
EUROGRAPHICS 2017/ A. Peytavie and C. Bosch Short Paper

Ambient Occlusion Baking via a Feed-Forward Neural Network

Ugo Erra, Nicola Capece, and Roberto Agatiello

Università della Basilicata, Dipartimento di Matematica, Informatica ed Economia, Italy

Abstract
We present a feed-forward neural network approach for ambient occlusion baking in real-time rendering. The idea is based
on implementing a multi-layer perceptron that allows a general encoding via regression and an efficient decoding via a simple
GPU fragment shader. The non-linear nature of multi-layer perceptrons makes them suitable and effective for capturing non-
linearities described by ambient occlusion values. A multi-layer perceptron is also random-accessible, has a compact size, and
can be evaluated efficiently on the GPU. We illustrate our approach of screen-space ambient occlusion based on neural network
including its quality, size, and run-time speed.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Picture/Image Generation]: Display Algorithms—I.3.7
[Three-Dimensional Graphics and Realism]: Color, shading, shadowing, and texture—

1. Introduction

Shadowing of ambient light is called ambient occlusion. It has been
shown in [LB00] that ambient occlusion offers a better perception
of the 3D shape of displayed objects, and its effectiveness is evident
in its popularity in videogame engines [Mit07]. The mathematical
definition of ambient occlusion is related to the concept of the solid
angle. In fact, the occlusion Ap at a point p on a surface with normal
n can be computed by integrating the visibility function over the
hemisphere Ω with respect to the projected solid angle:

Ap =
1
π

∫
Ω

Vp,ω(n ·ω)dω (1)

where Vp,ω is the visibility function at p along a direction ω. A
simple method to approximate this integral in practice, in off-line
rendering, is based on ray-tracing. Rays are shot in a uniform pat-
tern across the hemisphere over point p, and an occlusion value
can be calculated as the number of rays that hit the geometry di-
vided by the total number of rays shot. Rays can be restricted to
a certain length, avoiding the need to take into account distant ge-
ometry while calculating the occlusion value. This is fundamental
in closed environments, which would otherwise result in total oc-
clusion at every point and subsequently the complete removal of
ambient light.

Videogames often precompute ambient occlusion and bake out
the results into vertex or texture data, which is later loaded into
OpenGL or DirectX shaders. To implement such a baking pipeline,
an implementation of ray-tracing is used as off-line rendering.
When the ambient occlusion values have been computed for a 3D
shape, they must be written in a format that can be easily consumed
during the rendering. The methods used in film and game rendering
are point clouds, 2D textures, and vertex attributes. Point clouds are

not efficient to access in hardware for real-time rendering. 2D tex-
tures retain the detail from the original ambient occlusion values,
but require too many memory resources. Vertex attributes require
occlusion values from the 3D surface shape to be mapped onto the
vertices. The last solution yields significantly lower memory over-
head and less expensive run-time reconstruction for real-time ap-
plications such as videogames [KBS11].

Our key idea is to represent ambient occlusion by using a multi-
layer perceptron, allowing general encoding via regression and ef-
ficient decoding via a simple GPU fragment shader in real-time.
Because of the non-linear nature of multi-layer perceptrons, they
are suitable and effective for capturing non-linearities described by
ambient occlusion values. In addition, multi-layer perceptrons are
random-accessible, have a compact size, and can be evaluated effi-
ciently on the GPU. Our approach offers benefits in terms of qual-
ity, size, and run-time speed particularly for low-poly models used
in real-time application. To evaluate the quality of results, we com-
pare screenshots from our implementation with images rendered
off-line in the ray-tracing engine NVIDIA OptiX [PBD∗10], which
is also used to train our neural network. For comparison, we use the
structural similarity (SSIM) index, which is a metric that measures
similarity between images in a way that is consistent with human
eye perception.

2. Related Works

Real-time global illumination is a hot topic in computer graphics
research, and an impressive number of related works have been
published. Here, we restrict the scope to techniques most closely
related to our own: ambient occlusion suitable to real-time render-
ing that operates in image space (also called screen-space ambient

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

DOI: 10.2312/egsh.20171003

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/egsh.20171003


U. Erra & N. Capace & R. Agatiello / Ambient Occlusion Baking via a Feed-Forward Neural Network

�𝒏𝒏𝟏𝟏

�𝒏𝒏𝟐𝟐

�𝒏𝒏𝟑𝟑

�𝒏𝒏𝟏𝟏𝟔𝟔

Ap

input layer 1° hidden layer 2° hidden layer output layer

Figure 1: The acyclic feed-forward neural network, which defines
a mapping from 16 sample normals in object space to the output
ambient occlusion. We evaluated three neural network with differ-
ent hidden layers: NN-16×8, NN-32×16, and NN-64×32.

occlusion). The technique called “screen-space ambient occlusion”
appears for the first time in [Mit07]. In its CryEngine, CryTek im-
plements this technique, which works by sampling the surround-
ings of a pixel and, on the basis of the z-buffer, performs depth
comparisons. Sample positions are distributed in a sphere around
the pixel, and some randomness is introduced by reflecting posi-
tion vectors on a random plane passing through the sphere origin.
The occlusion factor depends only on the depth difference between
sampled points and the current point. This, combined with the sim-
ple distribution of samples (around a sphere and not a hemisphere)
causes some over-darkening: even flat, non-occluded areas result in
some samples being considered as occluders. Even in only this cat-
egory of algorithms, a variety of approaches exist. Some sources
attempt to correlate, compare, and evaluate such techniques, and
the interested reader may like to consult [AB13] and [Gra13],
which are two recent theses that agree that the Alchemy algo-
rithm [MOBH11] was state of the art at that time. More recently,
the state of the art in research is Mara et al. [MMNL16], which
has been demonstrated to be an order of magnitude faster and more
correct.

Neural networks have been used in real-time global illumination
in [RWG∗13]. In that work, the authors model a radiance regression
function for fast rendering of global illumination in scenes with dy-
namic local light sources. The regression function is implemented
by using a multi-layer acyclic feed-forward neural network, which
provides a close functional approximation of the indirect illumina-
tion and can be efficiently evaluated at run time. A similar work
based on a feed-forward neural network is [HSK16]. In this work,
the authors train a neural network to learn a mapping from the depth
and normals surrounding the pixel to the ambient occlusion. In the
present work, we use only normals surrounding the pixel as the in-
put of the neural network. The idea is to train the neural network
to learn the shape of the surface to guess the occlusion value for a
given surface point.

3. Our Approach

Here we present details of our feed-forward neural network, includ-
ing representation, training/encoding, and rendering/decoding.

Representation. A neural network is a weighted and directed
graph whose nodes are organized into layers. The weights of the
edges constitute the components of the weight vector w. The net-
work we use is an acyclic feed-forward network with two hidden
layers, as shown in Figure 1. Each node is connected to all nodes
of the preceding layer by directed edges, such that a node in the
ith layer receives inputs from all nodes in the (i− 1)th layer. The
graph takes inputs through the nodes in the first layer, called the in-
put layer, and produces outputs through the nodes in the final layer,
called the output layer. The nodes in the input layer correspond to
16 normals in object space. The output layer consists of one node
that is the value of the ambient occlusion. The layers between the
input and output layers are called the hidden layers. In our work, we
use a 16×X ×Y ×1 neural network, where X ×Y are the two hid-
den layers. In particular, we evaluated three hidden layers: 16× 8,
32×16, and 64×32.

Each neuron in a particular layer is connected with all neurons
of the previous layer. The connection between a neuron k in the
(i−1)th layer and a neuron j in the ith layer is characterized by the
weight coefficients wi−1

k j . Let ni
j be the output of the node j in the

ith layer and wi
j0 be its bias weight. Each node output of an hidden

layer i is calculated from the outputs of all nodes in the (i− 1)th
layer as follows:

ni
j = σ(zi

j), zi
j = wi

j0 + ∑
k>0

wi−1
k j ni−1

k

The summation is carried out over all neurons k transferring the
signal to the ith layer. The function σ(zi

j) is the so-called transfer
function and for all hidden layers is the hyperbolic tangent function
σ(z) = tanh(z) = 2/(1+e−2z)−1, while for the node in the output
layer it is a linear function. The training process varies the bias
weight wi

j0 and weight coefficients wi−1
k j to minimize the sum of

the squared differences between the computed and required output
values.

Training. We use four models and select 128 points of views by
using a rotating camera around the bounding sphere containing the
model. From each point of view, we use OptiX [PBD∗10] to render
the global ambient occlusion at a resolution of 1920×1080. From
each image, we randomly pick 512 pixels from which we obtain the
ambient occlusion values. We then take 16 normal samples in the
object space located around the ambient occlusion value, in a circle
of radius 10. These values represent the input data for our neural
network, while the ambient occlusion value of the central pixel is
the corresponding output data. When completed, the final dataset
has 65,536 data points. The dataset extracted with this approach
produces the best results experimentally.

For the training, the dataset was split into three subsets: 50%
as training set, 25% as validation set, and 25% as test set. Dataset
splitting was done in a random way. The training was performed
by using the scaled conjugate gradient back-propagation method
[Møl93], and performance was evaluated by using the mean
squared normalized error performance function. The number of
epochs and max fail were set to 20,000, while the other parame-
ters were set to default. The neural network was trained by using a
NVIDIA Tesla K40c installed on a machine equipped with an Intel
Core i7-3820 and 16 GB RAM. The average training time for the

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

14



U. Erra & N. Capace & R. Agatiello / Ambient Occlusion Baking via a Feed-Forward Neural Network

neural network of 16× 8 hidden layers is about 4.50 minutes, for
the network of 32× 16 about 5.55 minutes, and for 64× 32 about
7.53 minutes. Training was performed by using MATLAB’s Neural
Network Toolbox.

Rendering. After training the feed-forward neural network, the
ambient occlusion of each point of the 3D mesh can be rendered
in real-time by using the trained model in a fragment shader. We
developed a shader by using OpenGL Shading Language, which
is a straightforward translation of the neural network. Weights and
biases are provided to the fragment shader by using the uniform
buffer for allocation of GPU memory. In particular, the memory
occupation for NN-16×8, NN-32×16, and NN-64×32 are 3.716
bytes, 8,452 bytes, and 20,996 bytes, respectively.

The sample normals are computed in the object space by using
a G-buffer and then projecting them in the screen space by using a
texture. In more detail, for a given viewpoint we first compute the
visible surface points of each screen pixel. For each pixel, we take
its normal and then assign it as input the same value over all inputs
of the neural network. This way of querying the neural network
model is different in terms of the way we trained it, but the approach
produces excellent ambient occlusion without either noise or blur-
ring artefacts, thus avoiding the cost of a Gaussian blur pass. This
corresponds to taking 16 normal samples located around a pixel in
a circle of radius zero.

4. Experimental Results

We implemented the rendering algorithm on a GPU via OpenGL
API and GLSL shading language. All results and performance mea-
sures shown in this paper were conducted on a PC with 3.50 GHz
i7-5930K CPU, 16GB memory, and NVIDIA GTX 1070 graphics
card.

In Figure 2, we visually compare the results of our approach
to the ground truth images rendered with OptiX, and Mara et al.
(14 samples, 7.4 radius, 1 iteration, and 0.002 bias) [MMNL16].
These images are the final result of the fragment shader without any
Gaussian blur pass. Compared with the ground truth images, where
there are geometric creases and contact shadows between triangle
meshes, our approach can produce a result that is less dark because
of the radius used to sample normals. Our approach produces good
results in general, and visually there are slight differences between
the three neural networks as shown in Figure 4. In addition, be-
cause the training data are based only on the normals of the 3D
model, depth resolution artefacts that occur in screen-space ambi-
ent occlusion techniques are not present regardless of the distance
from the camera of the 3D model. To define the similarity between
two images, we adopted the SSIM index [WBSS04] as a metric to
measure similarity between images in a way that is consistent with
human eye perception. In Table 2, we report the SSIM between im-
ages generated with the three neural networks and those generated
with OptiX.

In Table 1, we show the results of a numerical comparison be-
tween our method and that of Mara et al. All measurements are
taken at 1920× 1080. The NN-16× 8 offers better performances.
For reference only, in the same table we also report the perfor-
mance of rendering the same models by using vertex colours to

store the baked ambient occlusion. We find that the NN-32× 16
requires more computing resources, probably because of the loop
performances, and NN-64× 32 offers essentially the same perfor-
mance. Nevertheless, we are confident that some optimizations can
be implemented to increase performance.

5. Conclusions and Future Works

We present an approach for performing screen-space ambient oc-
clusion using a feed-forward neural network. The training phase
is performed by using only normals of the 3D model in object
space and by using a rendering framework such as OptiX to cre-
ate a high-quality ambient occlusion. We create a fragment shader
that computes the values of the ambient occlusion in real-time ef-
ficiently and with accurate results. The proposed approach offers a
new way to use precomputed ambient occlusion during rendering
for geometry from low- to medium-grained high-frequency struc-
tures. The limit of this approach depends on the type of 3D model.
Models with extreme variability and geometric complexity could
cause network overfitting of the training data and fail to capture
the distribution of the ambient occlusion over the model surface.
Future works will focus on how to design dynamically the neural
network based on geometric complexity. We will also study how to
sample in a more efficient and effective way normals and the ambi-
ent occlusion values to avoid the selection of points of view when
picking the pixels.

Acknowledgements

The authors thank NVIDIA’s Academic Research Team for provid-
ing the Tesla K40c card under the Hardware Donation Program.
References

[AB13] AALUND F. P., BÃĘRENTZEN J. A.: A Comparative Study of
Screen-Space Ambient Occlusion Methods. Bachelor thesis, Technical
University of Denmark, Informatics and Mathematical Modelling, 2013.
2

[Gra13] GRAVÅS L. O.: Image-space Ambient Obscurance in WebGL.
Tech. rep., Institutt for datateknikk og informasjonsvitenskap, 2013. 2

[HSK16] HOLDEN D., SAITO J., KOMURA T.: Neural network ambient
occlusion. In SIGGRAPH ASIA 2016 Technical Briefs (New York, NY,
USA, 2016), SA ’16, ACM, pp. 9:1–9:4. 2

[KBS11] KAVAN L., BARGTEIL A. W., SLOAN P.-P.: Least squares ver-
tex baking. In Proc. of the Twenty-second Eurographics Conference on
Rendering (Aire-la-Ville, Switzerland, 2011), EGSR ’11, Eurographics
Association, pp. 1319–1326. 1

[LB00] LANGER M. S., BÜLTHOFF H. H.: Depth discrimination from
shading under diffuse lighting. Perception 29, 6 (2000), 649–660. 1

[Mit07] MITTRING M.: Finding next gen: Cryengine 2. In ACM SIG-
GRAPH 2007 Courses (New York, NY, USA, 2007), SIGGRAPH ’07,
ACM, pp. 97–121. 1, 2

[MMNL16] MARA M., MCGUIRE M., NOWROUZEZAHRAI D., LUE-
BKE D.: Deep g-buffers for stable global illumination approximation. In
Proc. of High Performance Graphics (Aire-la-Ville, Switzerland, 2016),
HPG ’16, Eurographics Association, pp. 87–98. 2, 3, 4

[MOBH11] MCGUIRE M., OSMAN B., BUKOWSKI M., HENNESSY P.:
The alchemy screen-space ambient obscurance algorithm. In Proc. of
the ACM SIGGRAPH Symposium on High Performance Graphics (New
York, NY, USA, 2011), HPG ’11, ACM, pp. 25–32. 2

[Møl93] MØLLER M. F.: A scaled conjugate gradient algorithm for fast
supervised learning. Neural networks 6, 4 (1993), 525–533. 2

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

15



U. Erra & N. Capace & R. Agatiello / Ambient Occlusion Baking via a Feed-Forward Neural Network

MODEL NN-16×8 NN-32×16 NN-64×32 Mara et al. Vertex colours
Bunny 1.96 ms 21.31 ms 29.29 ms 16.99 ms 0.19 ms
Buddha 2.74 ms 22.18 ms 29.97 ms 17.00 ms 0.67 ms
Dragon 2.17 ms 16.35 ms 22.76 ms 16.99 ms 0.55 ms
Lucy 2.25 ms 21.71 ms 29.54 ms 16.99 ms 0.32 ms

Table 1: Comparison between the three neural networks, Mara et al. [MMNL16], and vertex attributes rendering.

Figure 2: From left to right: NN-16×8, NN-32×16, NN-64×32, ground truth with OptiX, and Mara et al. [MMNL16].

MODEL NN-16×8 NN-32×16 NN-64×32
Buddha 0.9646 0.9642 0.9655
Bunny 0.9814 0.9819 0.9793
Dragon 0.9495 0.9504 0.9489
Lucy 0.9743 0.9750 0.9754

Table 2: Structural similarity (SSIM) index between images gener-
ated with the three neural networks and those generated in Figure
2 with OptiX.

[PBD∗10] PARKER S. G., BIGLER J., DIETRICH A., FRIEDRICH H.,
HOBEROCK J., LUEBKE D., MCALLISTER D., MCGUIRE M., MOR-
LEY K., ROBISON A., STICH M.: Optix: A general purpose ray tracing
engine. In ACM SIGGRAPH 2010 Papers (New York, NY, USA, 2010),
SIGGRAPH ’10, ACM, pp. 66:1–66:13. 1, 2

[RWG∗13] REN P., WANG J., GONG M., LIN S., TONG X., GUO B.:
Global illumination with radiance regression functions. ACM Trans.
Graph. 32, 4 (July 2013), 130:1–130:12. 2

Figure 3: Close-up of ambient occlusion results. From left to right:
NN-16×8, NN-32×16, NN-64×32, and ground truth with OptiX.

[WBSS04] WANG Z., BOVIK A. C., SHEIKH H. R., SIMONCELLI E. P.:
Image quality assessment: from error visibility to structural similarity.
IEEE Transactions on Image Processing 13, 4 (April 2004), 600–612. 3

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

16


