exchange sequences, our re-
fined techniques only creates partitions of A during planning and lets
improving exchanges be determined in the exchange phase (Alg. 2).
The partitioning is based on (1) the observation that exchanges typ-
ically happen when sources and/or targets are close, and (2) the
premise that only operations should be used that efficiently support
massive, shared memory parallelism. In each refinement iteration,
we alternately consider the distance between sources (mode mα) or
the distance between targets (mode mω). We also consider a log of
previous exchanges lm (for each mode m) to determine the size of
the cells c of a uniform grid in which we group source elements
to account for shifting exchange characteristics. For this, we ran-
domly sample the distribution of previous exchanges given by lm

Algorithm 3 Our new exchange approach (Alg. 1, Line 5).

1: procedure EXECUTEEXCHANGEPLAN(p ∈ P) . Fig. 3
2: i← 0, j← 1 . index initialization
3: while i+1 < |p| do . identify exchange sequences p[i . . . j]
4: if ∆γ(p[i . . . j])< 0 then . exchange improves γ(·) (Eq. 1)?
5: cyclicSwap(p[i . . . j]) . execute swap (Fig. 3, red)
6: else if ∆→γ(p[i . . . j])< 0 then . exchange wo/ wraparound?
7: j← j+1 . extend sequence
8: if j = |p| then . end of partition reached by end index j
9: i← i+1, j← i+1 . increment start index i

10: else
11: i← i+1, j← i+1 . increment start index i

αi αi+1 …ωi →i+1 αjωi+1→i+2α α… … ……

(1) partition source elements
(2) in each partition: determine exchange sequences (source elements swap target elements)

ωj-1→j
ωj→0

Figure 3: Partitioning of source elements α into sequences, and
then processing them (in parallel) during the exchange procedure.

such that we are more likely to use a cell size that has lead to a high
number of executed exchanges in previous iterations. Typically, this
distribution is rather broad in early iterations (Fig. 2b (top)), and
is increasingly skewed toward smaller cell sizes later on (Fig. 2b
(bottom)). For mode mα, the considered position p is directly ob-
tained via a lookup P(α) (Line 6), while for mω there are numerous
options if multiple ω are assigned to one α. In the latter case, we
just randomly pick an assigned ω ∈ F(α) and use its position P(ω)
(Line 8). We then assign a scalar value K(α) to each α based on
the determined position p (Line 9). We do this by determining a
(three-dimensional) cell index via p/c, and mapping this to a (one-
dimensional) index by using a a pre-computed 3D Hilbert curve
(with a resolution of 5123) to preserve locality between cells. We
also randomly offset the αs within one cell. we then simply sort A
using the keys K (Line 10), and then segment it into partitions of
size n (Line 11). These partitions are then used to create exchange
sequences in the subsequent step.

(c) Exchange: Sequences from Partition. The original ap-
proach directly identifies potential exchange sequences in the plan-
ning process. In contrast, our revised version just identifies a par-
tition during planning, and then in the exchange step flexibly de-
termines exchange sequences p[i . . . j] as subsequences of each par-
tition p ∈ P (Alg. 3, Fig. 3). Also, multiple exchange sequences
may be processed for each partition. Our exchange procedure loops
over different start indices i (Line 3) and end indices j ( j ≥ i+1)
and distinguishes between three different cases. First, if a certain
subsequence p[i . . . j] decreases the evaluation value γ (Line 4), the
respective cyclic transfer of target elements ω is carried out like in
the original approach of Frey and Ertl [FE17] (Fig. 3). If, however,
the subsequence p[i . . . j] would only be beneficial without the pass-
ing of a target element from p[ j] to p[i] (i.e., the wraparound, w j→i
in Fig. 3, Line 6), we attempt to make it beneficial by extending it to
a longer sequence (Line 7). If none of the above applies (Line 10),
or if we reach the end of the partition (Line 8), we start over with an
incremented starting index i (Line 9 or 11).
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Figure 4: Refinement (i.e., decreasing γ) for different transitions (a,
b) and variants w.r.t. time (solid line) and iteration count (dashed).

4. Results

For the evaluation, we use a machine equipped with an Intel
Core i7-4770 CPU, an NVIDIA GeForce GTX TITAN X, and
32 GB of RAM. In our CPU and GPU implementation, we used
OpenMP (Thrust for sorting) and CUDA (CUB for sorting), re-
spectively. We evaluate the refinement behavior using the fol-
lowing volumes: Chameleon (Figs. 1 & 4a, 512× 1024× 1080),
Zeiss (Figs. 4a & b, 6803), Bunny (Fig. 4b, 5122 × 361), and
EG (Fig. 1, 256× 750× 1200) with different transfer functions
(cf. renderings). We compare three variants: (1) the original ap-
proach by Frey and Ertl [FE17] using OpenMP (CPU), as well
as our improved approach implemented via (2) OpenMP (CPU)
and (3) CUDA (GPU). In our evaluation, we let each program
refine a transition for 50000 s, and depict refinement in terms of
decreasing evaluation values γ with respect to the time spent (de-
picted in Figs. 1 and 4 for the initial 5000 s). In each case, we
can see that the refinement with our improved approach on the
CPU is much faster in comparison to the original approach. Our
GPU version further significantly outperforms our CPU imple-
mentation. We quantify the differences in performance via a scal-
ing factor. It is computed by taking the final value of the refine-
ment with the original approach γ

′, and then determining when
this γ

′ was first surpassed in the refinement with our improved ap-
proaches (t [FE17](γ

′) = 50000 s, tOpenMP(γ
′), tCUDA(γ

′)). We then
compute the scaling factor via t [FE17](γ

′)/tOpenMP(γ
′) and t [FE17](γ

′)/tCUDA(γ
′),

respectively. This yields the following results: Chameleon→EG
(gray, OpenMP: 35.8×, CUDA: 511.1×), Chameleon→EG (green,
OpenMP: 17.2×, CUDA: 315.0×), Chameleon→Zeiss (OpenMP:
7.28×, CUDA: 152.9×), and Zeiss→Bunny (OpenMP: 8.04×,
CUDA: 177.26×). Fig. 4 additionally shows the refinement not
only with respect to passed time but also in terms of itera-
tion counts. Naturally, the curves for both implementations of
our improved approach are congruent, as they only differ in
the time required for an iteration. In comparison to the origi-
nal approach, our new refinement iterations are much more ef-
ficient, leading to larger improvements in γ even when neglect-
ing the computation time. On average, an iteration with the
original takes 4.71 s [FE17] / 3.03 s (OpenMP) / 0.10 s (CUDA)
for Chameleon→EG (gray), 10.99 s [FE17] / 11.26 s (OpenMP)
/ 0.45 s (CUDA) for Chameleon→EG (green), 7.30 s [FE17] /
12.88 s (OpenMP) / 0.38 s (CUDA) for Chameleon→Zeiss, and
5.38 s [FE17] / 8.27 s (OpenMP) / 0.37 s (CUDA) for Zeiss→Bunny.
These variations in planning timings give an indication on the varia-

tions in speedups observed above, but, while our preliminary results
look very promising, a closer investigation of performance charac-
teristics remains for future work.

5. Conclusions

We presented a GPU-targeted algorithm for the efficient direct com-
putation of distances and interpolates. It significantly improves the
performance of the multi-core approach by Frey and Ertl [FE17].
Performance is substantially increased already on CPUs due to al-
gorithmic improvements (our evaluation demonstrates speedups
between 7× and 35×). Via a CUDA-based GPU implementation,
we even achieve speedups between 153 and 511×. Our redesign
was based on the analysis of algorithmic characteristics and the
usage of manycore-friendly algorithms. For future work, we aim
to further improve the planning efficiency, consider distributed and
hybrid setups, and apply our approach to different applications in
visualization and computer graphics.
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