EUROGRAPHICS 2016/ T. Bashford-Rogers and L. P. Santos

Short Paper

Texel Shading

K. E. Hillesland and J. C. Yang

Advanced Micro Devices, Inc.

(a) Cabin scene. 2.3x speedup. (b) Porch scene. 3.9x speedup. (c) Harvester. 4.1x speedup.

Figure 1: Speedups for texel shading over fragment shading with 30 shadowed lights using shading rate reductions enabled by our method.
Upper left is standard fragment shading, bottom right is with texel shading.

Abstract

We have developed a texture space shading system built on modern graphics hardware. It begins with a conventional raster-
ization stage, but records texel accesses as shading work rather than running a shade per pixel. Shading is performed by a
separate compute stage, storing the results in a texture. As a baseline, the texels correspond to those required for mipmapped
texturing. A final stage collects data from the texture. Storing results in a texture allows for reuse across frames. We also show
how adapting shade rate to less than once per pixel further increases performance. We vary shading load to show when these
techniques provide a performance win, with up to 4.1x speedup in our experiments at shading times less than 4 ms.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and

Realism —Color, shading, shadowing, and texture

1. Introduction

There has been a recent jump in pixel densities and target frame
rates. Examples include high density mobile and tablet displays,
emerging 4k and higher monitors, as well as head mounted dis-
plays running at 90Hz and above. With the shading largely being
performed at a frequency of at least once per pixel and once per
frame, this has a direct impact on shading cost.

Shading cost can be greatly reduced by decoupling the shading
rate from pixel density, triangle density, and frame rate. Here we
propose a method to accomplish all three on current hardware. In-
stead of shading fragments, we shade texels in a mipmap hierarchy.
Since our shading is texel-centric, but different from previous meth-
ods that rasterize in texture space, we refer to our method as rexel
shading.

This object-space parameterization allows us to reuse shades
from previous frames, while updating visibility at the full frame
rate. We use the mipmap hierarchy to decouple and control shad-

(© 2016 The Author(s)
Eurographics Proceedings (©) 2016 The Eurographics Association.

DOI: 10.2312/egsh.20161018

ing rate relative to pixel rate by being able to select the mipmap
level for shaded texels on a per-fragment basis. Finally, we are able
to eliminate redundant texel shading requests, effectively removing
redundant shades invoked by more than one primitive in a texel.

2. Previous Work

One way to reduce pixel shader load is to relax the assumption that
a shade must be performed for each pixel, and instead shade for
every integer multiple of the base rate. Games do this in software
now [TTV13], although constrained to choose a fixed multiple up
front. There are also hardware solutions that choose more dynami-
cally [HGF14, VST*14], but are constrained within a primitive.

Another approach is to reuse shades from previous
frames [NSL*07]. These methods work in screen space, pre-
senting difficulties with respect to occlusion and resampling.

There are also methods to decouple shading rate from the ge-

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/egsh.20161018

74 K. Hillesland & J. Yang / Texel Shading

ometry [BFM10, CTH* 14], although they are focused on higher-
order surfaces and constrain reuse to within a patch, and they are
interested in hardware solutions that reuse shades that do not span
multiple frames.

There has been quite a lot of interest in decoupled sam-
pling [BFM10,RKLC*11] for the purpose of accelerating stochas-
tic effects, such as depth of field and motion blur. The decoupling is
intended to accelerate renderings of individual frames, not to amor-
tize over multiple frames. However, there are two methods that are
particularly relevant to ours [LD12, AHTAM14] and we discuss the
relationship in further detail in Section 3.

We shade in texture space rather than in screen space. In the
past, this has been done by rasterizing in texture space [CH02, AH-
TAM14], which presents some difficulties with respect to choos-
ing the right resolution, and taking advantage of early depth tests.
Adaptive texture space shading (ATSS) [AHTAM14] alleviates the
resolution issue by making a resolution choice for each primitive.

3. Method

Our system has three stages. Shade Queueing is a geometry pass
that identifies a tile of texels required for shading, consulting a spe-
cialized software cache before adding work to the queue. Shade
Evaluation is a compute shader stage that fetches vertex attributes
and writes shaded results to a Result Texture. Shade Gathering is a
second and final geometry pass that collects the shaded results.

These stages are very similar to those of decoupled deferred
shading [LD12]. Although they mention the possibility of work-
ing in a texture space shading domain, we found that our texture
space approach led to different choices in design of some parts,
particularly the caching system and its use across multiple frames.

One requirement of our method is that each mesh has an associ-
ated object-space parameterization. This parameterization must be
unique such that there is no overlap in texture space. Second, this
parameterization is assumed to be static. This is quite normative,
but we state it explicitly, since this property is important for our
method.

Triangle Index Texture. As a preprocess, we generate a tex-
ture map that stores a triangle index in each texel. This provides
a mapping from a texture coordinate to a triangle, which is used
in the shade evaluation stage (a compute shader stage). The map
must contain an entry for each texel that is touched by a triangle
in the sense of conservative rasterization [AMAOS5]. There is one
complete mipmap chain for each unique texture space.

Shade Queuing. The first stage is a geometry pass to gener-
ate the shading work required to render the current frame, which
may be skipped if we decide we can reuse shading from a previous
frame.

The unit of work is a texel in the appropriate mipmap level. Se-
lecting the appropriate mipmap level keeps the shade rate at ap-
proximately the same shading rate as fragment shading, although
we can choose other rates to reduce shading load. We make this se-
lection on a per-fragment basis, which is novel in the sense that we
are the first to present a method that makes this selection in real-
time on current hardware, whereas previous work has made this

selection on a per-primitive basis [AHTAM14], at best, or through
special hardware in the context of higher-order surface tessella-
tion [CTH* 14].

Once the mipmap level is computed, we generate four pieces of
work, one for each tap of a bilinear filter. In the case of standard
trilinear filtering, it would be eight pieces of work, and more for
anisotropic filtering. However the texels identified will generally
be shared with neighboring fragments. To reduce this redundancy,
we use a caching scheme.

Algorithm 1 Generating shade work in 8x8 tiles.

1: ShadeWork = ()
2: for each texel (i,j) at the chosen miplevel L do
3 tile (i’, j°, L) = (i/8, j/8, L-3)

4 if CacheAge(i’,j’,L’) > threshold then
5: w = NewWorkltem(i’,j’,L’);

6: ShadeWork.Append(w);

7 end if

8: end for

Caching. The caching system tracks when a particular texel was
last shaded. If it was not shaded within the current frame, then it
is added as a work item. We can actually change the shade rate by
changing the threshold, so that if a texel was shaded within the last
two frames, for example, we do not add it to the shade list, and
instead use the older shade value.

The cache is simply a lower resolution mipmap chain, which we
call the cache texture. Each texel in the cache texture corresponds
to an 8x8 tile of texels at the target resolution for shading. Stored
in each texel is a frame number. Before adding a texel of work, we
compute which tile it is in and check to see if the frame number in
the cache texture is recent enough that it does not need to be added
as new work. There is one cache texture for each unique texture
space; and because we need this information across frames, it must
be stored in persistent memory. This differs from pervious work
(Liktor et al [LD12] being the closest) which involved more global
atomic contention, or a tradeoffs associated with tiling and limited
local memory, and did not consider caching across frames.

Shade Evaluation. Shading is performed in a compute shader. A
thread group shades an 8x8 tile of texels, which constitutes a work
item, as well as the granularity at which the cache system operates.

Each thread in an 8x8 thread group shades a texel. Since this is
compute rather than a rasterization pipeline, we need to interpolate
any necessary vertex data in the compute shader itself. The vertices
we need are those of the triangle covering this particular texel in
texture space. The interpolation weights come from the barycentric
value of the texel with respect to those vertices. We can then in-
terpolate the per-vertex values we need, whether it be world space
position, normal, or other.

This is where the triangle index texture comes into play. The
output from that process was a mipmap pyramid storing an assigned
triangle index for each texel. In the compute shader, we can use this
to retrieve the three triangle vertices we need for interpolation.

Once we have the interpolated values from the vertices, the shad-

(© 2016 The Author(s)
Eurographics Proceedings (© 2016 The Eurographics Association.

K. Hillesland & J. Yang / Texel Shading 75

ing progresses in a manner very similar to a conventional fragment
or pixel shader.

Not all shading needs to be performed at this stage. Some op-
erations may be deferred to the next stage as part of a fragment
shader.

Shade Gathering. The last stage occurs during a second geom-
etry pass. Now we retrieve results from the shade evaluation stage
from a texture. As long as we are consistent with the first geometry
pass in our computation of the needed texels, we are guaranteed to
have all the data we need stored in the shading result texture. For
this reason, we compute the mipmap level in an identical way to
the first geometry pass where the necessary texels were identified.
The texels are fetched through bilinear texture filtering, giving us
a filtered result of four shades. Additional shading operations may
also be invoked here as part of the fragment shader.

4. Results

We evaluate our method by comparing against conventional frag-
ment shading in terms of performance and error, first with and with-
out MSAA, and then after reducing the shading load by reusing
shading results from previous frames, and dynamically varying the
spatial shading rate. We do this for the three setups shown in Fig-
ure 1.

For evaluation, we run both fragment shading and texel shading
on a Radeon R9 290x at 1920x1080 resolution with 8x MSAA.
Timing comparisons are for all three stages of texel shading against
the single pass of a fragment shading (forward rendered).

Since D3D11 does not allow scattered writes to different levels
of a mipmapped texture, we lay our mipmap levels out in a single
2D texture (4k x 6k), and use offset and scaling to write to the var-
ious levels as needed. In practice, choosing a 4k x 4k result texture
resolution translates to 4k x 6k result and triangle index texture,
and a (512 x 768) cache texture for each unique parameterization,
in order to enable reuse across frames. The result texture has four
32 bit floating point channels, and the other two have one 32 bit
channel.

For shader load, we scale the number of lights. Our testing was
with all lighting computation in the shade evaluation phase, with
just a final albedo texture modulation in the shade gathering stage.

We measured performance for three scenes, shown in Figure 1,
each with a different camera path. The scenes include three texel-
shaded models: a creature (34k triangles, skinned), a cabin (11k
triangles), and a harvester (2.5k triangles). We also include ground
geometry and a skybox, which are rendered conventionally.

The goal is to reduce shading rate. However, our method replaces
a single geometry pass with two geometry passes and a compute
shading stage, as well as additional cost throughout the system.
The y-intercept of the graphs in Figure 2 give us a measure of
this overhead. Subtracting the fragment shading cost from the texel
shading cost gives us a total overhead measurement of 0.86 ms for
the cabin scene, 0.55 ms in the porch scene, and 0.59 ms in the
harvester scene.

Our shading reductions will be offset by two factors that increase

(© 2016 The Author(s)
Eurographics Proceedings (©) 2016 The Eurographics Association.

shading rate. The first is the mapping from pixels to texels. We
make a mipmap level selection for each pixel, and in our implemen-
tation, we round up to the higher mipmap level resolution, which is
roughly expected to be greater than required for per-pixel shading.
The second source of shading increase is in the caching system.
For our chosen caching approach, it is overshading caused by the
8x8 tile size. In the end, we find that these two factors result in an
increase of almost 2x over conventional fragment shading in some
cases.

The creature is slightly faster in isolation with texel shading than
with fragment shading at 30 lights (3.5 ms vs 3.9 ms). To further
illustrate this effect, we amplified the triangle count of the creature
using DX11 hardware tessellation. When we evaluate the highly
tessellated version, the small triangle problem becomes much more
severe for fragment shading, and the gap widens substantially (10
ms vs 54 ms).

Temporal Shading Reuse. In conventional rendering, every
fragment is shaded every frame. In this section, we give results ob-
tained by relaxing this restriction temporally. Rather than comput-
ing a full lighting solution for each texel in each frame, we seek to
reuse results from previous frames. We choose a value N, reusing
shades that are no more than N frames old. However, the model is
still rasterized every frame according to camera changes and ani-
mation.

Error from this method is most visible in the porch scene on
the surface of the character. It occurs when there is a rapid shift
in lighting in an area where 8x8 tiles are not updated on the same
frame. The error is negligible at N = 1 at 60 Hz, still fairly subtle
at N = 2, but obvious at N = 3. Figure 3 shows an example of the
artifact induced by this method when N = 6. How much shading
reuse is possible without noticeable artifacts will depend on the
scene, lighting, and how fast objects move or deform, but we found
results to be quite good at 60 Hz when N = 1.

Figure 2 shows performance results when N = 1. Texel shading
becomes faster than fragment shading for all scenes, but at different
points. In general, the choice of N does not need to be the same for
each object, or even each tile.

Variable Rate Shading. We are already decoupling shading rate
from fragment rate. We can change the shading rate on a per-
fragment basis by simply biasing the mipmap level choice. Our
goal is to show that texel shading enables dynamic shading rate
selection.

To demonstrate, we have implemented a simple heuristic and
show measurable performance gains. We shift the mipmap level ac-
cording to the change in the normal within a triangle, thus choosing
lower shading rates in flatter areas.

This is a fairly brute force approach to dynamic shading rate
control, but our results show substantial speedup without much loss
in quality. We choose different bias scales on a per-object basis. For
the creature and the harvester, the bias is 2, whereas the cabin has a
bias scale of 1. The highest speedup is for the harvester, where we
saw a total performance increase of 4.1x with at least 9% SSIM
and 47 dB PSNR.

76 K. Hillesland & J. Yang / Texel Shading

-
S
=
5

23

FS
TS TS
TS, TR

TS, TR, VRS

=
S

TS, TR
TS, TR, VRS

=

o
]

@
=
S

o @

Average Shading Time (ms)

Average Shading Time (ms)

~

— Fs
B — TS
E||— Ts.TR
o 6{| — TS, TR, VRS
£
[l
(=)}
£
o4
©
=4
w0 3
Q
D
@ 2
o
[
ES!
0

5 10 15 20 25 30 5 10
Number of lights

(a) Cabin Scene

Number of lights

(b) Porch Scene

20 25 30 0 5 10 15 20 25 30
Number of lights

(c) Harvester Scene

Figure 2: Shading time cost as a function of light count for fragment shading (FS), texel shading (TS), with temporal reuse (TR) and variable

rate shading (VRS).

(b) ©

Figure 3: Here we see the kind of errors our method produces when
pushed too far. (a) We show only the lighting term to make the error
more visible. (b) Error on the creature’s shoulder when shades are
kept for up to 67 ms (4 frames at 60 Hz). (c) Error when we force
bias of the mip level by two levels.

5. Conclusions and Future Work

We have presented a method that moves shading cost from a per-
fragment to a per-texel basis on current graphics hardware. We
show performance improvements in three ways. First, we show
some improvement for the “small triangle problem”. Second, we
reuse shading results from previous frames. Third, we enable dy-
namic spatial shading rate choices, for further speedups. In total,
we see shading speedups of up to 4.1x with very little error at un-
der 4 ms. However, the shading cost must be high enough to justify
the additional cost of the method, as well as a trade-off in terms of
error introduced by reducing the shading rate, and additional mem-
ory cost.

For future work, we’d like to look at alleviating memory pressure
through sparse texture representation. We’d like to take advantage
of working in object space. Finally, we expect this work to be rele-
vant to client-server rendering models.

Acknowledgements. Our thanks to Chris Brennan and Layla
Mah for helpful discussions and advice.

References

[AHTAM14] ANDERSSON M., HASSELGREN J., TOTH R., AKENINE-
MOLLER T.: Adaptive texture space shading for stochastic rendering.
Computer Graphics Forum (Proceedings of Eurographics 2013) 33, 2
(2014), 10. 2

[AMAOS5] AKENINE-MOLLER T., AILA T.: Conservative and tiled ras-
terization using a modified triangle set-up. Journal of Graphics, GPU,
and Game Tools 10, 3 (2005), 1-8. 2

[BEM10] BURNS C. A., FATAHALIAN K., MARK W. R.: A lazy object-
space shading architecture with decoupled sampling. In Proceedings of
the Conference on High Performance Graphics (Aire-la-Ville, Switzer-
land, Switzerland, 2010), HPG ’10, Eurographics Association, pp. 19—
28.2

[CHO2] CARR N. A., HART J. C.: Meshed atlases for real-time proce-
dural solid texturing. ACM Trans. Graph. 21, 2 (Apr. 2002), 106-131.
2

[CTH*14] CLARBERG P., TOTH R., HASSELGREN J., NILSSON J.,
AKENINE-MOLLER T.: AMFS: Adaptive Multi-Frequency Shading for
Future Graphics Processors. ACM Transactions on Graphics (Proceed-
ings of SIGGRAPH 2014) 33,4 (2014), 141:1-141:12. 2

[HGF14] HE Y., GU Y., FATAHALIAN K.: Extending the graphics
pipeline with adaptive, multi-rate shading. ACM Trans. Graph. 33, 4
(July 2014), 142:1-142:12. 1

[LD12] LIKTOR G., DACHSBACHER C.: Decoupled deferred shading
for hardware rasterization. In Proceedings of the ACM SIGGRAPH Sym-
posium on Interactive 3D Graphics and Games (New York, NY, USA,
2012), I3D ’12, ACM, pp. 143-150. 2

[NSL*07] NEHAB D., SANDER P. V., LAWRENCE J., TATARCHUK N.,
ISIDORO J. R.: Accelerating real-time shading with reverse reprojec-
tion caching. In Proceedings of the 22Nd ACM SIGGRAPH/EURO-
GRAPHICS Symposium on Graphics Hardware (Aire-la-Ville, Switzer-
land, Switzerland, 2007), GH *07, Eurographics Association, pp. 25-35.
1

[RKLC*11] RAGAN-KELLEY J., LEHTINEN J., CHEN J., DOGGETT
M., DURAND F.: Decoupled sampling for graphics pipelines. ACM
Trans. Graph. 30, 3 (May 2011), 17:1-17:17. 2

[TTV13] TATARCHUK N., TCHOU C., VENZON J.: Destiny: From
mythic science fiction to rendering in real-time. In ACM SIGGRAPH
2013 Courses: Advances in Real-time Rendering in Games Part I (New
York, NY, USA, 2013), SIGGRAPH 13, ACM, pp. 12:1-12:1. 1

[VST*14] VAIDYANATHAN K., SALvI M., TorH R., FOLEY T.,
AKENINE-MOLLER T., NILSSON J., MUNKBERG J., HASSELGREN J.,
SUGIHARA M., CLARBERG P., JANCZAK T., LEFOHN A.: Coarse Pixel
Shading. In High Performance Graphics (2014), pp. 9-18. 1

(© 2016 The Author(s)
Eurographics Proceedings (© 2016 The Eurographics Association.

