
EUROGRAPHICS 2015/ B. Bickel and T. Ritschel Short Paper

Interactive Pixel-Accurate Rendering
of LR-Splines and T-Splines

Jon M. Hjelmervik1 and Franz G. Fuchs1

1SINTEF ICT, Forskningsveien 1, 0314 Oslo, Norway

Figure 1: The rendering algorithm decouples the patch geometry (black lines) from the tesselator geometry (green lines).

Abstract
Flexible surface types on irregular grids, such as T-splines and LR-splines, are gaining popularity in science and
industry due to the possibility for local grid refinement. We present a novel rendering algorithm for those surface
types that guarantees pixel-accurate geometry and water-tight tessellation (no drop-outs). Before rendering, we
extract the Bézier coefficients. The resulting irregular grids of Bézier patches are then rendered using a multi-
stage algorithm, that decouples the tesselator and the patch geometry. The implementation using OpenGL utilizes
compute shaders and hardware tessellation functionality. We showcase interactive rendering achieved by our
approach on three representative use cases.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing algorithms

1. Introduction and related work

Smooth surfaces are popular both in engineering as well
as entertainment industries. A commonly used representa-
tion is tensor product NURBS surfaces, which consist of
a set of polynomial patches laid out in a regular grid. Re-
cent works have demonstrated rendering methods providing
reliable, and visually pleasing results, including associated
data such as textures or scientific data. The drawback of this
representation is that local refinement is not possible, as the
grid must be refined along a line in one of the parameter di-
rections. We are therefore seeing a shift towards more flex-

ible surface types, such as T-Splines [SZBN03] and LR B-
Splines [DLP13].

The hardware tessellation functionality available in GPUs
is based on dividing the surface into tessellation patches
which can be tessellated individually. See [SNK∗14] for a
thorough description of hardware tessellation and state-of-
the-art algorithms. For NURBS surfaces it is common to
let each polynomial (Bézier) patch be a tessellation patch.
A benefit with this choice is that two neighboring patches
share one common edge, which is required for a tessellation

c© The Eurographics Association 2015.

DOI: 10.2312/egsh.20151016

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/egsh.20151016


Jon M. Hjelmervik & Franz G. Fuchs / Interactive Pixel-Accurate Rendering of LR-Splines and T-Splines

e0

e1

e2 e3

e4 e5

P00 P10

P01 P11

P00

x < 0.25

e1 e0

P10

e0

P01

x < 0.25

e1 y < 0.75

e0 e2

P11

y < 0.75

e0 ...

Figure 2: Left: LR elements ei. Middle: Tessellation patches Pj,k. Right: Search forest.

without visible cracks. In the case of splines on unstructured
grids this is typically not the case.

Catmull-Clark subdivision surfaces, where the limit sur-
face consist of a set of bicubic B-spline surfaces, bear strong
connections to B-spline surfaces. Nießner et. al. [NLMD12]
presented a rendering algorithm for Catmull-Clark subdivi-
sion surfaces, where the control net is refined near extraor-
dinary surfaces to simplify the tessellation and evaluation
implementation and improve its performance. A similar ap-
proach in our case would be to insert tessellation patches
such that each patch consists of one Bézier patch, and that
neighboring patches share a common edge. However, our
data sets have a large number of extraordinary vertices. This
strategy would therefore require a very large number of
tessellation patches leading to low rendering performance.
Instead, we chose the opposite approach: The proposed
method uses uniformly distributed tessellation patches inde-
pendent of the structure of the underlying Bézier patches.
Those Bézier patches are subsequently referred to as “ele-
ments”.

Yeo et al. [YBP12] presented a method for computing a
sufficient tessellation level to obtain pixel-accurate render-
ing. Their implementation is a two-pass algorithm that first
computes the tessellation level based on SLEVEs [Lut00].
In the second pass, the tessellation control shader reads the
tessellation level for the patch. In order to ensure that the
curve between two neighboring patches is tessellated with
the same level, also the neighboring tessellation level is read.
Hjelmervik [Hje14] presented a single pass algorithm for the
same problem, where the error estimate is computed based
on upper bounds on the second order derivatives of the sur-
face. Both methods produce similar results.

In this article, we will build on [Hje14, YBP12] and ex-
tend the approach to a larger class of surface types. We
present a multi-pass algorithm that separates the computa-
tion of tessellation level from the rendering pass from the
SLEVEs approach. However, we build upon the error esti-
mate from [Hje14], because it only requires that each tessel-
lation patch is C2 continuous.

2. The proposed method

Appropriate methods for interactive rendering of spline sur-
faces should be both pixel-accurate and water-tight. There
are two main challenges when developing methods using the
hardware tessellator, namely to compute an appropriate tes-
sellation level and to efficiently evaluate the surface at the
newly generated vertices. We will start by describing the er-
ror estimate resulting in pixel-accurate surface evaluation.

2.1. Pixel-accurate tessellation

The hardware tessellator provides a valid triangulation for
the patches of a surface S(u,v). In OpenGL a tessellation
control shader determines the tessellation level. Ideally, one
wants as few triangles as possible, while ensuring that the
error between the original surface and its tessellated coun-
terpart is less than half a pixel, i.e.,

∆P := 2
∥∥∥πs(S(u,v))−

[
x
y

]∥∥∥
∞
≤ 1 (1)

where
[

x
y

]
is the pixel’s center and πs : R3→ R2 is the pro-

jection to the screen. The linear interpolation error (to a C2

function) can be used to determine the sampling distance of
a curve. As presented in [Hje14], this leads to to a view de-
pendent error bound, that depends on upper bounds on the
second order derivatives and the distance in eye space (esti-
mated by the control points of S), i.e.,

M(∂u∂uS), M(∂u∂vS), M(∂v∂vS), MS (2)

where M is the model view matrix. This error bound is the
foundation of the following algorithm for pixel-accurate ren-
dering of Bézier patches on unstructured grids.

2.2. Overall algorithm

Our method guarantees a geometrically pixel-accurate ren-
dering based on [Hje14]. Before rendering the Bézier co-
efficients of each patch are extracted, making the rendering
applicable to both LR- and T-spline surfaces. Each frame the
algorithm consists of the following stages (see Figure 2 for
notation):

c© The Eurographics Association 2015.

66



Jon M. Hjelmervik & Franz G. Fuchs / Interactive Pixel-Accurate Rendering of LR-Splines and T-Splines

(a) Barringer Crater, Arizona, USA. (b) Terrain of Værøy, Norway. Courtesy of
kartverket.no.

(c) Bathymetry of Banc du Four. Courtesy of
Laboratoire Domaines Océaniques.

Figure 3: Visualization examples with Blinn-Phong shading of data represented by LR B-splines.

Method 1 (Pixel-Accurate Method)

1. Per Element Compute Shader (PEC-shader): In the first
stage we compute bounds for the expressions in Equa-
tion (2) for each LR-spline element ei. The resulting 12
float values per element are stored in an image buffer.

2. Per Patch Compute Shader (PPC-shader): The second
stage loops over all elements ei that belong to a patch Pj,k
computing upper and lower bounds of the expressions in
Equation (2). The result in [Hje14] is then used to calcu-
late the inner tessellation level for each tessellation patch.
To optimize the performance, elements outside the view-
frustum are culled.

3. Rendering Stage: The previous two compute shaders pro-
vide the inner tessellation level for each tessellation patch
Pj,k, which guarantee pixel-accurate rendering of the ge-
ometry. This is used in a normal render stage.

We also developed a heuristic method which, in all our
examples tested, is roughly twice as fast, while leading to
very similar results.

Method 2 (Heuristic Method) This method is a simplifica-
tion of Method 1. The first stage (PEC-shader) is changed to
compute and store the tessellation level locally per element
according to the error bound for pixel-accurate tessellation
given in [Hje14]. This results in one integer value per ele-
ment, stored in an image buffer. The next stage (PPC-shader)
then loops over all elements that belong to that patch and
uses the maximum tessellation level encountered. The ren-
dering stage is identical to the one in Method 1.

Both methods evaluate the surface in the rendering stage.
We will continue by describing efficient means of evaluating
surfaces.

2.3. Fast look-up tables

The proposed methods in Section 2.2 need a fast and reli-
able algorithm for evaluating spline surfaces on unstructured
grids. Given a point in the parameter domain one needs to

find which element ei this point belongs to, see Figure 2. To
improve the performance of the evaluation, we first convert
the surfaces into Bézier segments. This can easily be done
by computing the control points of the interpolating polyno-
mial. This strategy has the added advantage that our imple-
mentation is independent of the surface representation.

The common strategy for rendering Bézier surfaces is to
pass the control points through the tessellation shader stages,
and use well known algorithms such as the De Casteljau’s
algorithm for evaluation. On unstructured grids, one needs
an additional step to find which element the parameter value
belongs to. Referring to Figure 2 for an illustration, the al-
gorithm is as follows.

• Split the parameter domain into a regular grid (similar to
the tessellation grid).

• For each grid cell, build a kd-tree for all active elements.

The head of each search tree is stored in a texture for rapid
lookups. In the case of a single active element in a grid cell,
the element index is stored instead. Please note that the ren-
dered surface is crack free also across element boundaries,
since the evaluation procedure always produces the same
value for a given parameter value.

3. Results

We present visualization of LR B-spline surfaces in three use
cases. The Barringer Crater, USA (Figure 3(a)) with 32193
LR elements, the terrain of Værøy, Norway (Figure 3(b))
with 429007 LR elements, and the bathymetry of Banc du
Four, France (Figure 3(c)) with 59824 LR elements. All data
sets have a large number of extraordinary vertices, cf. Fig-
ure 1.

In Table 1 we can see how the number of tessellation
patches influences the total rendering time of the surface.
The time for the PEC compute shader is independent of
the zoom-level and the number of patches. For the exam-
ples in Figures 3(a)-(c) the PEC shader takes respectively

c© The Eurographics Association 2015.

67



Jon M. Hjelmervik & Franz G. Fuchs / Interactive Pixel-Accurate Rendering of LR-Splines and T-Splines

Barringer Crater, see Figure 3(a) Terrain of Værøy, see Figure 3(b) Banc du Four, see Figure 3(c)
#patches 322 642 1282 2562 5122 322 642 1282 2562 5122 322 642 1282 2562 5122

M
et

ho
d

1

#prim[×103] 823 590 460 468 702 2369 2744 2480 2017 1688 599 362 290 320 550
max(∆P) 1.75 1.00 0.78 0.97 0.97 3.69 2.47 1.82 0.68 0.62 1.31 0.67 0.67 0.56 0.51
PPC[ms] 0.45 0.18 0.12 0.11 0.16 24.0 11.0 5.5 2.4 1.4 1.10 0.39 0.23 0.21 0.24
render[ms] 0.45 0.40 0.42 0.56 1.30 2.4 2.9 3.1 3.1 4.1 0.40 0.34 0.33 0.49 1.30
total [ms] 0.96 0.64 0.60 0.72 1.50 27.0 15.0 9.2 6.1 6.1 1.50 0.78 0.62 0.75 1.60

M
et

ho
d

2

#prim[×103] 684 504 426 450 691 2127 2439 2288 1893 1626 524 335 276 310 546
max(∆P) 2.41 1.04 1.00 0.97 0.97 3.69 1.92 1.46 0.93 0.62 1.16 0.80 0.67 0.67 0.51
PPC[ms] 0.09 0.04 0.02 0.04 0.10 8.2 3.7 1.9 0.7 0.4 0.27 0.08 0.04 0.05 0.10
render[ms] 0.43 0.42 0.43 0.57 1.30 2.3 2.7 2.9 3.0 4.0 0.37 0.32 0.32 0.48 1.20
total [ms] 0.57 0.50 0.50 0.65 1.40 11.0 6.8 5.3 4.1 4.9 0.68 0.45 0.40 0.57 1.30

Table 1: Comparison of performance of rendering with the proposed methods, with a screen resolution 1024× 768 on an
NVIDIA Titan GPU. Pixel-accurate results are higlighted with gray. A value of max(∆P) slightly lower than 1 is ideal.

Figure 4: Visualization of parametric accuracy of the Bar-
ringer Crater. The gray color indicates less than 10% error,
and blue 10%-100%. The error never exceeds the given tol-
erance. The blue color indicates no over-tessellation.

0.054/0.046 ms, 0.57/0.43 ms, and 0.059/0.042 ms for the
pixel-accurate/heuristic method.

All examples in Table 1 show that too few tessellation
patches can result in parametric inaccuracy. In those cases,
there were patches that reached the maximum tesselation
level of 64 triangles which was not enough for a pixel ac-
curate result. The larger a patch, the more likely it contains
an element with a large (absolute) second order derivative of
the surface, dictating a high tessellation level for the whole
patch. Therefore, more patches potentially allow a more lo-
calized adaptation. As Table 1 shows, the number of prim-
itives decreases with increased number of patches, leading
to faster rendering times. For the Barringer Crater and Banc
du Four a minimum is reached at 1282 patches. For more
patches the number of primitives increases again since each
patch generates at least 2 triangles. Figure 4 shows a visual-
ization of the parametric accuracy.

The heuristic method resulted in a speedup factor of
roughly 2, without detectable loss of visual quality in our
test cases. In comparison, the method in [Hje14] generated

roughly the same number of primitives and was slightly
faster (but not watertight).

4. Conclusion and Future Work

The presented approach allows interactive rendering of
splines on unstructured grids. The approach ensures pixel-
accurate geometry and water-tight tessellation. We showcase
the use on three different cases. In the future we will imple-
ment a simplified algorithm for 2.5 dimensional surfaces that
is expected to drastically improve rendering times. A further
improvement of the proposed method is to allow for a non-
uniform tessellation patch structure, with good heuristics to
ensure optimal performance.

References
[DLP13] DOKKEN T., LYCHE T., PETTERSEN K. F.: Polynomial

splines over locally refined box-partitions. Comput. Aided Geom.
Des. 30, 3 (Mar. 2013), 331–356. 1

[Hje14] HJELMERVIK J.: Direct pixel-accurate rendering of
smooth surfaces. In Mathematical Methods for Curves and Sur-
faces, 2012, vol. 8177 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2014, pp. 238–247. 2, 3, 4

[Lut00] LUTTERKORT D. C.: Envelopes of nonlinear geometry.
PhD thesis, Purdue University, West Lafayette, IN, USA, 2000.
AAI3017831. 2

[NLMD12] NIESSNER M., LOOP C., MEYER M., DEROSE T.:
Feature-adaptive GPU rendering of Catmull-Clark subdivision
surfaces. ACM Trans. Graph. 31, 1 (Feb. 2012), 6:1–6:11. 2

[SNK∗14] SCHÄFER H., NIESSNER M., KEINERT B., STAM-
MINGER M., LOOP C.: State of the Art Report on Real-time
Rendering with Hardware Tessellation. Lefebvre S., Spagnuolo
M., (Eds.), Eurographics Association, pp. 93–117. 1

[SZBN03] SEDERBERG T. W., ZHENG J., BAKENOV A., NASRI
A.: T-splines and t-nurccs. ACM Trans. Graph. 22, 3 (July 2003),
477–484. 1

[YBP12] YEO Y. I., BIN L., PETERS J.: Efficient pixel-accurate
rendering of curved surfaces. In Proceedings of the ACM SIG-
GRAPH Symposium on Interactive 3D Graphics and Games
(New York, NY, USA, 2012), I3D ’12, ACM, pp. 165–174. 2

c© The Eurographics Association 2015.

68


