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Abstract

One of the most compelling challenges in virtual reality today is to allow users to carry out virtual manipulation
tasks using their hands. Multi-touch devices are an interesting interface for this task, as they are widely avail-
able, they provide users with some haptic sensation of their motions, and they give very precise locations of the
fingertips. We introduce a quadratic encoding technique to provide plausible and smooth hand reconstructions
from multi-touch input at real-time rates suitable for virtual reality applications. Another nice feature of our data-
driven approach is that it does not require explicit identification or registration of fingers. We show that quadratic
encoding outperforms linear encoding, cubic encoding, and a PCA based inverse kinematics approach, and is well
suited for performing real-time virtual manipulation using a multi-touch device.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism—Animation Computer Graphics [I.3.6]: Methodology and Techniques—Interaction Tech-
niques

1. Introduction and Related Works

Real-time creation or reconstruction of hand motion is of in-
creasing interest, as shown by advent of devices such as the
LeapMotion [Lea] and the Nimble Sense [Nim] and the vast
array of visual hand tracking research such as [QSW∗14].
Multi-touch devices offer interesting opportunities in this
space, as they are widely available and inexpensive, they de-
liver precise fingertip position information, and they provide
some feeling of touch to the user and support for the hand.
However, with a multi-touch device, we must be able to re-
construct complete hand motions from fingertip positions in
real-time and without knowing which fingers are responsible
for which contacts. Furthermore, the result should be simul-
taneously smooth, controlled, precise, and natural.

Other researchers have also worked on reconstruction of
hand pose from reduced dimensional input data. El Koura
and colleagues reconstruct hand motions specifically for
guitar playing, using a motion capture database to capture
sympathetic motions of the fingers [ES03]. Hamer and col-
leagues [HGUVG11] reconstruct hand motion from object
motion by retrieving acceptable hand motions from a cap-
tured database. Ye and colleagues [YL12] reconstruct plau-
sible hand motion from motion capture of the full body up

to and including the wrist along with motion capture of the
manipulated object. Mulatto et al. perform an inverse kine-
matics approach based on thumb and index finger positions
measured by a haptic device, taking into account a set of lin-
ear dependencies between the joint angles that they call syn-
ergies [MFMP13]. Hoyet and colleagues [HRMO12] pro-
vide evidence from human subjects experiments for the per-
ceptual validity of reconstructing hand motion from reduced
marker sets. Chang and colleagues [CPMX07] explore min-
imal marker sets for grasp discrimination.

Our work differs from these works in that we use an en-
coding function as a compact representation of a motion
capture database. Our quadratic encoding approach allows
us to create smooth, natural hand motion in real-time from
multi-touch fingertip inputs. Our approach gracefully han-
dles changing dimensionality in input data as fingers are
added to and removed from the multi-touch device. In addi-
tion, we automatically handle ambiguity in input signals, be-
cause we must identify which finger is responsible for which
contact on the multi-touch device, even as the configuration
and number of fingers are continuously changing.

Our results show that quadratic encoding is superior to lin-
ear encoding, cubic encoding, and PCA based inverse kine-
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matics. We demonstrate the ability to simulate a hand ma-
nipulating objects in a virtual environment in real-time us-
ing a multi-touch device as input. The contributions of this
paper are: first example of hand pose reconstruction from
multi-touch input, quadratic encoding technique for smooth
hand pose reconstruction, demonstration that changing con-
tacts can be handled gracefully by using the same quadratic
function for all contact conditions, an algorithm for estimat-
ing which fingers are responsible for which contact on a
multi-touch input device, and demonstration that quadratic
encoding can represent joint angle values successfully even
for hand motion in manipulation tasks.

2. Quadratic Encoding

Quadratic encoding attempts to represent outputs as a
quadratic function of inputs while retaining the full dimen-
sionality (and ideally expressiveness) of both. Quadratic en-
coding has been used previously to encode energy values
and center of mass trajectories for foot placements in hu-
manoid robot walking [KPA13]. In this paper, we consider
whether this approach can successfully encode the detail
of hand pose consisting of joint angles and the wrist con-
figuration in the challenging situation when inputs (finger-
tip positions) are not always observable and are frequently
changing. The advantages of encoding hand pose in this way
are exceptional speed from direct evaluation of a quadratic
function and built-in smoothness from the quadratic function
construction.

Let our input be vector u = (p1, · · · , p5,s1, · · · ,s5) ∈<15,
where pi = (xi,yi) ∈ <2 denotes the position of the i-th fin-
gertip on the multi-touch device, si denotes contact status
whose value is 1 if the fingertip is in contact and 0 otherwise,
and the subscripts represent the indices of the fingertips.

Then the n-th degree-of-freedom of the hand can be ex-
pressed as a quadratic function of u as follows:

qn(u) = ∑
i≤ j

ai jnuiu j +∑
i

binui +dn (1)

where ai jn(i≤ j), bin and dn are the coefficients that must be
determined. A total of N quadratic functions are needed to
reconstruct the full configuration of an N-degree-of-freedom
hand model. Because u vector is 15-dimensional, we solve
for 120+15+1 = 136 coefficients per degree-of-freedom.

The encoding function can alternatively be any desired de-
gree, with correspondingly fewer or more coefficients. For
example, equation 2 shows linear encoding and equation 3
gives a cubic encoding. We compare quadratic encoding
against these two alternatives in our results section.

qn(u) =∑
i

ainui +dn (2)

qn(u) = ∑
i≤ j≤k

ai jknuiu juk + ∑
i≤ j

bi jnuiu j +∑
i

cinui +dn

(3)

Figure 1: System flow. Quadratic encoding coefficients are
computed offline from training data and used online for hand
pose reconstruction from multi-touch input.

Our encoding technique is used in a complete system
as shown in figure 1. Training is performed by computing
quadratic encoding coefficients in an offline process. Given
a training set of contact inputs u corresponding to hand pos-
tures qn(u), we solve equations 1,2, or 3 for coefficients a,
b, c, and d using an off the shelf least squares solver (MAT-
LAB’s lsqcurvefit). It is worth noting that the same u vec-
tor may correspond to multiple hand poses in the training
set due to ambiguity in lifted fingers’ positions. The least
squares fitting takes care of this problem by finding the best
fit among these redundancies.

At runtime, we reconstruct hand pose in real time from a
user’s multi-touch inputs by evaluating equation 1 for each
degree-of-freedom of the hand model using the coefficients
ai jn, bin, and dn that have been computed offline.

Reconstruction requires that the fingers be identified. For
training, finger labelings are known. At runtime, our system
automatically labels fingers at first contact with the device,
and every time an unseen finger is introduced into contact.
We use our hand pose reconstruction technique to choose the
most likely finger labeling. Specifically, we reconstruct hand
pose for all possible labelings, and choose the result that has
the closest nearest neighbor in our training database.

In some situations (e.g., manipulation tasks), a physically
based simulation of hand pose is desired. In these cases, we
use the Bullet physics engine to track the reconstructed hand
pose. In our implementation, we used out-of-the-box settings
except for setting the maximum impulse values to 100N · s.

3. Principal Component Based Inverse Kinematics
(PCA IK)

We compare our results to the PCA IK method of Mulatto et
al. [MFMP13]. The number of principal components (PC’s)
that can be used to represent hand pose in this technique
varies with the number of fingers in contact with the multi-
touch device. For 5 fingers in contact, the 12 available PC’s
capture 97% of the variance in our training data, while 4 fin-
gers (9 PC’s) yield 94%, 3 fingers (6 PC’s) yield 87%, and
2 fingers (3 PC’s) yield 68%. This method relies on compli-
ance values; we used a compliance of 0.1 for translation and
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25.0 for rotation. We found 100 iterations to be sufficient for
convergence and use 100 iterations in our experiments.

Unlike in the original work [MFMP13], fingertip labels
are unknown for our application. Therefore, we perform an
exhaustive search over fingertip labellings as in our quadratic
encoding method. However, for PCA IK, we identify near-
est neighbor based on fingertip contact positions, rather than
reconstructing and comparing the complete hand pose. Com-
paring complete hand poses gave poorer results, perhaps be-
cause the PCA IK reconstruction was less faithful than that
derived from quadratic encoding.

There are many options for improving the PCA-IK algo-
rithm such as projection of the desired pose into null space. It
would be interesting to compare against those in the future.

4. Results and Discussion

For our results, we trained all models using a set of hand mo-
tions captured by using a conventional marker-based motion
capture system and a multi-touch device simultaneously. We
used a 10 camera Vicon system to capture 3D hand motions,
using 23 markers per hand. An iPad R© 2 and TUIO [TUI]
software was used to obtain the fingertip contact positions.
The multi-touch device orientation was fixed and the subject
was sitting directly in front of the device. The hand model
used in our experiments has 14 ball joints and 6 degrees of
freedom in the root joint for a total of 48 degrees of freedom,
and was automatically generated by our Vicon system.

Our training set consists of 7,083 total frames of one sub-
ject making moving, grasping, pinching, and rotating mo-
tions with various combinations of fingers. 1-finger motions
were not captured due to their inherent ambiguity on a multi-
touch surface. This dataset was used to solve for the encod-
ing functions as discussed in Section 2, with total time for
offline processing of approximately 5 minutes. A separate
database was captured on a different day from the same sub-
ject to be used in ground truth evaluation. The subject was
allowed to perform free-form gestures on the multi-touch de-
vice as if he were interacting with a virtual clay blob. We
removed 1 finger poses and brief glitches due to noise in the
iPad R© capture system. The resulting ground truth dataset
contains a broad variety of motions and finger combinations
in 2,538 total frames. For both training and testing data, we
chose the fingertip position (xi,yi) to be given in inches from
the top left corner of the screen. We found the exact value
of a no-contact (si = 0) fingertip position to make little dif-
ference. It is set as (−1,−1) in our experiments. Translation
invariance was enforced by measuring all fingertip locations
relative to the leftmost finger contact point.

Table 1 gives results comparing all techniques on the
ground truth dataset. Each row in the table is a different
reconstruction technique. The “Distance" columns give the
mean and standard error of mean for Euclidean distance be-
tween the wrist position as measured from the motion cap-

Distance (cm) Angle (degrees)
Mean SEM Mean SEM

Linear 3.9837 0.0510 9.0774 0.0362
Quadratic 2.5520 0.0479 8.5656 0.0368
Cubic 3.1652 0.0415 9.9411 0.0424
PCA IK 4.1488 0.0440 11.7594 0.0455

Table 1: Wrist position errors and overall joint angle errors
in different methods. SEM stands for standard error of mean.

Accuracy (%)
2 Fingers 3 Fingers 4 Fingers 5 Fingers

Linear 52.66 34.04 64.35 66.87
Quadratic 55.66 70.72 79.36 99.88
Cubic 56.24 52.38 86.49 99.33
PCA IK 51.85 51.50 48.15 62.88

Table 2: Finger labeling accuracy in different methods per
number of fingers.

ture data and the wrist position as reconstructed by each al-
gorithm. The “Angle" columns give the mean and standard
error of mean of the joint angle differences between ground
truth and reconstruction, averaged over all joint angles. We
see that quadratic encoding performs better than all other
approaches. In particular, we suspected that cubic encoding
may be suffering from overfitting, and performed the Copas
test over 10-fold cross validation of training data to measure
overfitness. We found that cubic encoding has an average of
18.6 joints which are overfitted to the training data as op-
posed to 7.3 joints for linear and 9.8 joints for quadratic.

Table 2 shows the ability of the various techniques to
compute a correct finger labeling. Again, quadratic encod-
ing has the best overall performance. We believe cubic en-
coding was able to outperform in 4-finger labeling accuracy,
because there was less overfitting due to less training data
(874 frames for 4-fingers vs. 2020 frames for 3-fingers).

We also examined smoothness of the motion, finding that
quadratic encoding is substantially smoother than the other
encoding methods. Cubic encoding is also typically smooth
but occasionally shows large divergences, possibly due to
overfitting. Figure 2 shows some side by side comparisons
of the various approaches, indicating some failure modes
observed. PCA IK (figure 2(e)) tries to fit the target posi-
tion excessively and produces an unnatural pose. Across the
encoding methods (figure 2(b), 2(c), and 2(d)), we see that
quadratic encoding (figure 2(c)) generalizes best over the
training data and handles unseen data well.

We tested our real-time system for ability to allow users to
manipulate objects in a virtual environment. Tasks included
moving a virtual box to a goal position, rotating and sliding
a virtual wrench, and moving and stacking boxes (figures 3).
All of these tasks were successfully performed without user
training. We informally tested with users of different hand
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(a) Ground truth. (b) Linear encoding. (c) Quadratic encoding. (d) Cubic encoding. (e) PCA IK.

Figure 2: Reconstruction results across different methods from an unseen input.

Figure 3: Manipulation tasks.

sizes and found that users with hand sizes similar to that of
the training data can use the system effectively.

There are several ways our system can be improved. We
could enforce that fingertips make contact at the measured
contact points using simple corrective IK. We could also use
historical information to make more informed estimates of
finger labeling. Such estimates may enable us to extend our
system to handle situations with a single finger in contact.

However, we find that current system performs extremely
well in the real-time, interactive situations for which it was
designed. Users can view smooth hand reconstructions and
use their hands in a virtual environment to manipulate ob-
jects in real-time with the tactile support of the multi-touch
interface. Even untrained users quickly compensate for er-
rors in finger labeling or placement. In contrast to iterative
IK approaches (66.1898 ms for 100 iterations), quadratic en-
coding (0.0021 ms per pose) is so fast that multiple possibil-
ities for finger labels can be explored without causing a visi-
ble lag. In contrast to other encoding techniques, results rep-
resent ground truth well and are smooth over varying poses
and varying finger contacts. In the future, we will explore
using our system with 3D devices and immersive environ-
ments and explore bimanual and multi-user interactions. We
will also explore applications of quadratic encoding beyond
hand motion, e.g., to motions of the entire body.
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